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According to Dyson’s threefold way, from the viewpoint of global time
reversal symmetry, there are three circular ensembles of unitary random
matrices relevant to the study of chaotic spectra in quantum mechanics.
These are the circular orthogonal, unitary, and symplectic ensembles,
denoted COE, CUE, and CSE, respectively. For each of these three
ensembles and their thinned versions, whereby each eigenvalue is deleted
independently with probability 1 − ξ , we take up the problem of calculating
the first two terms in the scaled large N expansion of the spacing
distributions. It is well known that the leading term admits a characterization
in terms of both Fredholm determinants and Painlevé transcendents. We
show that modifications of these characterizations also remain valid for the
next to leading term, and that they provide schemes for high precision
numerical computations. In the case of the CUE, there is an application to
the analysis of Odlyzko’s data set for the Riemann zeros, and in that case,
some further statistics are similarly analyzed.

1. Introduction

Random matrix theory is of importance for both its conceptual and
its predictive powers. At a conceptual level, there is the threefold way
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classification of global time reversal symmetries of Hamiltonians for chaotic
quantum systems [1], later extended to 10 by the inclusion of chiral and
topological symmetries [2]. For each of the 10 Hamiltonians, there is an
ensemble of random Hermitian matrices, which in turn are the Hermitian
part of the 10 matrix Lie algebras associated with the infinite families
of symmetric spaces. The symmetric spaces themselves give rise to 10
ensembles of random unitary matrices [3].

To see how the formulation of ensembles leads to a predictive statement,
consider for definiteness the threefold way classification of Hamiltonians
for chaotic quantum systems. The basic hypothesis, initiated by Wigner
[4] and Dyson [1], and refined by Bohigas et al. [5], is that a quantum
mechanical system for which the underlying classical mechanics is chaotic,
will, for large energies have the same statistical distribution as the bulk
scaled eigenvalues of the relevant ensemble of Hermitian matrices. The
particular ensemble is determined by the presence or absence of a time
reversal symmetry, with the former consisting of two subcases depending
on the time reversal operator T being such that T 2 = 1, or T 2 = −1; see,
for example [6, chapter 1]. This becomes predictive upon the specification
of the statistical distributions for the bulk scaled eigenvalues of the random
matrix ensemble. Thus, according to the hypothesis, these same distributions
will be exhibited by the point process formed from the highly excited energy
levels of a chaotic quantum system. The point process can be realized in
laboratory experiments of nuclear excitations (see, e.g., [7]), and microwave
billiards [8], among other examples.

Arguably the most spectacular example of both the conceptual and
predictive powers of random matrix theory shows itself in relation to the
Riemann zeta function ζ (s). The celebrated Riemann hypothesis asserts that
all the complex zeros of ζ (s) are of the form s = 1

2 ± i E , with E > 0.
The Montgomery–Odlyzko law asserts that for large E these zeros—referred
to as the Riemann zeros—have the same statistical properties as the bulk
eigenvalues of large Hermitian random matrices with complex elements.
However, from the threefold way, the latter is the ensemble of random
Hermitian matrices giving the statistical properties of the large energy levels
of a chaotic quantum mechanical system without a time reversal symmetry.
The implied relationship between the Riemann zeros and quantum chaos
is consistent with and extends the Hilbert–Pólya conjecture [9] asserting
that the Riemann zeros correspond to the eigenvalues of some (unknown)
unbounded self-adjoint operator; see [10, 11] for contemporary research on
this topic.

To realize the predictive consequences of this link between two seemingly
unrelated quantities—the Riemann zeros and chaotic quantum Hamiltonians
without time reversal symmetry—requires a list of the Riemann zeros for
large E . Such a list has been provided by Odlyzko [12], who in a celebrated
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numerical computation has provided the high precision evaluation of the
1020-th Riemann zero and over 70 million of its neighbors. From this data
set, the veracity of the Montgomery–Odlyzko law can be tested. Primary
statistical quantities for this purpose include the two-point correlation
function 〈ρ(2)(x, x + s)〉—which measures the density of zeros a distance s
from x , with x itself averaged over a window of zeros which itself is large,
but still small relative to x—and the spacing distribution p(k; s) for the
event that the k-th next (in consecutive order) neighbors1 are a distance s
apart. As displayed in [12], at a graphical level, the agreement between the
Riemann zero data and the predictions of random matrix theory is seemingly
exact.

Although zeros of order 1020 are huge on an absolute scale, it turns
out that convergence to random matrix predictions occurs on a scale where
log E plays the role of N , giving rise to potentially significant finite size
effects. Such effects were first considered in the work of Keating and Snaith
[13] in their study of the statistical properties of the value distribution of
the logarithm of the Riemann zeta function on Re s = 1/2 with |s| large.
Quite unexpectedly, they showed that the finite size corrections could be
understood by introducing as a model for the Riemann zeros the eigenvalues
of Haar distributed unitary random matrices from U(N ), instead of complex
Hermitian random matrices. It had been known since the work of Dyson
[14] that the eigenvalues for Haar distributed unitary random matrices from
U(N ) and complex Hermitian random matrices with Gaussian entries have
the same limiting statistical distribution. However, for finite N , they are
fundamentally different, with the former being rotationally invariant while
the spectral density of the latter is given by the Wigner semicircle law and
thus has edge effects.

Odlyzko’s work on the computation of large Riemann zeros is ongoing.
In [15], he announced a data set beginning with the 1023-rd zero and
its next 109 neighbors. Taking advantage of the great statistical accuracy
offered by this data set, the finite size correction for the deviation of the
empirical nearest neighbor spacing distribution and the limiting random
matrix prediction was displayed, and shown to have structure. To explain
the functional form of this correction, in keeping with the work of Keating
and Snaith, Bogomolny and collaborators [16] were able to present analytic
evidence that the correction term could again be understood in terms of a
model of eigenvalues from Haar distributed U(N ) matrices.

More explicitly, let pU(N )(0; s) refer to the spacing distribution between
consecutive eigenvalues for Haar distributed unitary random matrices, with
the angles of the eigenvalues rescaled to have mean spacing unity. The study

1In an increasingly ordered list the k-th next neighbor of the item x j is item x j+k+1.
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[16] calls for the functional form of r2(0; s) in the large N expansion

pU(N )(0; s) = p2(0; s) + 1

N 2
r2(0; s) + · · · . (1)

Here the subscript “2” on the RHS is the label from Dyson’s threefold way
in the case of no time reversal symmetry. As a straightforward application
of the pioneering work of Mehta [17] and Gaudin [18], Dyson [14] showed
that

p2(0; s) = d2

ds2
det(I − Ks), (2)

where Ks is the integral operator on (0, s) with kernel

K (x, y) = sin π (x − y)

π (x − y)
. (3)

Twenty years later, this Fredholm determinant evaluation was put in the
context of Painlevé theory by the Kyoto school of Jimbo et al. [19], who
showed

det(I − ξKs) = exp
∫ πs

0

σ (0)(t ; ξ )

t
dt, (4)

where σ satisfies the differential equation (an example of the Painlevé V
equation in sigma form)

(tσ ′′)2 + 4(tσ ′ − σ )(tσ ′ − σ + (σ ′)2) = 0 (5)

with small t boundary conditions

σ (0)(t ; ξ ) = − ξ

π
t − ξ 2

π2
t2 + O(t3). (6)

Note that the parameter ξ introduced in (4) only enters in the charac-
terization through the boundary condition; we refer to [6, chapter 8] for
background theory relating to the Painlevé equations as they occur in
random matrix theory.

