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PREFACE

This interim Masters thesis is written for the degree of Master of Science for
the study Applied Mathematics, faculty of Electrical Engineering, Mathematics
and Computer Science of Delft University of Technology. The graduation work
is done in the unit of Numerical Analysis. The Masters project is being carried
out at TNO Science and Industry, department of Process Modeling and Control,
business unit Industrial Modeling and Control. At TNO Science and Industry
nine months of work will be done on the Finite Element Modelling Of Thermal
Processes With Phase Transitions. The Masters project is separated into two
parts: the first three months are intended for literature study to introduce the
Masters project, the last six months are designed to carry out the planned re-
search. This interim Masters thesis comprises the first part of the project.

Delft, December 2006 Abdelhaq Abouhafç
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1 Introduction

Adding and removing heat and mass to and from a product take place in several
processes in the industry. For example: steam production, freezing and drying.
Improving product quality is the objective of using Physical and chemical mod-
els.These models solve a set of heat and mass equations as a function of time
and position. The pressure is assumed to be constant, while the temperature
and concentration are chosen as state variables. When phase change takes place
during these processes the modeling becomes more complicated. In this case
using only temperature and concentration is not sufficient for the process de-
scription. Additional state variables such as solid, liquid and vapor fractions
are needed.

The simulation model should decide which equations are appropriate at a
given time during the simulation; one should also take into account that the
phase changes usually occur during a part of the entire process. The simulation
of thermal process with phase changes is usually quite difficult because we need
to solve different sets of equations for different phases of the process. Switching
from one set of equations to another can cause instability of the numerical solu-
tion. We also need to use a large amount of input parameters, such as specific
heat and densities of all phases and latent heat of phase changes. We can take
the input parameters constant such that the model becomes easier.

The objective of this project is the combination of the density-enthalpy phase
diagram with finite elements methods. The finite element method can be used
to solve transport equations (mass, heat and impulse) and the density-enthalpy
phase diagram gives the thermodynamics constants. The permeability, viscosity
and heat conductance are very important in this case. The developed models
can be used to optimize processes and products quality. The structure of this
interim thesis is as follows: In Chapter 2, the basic principles and tools of finite
element method are discussed, followed by the thermodynamic description in
Chapter 3. Chapter 4 discuss the continuation of the Master project.

2 Finite element method

2.1 Introduction

The finite element method is a computational technique for obtaining approxi-
mate solutions to partial differential equations that arise in scientific and engi-
neering applications.
Rather than approximating the partial differential equation directly as with
e.g. finite difference methods, the finite element method utilizes a variational
problem that involves an integral the equation over the problem domain. This
domain is divided into a number of subdomains called elements and the solu-
tion of the partial differential equation is approximated by a function on each
element. These polynomials have to be pieced together so that the approximate
solution has an appropriate degree of smoothness over the entire domain. Once
this has been done, the variational integral is evaluated as a sum of contribu-
tions from each finite element.
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The result is an algebraic system for the approximate solution having a finite
size rather than the original infinite dimensional partial differential equation.
Thus, like finite difference methods, the finite element process has discretized
the partial differential equation but, unlike finite difference methods, the ap-
proximate solution is known throughout the domain as a piecewise polynomial
function and not just at a set of points. A finite element method has a number
of advantages relative to other methods including:

• Treatment of problems on complex irregular regions.

• Use of non-uniform meshes to reflect solution gradations(gradual change).

• Treatment of boundary conditions involving fluxes, and

• Construction of high order approximations.

Originally used for steady elliptic problems, the finite element method is now
also used to solve transient parabolic and hyperbolic problems.

2.2 1D steady diffusion equation

Let us consider Poisson equation in one dimension

−k
d2T

dx2
= f(x), 0 ≤ x ≤ π, (2.2.1)

T (0) = 0, (2.2.2)
dT

dx
(π) = 0. (2.2.3)

In order to construct the basis functions, we subdivide the interval [0,1] into
subelements ei = [xi−1, xi], i = 1, ..., N with xi = i

N as shown in the Figure
2.2.1

Figure 2.2.1: Subdivision of the interval [0, π] in elements

The linear interpolation polynomial of the function T (x) over the element ei

is defined by

Ti(x) =
x− xi

xi−1 − xi
T (xi−1) +

x− xi−1

xi − xi−1
T (xi) (2.2.4)

We define linear Lagrangian polynomials li(x) as follows

li−1(x) =
x− xi

xi−1 − xi
; li(x) =

x− xi−1

xi − xi−1
(2.2.5)

and write (2.2.4) as

Ti(x) = li−1(x)T (xi−1) + li(x)T (xi) (2.2.6)
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Clearly, li−1(x) and li(x) are linear on ei and are defined by the relations:

lr(xs) = δrs, r, s = i− 1, i. (2.2.7)

From (2.2.6), it is clear that T (x) is a linear combination of T0, T1, ..., Tn so that
we can write:

T (x) =
n∑

j=1

Tjϕj(x), (2.2.8)

where for each control point xj we will choose the piecewise linear function
ϕj (x) :, whose value is 1 at xj and zero at every otherxi, j 6= i , i.e.,

ϕi(x) =


x−xi−1
xi−xi−1

if x ∈ [xi−1, xi]
xi+1−x
xi+1−xi

if x ∈ [xi, xi+1]
0 otherwise

(2.2.9)

The function ϕi(x) is illustrated in Figure 2.2

Figure 2.2.2: The basis function in one dimension

Note that ϕi(x) is only non-zero in the elements that contain the node xi,
The basis function is defined implicitly by:

• ϕi(x) is linear in each element.

