
FINITE ELEMENT METHODS FOR PARABOLIC EQUATIONS

LONG CHEN

As a model problem of general parabolic equations, we shall consider the following
heat equation and study corresponding finite element methods

(1)

 ut −∆u = f in Ω× (0, T ),
u = 0 on ∂Ω× (0, T ),

u(·, 0) = u0 in Ω.

Here u = u(x, t) is a function of spatial variable x ∈ Ω ⊂ Rn and time variable t ∈
(0, T ). The ending time T could be +∞. The Laplace operator ∆ is taking with respect
to the spatial variable. For the simplicity of exposition, we consider only homogenous
Dirichlet boundary condition and comment on the adaptation to Neumann and other type
of boundary conditions. Besides the boundary condition on ∂Ω, we also need to assign
the function value at time t = 0 which is called initial condition. For parabolic equations,
the boundary ∂Ω × (0, T ) ∪ Ω × {t = 0} is called the parabolic boundary. Therefore
the initial condition can be also thought as a boundary condition of the space-time domain
Ω× (0, T ).

1. VARIATIONAL FORMULATION AND ENERGY ESTIMATE

We multiply a test function v ∈ H1
0 (Ω) and apply the integration by part to obtain a

variational formulation of the heat equation (1): given an f ∈ L2(Ω) × (0, T ], for any
t > 0, find u(·, t) ∈ H1

0 (Ω), ut ∈ L2(Ω) such that

(2) (ut, v) + a(u, v) = (f, v), for all v ∈ H1
0 (Ω).

where a(u, v) = (∇u,∇v) and (·, ·) denotes the L2-inner product.
We then refine the weak formulation (2). The right hand side could be generalized to

f ∈ H−1(Ω). Since ∆ map H1
0 (Ω) to H−1(Ω), we can treat ut(·, t) ∈ H−1(Ω) for a

fixed t. We thus introduce the Sobolev space for the time dependent functions

Lq(0, T ;W k,p(Ω)) := {u(x, t) | ‖u‖Lq(0,T ;Wk,p(Ω)) :=

(∫ T

0

‖u(·, t)‖qk,p dt

)1/q

<∞}.

Our refined weak formulation will be: given f ∈ L2(0, T ;H−1(Ω)) and u0 ∈ H1
0 (Ω),

find u ∈ L2(0, T ;H1
0 (Ω)) and ut ∈ L2(0, T ;H−1(Ω)) such that

(3)
{
〈ut, v〉+ a(u, v) = 〈f, v〉, ∀v ∈ H1

0 (Ω), and t ∈ (0, T ) a.e.
u(·, 0) = u0

where 〈·, ·〉 is the duality pair of H−1(Ω) and H1
0 (Ω). We assume equation (3) is well

posed. For the existence and uniqueness of the solution [u, ut], we refer to [3]. In most
places, we shall still use the formulation (2) and assume f, ut ∈ L2(Ω) so that the duality
pair is realized by the L2 inner product (·, ·).
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Remark 1.1. The topology for the time variable should also be treat in L2 sense. But in
(2) and (3) we still pose the equation point-wise (almost everywhere) in time. In particular,
one has to justify the point value u(·, 0) does make sense for an L2 type function which
can be proved by the regularity theory of the heat equation. �

To easy the stability analysis, we treat t as a parameter and the function u = u(x, t) as
a mapping

u : [0, T ]→ H1
0 (Ω),

defined as
u(t)(x) := u(x, t) (x ∈ Ω, 0 ≤ t ≤ T ).

With a slight abuse of notation, we still use u(t) to denote the map. The norm ‖u(t)‖ or
‖u(t)‖1 is taken with respect to the spatial variable and thus becomes a function of time.

We then introduce the operator

L : L2(0, T ;H1
0 (Ω))→ L2(0, T ;H−1(Ω))× L2(Ω)

as

(Lu)(·, t) = ∂tu−∆u in H−1(Ω), for t ∈ (0, T ] a.e.

(Lu)(·, 0) = u(·, 0).

Then the equation (3) can be written as

Lu = [f, u0].

Here we explicitly include the initial condition u0. The spatial boundary condition is build
into the space H1

0 (Ω). In most places, when it is clear from the context, we also use L for
the differential operator only.