In [16], the leading correction term r2(0; s) was estimated using a
numerical extrapolation from the tabulation of pU(N )(0; s) − p2(0; s). In [20]
the task of finding analytic forms for r2(0; s) was addressed. One first notes
that analogous to the formula (2), for finite N ,

pU(N )(0; s) = d2

ds2
det

(
I − K

N
s

)
, (7)

where K
N
s is the integral operator on (0, s) with kernel

K N (x, y) = sin π (x − y)

N sin(π (x − y)/N )
. (8)
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Expanding now for large N gives

K N (x, y) = K (x, y) + 1

N 2
L(x, y) + O

(
1

N 4

)
, (9)

where the leading correction term in this expansion is given explicitly by

L(x, y) = (π (x − y)/6) sin π (x − y). (10)

It was observed in [20] (cf. Lemma 1 below) that this expansion lifts to

det
(
I − K

N
s

) = det(I − Ks) + 1

N 2
�(Ks) : Ls + O

(
1

N 4

)
, (11)

where Ks is as in (3) and Ls is the integral operator on (0, s) with kernel L;
the leading correction is now given by the operator expression

�(Ks) : Ls = − det(I − Ks)tr
(
(I − Ks)−1

Ls

)
, (12)

which is linear in L. Substituting in (7) and comparing to (1) we get that

r2(0; s) = d2

ds2
�(Ks) : Ls . (13)

In Section 2.2 of this paper, the problem addressed is how to use such
formulas to provide a high precision numerical tabulation of r2(k; s). In the
case k = 1, we exhibit the resulting functional form in Odlyzko’s data set
for the Riemann zeros; see Section 4.

An expression for the large N expansion of the Fredholm determinant in
(7) involving Painlevé transcendents was also given in [20]. Thus, it was
shown that

det(I − ξK
N
s )

= exp

(∫ πs

0

σ (0)(t ; ξ )

t
dt

)(
1 + 1

N 2

∫ πs

0

σ (1)(t ; ξ )

t
dt + O

(
1

N 4

))
. (14)

As noted above, σ (0)(t ; ξ ) satisfies the particular Painlevé V equation in
sigma form (5) with boundary condition (6), with only the latter depending
on ξ . The function σ (1)(t ; ξ ) was characterized as the solution of the
second-order, linear differential equation

A(t ; ξ )y′′ + B(t ; ξ )y′ + C(t ; ξ )y = D(t ; ξ ), (15)

where, with σ = σ (0)(t ; ξ ),

A(t ; ξ ) = 2t2σ ′′,

B(t ; ξ ) = −8σ ′σ + 12t(σ ′)2 + 8t(tσ ′ − σ ),

C(t ; ξ ) = −4(σ ′)2 − 8(tσ ′ − σ ),
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D(t ; ξ ) = −4

3
t2σ ′′

(
σ − tσ ′ − t2

2
σ ′′
)

−4

3
(tσ ′ − σ )(3σ 2 + 2tσ (t − σ ′) − 2t2σ ′(t + σ ′)),

and fulfilling the t → 0+ boundary condition

σ (1)(t ; ξ ) = −
(

t4 ξ 2

9π2
+ t5 5ξ 3

36π3
+ O(t6)

)
. (16)

Substituting (14) in (7) and comparing to (1) we read off that

r2(0; s) = d2

ds2
exp

(∫ πs

0

σ (0)(t ; 1)

t
dt

)∫ πs

0

σ (1)(t ; 1)

t
dt. (17)

By using a nested power series method to solve the differential equation
(15) numerically, this expression was used in [20] to determine the graphical
form of r2(0; s), and also to determine its small and large s expansions.
However, the operator approach advocated in this paper is simpler and more
straightforward to use numerically.

Random unitary matrices from U(N ) chosen with Haar measure form one
of Dyson’s three circular ensembles of unitary random matrices coming from
the considerations of the threefold way, and in this context is referred to
as the circular unitary ensemble (CUE). The other two circular ensembles
are the circular orthogonal ensemble (COE) of symmetric unitary matrices
and the circular symplectic ensemble (CSE) of self dual unitary matrices.
We will show that our methods can be adapted to provide a systematic
investigation of the leading correction in the large N expansion of spacing
distributions for each of these examples.

1.1. Outline of the paper

After some preparatory material on the expansion of operator determinants
and numerical methods for evaluating the corresponding terms in Section 2,
we begin in Section 3 by extending the study initiated in [20] on this
problem as it applies to CUE matrices. The first question addressed is the
computation of the leading order correction term in the large N expansion
of pU(N )(k; s) − p2(k; s), or equivalently pCUEN (k; s) − p2(k; s), in terms of
an integral operator formula extending (13). We then do the same in
the circumstance that each eigenvalue has been deleted independently at
random with probability (1 − ξ ). Such a thinning procedure, well known
in the theory of point processes (see, e.g., [21]), was introduced into
random matrix theory by Bohigas and Pato [22], and has been applied
to Odlyzko’s data set for the Riemann zeros in [20]. Continuing with the
point process perspective, next we consider the setting of a translationally
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invariant one-dimensional point process, normalized to have average spacing
unity, superimposed with a Poisson point process. Our interest is in the
distribution of the minimum distance from each Poisson point to a point in
the original process. In an ensemble setting, this is equivalent to computing
the minimum distance from the origin of a point in the original process.
For CUE matrices, the distribution can be expressed in a form analogous
to (7), which allows the statistic to be expanded for large N . In the final
subsection of Section 3, the statistic for the nearest neighbor spacing, that is,
the minimum of the spacing distance between left and right neighbors in the
CUE is similarly studied.

In Section 4, our results are compared against empirical findings from
Odlyzko’s data set for the Riemann zeros. There we will use a unique
O(N−3) correction of the CUE correlation kernel that was observed in the
study [16] to match the corresponding O(N−3) terms of the two- and three-
point correlation functions. Including this term in the numerical calculations
systematically improves the fit to the empirical data.

The study of spacing distributions for matrices from the COE and CSE is
more involved than for CUE matrices. The reason is that the latter is based
on the single integral operator K

N
s with kernel (8), whereas the pathway

to tractable expressions in the case of the COE and CSE makes use of
inter-relations between gap probabilities. The necessary theory is covered in
the first part of Section 5. In the second part of Section 5, we give the
leading correction term for the large N expansion of

pCβE
ξ (k; s) − pβ,ξ (k; s),

where β = 1 for the COE and β = 4 for the CSE, in terms of a
characterization analogous to (14) and (15). The parameter ξ specifies the
thinning probability.

1.2. A note on sampling sizes of empirical data

In this paper, we discuss finite size effects up to an error O(N−4), with
N in the Odlyzko data set of Riemann zeros being effectively N ≈ 10.
We choose the same order of magnitude of N for the simulations of
the circular ensembles. Now, by the law of large numbers, sampling is
known to introduce a statistical error of about O(M−1/2), where M denotes
the sample size. Hence, pushing the sampling error to the same order of
magnitude as the remaining finite size error thus requires a sampling size of
M = N 8 ≈ 108. This was actually the choice for our simulations and is well
matched by the Odlyzko data set of a little more than 109 ≈ 108 · N zeros.
However, observing structure also in the O(N−4) remainder term would
hence require to increase the sampling size by at least two to four orders
of magnitude. This is only possible with parallel processing and a subtle
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memory management of the resulting gigantic data sets (the raw material
provided by Odlyzko is already about 22 GB in size).

2. Expansions of determinants and their numerical evaluation

2.1. Expansions of operator determinants

The integral operator formulas of this paper are based on the following
folklore lemma, which we prove here for ease of reference.

LEMMA 1. Let J be a bounded interval and let Kh(x, y), K (x, y),
L(x, y) be continuously differentiable kernels on J × J . If the expansion

Kh(x, y) = K (x, y) + hL(x, y) + O(h2)

holds uniformly up to the first derivatives as h → 0, then it lifts as an
expansion Kh = K + hL + O(h2) of the induced integral operators on L2(J )
in trace-class norm. If 1 �∈ Spec(K), the operator determinant expands as

det(I − Kh) = det(I − K) + h�(K) : L + O(h2) (18a)

with the leading correction term given by2

�(K) : L = − det(I − K)tr((I − K)−1
L), (18b)

an expression that is linear in L.

Proof: On bounded intervals J , continuously differentiable kernels
K (x, y) induce integral operators K on L2(J ) that are trace-class: using the
fundamental theorem of calculus, one can represent them straightforwardly
as the sum of a rank-one operator and a product of two Hilbert–Schmidt
operators, see, for example, [23, p. 879]. By the same construction the
expansion lifts from kernels in C1-norm to operators in trace-class norm.
Now, using the multiplicativity of the operator determinant we get that

det(I − Kh) = det(I − K) det
(
I − h(I − K)−1

L + O(h2)
)
.