• ϕi(x) = δij

2.2.1 Weak formulation and Galerkin approximation

In order to derive the weak formulation, we multiply the equation (2.2.6) by a
test function η, satisfying the homogeneous essential boundary condition η(0) =
0 and integrate over the domain Ω = [0, 1], we get:∫ π

0

(
k

d2T

dx2
+ f

)
ηdx = 0. (2.2.10)

Integrating by parts, we obtain

−
∫ π

0

k
dη

dx

dT

dx
dΩ +

∫ π

0

ηfdΩ +
[
η(k

dT

dx
)
]π

0

= 0. (2.2.11)
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We get the weak formulation after the application of the boundary conditions
as well as the essential boundary condition for the test function∫ π

0

k
dη

dx

dT

dx
dΩ =

∫ π

0

ηfdΩ. (2.2.12)

The Galerkin equations corresponding to the weak formulation are given by

n∑
j=1

∫ π

0

k
dϕi

dx

dϕj

dx
dΩ =

∫ π

0

fϕidΩ, i = 1, ..., n. (2.2.13)

We obtain the following system of equations

ST = F, (2.2.14)

where the stiffness matrix is

Sij =
∫ π

0

k
dϕj

dx

dϕi

dx
dx, (2.2.15)

and the vector F is
Fi =

∫ π

0

fϕidx. (2.2.16)

2.2.2 Numerical integration

The right-hand-side vector of (2.2.13) contains an integral over a function f(x).
In general, exactly computing this integral is very difficult, so a numerical ap-
proximation is required. Well-known integration rules are:

• mid-point rule:
∫ ti

ti−1
g(x)dx ' (ti − ti−1)g(ti−1/2),

• Trapezoid rule:
∫ ti

ti−1
g(x)dx ' ti−ti−1

2 {g(tk−1) + g(tk)} ,

• Simpson’s rule:
∫ ti

ti−1
g(x)dx ' ti−ti−1

6

{
g(tk−1) + 4g(tk−1/2) + g(tk)

}
.

All these rules can be written in the general form∫ ti

ti−1

g(x)dx '
r∑

k=1

wkg(tk), (2.2.17)

with r is the number of the integration points, wk is the weight, and tk is the
integration point. Another class of integration rules of the form (2.2.17) are
the Gaussian rules. An q-point Gaussian quadrature rule is a quadrature rule
constructed to yield an exact result for polynomials of degree 2q−1, by a suitable
choice of the q points tk and q weights wk. The domain of integration for such
a rule is conventionally taken as [−1, 1], so the rule is stated as∫ 1

−1
g(x)dx =

∑r
k=1 wkf(tk),

where tk is the integration point, and wk is the weight of that point in the sum.
Some low-order rules for solving the integration problem are listed below
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Number of points, n Points, xk Weights, wk

1 x1 = 0 w1 = 2

2 x1 = −
√

1
3 , x2 =

√
1
3 w1 = w2 = 1

3 x1 = −
√

3
5 , x2 = 0, x3 =

√
3
5 w1 = w3 = 5

9 , w2 = 8
9

Change of interval for Gaussian quadrature

An integral over [a, b] must be changed into an integral over [-1, 1] before
applying the Gaussian quadrature rule. This change of interval can be done in
the following way∫ b

a

g(t)dt =
b− a

2

∫ 1

−1

g(
b− a

2
x +

a + b

2
)dx. (2.2.18)

After applying the Gaussian quadrature rule, the following approximation is
obtained

b− a

2

r∑
k=1

wkg(
b− a

2
tk +

a + b

2
). (2.2.19)

2.2.3 Element matrices and element vectors

In order to construct the large matrix and large vector, it is necessary to evaluate
the integrals in (2.2.13) Since ϕi(x) is defined element-wise, we write∫ π

0
dϕj

dx
dϕi

dx dx =
∑n

k=1

∫
ek

dϕj

dx
dϕi

dx dx.

Using the linear basis function, we obtain the element stiffness matrix

Se = k
h

[
1 −1
−1 1

]
,

the element vector is given by

F e = h
2

[
f(x1)
f(x2)

]
.

where h is the length of the element.

2.2.4 Assembly of the large matrix and vector

All information of the FEM is stored in element matrices, element vectors, and
the problem topology. In order to create the large matrix and vector, we apply
the assembly process. We consider the subdivision of the region [0, 1] into 4
elements as illustrated in Figure 2.2.1, element ei is defined by: ei = [xi−1, xi]
and the nodes are numbered from 0 to 4. The large matrix has size (4× 4) and
the large vector (4× 1). The problem topology of this case is very simple, each
element contains two unknows.

e1 : {0, 1} ,
e2 : {1, 2} ,
e3 : {2, 3} ,
e4 : {3, 4} .
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In the first step the large matrix and vector are cleared

S0 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (2.2.20)

f0 =


0
0
0
0

 . (2.2.21)

The element matrix for an arbitrary element ek has shape

Sek =
1

tk − tk−1

[
1 −1
−1 1

]
. (2.2.22)

We apply the Newton-Cotes rule, to obtain the element vector

fek =
k(tk − tk−1)

2

[
f(tk−1)
f(tk)

]
. (2.2.23)

We assume an equidistant grid with step size

tk − tk−1 = h. (2.2.24)

First, we assemble element matrix 1 and element vector 1, Since T0 is given,
only the term involving ϕ1 is needed. Hence

Se1 =
k

h
[1], fe1 =

h

2
[f(x1)]. (2.2.25)

Adding matrix and right-hand side to (2.2.20)and (2.2.21) gives

S1 =
k

h


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (2.2.26)

and

f1 =
h

2


f(x1)

0
0
0

 . (2.2.27)

Next, we add Se2 and Sf2 to S1 and f1

S1 =
k

h


2 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 , (2.2.28)

and

f1 =
h

2


2f(x1)
f(x2)

0
0

 . (2.2.29)
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Repeating this process for e3 and e4 leads to

S = S4 =
k

h


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 , (2.2.30)

and

f = f4 =
h

2


2f(x1)
2f(x2)
2f(x3)
f(x4)

 . (2.2.31)

2.2.5 Boundary conditions and assembly

Most packages subdivide the finite element process in three steps

• Preprocessing : The mesh generation

• Solving the actual FEM

• Post processing: showing the results

The solve part consists globally of the following steps:

• Read input and mesh

• Compute the structure of the large matrix from the topology

• Clear large matrix and vector

for all elements, including boundary elements, do
Compute element matrix and vector
Add element matrix to large matrix
Add element vector to large vector

end for
Apply the essential boundary conditions
Solve system of equations
write results of post processing

Numerical result

Consider the Poisson equation defined in 2.2.1, if we take f(x) = sin(x),
the exact solution becomes T (x) = 1

ksin(x) + x
k . In Figure 2.2.3, we compare

between the exact and the numerical solution.

2.3 1D Time Dependent Convection Diffusion Equation

2.3.1 Standard Galerkin Approach: (SGA)

Consider the following 1D time dependent convection diffusion equation

∂T

∂t
− ∂

∂x

(
k

∂T

∂x

)
+ u

∂T

∂x
= f(x), 0 ≤ x ≤ 1, t ≥ 0. (2.3.1)
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Figure 2.2.3: Exact and numerical solution of poisson equation using finite
elements method, k = 0.1

with initial condition
T (x, 0) = T0, (2.3.2)

and boundary conditions

T (0, t) = T0,
∂T

∂x
(1, t) = 0. (2.3.3)

where:

k diffusion number,
u convetion number,
f source term.