We shall prove several stability results of L which are known as energy estimates in [5].

Theorem 1.2 (Energy estimates for the heat equation). Suppose [u, ut] is the solution of
(2) and ut ∈ L2(0, T ;L2(Ω)), then for t ∈ (0, T ] a.e.

(4) ‖u(t)‖ ≤ ‖u0‖+

∫ t

0

‖f(s)‖ds

(5) ‖u(t)‖2 +

∫ t

0

|u(s)|21 ds ≤ ‖u0‖2 +

∫ t

0

‖f(s)‖2−1 ds,

(6) |u(t)|21 +

∫ t

0

‖ut(s)‖2 ds ≤ |u0|21 +

∫ t

0

‖f(s)‖2 ds.

Proof. The solution is defined via the action of all test functions. The art of the energy
estimate is to choose an appropriate test function to extract desirable information.

We first choose v = u to obtain

(ut, u) + a(u, u) = (f, u).

We manipulate these three terms as:

• (ut, u) =

∫
Ω

1

2
(u2)t =

1

2

d

dt
‖u‖2 = ‖u‖ d

dt
‖u‖;

• a(u, u) = |u|21;

• |(f, u)| ≤ ‖f‖‖u‖ or |(f, u)| ≤ ‖f‖−1|u|1 ≤
1

2
(‖f‖2−1 + |u|21).
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The inequality (4) is an easy consequence of the following inequality

‖u‖ d

dt
‖u‖ ≤ ‖f‖‖u‖.

From
1

2

d

dt
‖u‖2 + |u|21 ≤

1

2
(‖f‖2−1 + |u|21),

we get
d

dt
‖u‖2 + |u|21 ≤ ‖f‖2−1.

Integrating over (0, t), we obtain (5).
The last energy estimate (6) can be proved similarly by choosing v = ut and left as an

exercise. �

From (5), we can obtain the stability of the operator L

L : L2(0, T ;H1
0 (Ω))→ L2(0, T ;H−1(Ω))× L2(Ω)

as
‖u‖2L2(0,T ;H1

0 (Ω)) ≤ ‖u0‖2 + ‖f‖2L2(0,T ;H−1(Ω)).

Since the equation is posed a.e for t, we could also obtain the maximum-norm estimate in
time. For example, (4) can be formulated as

‖u‖L∞(0,T ;L2(Ω)) ≤ ‖u0‖+ ‖f‖L1(0,T ;L2(Ω)),

and (6) implies
‖u‖L∞(0,T ;H1

0 (Ω)) ≤ |u0|1 + ‖f‖L2(0,T ;L2(Ω)).

Exercise 1.3. Prove the energy estimate

(7) ‖u‖2 ≤ e−λt‖u0‖2 +

∫ t

0

e−λ(t−s))‖f‖2−1 ds,

where λ = λmin(−∆) > 0. The estimate (7) shows that the effect of the initial data is
exponential decay.

2. FINITE ELEMENT METHODS: SEMI-DISCRETIZATION IN SPACE

2.1. Semi-discretization in space. Let {Th, h → 0} be a quasi-uniform family of tri-
angulations of Ω and Vh ⊂ H1

0 (Ω) be a finite element space based on Th. The semi-
discretized finite element method is: given f ∈ V′h × (0, T ], u0,h ∈ Vh ⊂ H1

0 (Ω), find
uh ∈ L2(0, T ;Vh) such that

(8)
{

(∂tuh, vh) + a(uh, vh) = 〈f, vh〉, ∀vh ∈ Vh, t ∈ R+.
uh(·, 0) = u0,h

The scheme (8) is called semi-discretization since uh is still a continuous (indeed differen-
tial) function of t. The initial condition u0 is approximated by u0,h ∈ Vh.

Take Vh as the linear finite element space as an example. We can expand uh =∑N
i=1 ui(t)ϕi(x), where ϕi is the standard hat basis at the vertex xi for i = 1, · · · , N ,

the number of interior nodes, and the corresponding coefficient ui(t) now is a function of
time t. The solution uh can be computed by solving an ODE system

(9) Mu̇ + Au = f ,
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where u = (u1, · · · , uN )ᵀ is the coefficient vector, M ,A are the mass matrix and the
stiffness matrix, respectively, and f = (f1, · · · , fN )ᵀ with fi = (f, ϕi).