Truncating the series definition of the operator determinant in terms of
exterior products, see, for example, [24, eq. (3.5)],

det(I + zT) = 1 +
∞∑

n=1

zntr
∧n

T,

2Note that �(K) = − det(I − K)(I − K)−1 is the Fréchet derivative of the map K �→ det(I − K) under
the identification of the dual of the space of trace-class operators with the space of bounded
operators, see [24, corollary 5.2]. The derivative of that map in the direction of the bounded
operator L is thus given by �(K) : L = tr(�(K)L). By analytic continuation this interpretation of the
expression �(K) : L extends well to the case that 1 ∈ Spec(K).
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at the second term, we obtain

det
(
I − h(I − K)−1

L + O(h2)
) = 1 − htr

(
(I − K)−1

L)
)+ O(h2),

which completes the proof. �

2.2. Numerical evaluation of operator terms

The computations for all figures of this paper are based on the numerical
evaluation of operator terms such as det(I − K) or �(K) : L. In fact, there
is an extension of the numerical method introduced in [23] for the operator
determinant that facilitates the efficient highly accurate evaluation of such
terms with exponential convergence3 if the kernels extend analytically into
the complex domain. Given a quadrature method∫

J
f (x) dx ≈

n∑
j=1

f (x j )w j

with positive weights w j , we associate to an integral operator K on L2(J )
with the kernel K (x, y) the Nyström matrix

Kw = (
K (x j , xk)wk

)n

j,k=1
.

For compact intervals J the best choice for smooth f is Gauss–Legendre
quadrature, for which recently a super-fast algorithm of O(n) complexity has
been found [25]; it converges exponentially fast if f extends analytically
into the complex domain.

As was shown in [23, theorem 6.2], these convergence properties are
inherited by the determinant of the Nyström matrix as an approximation of
the operator determinant, namely,

det(I − K) ≈ det(I − Kw),

where I denotes the identity operator in L2(J ) on the left and the n × n
identity matrix on the right. In particular, the convergence is exponential if
the kernel K extends analytically into the complex domain. Now, the same
method of replacing the integral operator by the associated Nyström matrix
applies to the approximation of quite general operator terms.

We give four examples:

� The trace is approximated straightforwardly by the quadrature formula as

tr(K) =
∫

J
K (x, x) dx ≈

n∑
j=1

K (x j , x j )w j = tr(Kw).

3There is a constant c > 0 such that the approximation error is O(e−cn), where n denotes the
dimension parameter of the method (e.g., the number of quadrature points).
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� Operator products are approximated by matrix products, that is,

(KL)w ≈ KwLw.

This follows from

((KL)w) jk = wk

∫
J

K (x j , x ′)L(x ′, xk) dx ′

≈
n∑

l=1

K (x j , xl)wl L(xl, xk)wk =
n∑

l=1

(Kw) jl(Lw)lk .

� The resolvent kernel R(x, x ′) of the operator (I − K)−1 satisfies the
integral equation

u(x) =
∫

J
R(x, x ′)u(x ′) dx ′ −

∫
J

∫
J

K (x, z)R(z, x ′)u(x ′) dx ′dz

for all u. Application of the quadrature rule gives with u j = u(x j )

u j ≈
n∑

k=1

R(x j , xk)wk · uk −
n∑

l,k=1

K (x j , xl)wl · R(xl, xk)wk · uk,

that is, I ≈ (I − Kw)((I − K)−1)w and, therefore,

((I − K)−1)w ≈ (I − Kw)−1.

� By combining all the examples so far, we get

�(K) : L = − det(I − K)tr((I − K)−1
L)

≈ − det(I − Kw)tr((I − Kw)−1
Lw) = �(Kw) : Lw.

In all the above, the convergence properties are inherited from the
underlying quadrature formula; in particular, the convergence is exponential
if the kernels extend analytically to the complex domain. The proof is
straightforward in the first two examples and follows from the theory of
the Nyström method for integral equations in the third one; the fourth is a
combination of all the previous results.

The numerical derivatives with respect to the s and z variables of
the generating functions for the spacing distributions are computed in
exactly the same fashion as discussed in [26], that is, based on Chebyshev
expansions with respect to s and contour integration with respect to z.

The actual implementation and use of this methodology within the Matlab
toolbox of [26] is described in the Appendix of this paper.
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3. Spacing distributions for the CUE

3.1. Preliminaries

The sequence of angles, to be referred to as eigenangles, specifying the
eigenvalues of a unitary random matrix from any of the three circular
ensembles forms a point process on (−π, π ] with uniform density N/2π .
Due to the rotational symmetry, the spacing distributions of the angles,
pCβE(k; s) with β = 1, 2, 4 for the COE, CUE, CSE, respectively, and k =
0, 1, . . ., are thus independent of the absolute location of the eigenvalues. If
there is an eigenangle at x and at x + s, we may rotate all the angles so that
x becomes the origin, and speak of a spacing of size s. Let us do this, and
also normalize the angles so that the mean spacing is unity.

Fundamental to the study of spacing distributions pCβE(k; s) are the
so-called gap probabilities ECβE(l; s). The latter specify the probability that
an interval of size s contains exactly l eigenangles for CβE matrices.
Specifically, let us introduce the generating functions

pCβE(s; z) :=
N∑

n=0

(1 − z)n pCβE(n; s), (19)

ECβE(s; z) :=
N∑

n=0

(1 − z)n ECβE(n; s). (20)

Of course the naming on the LHS’s represent an abuse of notation, due
to the same functional forms also appearing on the RHS; however, the
appearance of the generating function symbol z is enough to distinguish the
different quantities. We have the relationship between generating functions
(see, e.g., [6, proposition 8.1])

pCβE(s; z) = 1

z2

d2

ds2
ECβE(s; z), (21)

or equivalently the formula

pCβE(n; s) = d2

ds2

n∑
j=0

(n − j + 1)ECβE( j ; s). (22)

Also fundamental is the relationship between the generating function (20)
and the k-point correlation functions ρ

CβE
(n) (x1, . . . , xn). Thus, we have (see,

e.g., [6, proposition 9.1.1])

ECβE(s; z) = 1 +
N∑

n=1

(−z)n

n!

∫ s

0
dx1 · · ·

∫ s

0
dxn ρ

CβE
(n) (x1, . . . , xn). (23)
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The eigenvalues for the CUE form a determinantal point process, while the
eigenvalues for the COE and CSE form Pfaffian point processes; see, for
example, [6, chapters 5 and 6]. Specifically, in the case of the CUE, we
have

ρCUE
(n) (x1, . . . , xn) = det

[
K N (x j , xl)

]
j,l=1,...,k

, (24)

where K N is given by (8), while the analogous formula for the COE and
CSE involves a Pfaffian of a 2 × 2 antisymmetric kernel function. This
structural difference distinguishes the case of the CUE and thus makes it
simpler.

3.2. Integral operator formulas

Substituting (24) in (23), and making use of a standard expansion formula in
the theory of Fredholm integral operators (see, e.g., [24, eq. (3.14)]) gives

ECUE(s; z) = det(I − zKN
s ). (25)

Now substituting the expansion (11) in (25) and substituting the result in
(21) we read off the large N expansion to second order.

PROPOSITION 1. We have

pCUE(s; z) = p2(s; z) + 1

N 2
r2(s; z) + O

(
1

N 4

)
, (26)

where

p2(s; z) = 1

z2

d2

ds2
det(I − zKs) (27)

and

r2(s; z) = 1

z

d2

ds2
�(zKs) : Ls . (28)

In particular

pCUE(0; s) = p2(s; z)
∣∣∣
z=1

+ 1

N 2
r2(s; z)

∣∣∣
z=1

+ O

(
1

N 4

)
, (29)

and

pCUE(1; s) = − d

dz
p2(s; z)

∣∣∣
z=1

− 1

N 2

d

dz
r2(s; z)

∣∣∣
z=1

+ O

(
1

N 4

)
. (30)

3.3. Thinning

The operation of thinning applied to a point process refers to the procedure
of independently deleting each point in a sample with probability (1 − ξ ),
0 < ξ ≤ 1. With the k-point correlation function before thinning being given
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by ρ(k)(x1, . . . , xk), the k-point correlation function after thinning is simply
ξ kρ(k)(x1, . . . , xk), due to the independence. It thus follows from (23), that
the generating function for the gap probability in the presence of thinning,
ECβE

ξ (s; z) say, is related to the generating function for the gap probability
without thinning by

ECβE
ξ (s; z) = ECβE(s; ξ z). (31)

Specializing further to the CUE, we can substitute (25) in the RHS of this
expression to conclude

ECUE
ξ (s; z) = det

(
I − zξK

N
s

)
. (32)

The analogues of (21) and (22) for the spacing probabilities are

pCβE
ξ (s; z) = 1

ξ z2

d2

ds2
ECβE(s; ξ z),

pCβE
ξ (n; s) = 1

ξ

d2

ds2

n∑
j=0

(n − j + 1)ECβE
ξ ( j ; s). (33)

Using the first of these, together with (25) and the expansion (11) we can
write down the analogue of Proposition 1.

