
Finite-State Machines

Martin Schoeberl

Technical University of Denmark
Embedded Systems Engineering

March 10, 2022

1 / 48



Overview

I Debugging with waveforms
I Fun with counters
I Finite-state machines
I Collection with Vec

2 / 48



Organization and Lab Work

I Labs are in B308-IT127, B308-IT017
I Use both rooms, you have more space in two rooms
I How did the testing lab work? Did you find both bugs?
I This week the 7-segment decoder
I A lot can be done with simulation and testing
I But, at the end of the day I want to see a vending machine

in an FPGA

3 / 48



Testing with Chisel

I A test contains
I a device under test (DUT) and
I the testing logic

I Set input values with poke
I Advance the simulation with step
I Read the output values with peek
I Compare the values with expect
I Import following packages

import chisel3._

import chiseltest._

import org.scalatest.flatspec.AnyFlatSpec

4 / 48



An Example DUT

I A device-under test (DUT)
I Just 2-bit AND logic

class DeviceUnderTest extends Module {

val io = IO(new Bundle {

val a = Input(UInt(2.W))

val b = Input(UInt(2.W))

val out = Output(UInt(2.W))

})

io.out := io.a & io.b

}

5 / 48



A ChiselTest

I Extends class AnyFlatSpec with ChiselScalatestTester
I Has the device-under test (DUT) as parameter of the
test() function

I Test function contains the test code
I Testing code can use all features of Scala
I Is placed in src/test/scala
I Is run with sbt test

6 / 48



A Simple Tester
I Just using println for manual inspection

class SimpleTest extends AnyFlatSpec with

ChiselScalatestTester {

"DUT" should "pass" in {

test(new DeviceUnderTest) { dut =>

dut.io.a.poke(0.U)

dut.io.b.poke(1.U)

dut.clock.step()

println("Result is: " +

dut.io.out.peek().toString)

dut.io.a.poke(3.U)

dut.io.b.poke(2.U)

dut.clock.step()

println("Result is: " +

dut.io.out.peek().toString)

}

}

}

7 / 48



A Real Tester

I Poke values and expect some output

class SimpleTestExpect extends AnyFlatSpec

with ChiselScalatestTester {

"DUT" should "pass" in {

test(new DeviceUnderTest) { dut =>

dut.io.a.poke(0.U)

dut.io.b.poke(1.U)

dut.clock.step()

dut.io.out.expect(0.U)

dut.io.a.poke(3.U)

dut.io.b.poke(2.U)

dut.clock.step()

dut.io.out.expect(2.U)

}

}

}

8 / 48



Generating Waveforms

I Waveforms are timing diagrams
I Good to see many parallel signals and registers
sbt "testOnly SimpleTest -- -DwriteVcd=1"

I Or setting an attribute for the test() function

test(new DeviceUnderTest)

.withAnnotations(Seq(WriteVcdAnnotation))

I IO signals and registers are dumped
I Option --debug puts all wires into the dump
I Generates a .vcd file
I Viewing with GTKWave or ModelSim

9 / 48



A Self-Running Circuit

I Count6 is a self-running circuit
I Needs no stimuli (poke)
I Just run for a few cycles

test(new Count6) { dut =>

dut.clock.step(20)

}

10 / 48



Call the Tester for Waveform Generation

I The complete test
I Note the .withAnnotations(Seq(WriteVcdAnnotation)

class Count6WaveSpec extends AnyFlatSpec with

ChiselScalatestTester {

"CountWave6 " should "pass" in {

test(new

Count6).withAnnotations(Seq(WriteVcdAnnotation))

{ dut =>

dut.clock.step(20)

}

}

}

11 / 48



Display Waveform with GTKWave

I Run the tester: sbt test
I Locate the .vcd file in test run dir/...
I Start GTKWave
I Open the .vcd file with

I File – Open New Tab
I Select the circuit
I Drag and drop the interesting signals

12 / 48



Counters as Building Blocks

I Counters are versatile tools
I Count events
I Generate timing ticks
I Generate a one-shot timer