When the linear finite element is used, one can use three vertices quadrature rule i.e.∫
τ

g(x) dx ≈ 1

3

3∑
i=1

g(xi)|τ |.

Then the mass matrix becomes diagonal M = diag(m1, · · · ,mN ). This is known as the
mass lumping. For 2-D uniform grids,mi = h2 andA is the five point stencil discretization
of −∆. Therefore (9) can be interpret as a rescaled finite difference discretization at each
vertex and the ODE system (9) can be solved efficiently by mature ODE solvers.

2.2. Setting for the error analysis. We shall apply our abstract error analysis developed
in Unified Error Analysis to estimate the error u− uh in certain norms. The setting is

• X = L2(0, T ;H1
0 (Ω)), and ‖u‖X =

(∫ T
0
|u(t)|21 dt

)1/2

• Y = L2(0, T ;H−1(Ω), and ‖f‖Y =
(∫ T

0
‖f(t)‖2−1 dt

)1/2

• Xh = L2(0, T ;Vh), and ‖uh‖Xh
=
(∫ T

0
|uh(t)|21 dt

)1/2

• Yh = L2(0, T ;V′h), and ‖fh‖Yh
=
(∫ T

0
‖fh(t)‖2−1,h dt

)1/2

. Recall the dual
norm

‖fh‖−1,h = sup
vh∈Vh

〈fh, vh〉
|vh|1

, for fh ∈ V′h.

• Ih = Rh(t) : H1
0 (Ω) → Vh is the Ritz-Galerkin projection, i.e., Rhu ∈ Vh such

that

a(Rhu, vh) = a(u, vh), ∀vh ∈ Vh.

• Πh = Qh(t) : H−1(Ω)→ V′h is the projection

〈Qhf, vh〉 = 〈f, vh〉, ∀vh ∈ Vh.

• Ph : Xh →X is the natural inclusion
• L : X → Y × L2(Ω) is Lu = ∂tu−∆u,Lu(·, 0) = u(·, 0), and
Lh = L|Xh

: Xh → Yh × Vh.

We summarize the setting in the following diagram

X
L−−−−→ YyRh

yQh

Xh
Lh−−−−→ Yh

,

which is not commutative and the difference is the consistency error ‖QhLu−LhRhu‖Yh
.

The discrete equation we are solving is

Lhuh = Qhf, in V′h,∀t ∈ (0, T ] a.e.

uh(·, 0) = u0,h.

http://www.math.uci.edu/~chenlong/226/UnifiedErrorAnalysis.pdf
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2.3. Stability. Adapt the proof of the energy estimate forL, we can obtain similar stability
results for Lh. The proof is almost identical and thus skipped here.

Theorem 2.1 (Energy estimate for finite element discretization). Suppose uh satisfyLhuh =
fh, uh(·, 0) = u0,h, then

‖uh(t)‖ ≤ ‖u0,h‖+

∫ t

0

‖fh(s)‖ ds(10)

‖uh(t)‖2 +

∫ t

0

|uh(s)|21 ds ≤ ‖u0,h‖2 +

∫ t

0

‖fh(s)‖2−1,h ds,(11)

|uh(t)|21 +

∫ t

0

‖∂tuh(s)‖2 ds ≤ |u0,h|21 +

∫ t

0

‖fh(s)‖2 ds.(12)

Note that in the energy estimate (11), the dual norm ‖ · ‖−1 is replaced by a weaker one
‖ · ‖−1,h since we can apply the inequality

〈fh, uh〉 ≤ ‖fh‖−1,h|uh|1.
The weaker norm ‖ · ‖−1,h can be estimated by

‖f‖−1,h ≤ ‖f‖−1 ≤ C‖f‖.

2.4. Consistency. Recall that the consistency error is ‖QhLu − LhRhu‖Yh
. The choice

of Ih = Rh simplifies the consistency error analysis.

Lemma 2.2 (Error equation). For the semi-discretization, we have the error equation

Lh(uh −Rhu) = Qh(I −Rh)ut, t > 0, in V′h,(13)

(uh −Rhu)(·, 0) = u0,h −Rhu0.(14)

Proof. Let A = −∆. By our definition of consistency, the error equation is: for t > 0

Lh(Rhu− uh) = LhRhu−QhLu = ∂t(Rhu−Qhu) + (ARhu−QhAu).