PROPOSITION 2. We have

pCUE
ξ (s; z) = p2,ξ (s; z) + 1

N 2
r2,ξ (s; z) + O

(
1

N 4

)
, (34)

where

p2,ξ (s; z) = 1

ξ z2

d2

ds2
det(I − ξ zKs) (35)

and

r2,ξ (s; z) = 1

z

d2

ds2
�(ξ zKs) : Ls . (36)

In particular

pCUE
ξ (0; s) = p2,ξ (s; 1) + 1

N 2
r2,ξ (s; 1) + O

(
1

N 4

)
, (37)

and

pCUE
ξ (1; s) = − d

dz
p2,ξ (s; z)

∣∣∣
z=1

− 1

N 2

d

dz
r2,ξ (s; z)

∣∣∣
z=1

+ O

(
1

N 4

)
. (38)

Implementation of these formulas according to the method of Section 2.2
will be carried out in Section 4, in the context of a comparison with the
corresponding statistics for Odlyzko’s data set of the Riemann zeros.
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3.4. Minimum spacing distribution from a randomly chosen origin

The quantity ECβE(0; (−s, s)) is the probability that there are no eigenvalues
in the interval (−s, s) of the scaled CβE. Differentiating this quantity with
respect to s gives the probability density function pCβE

Origin(s) for the scaled
eigenangle closest to the origin,

pCβE
Origin(s) = − d

ds
ECβE(0; (−s, s)).

In the case β = 2 with thinning, it follows from (32), as well as the
translation invariance of the sine kernel, that

pCUE
Origin,ξ (s) = − d

ds
det

(
I − ξK

N
2s

)
. (39)

Use of (14) gives a characterization of the leading two terms of the large N
expansion of this quantity.

PROPOSITION 3. We have

pCUE
Origin,ξ (s) = pOrigin,ξ (s) + 1

N 2
rOrigin,ξ (s) + O

(
1

N 4

)
, (40)

where in terms of integral operators

pOrigin,ξ (s) = − d

ds
det(I − ξK2s),

rOrigin,ξ (s) = −ξ
d

ds
�(ξK2s) : L2s . (41)

Alternatively, in terms of σ (0) and σ (1) defined in (14)

pOrigin,ξ (s) = − d

ds
exp

(∫ 2πs

0

σ (0)(t ; ξ )

t
dt

)
(42)

and

rOrigin,ξ (s) = − d

ds

(∫ 2πs

0

σ (1)(t ; ξ )

t
dt

)
exp

(∫ 2πs

0

σ (0)(t ; ξ )

t
dt

)
. (43)

To simulate this quantity in translationally invariant empirical data
such as the CUE itself, one can actually draw the origin uniformly and
independently within the interval for which the data are defined (i.e., one
superimposes a Poisson point process defining the origin). To prepare for
corresponding computations within a large set of Riemann zeros, this was
done, as a proof of concept, for CUE matrices in Figs. 1 and 2.
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Figure 1. Minimum spacing from a randomly chosen origin: simulation versus theory for
finite size CUE, no thinning (ξ = 1). Left panel: a histogram of empirical data from CUEN

with N = 20 scaled to unit mean spacing, computed using a bin size of 0.01 and 108

samples from CUEN , for each of which 1, 000 samples of a uniformly distributed random
origin were drawn (blue dots); the large N limit pOrigin,ξ (s) (red solid line). Right panel:
the simulation data minus pOrigin,ξ (s) scaled by N 2 (blue dots); the leading correction term
rOrigin,ξ (s) (red solid line).
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Figure 2. As in Fig. 1 but with thinning ξ = 0.6.

3.5. Nearest neighbor spacing distribution

A variant of the spacing distribution between consecutive eigenvalues is the
spacing distribution between nearest neighbor eigenvalues [27]. For this, at
each eigenvalue, one measures the smallest of the spacings to the eigenvalue
immediately to the left, and the spacing immediately to the right. In a
theoretical ensemble formulation, the system is to be conditioned so that
there is an eigenvalue at the origin. Consider in particular the CUE with
eigenangles scaled to have unit spacing. With ρ

CUE,θ=0
(n),ξ denoting the n-point

correlation function for the conditioned system in the presence of thinning,
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we have

ρ
CUE,θ=0
(n),ξ (θ1, . . . , θn) = ξ nρCUE

(n+1)(θ1, . . . , θn, 0)

= ξ n det

(
sin π (θ j − θk)

N sin(π (θ j − θk)/N )
− sin πθ j

N sin πθ j/N

sin πθk

N sin πθk/N

)
j,k=1,...,n

, (44)

where the second line follows from (24) and (8), together with elementary
row operations applied to the determinant.

Let the entry of the determinant in (44) be denoted by K̃ N (θ j , θk), and
denote the corresponding integral operator supported on (−s, s) by K̃

N
(−s,s).

Analogous to (39), the scaled nearest neighbor spacing in the presence of
thinning is then

pCUE
nn,ξ (s) = − d

ds
det

(
I − ξK̃

N
(−s,s)

)
. (45)

By observing

K̃ N (x, y) = K N (x, y) − K N (x, 0)K N (0, y),

we can read off from (45), upon expanding the kernel to order 1/N 2,
integral operator formulas for the leading two terms analogous to (41).

PROPOSITION 4. In terms of the notation (3) and (10), let

K nn(x, y) = K (x, y) − K (x, 0)K (0, y),

Lnn(x, y) = L(x, y) − L(x, 0)K (0, y) − K (x, 0)L(0, y). (46)

Denote by K
nn
(−s,s) and L

nn
(−s,s), the integral operators on (−s, s) with kernels

K nn(x, y) and Lnn(x, y), respectively. We have

pCUE
nn,ξ (s) = pnn,ξ (s) + 1

N 2
rnn,ξ (s) + O

(
1

N 4

)
, (47)

where

pnn,ξ (s) = − d

ds
det

(
I − ξK

nn
(−s,s)

)
,

rnn,ξ (s) = −ξ
d

ds
�
(
ξK

nn
(−s,s)

)
: L

nn
(−s,s). (48)

Remark 1. In [27] a Painlevé transcendent evaluation of pnn,ξ (s) has been
given; see also [6, §9.5.2].
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4. Application to the statistics of Riemann zeros

4.1. The two-point correlation function

Starting with the 1973 seminal work of Montgomery, there have been
significant developments on a deep (conjectural) connection between the
statistics of the fluctuation properties of the zeros of the Riemann zeta
function on the critical axis Re s = 1/2 and those of the eigenangles
of CUEN , supported by large-scale numerical calculations based on the
extensive tables of Riemann zeros provided by Odlyzko, see, for example,
[10, 12, 13, 15, 16, 20, 27] and the literature cited therein. Answering a
question of Odlyzko [15], who had posed the challenge of understanding
the structure in the numerical difference graph between the Riemann zeta
spacing distribution for a set of zeros of large height and the (conjectured)
asymptotics, finite size effects of this statistic were studied in [16]. This
study gave a precise quantitative association of Riemann zeros 1/2 + i E
at height E to a (formal) size N of the corresponding CUEN . Using the
Hardy–Littlewood conjecture of the distribution of prime pairs, Bogomonly
and Keating [28] had earlier given an analytic expression for the pair
correlation of the Riemann zeros. The authors of [16] expanded this for
large height E , with the local density normalized to unity, to obtain

RRZ
2 (s) = 1 − sin2(πs)

π2s2
− 
 sin2(πs)

π2
ρ̄−2 − Qs sin(2πs)

2π2
ρ̄−3 + O(ρ̄−4),

(49)
where

ρ̄ = log(E/2π )

2π

denotes the smooth asymptotic density of zeros at E and 
, Q are the
following constants (with γn the Stieltjes constants and

∑
p summation over

the primes)4:


 = γ 2
0 + 2γ1 +

∑
p

log2 p

(p − 1)2
= 1.57315 10713 24955 . . . ,

Q =
∑

p

log3 p

(p − 1)2
= 2.31584 63849 58803 . . . .