13 / 48



Counting Up and Down

I Up:

val cntReg = RegInit(0.U(8.W))

cntReg := cntReg + 1.U

when(cntReg === N) {

cntReg := 0.U

}

I Down:

val cntReg = RegInit(N)

cntReg := cntReg - 1.U

when(cntReg === 0.U) {

cntReg := N

}

14 / 48



Generating Timing with Counters

I Generate a tick at a lower frequency
I We used it in Lab 1 for the blinking LED
I Use it for driving the display multiplexing at 1 kHz

clock

reset

tick

counter 0 1 2 0 1 2 0 1

15 / 48



The Tick Generation

val tickCounterReg = RegInit(0.U(32.W))

val tick = tickCounterReg === (N-1).U

tickCounterReg := tickCounterReg + 1.U

when (tick) {

tickCounterReg := 0.U

}

16 / 48



Using the Tick

I A counter running at a slower frequency
I By using the tick as an enable signal

val lowFrequCntReg = RegInit(0.U(4.W))

when (tick) {

lowFrequCntReg := lowFrequCntReg + 1.U

}

17 / 48



The Slow Counter

I Incremented every tick

clock

reset

tick

slow cnt 0 1 2

18 / 48



A Timer

I Like a kitchen timer
I Start by loading a timeout value
I Count down till 0
I Assert done when finished

19 / 48



One-Shot Timer

D Q

 +

=0 done

load

din

-1
0

Select

cntnext

20 / 48



One-Shot Timer

val cntReg = RegInit(0.U(8.W))

val done = cntReg === 0.U

val next = WireDefault(0.U)

when (load) {

next := din

} .elsewhen (!done) {

next := cntReg - 1.U

}

cntReg := next

21 / 48



A 4 Stage Shift Register

din dout

val shiftReg = Reg(UInt(4.W))

shiftReg := shiftReg(2, 0) ## din

val dout = shiftReg(3)

22 / 48



A Shift Register with Parallel Output

serIn

q3 q2 q1 q0

val outReg = RegInit(0.U(4.W))

outReg := serIn ## outReg(3, 1)

val q = outReg

23 / 48



A Shift Register with Parallel Load

d3

load

d2

load

d1

load

d0

load

serOut
0

val loadReg = RegInit(0.U(4.W))

when (load) {

loadReg := d

} otherwise {

loadReg := 0.U ## loadReg(3, 1)

}

val serOut = loadReg(0)

24 / 48



A Simple Circuit

I What does the following circuit?
I Is this related to a finite-state machine?

AND
NOTdin

risingEdge

25 / 48



Finite-State Machine (FSM)

I Has a register that contains the state
I Has a function to computer the next state

I Depending on current state and input
I Has an output depending on the state

I And maybe on the input as well
I Every synchronous circuit can be considered a finite state

machine
I However, sometimes the state space is a little bit too large

26 / 48



Basic Finite-State Machine

I A state register
I Two combinational blocks

in

state

nextState
Next 
state
logic

Ouput
logic out

27 / 48



State Diagram

bad event

green orange red/
ring bell

bad event

clear

reset

clear

I States and transitions depending on input values
I Example is a simple alarm FSM
I Nice visualization
I Will not work for large FSMs
I Complete code in the Chisel book

28 / 48



State Table for the Alarm FSM

Input

State Bad event Clear Next state Ring bell

green 0 0 green 0
green 1 - orange 0

orange 0 0 orange 0
orange 1 - red 0
orange 0 1 green 0

red 0 0 red 1
red 0 1 green 1

29 / 48



The Input and Output of the Alarm FSM

I Two inputs and one output

val io = IO(new Bundle{

val badEvent = Input(Bool())

val clear = Input(Bool())

val ringBell = Output(Bool())

})

30 / 48



Encoding the State

I We can optimize state encoding
I Two common encodings are: binary and one-hot
I We leave it to the synthesize tool
I Use symbolic names with an Enum
I Note the number of states in the Enum construct
I We use a Scala list with the :: operator

val green :: orange :: red :: Nil = Enum(3)

31 / 48



Start the FSM

I We have a starting state on reset

val stateReg = RegInit(green)