The desired result then follows by noting that ARh = QhA in V′h and QhRh = Rh. �

The error equation (13) holds in V′h which is a weak topology. The motivation to choose
Ih = Rh is that in this weak topology

〈ARhu, vh〉 = (∇Rhu,∇vh) = (∇u,∇v) = 〈Au, vh〉 = 〈QhAu, vh〉,
or simply in operator form

ARh = QhA.

This technique is firstly proposed by Wheeler [6].
Apply the stability to the error equation, we obtain the following estimate on the discrete

error Rhu− uh.

Theorem 2.3 (Stability of discrete error). The solution uh of (8) satisfy the following error
estimate

(15) ‖Rhu− uh‖ ≤ ‖u0,h −Rhu0‖+

∫ t

0

‖Qh(I −Rh)ut‖ ds

(16)

‖Rhu− uh‖2 +

∫ t

0

|(uh−Rhu)|21 ds ≤ ‖u0,h−Rhu0‖2 +

∫ t

0

‖Qh(I −Rh)ut‖2−1,h ds,

(17) |Rhu−uh|21+

∫ t

0

‖∂t(Rhu−uh)‖2 ds ≤ |u0,h−Rhu0|21+

∫ t

0

‖Qh(I−Rh)ut‖2 ds.
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We then estimate the two terms u0,h−Rhu0 and Qh(I −Rh)ut involved in these error
estimates. We use the linear element as an example since it is the most commonly choice.
The first issue is on the choice of u0,h. An optimal one is obviously u0,h = Rhu0 so that
no error coming from approximation of the initial condition. However, this choice requires
the inversion of a stiffness matrix which is not cheap. A simple choice would be the nodal
interpolation, i.e. u0,h(xi) = u0(xi) or any other choice with optimal approximation
property

(18) ‖u0,h −Rhu0‖ ≤ ‖u0 − u0,h‖+ ‖u0 −Rhu0‖ . h2‖u0‖2,
and similarly

|u0,h −Rhu0|1 . h‖u0‖2.
According to (7) in Exercise 1.3, the effect of the initial boundary error will be exponen-
tially decay to zero as t goes to infinity. So in practice, we can choose the simple nodal
interpolation.

On the estimate of the second term, assume ut ∈ H2(Ω) and H2-regularity result hold
for Poisson equation (for example, the domain is smooth or convex), then

(19) ‖Qh(I −Rh)ut‖ ≤ ‖(I −Rh)ut‖ . h2‖ut‖2.
The negative norm can be bounded by the L2-norm as

‖Qh(I −Rh)ut‖−1,h ≤ ‖Qh(I −Rh)ut‖−1 ≤ C‖Qh(I −Rh)ut‖ . h2‖ut‖2.
When using quadratic and above polynomial, we can prove a stronger estimate for the

negative norm and will be discussed in Section 2.6.

2.5. Convergence. The convergence of the discrete error comes Rhu − uh from the sta-
bility and consistency.

Theorem 2.4 (Convergence of the discrete error). Suppose the solution u to (3) satisfying
ut ∈ L2(0, T ;H2(Ω)) and the H2-regularity holds for the Poisson equation. Let uh be
the solution of (8) with u0,h satisfying (18). We then have

(20) |Rhu− uh|1 + ‖Rhu− uh‖ ≤ Ch2

(
‖u0‖2 +

∫ t

0

‖ut‖2 ds
)
.

To estimate the true error u − uh, we need the approximation error estimate of the
projection Rh; see Introduction to Finite Element Methods

h−1‖u−Rhu‖+ |u−Rhu|1 ≤ Ch‖u‖2.

Theorem 2.5 (Convergence of the discretization error). Suppose the solution u to (3) sat-
isfying ut ∈ L2(0, T ;H2(Ω)). Then the solution uh of (8) with u0,h having optimal
approximation property (18) satisfy the following optimal order error estimate:

(21) h−1|u− uh|1 + ‖u− uh‖ ≤ Ch2

(
‖u0‖2 +

∫ t

0

‖ut‖2 ds
)
.