4The highly accurate numerical values were obtained by applying the Euler–Maclaurin formula to the
Stieltjes constants,

γn = lim
m→∞

(
m∑

k=1

logn k

k
− logn+1 m

m + 1

)
,

and the method of [29, p. 2] to the sums over the primes.
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On the other hand, the pair correlation function

RCUEN
2 (s) = ρ(2)(0, s) =

∣∣∣∣∣K N (0, 0) K N (0, s)

K N (s, 0) K N (s, s)

∣∣∣∣∣
of CUEN , normalized to mean spacing unity, expands by (9) as

RCUE
2 (s) = ρ(2)(x, x + s) = 1 − sin2(πs)

π2s2
− sin2(πs)

3
N−2 + O(N−4). (50)

By matching the first correction terms of (49) and (50) the authors of [16]
got as effective dimension N of a CUEN at height E

N = π√
3


ρ̄ = 1√
12


log

(
E

2π

)
.

This way one has the (conjectural) approximation

RRZ
2 (s) = RCUE

2 (s) + O(N−3).

4.2. Exterior rescaling of the leading correction terms

As noted in [16] a rescaling of the s-variable in the leading correction
term of the ρ̄-expansion of the two-point functions absorbs the O(ρ̄−3) term,
respectively, the O(N−3) term:

RRZ
2 (s) = 1 − sin2(πs)

π2s2
− 
 sin2(παs)

π2
ρ̄−2 + O(ρ̄−4)

= 1 − sin2(πs)

π2s2
− sin2(παs)

3
N−2 + O(N−4),

where

α = 1 + Q

2π
ρ̄
= 1 + Q


 log(E/2π )
= 1 + Q



√

12

N−1.

That is, one gets an O(N−4) approximation of RRZ
2 (s) by expanding RCUE

2 (s)
into powers of N−2 and rescaling the s-variable of the leading correction
term by α.

It was suggested in [16] to apply the same procedure, that is, α-rescaling
the s-variable of the leading correction term of a CUEN -based expansion,
to improve the fit even for more general statistics, such as the spacing
distribution originally considered by Odlyzko. In [20], it was successfully
applied to improve the fit of the CUE leading correction term to the spacing
distribution in the presence of thinning.
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4.3. Interior rescaling of the leading correction terms

The numerical data, physical arguments and mathematical conjectures sur-
rounding the fluctuations of the Riemann zeros indicate that their statistics
are asymptotically well approximated, to more than just leading order, by
some correlation kernel K N

RZ. Consequently, to justify the mechanism of the
exterior rescaling introduced in the last paragraph, [16, p. 10748] suggested
to pull-back the absorption of the O(ρ̄−3) term from the two-point function
into the expansion of such an assumed kernel. In this paper, we will use
such an expansion to improve systematically the CUEN fit of the fluctuation
properties of the Riemann zeros statistics from O(N−3) to O(N−4).

By modifying the expansion (9) of the CUE correlation kernel K N to
include an O(N−3) term,

K N
RZ(x, y) = K (x, y) + L(x, y)N−2 + M(x, y)N−3 + O(N−4), (51)

the task is thus to identify the unknown kernel M(x, y) from the O(N−3)
term in (49). By translation invariance and symmetry of the kernel K N

RZ and
by the normalization K N

RZ(x, x) = 1 to mean spacing unity, we get the form

M(x, y) = μ(x − y)

of a convolution kernel with a symmetric function μ satisfying μ(0) = 0. A
brief calculation results in the corresponding two-point function

RRZ
2 (s) = 1 − sin2(πs)

π2s2
− sin2(πs)

3
N−2 − 2μ(s) sin(πs)

πs
N−3 + O(N−4).

Matching with (49) gives, cf. the first equality in [16, eq. (28)],

μ(s) = η
π2s2 cos(πs)

6
, η = Q



√

3

.

In the appendix of [16], it is shown that this expansion of the kernel allows
one to consistently reproduce a conjectural expansion of the three-point
function (which was obtained from a calculation published much later in
[30]). This is further evidence that the kernel expansion (51) induces, quite
generally, the O(N−3) correction terms in the determinantal point process
fluctuation statistics.

Now, the correction kernel M can be absorbed easily by an interior
rescaling of the leading correction kernel L , namely, by introducing

LRZ(x, y) = π (x − y) sin(πᾱ(x − y))

6
, (52)
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which expands as LRZ(x, y) = L(x, y) + M(x, y)N−1 + O(N−2), where5

ᾱ = 1 + ηN−1 = 1 + Q

π
ρ̄
= 1 + 2Q


 log(E/2π )
= 2α − 1. (53)

To summarize, we have

K N
RZ(x, y) = K (x, y) + LRZ(x, y)N−2 + O(N−4), (54)

and thus, get the following recipe to go from the leading correction term
of a CUEN fluctuation statistics to the corresponding one of the Riemann
zeros: simply replace the leading correction kernel L by its interior rescaling
LRZ.

In our experiments, the most pronounced difference between interior and
exterior rescaling can be observed in the statistics shown in the right panel
of Fig. 6.

4.4. The Odlyzko data set

The largest data set of Riemann zeros currently provided by Odlyzko, which
was announced already in [15], consists of the 1 041 719 075 consecutive
zeros starting with zero number

1023 + 985 531 550.

The first of them has height

13 066 434 408 793 621 120 027.39614 65854 . . . ,

while the last one has height

13 066 434 408 793 754 462 591.63384 74590 . . . .

Because of the logarithmic dependence on the height, even within that large
data set, the smooth density ρ̄, the effective dimension N , and the scaling
parameters α, ᾱ remain essentially constant to 15 digits precision,

ρ̄ = 7.81235 22019 1727 . . . ,

N = 11.29759 09009 547 . . . ,

α = 1.02999 00807 6719 . . . ,

ᾱ = 1.05998 01615 3438 . . . .

5Note that [16, eq. (28)] contains a miscalculation by claiming that ᾱ would be the same as α.
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Table 1
Riemann Zeros Statistics Shown in Figs. 3–8.

Spacing Density CUE Case ξ = 1 ξ = 0.6

First next neighbor pRZ
ξ (1; s) Section 3.3 Fig. 3 Fig. 4

Random origin pRZ
Origin,ξ (s) Section 3.4 Fig. 5 Fig. 6

Nearest neighbor pRZ
nn,ξ (s) Section 3.5 Fig. 7 Fig. 8

In this table, we denote by pRZ
... those probability densities for the Riemann zeros that are defined

analogously to the CUE case pCUE
... .
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Figure 3. First next neighbor spacing: Riemann zeros data versus random-matrix–based
prediction with effective dimension N = log(E/2π )/

√
12
 ≈ 11.3, no thinning (ξ = 1).

Left panel: a histogram of the Odlyzko data set with bin size 0.01 (blue dots); the large N
limit p2,ξ (1; s) (red solid line). Right panel: the Riemann zero data minus p2,ξ (1; s) scaled
by N 2 (blue dots); the leading correction term r2,ξ (1; s) with interior rescaling (red solid
line), exterior rescaling (thin black line), and no rescaling (dashed green line).

From this data set, we extracted various spacing statistics,6 with (ξ = 0.6)
and without (ξ = 1) thinning, and compared them up to the leading
correction with the theoretical prediction in terms of operator determinants
det(I − K) and their corrections �(K) : L as obtained in Section 3 for the
CUE. As detailed in Table 1, in Figs. 3–8, the Riemann zero data are shown
as blue dots, the leading order term as a red solid line, and the correction
terms

6The 0-th next neighbor spacing can be found in [15, Figs. 1 and 2] (no thinning and no theoretical
prediction of the leading correction term), in [16, Figs. 1–3] (no thinning, exterior rescaling only),
and in [20, Figs. 9 and 10] (exterior rescaling only). Because in this case, there is no difference
visible between interior and exterior rescaling, we refrained from showing the results once more.
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Figure 4. As in Fig. 3 but with thinning ξ = 0.6.
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Figure 5. Minimum spacing from a randomly chosen origin: Riemann zeros data versus
random-matrix–based prediction with effective dimension N = log(E/2π )/

√
12
 ≈ 11.3, no

thinning (ξ = 1). Left panel: a histogram of the Odlyzko data set with bin size 0.01 (blue
dots), where the approximately 109 zeros were broken into 1,024 sets of nearly equal size,
for each of which 107 samples of a uniformly distributed random origin were drawn;
the large N limit pOrigin,ξ (s) (red solid line). Right panel: the Riemann zero data minus
pOrigin,ξ (s) scaled by N 2 (blue dots); the leading correction term rOrigin,ξ (s) with interior
rescaling (red solid line), exterior rescaling (thin black line), and no rescaling (dashed
green line).