To derive the weak formulation, we multiply the equation (2.3.1) by a test
function η satisfying the homogenous essential boundary condition η(0, t) = 0
and integrate over the domain [0, 1], we obtain∫ 1

0

(
∂T

∂t
− ∂

∂x

(
k

∂T

∂x

)
+ u

∂T

∂x

)
ηdx =

∫ 1

0

fηdx. (2.3.4)

After integrating by parts, we get∫ 1

0

(
∂T

∂t
η + k

∂T

∂x

∂η

∂x
+ u

∂T

∂x
η

)
dx =

∫ 1

0

fηdx. (2.3.5)

The Galerkin equations corresponding to the weak formulation is given by

n∑
j=1

∫ 1

0

ϕjϕidΩ
∂Tj

∂t
−

n∑
j=1

Tj

∫ 1

0

(
k

∂ϕj

∂x

∂ϕi

∂x
+ u

∂ϕj

∂x
ϕi

)
dx =

∫ 1

0

fϕidx.

This gives a system of ordinary differential equations of the form

M
dT

dt
= ST + F, (2.3.6)
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where the mass-matrix is

Mij =
∫ 1

0

ϕjϕidΩ, (2.3.7)

and the stiffness-matrix is

Sij = −
∫ 1

0

(
k

∂ϕj

∂x

∂ϕi

∂x
+ u

∂ϕj

∂x
ϕi

)
dx, (2.3.8)

and

Fi =
∫ 1

0

fϕidx. (2.3.9)

Using linear basis functions, the element stiffness-matrix is given by:

Se = −k

h

[
1 −1
−1 1

]
− u

2

[
−1 1
−1 1

]
, (2.3.10)

The element mass-matrix is given by

Me =
h

2

[
1 0
0 1

]
, (2.3.11)

and the element vector is given by

F e =
hf

2

[
1
1

]
. (2.3.12)

where h is the length of the element.

2.3.2 Comparison between numerical and exact solution

Let us consider the following time dependent 1D convection diffusion equation

∂T

∂t
− ∂

∂x

(
k∂T

∂x

)
+ u

∂T

∂x
= f, 0 ≤ x ≤ l, (2.3.13)

with initial condition
T (x, 0) = T0, (2.3.14)

and boundary conditions

T (0, t) = T0, T (l, t) = Tl. (2.3.15)

where:
k diffusion term,
u convection term,
f source term,
l domain length.

The exact solution of this equation is

T (x, t) = sin
(πx

l

)
exp

[
u

2k
x− t

(
u2

4k
+

kπ2

l2

)]
+ C1exp

(ux

k

)
+

(x

u

)
f + C2,

where C1 and C2 are defined by

C1 =
T0 − T1 + f( l

u )
1− exp(Pe)

, (2.3.16)
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C2 =
−T0exp(Pe) + T1 − f( l

u )
1− exp(Pe)

, (2.3.17)

and Pe is the Peclet number.

Pe =
(

l

k

)
u. (2.3.18)

Numerical result

We use Standard Galerkin method and we discretize implicitly in time.

• Boundary conditions: T (0, t) = 20, T (l, t) = 40.

• Initial condition: T (x, 0) = 20

The result is shown in Figure 2.3.1

Figure 2.3.1: Exact and numerical solution of 1D time dependent convection
diffusion equation using SGA method and implicit scheme after 500 time steps,
dt = 0.1

2.3.3 Comparison between implicit and explicit scheme

We can discretize in time using forward Euler scheme (explicitly) or the back-
ward Euler scheme (implicitly).

Implicit scheme

The implicit scheme for equation (2.3.6) is given by

M
T τ+1 − T τ

∆t
= ST τ+1 + F, (2.3.19)

which means that (
M

∆t
− S

)
T τ+1 = F +

M

∆t
T τ . (2.3.20)
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Explicit scheme

The explicit scheme for the equation (2.3.6) is given by

M
T τ+1 − T τ

∆t
= ST τ + F, (2.3.21)

which means that
M

∆t
T τ+1 = F +

(
S +

M

∆t

)
T τ . (2.3.22)

A time step with an implicit scheme requires much more computing work than an
explicit scheme. An implicit scheme is unconditionally stable, while an explicit
scheme is only stable if two conditions are satisfied, that will be shown in the
following section.

2.3.4 Stability analysis

First example

Consider the 1D convection equation:

∂T

∂t
+ u

∂T

∂x
= 0, 0 ≤ x ≤ l, (2.3.23)

with initial condition:
T (x, 0) = T0, (2.3.24)

and boundary condition:

T (0, t) = T0. (2.3.25)

where u is a convetion term.
We discretize in space with the upwind scheme (assuming u > 0) and in time
with explicit scheme, we get:

T τ+1
j = T τ

j − c
(
T τ

j − T τ
j−1

)
, c =

u∆t

∆x
. (2.3.26)

where:

∆t time step,
∆x mesh size.

The dimensionless number c is called the Courant number or CFL number.
If we use an explicit scheme, the following stability condition on the time step
must be satisfied:

Speed(PDE)
Speed(mesh)

=
u(

∆x
∆t

) ≤ 1 (2.3.27)

If the condition (2.3.27) is not satisfied, then we get instability as illustrated in
Figure 4.3.4.
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Figure 2.3.2: Numerical solution of 1D time dependent Convection equation
using explicit scheme, Courant number = 2

Second example

Consider 1D heat equation

∂T

∂t
− ∂

∂x

(
k∂T

∂x

)
= 0, 0 ≤ x ≤ l. (2.3.28)

with initial condition
T (x, 0) = T0, (2.3.29)

and boundary conditions

T (0, t) = T0,
∂T

∂x
(1, t) = 0. (2.3.30)

where k is a diffusion term.
We discretize in space with a central scheme and in time with explicit scheme,
we get:

T τ+1
j = dT τ

j−1 + (1− 2d) T τ
j + dT τ

j+1, d =
k∆t

∆x2
. (2.3.31)

where:

∆t time step
∆x mesh size

The dimensionless number d is called the Diffusion number. If we use an
explicit scheme, the following stability condition on the time step must be sat-
isfied:

k∆t

∆x2
≤ 1 (2.3.32)

If the condition (2.3.32) is not satisfied, then we get instability as illustrated in
Figure 2.3.3.
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Figure 2.3.3: Numerical solution of 1D time dependent heat equation using
explicit scheme, Diffusion number = 2