2.6. *Superconvergence and error estimate in the maximum norm. The error eh =
Rhu−uh satisfies the evolution equation (13) with eh(0) = 0 with the chose u0,h = Rhu0

(22) ∂teh +Aheh = τh,

where τh := Qh∂t(Rhu− u). Therefore

eh(t) =

∫ t

0

exp(−Ah(t− s))τhds.

http://www.math.uci.edu/~chenlong/226/Ch2FEM.pdf
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Due to the smoothing effect of the semi-group e−Aht, we have the following estimate.
Here we follow the work by Garcia-Archilla and Titi [4].

Lemma 2.6 (Smoothing property of the heat kernel). For τh ∈ Vh, we have

(23) max
0≤t≤T

∥∥∥∥∫ t

0

exp(−Ah(t− s))Ahτhds
∥∥∥∥ ≤ C| log h| max

0≤t≤T
‖τh‖.

Proof. Let λmin and λmax be the minimal and maximal eigenvalue of Ah. Then it is easy
to check

∥∥∥e−Ah(t−s)Ah

∥∥∥ ≤

λmaxe

−λmax(t−s) if (t− s) ≤ λ−1
max,

(t− s)−1 if λ−1
max ≤ (t− s) ≤ λ−1

min,

λmine
−λmin(t−s) if (t− s) ≥ λ−1

min.

Note that λmin = O(1) and λmax ≤ Ch−2. We get

max
0≤t≤T

∥∥∥∥∫ t

0

e−Ah(t−s)Ahτhds

∥∥∥∥ ≤ C| log h| max
0≤t≤T

‖τh‖.

�

Theorem 2.7 (Superconvergence in H1-norm). Suppose the solution u to (3) satisfying
ut ∈ L∞(0, T ;H2(Ω)). Let uh be the solution of (8) with u0,h = Rhu0. Then

(24) max
0≤t≤T

|Rhu− uh|1 ≤ C| log h|h2 max
0≤t≤T

‖ut‖2.

When ut ∈ L2(0, T ;H2(Ω)), then

(25) |Rhu− uh|1 ≤ Ch2

(∫ t

0

‖ut‖22 ds
)1/2

.

Proof. We multiply A1/2
h to (22) and apply Lemma 2.6 to get

|eh(T )|1 = ‖A1/2
h eh(T )‖ =

∥∥∥∥∥
∫ T

0

e−Ah(T−s)A
1/2
h τhds

∥∥∥∥∥
≤

∥∥∥∥∥
∫ T

0

e−Ah(T−s)Ah ds

∥∥∥∥∥ max
0≤t≤T

‖A−1/2
h τh‖

≤ C| log h|h2 max
0≤t≤T

‖ut‖2.

In the last step, we have used the fact ‖A−1/2
h τh‖ = ‖τh‖−1,h ≤ ‖τh‖.

To get (25), we use the energy estimate (17). �

Since the optimal convergent rate for |u − Rhu|1 or |u − uh|1 is only first order, the
second order error estimate (24) and (25) are called superconvergence.

To control the maximum norm, we use the discrete embedding result (for 2-D only)

‖Rhu− uh‖∞ ≤ C| log h||Rhu− uh|1,

and the error estimate of Rh in the maximum norm

‖u−Rhu‖∞ ≤ C| log h|h2‖u‖2,∞,

to obtain the following result.
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Theorem 2.8 (Maximum norm estimate for linear element in two dimensions). Suppose
the solution u to (3) satisfying u ∈ L∞(0, T ;W 2,∞) and ut ∈ L2(0, T ;W 2,∞) or ut ∈
L∞(0, T ;W 2,∞(Ω)). Let uh be the solution of (8) with u0,h = Rhu0. Then in two
dimensions

‖(u− uh)(t)‖∞ ≤ C| log h|h2

[
‖u‖2,∞ +

(∫ t

0

‖ut‖22 ds
)1/2

]
,(26)

max
0≤t≤T

‖(u− uh)(t)‖∞ ≤ C| log h|2h2 max
0≤t≤T

[‖u(t)‖2,∞ + ‖ut(t)‖2] .(27)

For high order elements, we could get superconvergence in L2 norm. Let us define the
order of the polynomial as the degree plus 1, which is the optimal order when measuring
the approximation property in Lp norm. For example, the order of the linear polynomial is
2. When the order of polynomial r is bigger than 3 (,i.e., quadratic and above polynomial),
we can prove a stronger estimate for the negative norm

(28) ‖u−Rhu‖−1 ≤ Chr+1‖u‖r.