� with interior rescaling L → LRZ as a red solid line,
� with exterior rescaling s → αs as a thin black line,
� without rescaling as a green dashed line.

In particular, with (interior) rescaling the statistics of the Riemann zeros
listed in Table 1 are in excellent agreement up to the leading correction
term.
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Figure 6. As in Fig. 5 but with thinning ξ = 0.6.
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Figure 7. Nearest neighbor spacing: Riemann zeros data versus random-matrix-based
prediction with effective dimension N = log(E/2π )/

√
12
 ≈ 11.3, no thinning (ξ = 1).

Left panel: a histogram of the Odlyzko data set with bin size 0.01 (blue dots); the large N
limit pnn,ξ (s) (red solid line). Right panel: the Riemann zero data minus pnn,ξ (s) scaled by
N 2 (blue dots); the leading correction term rnn,ξ (s) with interior rescaling (red solid line),
exterior rescaling (thin black line), and no rescaling (dashed green line).
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Figure 8. As in Fig. 7 but with thinning ξ = 0.6.
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5. Spacing distributions for the COE and CSE

5.1. Generating functions

As already mentioned, the fact that the eigenvalues of COE matrices form
a Pfaffian point process tells us that the counterpart to the formula (24)
involves a Pfaffian of a 2 × 2 antisymmetric kernel function. Substituting
this in (23), the Pfaffian analogue of the identity implying (25) (see, e.g., [6,
eq. (6.32)]) allows for a Pfaffian analogue in the case of the COE to be
given. However, the resulting formula is not of the same practical utility as
(25) because the 2 × 2 kernel function is not analytic, which in turn means
that the numerical quadrature methods of Section 2.2 have poor convergence
properties.

Fortunately, there is a second option. This presents itself due to funda-
mental interrelations between gap probabilities for the COE and CUE. These
also involve the gap probabilities for Haar distributed orthogonal matrices
from the classical groups O+(N ) and O−(N ). In reference to the latter,
eigenvalues on the real axis and, thus, corresponding to θ = 0 or π are
to be disregarded, and only the eigenvalues with angles in (0, π ) are to
be considered (the remaining eigenvalues occur at the negative of these
angles, i.e., the complex conjugates). The first interrelation of interest is
between the generating functions for the gap probabilities in the CUE, and
in Haar-distributed real orthogonal matrices [31, 32] and [6, eq. (8.127)]

ECUE((−θ, θ ); z) = EO−(2�(N+1)/2�+1)((0, θ ); z)EO+(2�N/2�+1)((0, θ ); z). (55)

With ME denoting a particular matrix ensemble, we have used the symbol
EME instead of EME to indicate that in this expression no scaling of the
eigenangles has been imposed; this convention will be followed below. In
fact, we only use the scaled quantity for ensembles ME = CβEN , which
are translationally invariant with uniform density N/2π . The unscaled and
scaled quantities are then related by

ECβEN ((−2πs/N , 2πs/N ); z) = ECβEN (2s; z).

To present the next interrelation, introduce the generating functions

ECOE,±((−θ, θ ); z) :=
N∑

n=0

(1 − z)n
(
ECOE(2n, (0, θ )) + ECOE(2n ± 1, (0, θ ))

)
.

(56)
With COE ∪ COE denoting the point process of 2N eigenvalues on the
circle that results by superimposing the eigenvalue sequences of two
independent COE matrices, a result conjectured by Dyson [33] and proved
by Gunson [34] gives that

alt (COE ∪ COE) = CUE, (57)
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where the operation “alt” refers to the operation of observing every second
eigenvalue only. As a consequence of this, one has that [33, 35]

ECUE((−θ, θ ); z) = ECOE,−((−θ, θ ); z)ECOE,+((−θ, θ ); z). (58)

According to (55), it follows from (58) that the gap probabilities for the
COE are related to those for O+(n) and O−(n) with n suitably chosen, but
this alone does not determine the former. To be able to do this, additional
interrelationships between generating functions are required. In the case
N �→ 2N and thus, N even, the additional interrelationships have been given
in [32] according to the generating function identity

ECOE,±((−θ, θ ); z)
∣∣∣

N �→2N
= EO±(2N+1)((0, θ ); z). (59)

Note that (59) substituted in (58) is consistent with (55) in the case N even.
The identity (59) has very recently [36] been shown to be a corollary of the
identities between eigenvalue distributions

even |COE2N | = O+(2N + 1), odd |COE2N | = O−(2N + 1). (60)

Here, the notation COE2N refers to the eigenvalue distribution of 2N × 2N
COE matrices, while |COE2N | refers to the distribution in the circumstance
that the eigenvalues with angles −π < θ < 0 are reflected in the real axis
by θ �→ −θ , and thus, all eigenvalues have angles between 0 and π . The
operation even (odd) refers to observing only those eigenvalues that occur
an even (odd) number of places from θ = 0, reading anticlockwise.

Substituting (59) in (56), and setting z̄ = 2z − z2 so that 1 − z̄ = (1 − z)2

we obtain, after some minor manipulation, a known closed formula for
the gap probabilities of COE2N in terms of the gap probabilities for
O±(2N + 1) [6, eq. (8.150)]

ECOE2N ((−θ, θ ); z) = (1 − z)EO+(2N+1)((0, θ ); z̄) + EO−(2N+1)((0, θ ); z̄)

2 − z
. (61)

The analogue of (60) for COE2N−1 allows us to deduce the analogue of
(61). The required formulas were not known until [36] and consequently this
is a new result.

PROPOSITION 5. We have

ECOE2N−1 ((−θ, θ ); z) = (1 − z)EO−(2N )((0, θ ); z̄) + EO+(2N )((0, θ ); z̄)

2 − z
. (62)

Proof: We read off from [36, theorem 7.1] that

even |COE2N−1| = O−(2N ), odd |COE2N−1| = O+(2N ). (63)

Substituting in (56) and manipulating as in the derivation of (61) gives
(62). �
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With ν = (−)N , the cases (61) and (62) can be combined into a single
formula that holds for both parities of N :

ECOEN ((−θ, θ ); z) = (1 − z)EOν (N+1)((0, θ ); z̄) + EO−ν (N+1)((0, θ ); z̄)

2 − z
. (64)

The eigenvalues for O±(N + 1) in (0, π ) form a determinantal point process
with kernel (see, e.g., [6, proposition 5.5.3])

1

2π

(
sin N (x − y)/2

sin(x − y)/2
∓ ν

sin N (x + y)/2

sin(x + y)/2

)
= N

2π
K N ,∓ν(x N/2π, yN/2π ),

(65)
where

K N ,±(x, y) = K N (x, y) ± K N (x, −y). (66)

Scaling the eigenangles of COEN to have unit mean spacing by θ = 2πs/N
thus yields the following result:

COROLLARY 1. Let K
N ,±
s denote the integral operator on (0, s) with

kernel (66) and denote z̄ = 2z − z2. We have

ECOEN ((−s, s); z) = (1 − z) det(I − z̄KN ,−
s ) + det(I − z̄KN ,+

s )

2 − z
. (67)

As in (31), thinning is expressed by

ECOEN
ξ ((−s, s); z) = ECOEN ((−s, s); ξ z).