2.3.5 Streamline Upwind Petrov Galerkin method

To show the difference between SGA and SUPG we consider the previous prob-
lem of time dependent convection diffusion equation with source term, we dis-
cretize implicitly in time, T (0, t) = 20, T (l, t) = 40. The result is shown in
Figure 2.3.4

Figure 2.3.4: Numerical solution of 1D time dependent Convection diffusion
equation using SGA method and implicit scheme after 500 time steps, dt = 0.1

The wiggles we get are due to convection. To avoid it, let us apply the upwind
technique, we split η(x) into two parts w(x) and p(x), (η(x) = w(x)+p(x)) where
w(x) is the classical test function, it ensures the consistency of the scheme and
p(x) is used to take care of the upwind behavior. In order to make integration by
parts possible, the function w(x) must be so smooth that integration by parts is
allowed. p(x) is defined elementwise, which means that it may be discontinuous
over the elements boundaries. In practice, one chooses p(x) = hξ

2
dϕi

dx with ξ
some parameter depending on the ratio of k and u. In this example ξ is chosen
equal to sign(u) which corresponds to the classical upwind scheme. Popular
choices for ξ can be found in [7].
Following the same steps as in the previous method, we obtain a system of
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ordinary differential equations of the form (2.3.6), where the mass-matrix is
given by

Mij =
∫ 1

0

ϕjϕidΩ +
∫ 1

0

ϕjpdx, (2.3.33)

the stiffness-matrix is:

Sij = −
∫ 1

0

(
k

∂ϕj

∂x

∂ϕi

∂x
+ u

∂ϕj

∂x
ϕi

)
dx−

∫ 1

0

u
∂ϕj

∂x
pdx, (2.3.34)

and

Fi =
∫ 1

0

fϕidx +
∫ 1

0

fpdx. (2.3.35)

Element matrices and element vectors

Using the linear basis functions defined in , the element stiffness-matrix is
given by:

Se = −k

h

[
1 −1
−1 1

]
− u

2

[
−1 1
−1 1

]
− u

2

[
1 −1
−1 1

]
, (2.3.36)

The element mass-matrix is given by:

Me =
h

2

[
1 0
0 1

]
− h

4

[
1 −1
1 −1

]
, (2.3.37)

and the element vector is given by:

F e = hf
2

[
1
1

]
− hf

2

[
1
−1

]
.

where h is the length of the element. Let us consider again the numerical test
in Figure 2.3.4. Applying SUPG technique, we can avoid the wiggles causes by
high convection, as illustrated in Figure 2.3.5.
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Figure 2.3.5: Numerical solution of 1D time dependent Convection diffusion
equation using SUPG method with full upwind, and implicit scheme after 500
time steps, dt = 0.1

In the following numerical test, we will take the source term f(x) as function
of x, for example: f(x) = x2, f(x) = sin(x) and f(x) = exp(x), the result is
shown in Figure 2.3.6

Figure 2.3.6: Numerical solution of 1D time dependent Convection diffusion
equation using and implicit scheme and SUPG method with full upwind after
500 time steps, dt = 0.1

2.4 Linear elements in two dimensions

As in one dimension finite element bases are constructed implicitly in an element-
by-element manner in terms of shape functions. Once again a shape function
on an element ”e” is the restriction of a basis function ϕj(x, y) to element ”e”.
The extension of the linear line element in R is the triangle in R2 .
Figure 2.4.1 shows a subdivision of a region into triangles. Three parameters
are needed to construct a linear polynomial on each triangle. We choose the
function values in three vertices of the triangle in order to make the approxima-
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Figure 2.4.1: Subdivision in triangles

tion continuous across the element boundary. We proceed as in R to construct
the basis function in R2 which is implicitly defined by:

• ϕi(x) is linear per triangle.

• ϕi(xj) = δij

But the explicit expression of the basis function is required to compute the
solution of the PDE. Consider the triangle in Figure 2.4.2

Figure 2.4.2: Linear triangle with nodal points
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A Linear polynomial is defined by

ϕi(xj) = ai
0 + ai

1xj + ai
2yj (2.4.1)

with

xj =
(

xj

yj

)
(2.4.2)

Substitution of (2.4.1) and (2.4.2) leads to the following system of linear equa-
tions  1 x1 y1

1 x2 y2

1 x3 y3

  a1
0 a2

0 a3
0

a1
1 a2

1 a3
1

a1
2 a2

2 a3
2

 =

 1 0 0
0 1 0
0 0 1


Solving this system by Cramer’s rule, give the following results:

a1
1 = 1

∆ (y2 − y3) , a2
1 = 1

∆ (y3 − y1) , a3
1 = 1

∆ (y1 − y2)

a1
2 = 1

∆ (y3 − y2) , a2
2 = 1

∆ (y1 − y3) , a3
2 = 1

∆ (y2 − y1)

ai
0 = 1− ai

1xi − ai
2yi

with:

∆ =

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣ = (x2 − x1) (y3 − y2)− (y2 − y1) (x3 − x2)

∆ is equal to two times the area of the triangle in Figure 2.4.2

2.5 Isoparametric transformation

Consider a rectangle and local node numbers 1 to 4 as depicted in Figure 2.5.1

Figure 2.5.1: Nodes of rectangle

The basis functions of this element have the shape

ϕi(x, y) = ai
0 + ai

1x + ai
2y + ai

3xy (2.5.1)

Since these basis functions are not continuous for a general quadrilateral, and
since we do not know what the general shape of the basis functions must be, we
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have to use a standard technique known under the name isoparametric trans-
formations. To apply this technique we transform the general quadrilateral
element in the (x, y) plane with a coordinate transformation (x, y) → (ξ, η) to
a standard element (the unit square) in the (ξ, η) plane. Such a transformation
is called isoparametric if it satisfies the following properties

• The nodes x1, x2, ...xk are transformed to the fixed points ξ1, ξ2, ...ξk.

• Straight sides in the original element remain straight in the reference ele-
ment.