Using the technique in Lemma 2.6 and Theorem 2.7, we have the following estimate on
the L2 norm.

Theorem 2.9 (Superconvergence in L2-norm for high order elements). Suppose the so-
lution u to (3) satisfying ut ∈ L∞(0, T ;Hr(Ω)). Let uh be the solution of (8) with
u0,h = Rhu0. Then, for r ≥ 3,

(29) max
0≤t≤T

‖(Rhu− uh)(t)‖ ≤ C| log h|hr+1 max
0≤t≤T

‖(ut)(t)‖2r.

When ut ∈ L2(0, T ;Hr(Ω)), then

(30) ‖Rhu− uh‖ ≤ Chr+1

(∫ t

0

‖ut‖2r ds
)1/2

.

Proof. From (22), we have

‖eh(T )‖ =

∥∥∥∥∥
∫ T

0

e−Ah(T−s)τhds

∥∥∥∥∥
≤

∥∥∥∥∥
∫ T

0

e−Ah(T−s)A
−1/2
h ds

∥∥∥∥∥ max
0≤t≤T

‖A−1/2
h τh‖

≤ C| log h|‖τh‖−1.

In the second step, we have used the estimate∥∥∥∥∥
∫ T

0

e−Ah(T−s)A
−1/2
h ds

∥∥∥∥∥ ≤ C| log h|,

which can be proved by the estimate ‖e−Ah(T−s)A
−1/2
h ‖ ≤ (T − s)−1

To prove (30), we simply use the energy estimate (16) and (28. �

In 1-D, using the inverse inequality ‖Rhu − uh‖∞ ≤ h−1/2‖Rhu − uh‖, we could
obtain the superconvergence in the maximum norm

(31) ‖Rhu− uh‖∞ ≤ Chr+1/2

(∫ t

0

‖ut‖2r ds
)1/2

.
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Again using the inverse inequality ‖uh −Rhu‖∞ ≤ Ch−1‖uh −Rhu‖, the supercon-
vergence of L2 norm, and the maximum norm estimate of Ritz-Galerkin projection, for
r ≥ 3, ‖u−Rhu‖∞ ≤ Chr‖u‖r,∞, we can improve the maximum norm error estimate.

Theorem 2.10 (Maximum norm estimate for high order elements in two dimensions). Sup-
pose the solution u to (3) satisfying u ∈ L∞(0, T ;W 2,∞) and ut ∈ L2(0, T ;W 2,∞) or
ut ∈ L∞(0, T ;W 2,∞(Ω)). Let uh be the solution of (8) with u0,h = Rhu0. Then in two
dimensions and for r ≥ 3

‖(u− uh)(t)‖∞ ≤ Chr
[
‖u‖r,∞ +

(∫ t

0

‖ut‖2r ds
)1/2

]
.(32)

3. FINITE ELEMENT METHODS: SEMI-DISCRETIZATION IN TIME

In this section, we consider the semi-discretization in time. We first discretize the time
interval (0, T ) into a uniform grid with size δt = T/N and denoted by tn = nδt for
n = 0, . . . N .

3.1. Low order schemes. A continuous function in time will be interpolated into a vector
by fn := (Inf)(·, tn) = f(·, tn). Recall that A = −∆ : H1

0 → H−1. Below we list three
low order schemes in operator form.

• Forward Euler Method: u0 = u0

un − un−1

δt
+Aun−1 = fn−1.

• Backward Euler Method: u0 = u0

un − un−1

δt
+Aun = fn.

• Crank-Nicolson Method: u0 = u0

un − un−1

δt
+A(un + un−1)/2 = fn−1/2.

Note that these equations hold in H−1(Ω) sense. Taking Crank-Nicolson as an example,
the equation reads as

(33)
1

δt
(un − un−1, v) +

1

2
(∇un +∇un−1,∇v) = (fn−1/2, v) for all v ∈ H1

0 .