We will now turn our attention to spacing probabilities for the CSE.
These follow from knowledge of the spacing distributions for the COE.
Thus, one has the interrelation [37]

alt COE2N = CSEN , (68)

and it follows from this that

ECSEN (n; (−θ, θ )) = ECOE2N (2n; (−θ, θ ))

+1

2

(ECOE2N (2n − 1; (−θ, θ )) + ECOE2N (2n + 1; (−θ, θ ))
)
. (69)

As noted in [6, eq. (8.158)], recalling the definition (56), and making use
too of (59), this gives

ECSEN ((−θ, θ ); z) = 1

2

(
EO+(2N+1)((0, θ ); z) + EO−(2N+1)((0, θ ); z)

)
. (70)

As discussed before (65), the kernel of the determinantal point process
formed by the eigenvalues of O±(2N + 1) is given by

N

π
K 2N ,∓(x N/π, yN/π ).
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Scaling the eigenangles of CSEN to have unit mean spacing by θ = 2πs/N ,
thus yields the following result, where we use (31) to express the presence
of thinning:

PROPOSITION 6. Let K
N ,±
s denote the integral operator on (0, s) with

kernel (66). We have

ECSEN
ξ ((−s, s); z) = 1

2

(
det

(
I − ξ zK2N ,−

2s

)
+ det

(
I − ξ zK2N ,+

2s

))
. (71)

5.2. Expansion of spacing distributions

Making use of (33), we get the spacing distribution

pCOE
ξ (0; s) = 1

ξ

d2

ds2
ECOEN

ξ (0; (−s/2, s/2)), (72)

from which knowledge of the large N expansion of the determinants in
Corollary 1 will allow us to determine the terms in the corresponding
expansion of the spacing.

PROPOSITION 7. Let K
±
s and L

±
s denote the integral operators on (0, s)

with kernels K (x, y) ± K (x, −y) and L(x, y) ± L(x, −y), respectively. We
have

pCOE
ξ (0; s) = p1,ξ (0; s) + 1

N 2
r1,ξ (0; s) + O

(
1

N 4

)
, (73)

where, denoting ξ̄ = 2ξ − ξ 2,

p1,ξ (0; s) = 1

ξ̄

d2

ds2

(
(1 − ξ ) det(I − ξ̄K

−
s/2) + det(I − ξ̄K

+
s/2)
)

, (74)

and

r1,ξ (0; s) = d2

ds2

(
(1 − ξ )�(ξ̄K

−
s/2) : L

−
s/2 + �(ξ̄K

+
s/2) : L

+
s/2

)
. (75)

Remark 2. The case ξ = 1 of (74) is due to Gaudin [18].

As an illustration and test of the above results, we took 108 samples
of COEN (N = 20, using the β = 1 CMV sparse matrix model [38]), and
from this made an empirical determination of the spacing distribution scaled
to unit mean spacing. This was then subtracted from the large N limit
p1,ξ (0; s) and the difference compared against r1,ξ (0; s). Both ξ = 1 (no
thinning) and ξ = 0.6 were considered; see Figs. 9 and 10.

The analogue of (72),

pCSE
ξ (0; s) = 1

ξ

d2

ds2
ECSEN

ξ (0; (−s/2, s/2)), (76)
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Figure 9. Zeroth next neighbor spacing: simulation versus formulas from theory for finite
size COE, no thinning (ξ = 1). Left panel: a histogram of empirical data from COEN with
N = 20 scaled to unit mean spacing, computed using a bin size of 0.01 and 108 samples
(blue dots); the large N limit p1,ξ (0; s) (red solid line). Right panel: the simulation data
minus p1,ξ (0; s) scaled by N 2 (blue dots); the leading correction term r1,ξ (0, s) (red solid
line).
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Figure 10. As in Fig. 9 but with thinning ξ = 0.6.

allows us to determine the first terms of the large N expansion by
expanding correspondingly the determinants in Proposition 6.

PROPOSITION 8. With K
±
s and L

±
s as in Proposition 7 we have

pCSE
ξ (0; s) = p4,ξ (0; s) + 1

N 2
r4,ξ (0; s) + O

(
1

N 4

)
, (77)

where

p4,ξ (0; s) = 1

2ξ

d2

ds2

(
det(I − ξK

−
s ) + det(I − ξK

+
s )
)

(78)
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Figure 11. Zeroth next neighbor spacing: simulation versus formulas from theory for
finite size CSE, no thinning (ξ = 1). Left panel: a histogram of empirical data from CSEN

with N = 20 scaled to unit mean spacing, computed using a bin size of 0.01 and 108

samples (blue dots); the large N limit p4,ξ (0; s) (red solid line). Right panel: the simulation
data minus p4,ξ (0; s) scaled by N 2 (blue dots); the leading correction term r4,ξ (0, s) (red
solid line).
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Figure 12. As in Fig. 11 but with thinning ξ = 0.6.

and

r4,ξ (0; s) = 1

8

d2

ds2

(
�(ξK

−
s ) : L

−
s + �(ξK

+
s ) : L

+
s

)
. (79)

Remark 3. The case ξ = 1 of (78) is due to Mehta and Dyson [37].

As was done for the COE, to illustrate and test the above results, we took
108 samples of CSEN (N = 20, again using the β = 4 CMV sparse matrix
model [38]), and from this made an empirical determination of the spacing
distribution scaled to unit mean spacing. This was then subtracted from the
large N limit p4,ξ (0; s) and the difference compared against r4,ξ (0; s). Both
ξ = 1 (no thinning) and ξ = 0.6 were considered; see Figs. 11 and 12.
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5.3. Painlevé transcendent characterization

In addition to the integral operator characterization of the expansion terms
in Propositions 7 and 8, there is one in terms of Painlevé transcendents.
Such an expression in the case of the CUE has been given in [20] and
restated in (14)–(17) above. To simplify we restrict ourselves to N being
even, writing N → 2N for definiteness. We begin by noting that the joint
eigenvalue PDF for the eigenangles {θ j } of O±(2N + 1) matrices in the
interval (0, π ), after changing variables x j = sin2(θ j/2), is proportional to

N∏
l=1

xa
l (1 − xl)

b
∏

1≤ j<k≤N

(xk − x j )
2, 0 < xl < 1,

with a = ±1/2, b = −a, which is an example of the Jacobi unitary
ensemble (JUE); see, for example, [6, §3.7.1]. Hence the corresponding
generating functions for the gap probabilities are related by

EO±(2N+1)((0, θ ); z) = E JUEN

((
0, sin2 θ

2

)
; z

)∣∣∣∣
a=±1/2,b=−a

. (80)

The significance of this result for present purposes is that the RHS can be
expressed as a σPVI transcendent [39, 40]. Specifically, reading off from [6,
eqs. (8.71), (8.75), (8.76)] we have

E JUEN ((0, sin2 θ/2); z) = exp
∫ sin2 θ/2

0

f ±(t ; z)

t(t − 1)
dt, (81)

where f = f ± satisfies the particular σPVI equation

(t(1 − t) f ′′)2 + ( f ′ − N 2)(2 f + (1 − 2t) f ′)2 − ( f ′)2

(
f ′ − N 2 + 1

4

)
= 0,

(82)
subject to the boundary condition

f ±(t ; z) ∼
t→0+

⎧⎪⎨
⎪⎩

8N (N 2 − 1/4)

3π
zt3/2, a = 1/2,

2N

π
zt1/2, a = −1/2.

(83)

We, therefore, have

EO±(2N+1)((0, πs/N ); z) =

exp

(
−
∫ (πs)2

0
f ±(sin2 √

u/2N ; z)
du

N
√

u sin
√

u/N

)
. (84)
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To obtain an expansion consistent with (73) we make the ansatz

f ±(sin2(
√

w/2N ); z) = f ±
0 + f ±

1

N 2
+ O(N−4). (85)

Changing variables in (82) t = sin2(
√

w/2N ), substituting (85), and equat-
ing terms to leading order N 4 and to next leading order N 2, we obtain
characterizations in terms of differential equations of f ±

0 and f ±
1 .

PROPOSITION 9. The leading function f ±
0 in (85) satisfies the particular

σPIII′ equation (with v1 = v2 = 1/2 in the notation of [6, eq. (8.15)])

w2( f ′′
0 )2 − ( f ′

0)2

4
+ 4 f0( f ′

0)2 + w( f ′
0)2 − 4w( f ′

0)3 − f0 f ′
0 = 0, (86)

subject to the boundary condition

f ν
0 (w; z) ∼

⎧⎨
⎩

z

3π
w3/2, ν = +,

z

π
w1/2, ν = −.

