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Finite Wing Theory

To date we have considered airfoil theory, or said another way, the
theory of infinite wings. Real wings are, of course, finite with a
defined length in the “z-direction.”

Basic Wing Nomenclature

Wing Span, b — the length of the wing in the z-direction
Wing Chord, ¢ — equivalent to the airfoil chord length

Wing Tip - the end of the wing in the span-wise direction
Wing Root — the center of the wing in the span-wise direction
Wing Area, S

L’, D’, M’ — two dimensional lift, drag and moment

C,.C,,C, - three dimensional lift drag and moment
coefficients

Streamline over
the top surface

Top view
(planform)

_l_
I.— —_I
Wing span b
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The flow over a finite wing i1s decidedly three dimensional, with
considerable flow possible in the span-wise direction. This comes
about because of the pressure difference between the top and
bottom of the wing. As in two-dimensional fluid mechanics, the
flow wants to move in the direction of a decreasing pressure
gradient, i.e., it will usually travel from high to low pressure
conditions. In effect the flow spills from the bottom to the top as
shown in the figure below.

Front Low pressure 3
view — — 1
High pressure v

The span-wise rotation manifests itself as a wing tip vortex that
continues downstream.
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Interestingly the ‘“sense” (orientation, rotation) of these wing tip
vortices is consistent with taking the two-dimensional airfoil
circulation, imagining that it exists off to infinity in both directions
and bending i1t back at the wing tips. The idea is also consistent
with Kelvin’s theorem regarding the start-up vortex. Combining
the two ideas one sees that a closed box-like vortex is formed.
However, in much of the theory presented next the start-up vortex
is ignored and we consider a horseshoe vortex.

Flow Wing
EEEEE SR R 7/
: )\ Bound vortex
¢
0 > X G 0
Tip vortex Tip vortex
N
Y

Start-up vortex

As shown in the figure, the vortices mduce flow downward inside
the box and upward outside the box. This flow is called the
induced velocity or downwash, w. The strength of these vortices is
directly related to the amount of lift generated on the wing.
Aircraft inflight spacing is determined in part because of these
wingtip vortices. An example is the Airbus aircraft that crashed at
JFK a few days after 9/11. The spacing was too small and the
Airbus’s tail was buffeted by the wake vortices off a JAL 747 that
was ahead of it in the flight path.



27

Angle of Attack

The 1dea that vortex motion induces downward flow changes the
way we have to look at angle of attack as compared to the airfoil
theory.

Geometric angle of attack, « - the angle between the airfoil
chord line and the freestream velocity vector.

a — Geometric angle ¢
«; — Induced angle of 8
a.; — Effective angle
& Qoff =0 — 05

Induced angle of attack, «; — the angle formed between the
local relative wind and the undisturbed freestream velocity vector.

w
tana;, = — (5.1)
V.
Effective angle of attack, a,;— the angle formed between the
airfoil chord and the local relative wind.

a,. —0—0, (5.2)

eff i

It is important to note that this also changes how we look at lift, Z,
and drag, D. This is because the actual lift is oriented
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perpendicular to the local relative wind (since that 1s the wind that
it sees) not the freestream velocity direction. Because of that, when
we go back to our original lift and drag directions (perpendicular
and parallel to the freestream) we now see a reduction in the lift as
compared to what we expect from the airfoil theory and an actual
drag called the induced drag, even though the flow is still inviscid.

What a Drag

Induced drag, D; — drag due to lift force redirection caused by the
induced flow or downwash.

Skin friction drag, Dy— drag caused by skin friction.

Pressure drag, D, — drag due to flow separation, which causes
pressure differences between front and back of the wing.

Profile drag coefficient, C; — sum of the skin friction and pressure
drag. Can be found from airfoil tests. Note the notation.

D, +D
C,=—1—_* (5.3)
q.5

Induced drag coefficient, C p, - hondimensional induced drag

c, =— (5.4)

Total drag coefficient, C D

C,=C,+C, (5.5)

VAR N

Airfoil data Finite wing theory



General features of
finite-wing aerodynamics:
downwash, effective angle

of attack, and induced drag

Additional tools needed for finite

wing analysis:
1. Curved vortex filament
2. Biot-Savart Law

3. Helmholtz’s vortex theorems

Method of analysis
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Prandtl’s classical
lifting-line theory

Biot-Savart Law

Modern numerical
lifting-line
method

Lifting
surface
theory

During our discussion of panel methods we developed the idea of a
vortex sheet, essentially a line along which vorticity occurs that

has a rotation sense about an axis perpendicular to the line.
i P(x, z)

vortex sheet

A similar but distinctly different idea is that of vortex filament,
which is again a line of vorticity, but this time with rotation about

the line itself.
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Vortex filament

The Biot-Savart Law defines the velocity induced by an
infinitesimal length, dI, of the vortex filament as

Fcﬂxr
dV = an ‘r‘ (5.6)

where

Vortex filament
of strength I’

dl — infinitesimal length along the vortex filament
r — radius vector from dI to some point in space, P.
dV — infinitesimal induced velocity

Note that this velocity is perpendicular to both dl and r.

If the vortex filament has infinite length the total induced velocity
is found by integrating over its entire length

¢ I dixr
V = (5.7)
o ar ‘r ‘
Consider a straight vortex filament in the y-direction and a point,
P, in the x-y plane. Equation (5.7) can be put into geometric
functions by considering the figure below
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R 0
V= 5ee

= I' sin@

where @ is the angle formed by r and the filament. The geometry
gives

r= ,h = h ,dl = li_ do (5.9)
sin @ tan @ sin” @
which gives
r <.
V=——js1n(9d(9 (5.10)
d7th

we get | — *ooif we have 6=0 or 7.
This leads to the simple result
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I
V- 5.11
27th ( )

same as the two dimensional theory.