32 / 48



The Next State Logic
switch (stateReg) {

is (green) {

when(io.badEvent) {

stateReg := orange

}

}

is (orange) {

when(io.badEvent) {

stateReg := red

} .elsewhen(io.clear) {

stateReg := green

}

}

is (red) {

when (io.clear) {

stateReg := green

}

}

}

33 / 48



The Output Logic

io.ringBell := stateReg === red

34 / 48



Summary on the Alarm Example

I Three elements:
1. State register
2. Next state logic
3. Output logic

I This was a so-called Moore FSM
I There is also a FSM type called Mealy machine

35 / 48



A so-called Mealy FSM

I Similar to the former FSM
I Output also depends in the input
I It is faster
I Less composable (draw it)

in

state

nextState
Next 
state
logic Output

logic out

36 / 48



The Mealy FSM for the Rising Edge

I That was our starting example
I Output is also part of the transition arrows

zero one

1/1

reset

0/0

0/0 1/0

37 / 48



The Mealy Solution

I Show code from the book as it is too long for slides

38 / 48



State Diagram for the Moore Rising Edge Detection

I We need three states

1

zero
0

puls
1

one
0

1

0

reset

0

39 / 48



Comparing with a Timing Diagram

I Moore is delayed one clock cycle compared to Mealy

clock

din

risingEdge Mealy

risingEdge Moore

40 / 48



What is Better?

I It depends ;-)
I Moore is on the save side
I More is composable
I Mealy has faster reaction
I Both are tools in you toolbox
I Keep it simple with your vending machine and use a Moore

FSM

41 / 48



Another Simple FSM

I a FSM for a single word buffer
I Just two symbols for the state machine

val empty :: full :: Nil = Enum(2)

42 / 48



Finite State Machine for a Buffer

val empty :: full :: Nil = Enum(2)

val stateReg = RegInit(empty)

val dataReg = RegInit(0.U(size.W))

when(stateReg === empty) {

when(io.enq.write) {

stateReg := full

dataReg := io.enq.din

}

}.elsewhen(stateReg === full) {

when(io.deq.read) {

stateReg := empty

}

}

I A simple buffer for a bubble FIFO

43 / 48



A Collection of Signals with Vec

I Chisel Vec is a collection of signals of the same type
I The collection can be accessed by an index
I Similar to an array in other languages
I Wrap into a Wire() for combinational logic
I Wrap into a Reg() for a collection of registers

val v = Wire(Vec(3, UInt(4.W)))

44 / 48



Using a Vec

v(0) := 1.U

v(1) := 3.U

v(2) := 5.U

val idx = 1.U(2.W)

val a = v(idx)

I Reading from an Vec is a multplexer
I We can put a Vec into a Reg

val registerFile = Reg(Vec(32, UInt(32.W)))

An element of that register file is accessed with an index and
used as a normal register.

registerFile(idx) := dIn

val dOut = registerFile(idx)

45 / 48



Mixing Vecs and Bundles

I We can freely mix bundles and vectors
I When creating a vector with a bundle type, we need to

pass a prototype for the vector fields. Using our Channel,
which we defined above, we can create a vector of
channels with:

val vecBundle = Wire(Vec(8, new Channel()))

I A bundle may as well contain a vector

class BundleVec extends Bundle {

val field = UInt(8.W)

val vector = Vec(4,UInt(8.W))

}

46 / 48



Today’s Lab

I This is the start of group work
I Please register your group here

I Binary to 7-segment decoder
I First part of your vending machine
I Just a single digit, only combinational logic
I Use the nice tester provided to develop the circuit
I Then synthesize it for the FPGA
I Test with switches
I Show a TA your working design
I Lab 6

47 / 48

https://dtudk-my.sharepoint.com/:x:/g/personal/s186083_dtu_dk/EWnmIP9K1MFFuwsZbfDRyXEBGnkA68SSFuksje2LRVZQFQ?e=ZRHVdP
https://github.com/schoeberl/chisel-lab/tree/master/lab6


Summary

I Waveform testing is the way to develop/debug
I Counters are important tools, e.g., to generate timing
I Finite-state machines are another tool of the trade
I Two types: Moore and Mealy
I A Chisel Vec is the hardware version of an array

48 / 48