• If the basis functions in the transformed element are given by ϕ1(x), ..., ϕk(x),
then the inverse transformation (ξ, η) → (x, y) is given by

x =
k∑

j=1

xjϕj(ξ, η), (2.5.2)

and the interpolation by:

T (x) =
k∑

j=1

Tjϕj(ξ, η). (2.5.3)

In other words we use the same elements for transformation and interpolation.
Note that the basis functions are only known explicitly in the reference element.
To compute their values in the original element we must do a back transfor-
mation. The transformation of the quadrilateral element to a unit square is
illustrated in Figure 2.5.2

Figure 2.5.2: Transformation of quadrilateral to unit square

In this case the isoparamtric transformation is a bilinear transformation. The
nodes of the quadrilateral are transformed to the vertices of the unit square as
follows

x1 −→ (0, 0), x2 −→ (1, 0), x3 −→ (1, 1), x4 −→ (0, 1). (2.5.4)
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The basis functions in the (ξ, η) plane are bilinear and defined by

ϕ1(ξ, η) = (1− ξ)(1− η), (2.5.5)
ϕ2(ξ, η) = ξ(1− η), (2.5.6)
ϕ3(ξ, η) = ξη, (2.5.7)
ϕ4(ξ, η) = (1− ξ). (2.5.8)

To show how this transformation can be utilized to compute an element matrix
or vector, we consider the following integral sij =

∫
e
∇ϕi(x)∇ϕj(x)dΩ. Since

the basis functions are only known in the reference element we have to transform
this integral to an integral in the (ξ, η) plane. Hence:

sij =
∫

exy

∇ϕi(x).∇ϕj(x)dxdy =
∫

eξη

∇ϕi.∇ϕj |J |dξdη (2.5.9)

with |J | the absolute value of det(J). In order to compute the value of ∇ϕi, we
should express the derivatives to x and y into derivatives of ξ and η, since ϕi is
only known in the (ξ, η) plane:

∂ϕk

∂x
=

∂ϕk

∂ξ

∂ξ

∂x
+

∂ϕk

∂η

∂η

∂x
, (2.5.10)

∂ϕk

∂y
=

∂ϕk

∂ξ

∂ξ

∂y
+

∂ϕk

∂η

∂η

∂y
. (2.5.11)

This relation can be written in the following matrix form:

[
∂ϕk

∂x
∂ϕk

∂y

]
=

[
∂ϕk

∂ξ
∂ϕk

∂η

] [
∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

]
(2.5.12)

For more details see [3].
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2.6 2D convection diffusion equation

2.6.1 Standard Galerkin method

We consider the convection diffusion equation:

∂T

∂t
− ~∇.

(
k~∇T

)
+

(
~u.~∇T

)
= f (2.6.1)

On the boundary Γ1 we assume the Dirichlet boundary condition:

T |Γ1 = g1 (2.6.2)

On the boundary Γ2 we assume the Neumann boundary condition:

k
∂T

∂n
|Γ2 = g2 (2.6.3)

In order to derive the weak formulation, we multiply the equation (2.6.1) by a
test function η satisfying the homogeneous essential boundary condition η|Γ1 = 0
and integrate over the domain Ω, we obtain:∫

Ω

[
∂T

∂t
− ~∇.

(
k~∇T

)
+

(
~u.~∇T

)
− f

]
ηdΩ = 0. (2.6.4)

Integrating by parts (i.e., using Green’s formula), we obtain:∫
Ω

∂T

∂t
ηdΩ+

∫
Ω

k
(

~∇T.~∇η
)

dΩ+
∫

Ω

(
~u.~∇T

)
ηdΩ−

∫
Γ2

k
(

~∇T.~n
)

ηdΓ2 =
∫

Ω

fηdΩ.

Since ~∇T.~n = ∂T
∂n , and after substituting the boundary condition as well as the

essential boundary condition for the test function, we get the weak formulation:∫
Ω

∂T

∂t
ηdΩ +

∫
Ω

k
(

~∇T.~∇η
)

dΩ +
∫

Ω

(
~u.~∇T

)
ηdΩ =

∫
Ω

fηdΩ +
∫

Γ2

k
∂T

∂n
ηdΓ2.

The solution T can be approximated by : Tn =
∑n

j=1 Tjϕj(x). If the test
function η takes the values ϕi, i = 1, ..., n, we obtain the following system of
equations:∑n

j=1

∫
Ω

ϕjϕidΩdTj

dt = −
∑n

j=1

[∫
Ω

k
(

~∇ϕj .~∇ϕi

)
dΩ +

∫
Ω

(
~u.~∇ϕj

)
ϕidΩ

]
Tj +∫

Ω
fϕidΩ +

∫
Γ2

g2ϕidΓ2, i = 1, ..., n.

Using the following notations:
The mass matrix:

Mij =
∫

Ω

ϕjϕidΩ, (2.6.5)

The stiffness matrix:

Sij = −
∫

Ω

k
(

~∇ϕj .~∇ϕi

)
dΩ−

∫
Ω

(
~u.~∇ϕj

)
ϕidΩ, (2.6.6)

And:
Fi =

∫
Ω

fϕidΩ +
∫

Γ2

g2ϕidΓ2. (2.6.7)

We have to solve the linear, large and sparse ODE system(2.3.6).
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2.6.2 Comparison between numerical and exact solution

To test our numerical solution in two dimensions, we can compare the exact
solution in one dimension, in x-direction with the numerical solution in two
dimensions in x-direction such that the velocity in y-direction is equal to 0, i.e,
u2 = 0, This test is illustrated in the following example
On Γ1(y = 0), the flux is given by: k ∂T

∂n |Γ2 = 0
On Γ2(x = 2), we prescribe Dirichlet boundary condition: T |Γ4 = 40
On Γ3(y = 2), the flux is given by: k ∂T

∂n |Γ3 = 0
On Γ4(x = 0), we prescribe Dirichlet boundary condition: T |Γ4 = 20
Number of elements in x-direction is 10.
Number of elements in y-direction is 10.
The result is shown in Figure 2.6.1:

Figure 2.6.1: Comparison between numerical solution of 2D time dependent con-
vection diffusion equation in X-direction and 1D time dependent exact solution
in X-direction using SGA method after 500 time steps, dt = 0.1

we can also compare the exact solution in one dimension, in y-direction with
the numerical solution in two dimensions in y-direction such that the velocity in
x-direction is equal to 0, i.e, u1 = 0, This test is illustrated in following example
On Γ1(y = 0), we prescribe Dirichlet boundary condition: T |Γ1 = 20
On Γ2(x = 2), the flux is given by: k ∂T

∂n |Γ2 = 0
On Γ3(y = 2), we prescribe Dirichlet boundary condition: T |Γ3 = 40
On Γ4(x = 0), the flux is given by: k ∂T

∂n |Γ4 = 0
Number of elements in x-direction is 10.
Number of elements in y-direction is 10.
The result is shown in Figure 2.6.2
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Figure 2.6.2: Comparison between numerical solution of 2D time dependent con-
vection diffusion equation in Y-direction and 1D time dependent exact solution
in Y-direction using SGA method after 500 time steps, dt = 0.1