(87)

The function f ±
1 in (85) satisfies the second-order linear differential

equation

A1(w; z) f ′′
1 + B1(w; z) f ′

1 + C1(w; z) f1 + D1(w; z) = 0, (88)

where the coefficients are given in terms of f0 = f ±
0 according to

A1(w; z) = 2w2 f ′′
0 ,

B1(w; z) = 8 f0 f ′
0 + 2w f ′

0 − 12w f 2
0 − f0 − f ′

0

2
,

C1(w; z) = f ′
0(4 f ′

0 − 1),

D1(w; z) = f ′
0

3

(
3 f 2

0 + w2 f ′′
0 − 2w2( f ′

0)2 + w f0 − w f ′
0

4
− 2w f0 f ′

0

)
− f 2

0

4
,

subject to the boundary condition

f ±
1 (w; z) ∼ − zw3/2

12π
, (89)

which is thus the same in both cases. In terms of f ±
0 and f ±

1 we have

EO±(2N+1)((0, πs/N ); z) = exp

(
−
∫ (πs)2

0

f ±
0 (w; z)

w
dw

)



432 F. Bornemann et al.

×
(

1 − 1

N 2

∫ (πs)2

0

w f ±
0 (w; z) + 6 f ±

1 (w; z)

6w
dw + O

(
1

N 4

))
. (90)

Remark 4. A problem for future study is to describe how the solutions of
(15) and (88) relate to the broader Painlevé theory.7

Scaling the eigenangles of COE2N to have unit mean spacing by setting
θ = πs/N , we can now substitute (90) into (61); then—after using (31)
to add the presence of thinning—substitute the result in (72) and compare
with (73) to obtain characterizations of the expansion terms p1,ξ (0; s) and
r1,ξ (0; s) in terms of Painlevé transcendents.

PROPOSITION 10. We have

p1,ξ (0; s) = 1

ξ (2 − ξ )

d2

ds2

(
(1 − ξ ) exp

(
−
∫ (πs/2)2

0

f +
0 (w; 2ξ − ξ 2)

w
dw

)

+ exp

(
−
∫ (πs/2)2

0

f −
0 (w; 2ξ − ξ 2)

w
dw

))
(91)

and

r1,ξ (0; s) =

− 4

ξ (2 − ξ )

d2

ds2

(
(1 − ξ )

∫ (πs/2)2

0

w f +
0 (w; 2ξ − ξ 2) + 6 f +

1 (w; 2ξ − ξ 2)

6w
dw

× exp

(
−
∫ (πs/2)2

0

f +
0 (w; 2ξ − ξ 2)

w
dw

)

+
∫ (πs/2)2

0

w f −
0 (w; 2ξ − ξ 2) + 6 f −

1 (w; 2ξ − ξ 2)

6w
dw

× exp

(
−
∫ (πs/2)2

0

f −
0 (w; 2ξ − ξ 2)

w
dw

))
. (92)

Remark 5. The case ξ = 1 of (91) agrees with the σPIII′ formula for
p1(0; s) (no thinning) reported in [41] and [32].

The differential equations (86) and (88) can be used to successively
generate terms in the series expansions of f ±

0 and f ±
1 about the origin,

extending the boundary conditions (87) and (89). Substituting these into

7This was raised by one of the referees.
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(91) and (92) then provides us with the small s expansion of p1,ξ (0; s) and
r1,ξ (0; s).

COROLLARY 2. We have

p1,ξ (0; s) = 1

6
π2ξs − 1

60
π4ξs3 − 1

270
π4(ξ − 2)ξs4

+π6ξs5

1680
+ π6(ξ − 2)ξs6

4725
− π8ξs7

90720

+π8(ξ − 2)(3ξ − 32)ξs8

5292000
+ π10ξs9

7983360
+ O(s10) (93)

and

r1,ξ (0; s) = −1

6
π2ξs + 1

18
π4ξs3 + 1

54
π4(ξ − 2)ξs4

− 1

240
π6ξs5 − 4π6(ξ − 2)ξs6

2025
+ π8ξs7

7560

−π8(ξ − 2) (3ξ − 32) ξs8

352800
− π10ξs9

435456
+ O

(
s10
)
. (94)

We remark that setting ξ = 1 in (93) extends the expansion of
p1,ξ (0; s)|ξ=1 given in [6, eq. (8.141)].

For the analogous results in the case of the CSEN , scaling the eigenangles
to have unit mean spacing by setting θ = 2πs/N , we substitute (90) into
(70); then—after using (31) to add the presence of thinning—substitute the
result in (76) and compare with (77).

PROPOSITION 11. We have

p4,ξ (0; s) = 1

2ξ

d2

ds2

(
exp

(
−
∫ (πs)2

0

f +
0 (w; ξ )

w
dw

)

+ exp

(
−
∫ (πs)2

0

f −
0 (w; ξ )

w
dw

))
(95)

and

r4,ξ (0; s) = − 1

2ξ

d2

ds2

(∫ (πs)2

0

w f +
0 (w; ξ ) + 6 f +

1 (w; ξ )

6w
dw

× exp

(
−
∫ (πs)2

0

f +
0 (w; ξ )

w
dw

)
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+
∫ (πs)2

0

w f −
0 (w; ξ ) + 6 f −

1 (w; ξ )

6w
dw

× exp

(
−
∫ (πs)2

0

f −
0 (w; ξ )

w
dw

))
. (96)

Remark 6. As in Remark 5 the case ξ = 1 of (95) agrees with the σPIII′

formula for p4(0; s) (no thinning) reported in [41] and [32].

As with Corollary 2 we can use these characterizations to generate power
series expansions about the origin.

COROLLARY 3. We have

p4,ξ (0; s) = 16

135
π4ξs4 − 128π6ξs6

4725
+ 512π8ξs8

165375
− 34816π10ξs10

147349125
+ O(s12),

r4,ξ (0; s) = − 4

27
π4ξs4 + 128π6ξs6

2025
− 128π8ξs8

11025
+ 17408π10ξs10

13395375
+ O(s12).
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Appendix: Implementation

The method of Section 2.2 for numerically evaluating general terms of
integral operators is most easily added to the Matlab toolbox described in
[26]; the basic code needed to run it is as follows:

1 function [val ,err ,n] = OperatorTerm (term ,varargin)
2

3 %OPERATORTERM evaluates terms of integral operators that have a scalar value.
4 %
5 % OPERATORTERM(term,K1,...,Km) returns the value of the
6 % expression ’term(K1,...,Km)’ for m discrete integral
7 % operators K1,...,Km (that is, for Nyström matrices of
8 % a variable dimension n, which is chosen adaptively).
9 % The value to be returned must be scalar.

10

11 tol = 5e-15;
12 n = 7; n_max = 1000;
13
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14 operators = cell(size(varargin));
15

16 val0 = inf;
17 while n < n_max
18 n = floor(1.41*n);
19 for k = 1:length(varargin)
20 operators{k} = varargin{k}(n);
21 end
22 val = term(operators{:});
23 err = abs(val -val0);
24 if err < tol; break; end
25 val0 = val;
26 end

From the user perspective, this command is called with a considerable
symbolic look and feel. For example, the leading order term in (11), that is,

det(I − Ks),

evaluates for s = 1 to the following value:
1 s = 1;
2 K = op(@(x,y) sinc(pi*(x-y)),[0,s]);
3 I = @(K) eye(size(K));
4 lead = @(K)det(I(K) - K);
5 [val ,err ,n] = OperatorTerm(lead ,K);
6 PrintCorrectDigits(val ,err);
7

8 0.170217421379185

and the leading correction term in (11), that is,

�(Ks) : Ls = − det(I − Ks)tr
(
(I − Ks)−1

Ls

)
,

evaluates for s = 1 to the following value:
9 L = op(@(x,y)pi*(x-y).*sin(pi*(x-y))/6,[0,s]);

10 corr = @(K,L) -det(I(K)-K)*trace((I(K)-K)\L);
11 [val ,err ,n] =OperatorTerm(corr ,K,L);
12 PrintCorrectDigits(val ,err);
13

14 -0.075241982465122

Because the estimated error has been taken into account when printing
these values, they are good to about 15 digits; in both cases the adaptively
chosen number of Gauss–Legendre quadrature points (i.e., the dimension of
the Nyström matrices representing the integral operators) was as small as
n = 15, which is a clear sign of the exponential convergence of the method.
CPU time is about a millisecond.
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