We now study the stability of these schemes. We rewrite the Backward Euler method as

(I + δtA)un = un−1 + δtfn.

Since A is SPD, λmin(I + δtA) ≥ 1 and consequently, λmax((I + δtA)−1) ≤ 1. This
implies the L2 stability

(34) ‖un‖ ≤ ‖un−1‖+ δt‖fn‖ ≤ ‖u0‖+

n∑
k=1

δt‖fk‖.

The stability (35) is the discrete counter part of (4): discretize the integral
∫ tn

0
‖f‖ ds by a

Riemann sum.
Similarly one can derive the L2 stability for the C-N scheme

(35) ‖un‖ ≤ ‖u0‖+

n∑
k=1

δt‖fk−1/2‖.
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The integral
∫ tn

0
‖f‖ ds is approximated by the middle point rule.

Remark 3.1. For C-N method, the right hand side can be also chosen as (fn + fn−1)/2.
It corresponds to the trapezoid quadrature rule. For nonlinear problem A(u), it can be
A((un + un−1)/2) or (A(un) +A(un−1))/2. Which one to chose is problem dependent.

The energy estimate can be adapted to the semi-discretization in time easily. For exam-
ple, we chose v = (un + un−1)/2 in (33) to get

1

2
‖un‖2 − 1

2
‖un−1‖2 + δt|un−1/2|21 = δt(fn−1/2, un−1/2),

which implies the counter part of (5)

(36) ‖un‖2 +

n∑
k=1

δt|uk−1/2|21 ≤ ‖u0‖2 +

n∑
k=1

δt‖fk−1/2‖2−1.

Exercise 3.2. Study the stability of the forward and backward Euler method.

We then study the convergence. We use C-N as a typical example. We apply the discrete
operator Ln to the error Inu− un

Ln(Inu− un) = LnInu− InLu =
u(·, tn)− u(·, tn−1)

δt
− ∂tu(·, tn−1/2).

The consistency error is

(37)
∣∣∣∣u(·, tn)− u(·, tn−1)

δt
− ∂tu(·, tn−1/2)

∣∣∣∣ ≤ C(δt)2.

By the stability result, we then get

‖Inu− un‖ ≤ Ctnδt2.
From the consistency error estimate (37), one can easily see the backward and forward
Euler methods are only first order in time.

3.2. High order discretizations in time. We assume that U ∈ C(0, T ;H1
0 (Ω)) is a con-

tinuous piecewise q-th degree polynomial in time, that is, on the time interval Jn :=
(tn−1, tn),

U |Jn(x, t) =

q∑
j=0

(t− tn−1)juj(x), uj(x) ∈ H1
0 (Ω).

We denote Pq(Jn) as the set of such q-th degree polynomials on Jn, and define an operator
Qnq−1 : C(0, T ;H1

0 (Ω))→ Pq−1(Jn) satisfying∫
Jn

〈Qnq−1u, p〉 dt =

∫
Jn

〈u, p〉 dt, ∀p ∈ Pq−1(Jn).

Then, the semi-discretization in time is to seek U(t) ∈ Pq(Jn) such that

(38) LnU(t) := ∂tU(t) +Qnq−1AU(t) = Qnq−1f(t), ∀t ∈ Jn,
which is equivalent to the Petrov-Galerkin formulation

(39)
∫
Jn

〈∂tU, v〉 dt+

∫
Jn

〈AU, v〉 dt =

∫
Jn

〈f, v〉 dt, ∀v ∈ Pq−1(Jn).

Note that the self-adjoint operator A is commute with the L2 projection, i.e., Qnq−1A =
AQnq−1.



FINITE ELEMENT METHODS FOR PARABOLIC EQUATIONS 11

The initial condition is given by U(0) = u0, and U(tn−1) is obtained from the problem
(39) on the previous time interval Jn−1 for n ≥ 2. For example, if q = 1, the solution U(t)
is a piecewise linear function and the test function v is piecewise constant in time. More
exactly,

∂tU |Jn =
un − un−1

δt
.