2.6.3 Streamline Upwind Petrov Galerkin method

Let us consider this example to see the effect of SUPG method.
On Γ1(y = 0), the flux is given by: k ∂T

∂n |Γ1 = 0
On Γ2(x = 1), we prescribe the essential boundary condition: T |Γ2 = 40
On Γ3(y = 2), the flux is given by: k ∂T

∂n |Γ3 = 0
On Γ4(x = 0), we prescribe the essential boundary condition: T |Γ4 = 20
Number of elements in x-direction is 10.
Number of elements in y-direction is 10.
The result is shown in Figure 2.6.3:

Figure 2.6.3: Numerical solution of 2D time dependent convection diffusion
equation using SGA method and implicit scheme after 500 time steps, dt = 0.1

The wiggles we get are due to convection ( the solution jump around the
exact solution, if the convection dominates), we should apply upwind only in
the direction of flow, so a natural choice for upwind in more dimensions is to
apply the one-dimensional upwind in the velocity direction, this can be achieved
by replacing the term p(x) = hξ

2
dϕi

dx by p(x) = hξ
2

~u.~∇ϕi

‖~u‖ . This means that the x-
derivative of the basis function in the one dimensional problem is replaced by the
directional derivative of the basis function in the direction of the velocity. Since
streamlines are always in the direction of the velocity this method is commonly
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called the Streamline Upwind Petrov Galerkin method (SUPG). Using the same
procedure as in SGA method, we get the matrix notation (2.3.6) where The mass
matrix is:

Mij =
∫

Ω

ϕjϕidΩ +
∫

Ω

ϕjpdΩ, (2.6.8)

The stiffness matrix is:

Sij = −
∫

Ω

k
(

~∇ϕj .~∇ϕi

)
dΩ−

∫
Ω

(
~u.~∇ϕj

)
ϕidΩ−

∫
Ω

(
~u.~∇ϕj

)
pdΩ, (2.6.9)

And:
Fi =

∫
Ω

fϕidΩ +
∫

Ω

fpdΩ +
∫

Γ2

k
∂T

∂n
ϕidΓ2. (2.6.10)

The wiggles can be avoided after using supg method, as illustrated in Figure
2.6.4, we prescribe the same boundary conditions as in the previous test.

Figure 2.6.4: Numerical solution of 2D time dependent convection diffusion
equation using SUPG method and implicit scheme after 500 time steps, dt =
0.1

2.6.4 Role of boundary conditions

The occurence of boundary layers is strongly influenced by the type of boundary
conditions. The following tests illustrate the effect of boundary conditions
The first example studies a heat metal block with a square form, the inferior
and the left sides of the block are heated to 20 ◦C, the other block boundaries
are isolated. This leads to the following set of boundary conditions
On Γ1(y = 0), we prescribe the essential boundary condition: T |Γ1 = 20
On Γ2(x = 2), the flux is given by: k ∂T

∂n |Γ2 = 0
On Γ3(y = 2), the flux is given by: k ∂T

∂n |Γ3 = 0
On Γ4(x = 0), we prescribe the essential boundary condition: T |Γ4 = 20
Number of elements in x-direction is 10.
Number of elements in y-direction is 10.
The result is shown in Figure 2.6.5
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Figure 2.6.5: Numerical solution of 2D time dependent convection diffusion
equation using SGA method after 500 time steps, dt = 0.1

In the following test, we assume that heat is flowing from the surrounding
air to the block at constant rate.
On Γ1(y = 0), we prescribe the essential boundary condition:T |Γ1 = 20
On Γ2(x = 2), the flux is given by: k ∂T

∂n |Γ2 = 50
On Γ3(y = 2), the flux is given by: k ∂T

∂n |Γ3 = 50
On Γ4(x = 0), we prescribe the essential boundary condition:T |Γ4 = 20
Number of elements in x-direction is 10.
Number of elements in y-direction is 10.
The result is shown in Figure 2.6.6

Figure 2.6.6: Numerical solution of 2D time dependent convection diffusion
equation using SGA method after 500 time steps, dt = 0.1

In the following test, we assume that the left and the right sides are heated
to 20 ◦C, while at the other sides, heat is flowing from the surrounding air to
the block at constant rate
On Γ1(y = 0), the flux is given by: k ∂T

∂n |Γ3 = 10
On Γ2(x = 2), we prescribe the essential boundary condition: T |Γ2 = 20
On Γ3(y = 2), the flux is given by: k ∂T

∂n |Γ3 = 10
On Γ4(x = 0), we prescribe the essential boundary condition:T |Γ4 = 20
Number of elements in x-direction is 10.
Number of elements in y-direction is 10.
The result is given in Figure 2.6.7
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Figure 2.6.7: Numerical solution of 2D time dependent convection diffusion
equation using SGA method after 500 time steps, dt = 0.1

3 Thermodynamic description

3.1 Heat or mass balance alone

The techniques given by voller et al.(1990) to solve phase change problems
are related only to the enthalpy balance, which means that the use of these
techniques to model processes with mobile components is not possible because of
the absence of the mass balance. Moreover, a fixed phase change temperature is
required to apply those techniques, but this temperature profile is not known in
advance because of the coupled mass and heat balances. The coupling between
the mass and heat balance is very important. For instance, the evaporation of
water from a product not only affects the mass balance, but will also lower the
temperature due to the heat of evaporation. Another technique which is only
related to the mass balance is the effective diffusivity model and is often used to
model moisture transport during drying. This technique neglects the coupling
between the mass and the heat balance and therefore the effect of the heat of
evaporation on the temperature, as well.

3.2 Density-enthalpy phase diagram

In order to increase the accuracy, numerical stability, calculation speed and to
minimize the number of assumptions of models, describing processes that involve
phase transitions, a density-enthalpy phase diagram has been developed.

It is possible to calculate directly the temperature, pressure and phase frac-
tions given the density and enthalpy of the system if we use density-enthalpy
phase diagram. Indeed, the state variables, density and enthalpy are sufficient to
determine the current state of a homogeneous system completely if the thermo-
dynamic equilibrium is assumed. In other words, if temperature, pressure and
mass distribution over the phases can be obtained as functions of density and
enthalpy, then the thermal processes can be simulated by solving only one set
of equations for the entire process, without switching between sets of equations.
Moreover, we can obtain all thermal properties using the partial derivatives of
these functions, so that , we can minimize the set of input parameters. Density
and enthalpy can be obtained by solving mass and heat balances. However, we
need temperature, pressure and phase fractions to calculate flux and boundary
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conditions. A thermodynamic analysis is required to obtain temperature, pres-
sure and mass distribution at any given density and enthalpy. The method of
the density-enthalpy phase diagram is based on dividing the density-enthalpy
plane into different zones. The phase diagram of pure water shown in Figure
3.2.1 is used as an example to describe the principle of the density-enthalpy
phase diagram. For more details see[1]

Figure 3.2.1: Density-enthaply phase diagram for pure water, G : gas, L : liquid,
S : solid
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4 Further research

4.1 Introduction

In the next part of the master thesis research, a 0D boiler system described in
[1] will be solved using MATLAB, secondly a 1D problem described in [2] will be
set up and solved using MATLAB, and finally a 2D and 3D problem will set up
and solved using a FE package SEPRAN. The different problems are described
as follows:

4.2 0D Boiler system

Figure 4.2.1 illustrates a boiler system: Liquid Propaan (C3H8) at constant
inlet pressure Pi and temperature Ti flows into the system since we have taken
pressure inside the boiler P relatively low compared to the pressure in the inlet
(Pi >> P ). The system is constructed in such a way that only gas can leave
the boiler at the top. The gas has the same pressure and temperature as the
system. Since pressure outside the system Pe is relatively low compared to the
pressure P inside the system (Pe << P ), the formed gas will flow out.

Figure 4.2.1: Boiler

This system can be described using the following differential equations (mass
and heat balance)

V
dρ

dt
= Φi − Φe, (4.2.1)

V
d(ρh)

dt
= Φi.hi − Φe.he + Q + V

dP

dt
. (4.2.2)

where
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V Volume [m3],
ρ Density [Kg/m3],
Φi Inflow mass [Kg/s],
Φe Outflow mass [Kg/s],
Q Heat flow [W ],
h Specific enthalpy [J/Kg],
P Pressure [Pa].

Since P = P (ρ, h), the total differential of P equals:

dP

dt
=

(
∂P

∂ρ

)
h

dρ

dt
+

(
∂P

∂h

)
ρ

dh

dt
. (4.2.3)

If we model the inlet and outlet flows using Bernoulli’s Law and if we assume
that the amount of the heat transfered into the system is a function of the wall
temperature, then inflow mass Φi, outflow mass Φe and heat flow Q can be
expressed as follows, for more details see [1].

Φi = Ai

√
2ρi(Pi − P ), (4.2.4)

Φe = Ae

√
2ρe(P − Pe), (4.2.5)

Q = AU(Ta − T ). (4.2.6)

where

Ai Inlet area [m2],
Ae Exit area [m2],
Ta Ambient temperature [K],
U Heat transfer coefficient [W/m2/K].

The level of the system can be calculated according to the following equation

Le = ρ

(
XLe

ρLe

)
(4.2.7)

where

XL Mass fraction of the liquid,
ρL Density of the liquid,
ρ Density of the liquid and gas.

We can solve this system using the following initial conditions

ρ(0) = ρ
(
P0, T0, X

G(0)
)
, (4.2.8)

h(0) = h
(
P0, T0, X

G(0)
)
. (4.2.9)

4.3 1D Darcy flow in porous media

Let us consider one dimensional flow of fluid which experience phase change
through inert porous media as illustrated in Figure 4.3.1. The fluid can appear
as a pure liquid or as gas or as a liquid in thermodynamic equilibrium with a
gas.

The velocity can be written as:

ν = −K

µ

∂P

∂x
. (4.3.1)
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Figure 4.3.1: Porous media in one dimension

where:

ν velocity [m/s],
µ dynamic viscosity [Pa.s],
P pressure [Pa],
K permeability [Darcy]

The permeability is a measure of the flow resistance, a high permeability
means a better mass transport. The mass balance can be written as:

∂ρ

∂t
+

∂ρν

∂x
= 0. (4.3.2)

where:

ν velocity [m3/m3],
ρ density [Kg/m3].

The heat balance can be given by:

∂ (ρh)
∂t

− ∂P

∂t
+

∂ (ρhν)
∂x

=
∂

∂x
λ

∂T

∂x
+ q. (4.3.3)

where:
λ heat conductance coefficient [W/K],
ρ density [Kg/m3],
µ dynamic viscosity [Pa.s],
h enthlpy [J/Kg],
T temperature [K],
P pressure [Pa],
q heat flow [W ].

After neglecting potential and kinetic energies, and eliminating a velocity, the
general set of PDE for non-isothermal flow in porous media is given by:

∂ρ

∂t
− K

µ

∂P

∂x

∂ρ

∂x
= ρ

∂

∂x

K

µ

∂P

∂x
, (4.3.4)

ρ
∂h

∂t
− ∂P

∂t
− ρ

K

µ

∂P

∂x

∂h

∂x
=

∂

∂x
λ

∂T

∂x
+ q. (4.3.5)
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Initial and boundary conditions:

P |t0 = Pa, (4.3.6)
T |t0 = Ta, (4.3.7)

K

µ

∂P

∂x
= km (Pa − P ) , (4.3.8)

λ
∂T

∂x
= kh (Ta − T ) . (4.3.9)

where:

t0 starting time [S],
λ heat conductance coefficient [W/K],
µ dynamic viscosity [Pa.s],
ρ density [Kg/m3],
K permeability [Darcy],
kh heat transfer coefficient [W/m2/K],
km mass transfer coefficient [Kg/m2/K],
q heat fllow [W ].

Since P = P (ρ, h) and T = T (ρ, h), the partial derivatives of P and T can
be written as:

∂P

∂x
=

(
∂P

∂ρ

)
h

∂ρ

∂x
+

(
∂P

∂h

)
ρ

∂h

∂x
, (4.3.10)

∂P

∂t
=

(
∂P

∂ρ

)
h

∂ρ

∂t
+

(
∂P

∂h

)
ρ

∂h

∂t
, (4.3.11)

∂T

∂x
=

(
∂T

∂ρ

)
h

∂ρ

∂x
+

(
∂T

∂h

)
ρ

∂h

∂x
. (4.3.12)

The partial derivatives of pressure and temeprature with respect to enthalpy
and density will be calculated using a thermodynamic model. By eliminating
partial derivatives of pressure and temperature in the transport model, we ob-
tain a system of PDE with only density and enthalpy as states. In the math-
ematical model (4.3.4) and (4.3.5), we have separated between the transport
model and the thermodynamic model. Moreover, the transport model does not
depend on the phases of the fluid. This method is called ρ− h method.