Thus, if we use the midpoint tn−1/2 to compute Qnq−1U(t) and Qnq−1f(t) in the problem
(38), then we arrive at the Crank-Nicolson method. Moreover, using left and right end
points yields the Forward and Backward methods, respectively. For high order discretiza-
tion, inside one time interval Jn, one needs to solve a mass matrix equation to get un. The
naive basis for polynomial {(t− tn−1)j , j = 0, . . . , q} is not friendly to the implementa-
tion. Instead one can use quadrature points, e.g., Gauss-Legendre points or Radau points;
see [2].

3.3. Stability. We shall adapt the energy estimate to the discretization. Let us choose
v = Qq−1U . Then, we control the following terms:

•
∫
Jn

〈∂tU,Qnq−1U〉 dt =

∫
Jn

〈∂tU,U〉 dt =
1

2

(
‖U(tn)‖2 − ‖U(tn−1)‖2

)
;

•
∫
Jn

〈Qnq−1AU,Q
n
q−1U〉 dt =

∫
Jn

〈AQnq−1U,Q
n
q−1U〉 dt =

∫
Jn

|Qnq−1U |21 dt;

•
∫
Jn

〈f,Qnq−1U〉 dt ≤
1

2

∫
Jn

‖f‖2−1dt+
1

2

∫
Jn

|Qnq−1U |21 dt.

We then obtain the energy estimate as follows.

Theorem 3.3 (Energy estimate for semi-discretization in time). Suppose U satisfies ∂tU+
Qnq−1AU = Qnq−1f , for n ≥ 1, then

(40) ‖U(t)‖2 +

∫ t

0

|Qnq−1U |21 ds ≤ ‖U(0)‖2 +

∫ t

0

‖f‖2−1 ds.

3.4. Consistency. Let In : C(0, T ;H1
0 (Ω)) → Pq(Jn) be the operator of the Lagrange

interpolation such that Inu(tn−1) = u(tn−1), Inu(tn) = u(tn), and∫
Jn

〈Inu, p〉dt =

∫
Jn

〈u, p〉dt, ∀p ∈ Pq−2(Jn).

Note that we use moments instead of point values to define the Lagrange interpolation.
It is straight forward to verify that Inu = u if u ∈ Pq(Jn), and(∫

Jn

‖u− Inu‖2dt
)1/2

. (δt)(q+1)‖u‖Hq+1(tn−1,tn;L2(Ω)).

From the definition of the consistency error, we have

Ln(U − Inu) = (Qnq−1∂tu− ∂tInu) + (Qnq−1Au−Qnq−1AI
nu).

For the first time, the integration by part in terms of t provides∫
Jn

〈Qnq−1∂tu− ∂tInu, v〉 dt =

∫
Jn

〈∂tu− ∂tInu, v〉 dt

= 〈u− Inu, v〉
∣∣tn
tn−1 −

∫
Jn

〈u− Inu, ∂tv〉 dt

= 0,
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for every v ∈ Pq−1(Jn). The first identity holds because ∂tInu ∈ Pq−1(Jn) so that
∂tI

nu = Qnq−1∂tI
nu. The third one comes from the definition of the interpolation opera-

tor In.
Hence, we have the error equation

Ln(U − Inu) = Qnq−1Au−Qnq−1AI
nu =: τn.

And ∫
Jn

‖τn‖2 dt =

∫
Jn

‖Qnq−1(I − In)Au‖2 dt

≤
∫
Jn

‖(I − In)Au‖2 dt

. (δt)2(q+1)‖Au‖2Hq+1(tn−1,tn;L2(Ω)).

3.5. Convergence. Let en = U − Inu. Clearly, en ∈ Pq(Jn) and e1(0) = U(0) −
(I1u)(0) = u0 − u(0) = 0. Then, from the consistency result (40), we get

‖eN (T )‖2 ≤
N∑
n=1

∫
Jn

‖τn‖2dt . (δt)2(q+1)‖Au‖2Hq+1(0,T ;L2(Ω)).

Therefore, we obtain the following convergence rate

Theorem 3.4 (Energy estimate for semi-discretization in time). Suppose U satisfies ∂tU+
Qnq−1AU = Qnq−1f , for n ≥ 1, then for any t ∈ (0, T )

‖u(t)− U(t)‖ . (δt)(q+1)‖Au‖Hq+1(0,t;L2(Ω)).

Refined analysis including a posteriori error analysis and superconvergence at nodal
points can be found in [1].
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