4.4 2D Darcy flow in porous media

Let us consider 2D Darcy flow in porous media, heat and mass balances can be
written as:

∂ρ

∂t
− K

µ
~∇P.~∇ρ = ρ

K

µ
∆P, (4.4.1)

ρ
∂h

∂t
− ρ

K

µ
~∇P.~∇h = ~∇.

(
λ~∇T

)
+ q. (4.4.2)

To describe this process completely, we should determine the boundary condi-
tions which describe the transfer of mass and heat. The external heat transfer
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can be given by:

λ~∇T.~n = kh (Ta − T ) . (4.4.3)

The external mass transfer can be represented by:

K

µ
~∇P.~n = km (Pa − P ) . (4.4.4)

The initial conditions can be given by:

P |t0 = Pa,

T |t0 = Ta.

where:

P pressure [Pa],
T temperature [K],
Pa ambient pressure [Pa],
Ta ambient temperature [K],
h enthalpy [W ],
t0 starting time [S],
λ heat conductance coefficient [W/K],
µ dynamic viscosity [Pa.s],
ρ density [Kg/m3],
K permeability [Darcy],
kh heat transfer coefficient [W/m2/K],
km mass transfer coefficient [Kg/m2/K],
q heat fllow [W ],
~n normal vector.
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5 Appendix A

5.1 Thermodynamic words

Porous:
A porous medium or a porous material is a solid (often called frame or matrix)
permeated by an interconnected network of pores (voids) filled with a fluid (liq-
uid or gas).

Porosity:
The porosity of a porous material is the proportion of the non-solid volume to
the total volume of material, and is defined by the ratio:

φ = Vp

Vm

where Vp is the non-solid volume (pores and liquid) and Vp is the total volume
of material, including the solid and non-solid parts.

Darcy:
Permeability measures the ability of fluids to flow through porous media. The
darcy is defined using Darcy’s Law which can be written as:
where:
v is the superficial fluid flow rate through the medium [m/s],
k is the permeability of a medium [Darcy],
µ is the dynamic viscosity of the fluid [Pa.s],
∆P is the applied pressure difference [Pa],
∆x is the thickness of the medium [m].

Mass balance:
A mass balance (also called a material balance) accounts for material entering
and leaving a system ( The matter can not disappear or be created).

Heat balance:
First law of thermodynamics (the conservation of energy). The increase in the
energy of a closed system is equal to the amount of energy added to the system
by heating, minus the amount lost in the form of work done by the system on
its surroundings.

Inert:
A medium is inert if it is not reacting chemically with other substances.

Enthalpy:
In thermodynamics, the quantity enthalpy, symbolized by H is the sum of the
internal energy of a thermodynamic system plus the energy associated with work
done by the system on the atmosphere which is the product of the pressure times
the volume.

H = U + P V,

H is the enthalpy [J],
U is the internal energy [J ],
P is the pressure of the system [Pa],
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V is the volume [m3].

Phase transition:
In physics, a phase transition or phase change is the transformation of a thermo-
dynamic system from one phase to another. The distinguishing characteristic
of a phase transition is an abrupt sudden change in one or more physical prop-
erties, in particular the heat capacity, with a small change in a thermodynamic
variable such as the temperature.
Examples of phase transitions include the transitions between the solid, liquid,
and gaseous phases, due to the effects of temperature and pressure:
The solid-to-liquid transition is called melting.
The liquid-to-solid transition is called freezing.
The liquid-to-gas transition is called boiling / evaporation.
The gas-to-liquid transition is called condensation.
The solid-to-gas transition is called sublimation.
The gas-to-solid transition is called deposition.

Phase diagram:
In physical chemistry and materials science, a phase diagram is a type of
graph used to show the equilibrium conditions between the thermodynamically-
distinct phases

Air pressure:
Air pressure is the pressure above any area in the Earth’s atmosphere caused
by the weight of air. As elevation increases, there are exponentially fewer and
fewer air molecules. Therefore, atmospheric pressure decreases with increasing
altitude at a decreasing rate. The following relationship is a first-order approx-
imation:

log10 P ≈ 5− h
15500

where P is the pressure in Pascal and h the height in meters. This shows that
the pressure at an altitude of 31 km is about 10(5−2)Pa = 1000Pa, or 1% of
that at sea level. A rough approximation valid for the first few kilometers above
the surface is that pressure decreases by 100 hPa per kilometer.

Permeability [Darcy]:
The permeability is a measure of the ability of a material to transmit fluids.

Isothermal process:
An isothermal process is a thermodynamic process in which the temperature of
the system stays constant: ∆T = 0

Thermodynamic equilibrium:
In thermodynamics, a thermodynamic system is said to be in thermodynamic
equilibrium, when it is in thermal equilibrium, mechanical equilibrium, and
chemical equilibrium. The local state of a system at thermodynamic equilibrium
is determined by the values of its intensive parameters, as pressure, temperature,
etc. Specifically, thermodynamic equilibrium is characterized by the minimum
of a thermodynamic potential, such as the Helmholtz free energy, i.e. systems
at constant temperature and volume:
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A = U − TS,

or as the Gibbs free energy, i.e. systems at constant pressure and temperature:

G = H − TS,

where H is the enthalpy [J ],
T is the temperature [K],
S is the entropy [J/K].

The process that leads to a thermodynamic equilibrium is called thermal-
ization

Gibbs free energy:
The Gibbs free energy is a thermodynamic potential and is therefore a state
function of a thermodynamic system. It is defined as:

G = H − TS,

where (in SI units)
G is the Gibbs energy [J ],
H is the enthalpy [J ],
T is the temperature [K],
S is the entropy [J/K] .

Entropy:
Symbolized by S, is defined by the differential quantity dS = dQ/T , where dQ
is the amount of heat absorbed in a reversible process in which the system goes
from one state to another, and T is the absolute temperature. Entropy is one
of the factors that determines the free energy of the system.
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6 NOTATIONS

Roman symbols

A area [m2]
Cp heat capacity [J/Kg/K]
f source term
G gaz
h specific enthalpy [J/Kg]
k diffusion term
K permeability
l domain length
L liquid
Le level [m/m]
n normal vector
P pressure [Pa]
S solid
T temperature [K]
t time [s]
u convection term
U heat transfer coefficient [W/m2/K]
V volume [m3]
X mass fraction [Kg/Kg]

Greek symbols

ε porosity [m3/m3].
λ effective heat conductance coefficient [W/m/K]
µ dynamic viscosity [Pa.s]
ρ density [Kg/m3]
Φ mass flow [Kg/s]
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