If we have a “semi-infinite” filament we get

V= d jsmzedl———jsmﬁdﬁ (5.12)
4”0 r /
T
47h

Helmholtz Theorem

1. Strength of a vortex filament remains the same along the
filament.

2. A vortex filament cannot end in a fluid, 1.e., it must either
extend to the boundaries or form a closed path.

Additional Nomenclature

Geometric twist — a twist of the wing about the span-wise
axis that results in a change in the geometric angle of attack with
span-wise position.

Washout — geometric twist such that @, <&

root

Washin - geometric twist such that &, > &

root

Aerodynamic twist — a wing with different airfoil sections
along the span, so that the zero lift angle of attack changes with
span-wise position.
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Lift distribution — the local value of the lift force. This can
change with span-wise position.

For example, since the pressure equalizes at the tip there is no lift
there.

} L'=L'(y) = pooVool'(¥)
Front view

of wing

(SY[S 3

b
2
TR

Lift per unit span, L' - akin to pressure, i.e., force per unit
area.

L'=p V.T(y) (5.13)
"

L= |L'(y)dy (5.14)
-

If the lift changes along the span it implies that there are multiple
(perhaps and infinite number of) vortex filaments.
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Prandtl’s Lifting Line Theory

Prandtl’s lifting line theory is centered about a fundamental
integro-differential equation.

'y, .,
v.c(y,) B 47£'V A

a(y,) = (5.15)

which is used to find the circulation distribution about the wing.
Equation (5.15) is useful if one knows the desired geometric angle
of attack, the aerodynamic twist (i.e., &;—), and the wing planform
(i.e., local chord length). Two approaches are presented to make
use of this equation. Equation (5.15) is developed from the idea of
vortex filaments.

Prandtl’s lifting line theory stems from the idea of replacing a wing

with a bound vortex. Helmholtz theorem then requires there to
exist trailing vortices at the wing tips

2 Free-trailing vortex

Replace finite
wing with
bound vortex

b
< .

(ST~ 3

Free-trailing vortex

Horseshoe vortex

Finite wing
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The Biot-Savart law allows us to determine the downwash along
the wing and results in:

_ I B r
W)= 475(% + y) 4%(% — y) (10
I b
W(y):_4n' (%)Z _y2 (5.17)

Note that the downwash is a negative number as you would expect
from the coordinate system.

However, the single vortex filament case i1s not sufficient to
describe the physical conditions on the wing, because of

(YIS

Trailing vortex
y.=

A

Trailing vortex
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The trouble is that the downwash at the wing tips is infinite instead
of zero. Fortunately, this can be fixed if one considers a
distribution of vortex filaments as shown below

o

It is important to note that the strength of the individual vortex
filaments is equal to the jump in circulation at the point where the
trailing vortex meets the bound vortex. This can be carried to the
logical extreme by considering a continuous sheet of vortex
filaments and their associated continuous change in circulation.

; S

In that case the downwash induced at point y, by the vortices at

point y is given by

(5.18)
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So that if one integrates from wingtip to wingtip

1 f (g 5.19)

Az 5, (v, - y)

Relationship between I' distribution and downwash at y,

Using Equation (5.1), but recognizing that w is a negative number

a,(y)=tan" (%(y)j (5.1b)

o0

for small angles Eq. (5.1b) gives

(L) .

arV, —b/z (v, - )

a,(y,)=

Recall the two dimensional lift coefficient for an airfoil

C, :a,,[aeff —aLZOJ:Zﬂ[aeﬁ ~-a,,] (5.21)
where

QA =, (y,) because of downwash

a,_, =a,_y,(y,) because of aerodynamic twist
but

;1
L= Epijc(ya)C, =pV,I(1,) (5.22)



then
_2I'(y,)

V.ce(y,)

Combining Egs. (5.21) & (5.23) gives

I'(y,)
aeff = . < + aL=0
v c(y,)

which is clearly a function of y,,.

Recall notes Eq. (5.2)

and combine Eq. (5.2) with (5.24) & (5.20) to get

2 /y)dy

a(y,) =)

a, (y,)+

—_|_ B
v, c(y,) B AV A
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(5.23)

(5.24)

(5.2)

(5.15)

Fundamental Equation of Prandtl’s Lifting Line Theory

Once I'(y,) isknown L,C,,D,,C,, follow directly.

L(y,)=pV.I(y,)

5
L= [L'(y)dy
-4

(5.13)

(5.14)
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2 % ,
=S J/ (y)dy (5.25)
b,
D, = [Lady (5.26)
), %
C, V—J (»)a,(y)dy (5.27)
b

Two approaches can be taken from this point

1. Direct — A wing planform 1is given with a
distribution of aerodynamic twist, Eq. (5.15) is
solved and lift and drag information extracted.

2. Inverse — A lift distribution is proposed and the
corresponding planform distribution developed.
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Inverse Approach — Elliptic Lift Distribution

Prandtl’s lifting line theory can be used in an inverse approach by
assuming the form of the lift distribution and using Eq. (5.15) to
determine the wing planform. The most famous example of this is
the elliptic lift distribution which is found directly from an elliptic
circulation distribution.

I(y)=T,.[1- (ijj (5.28)

I/ o

WL |
j’ ‘&\v'\g\$ z )
/ Vs < 1
- = i
P |

b e a

2

where we canuse L'(y) = p V_I'(y) to show
, 2yY

dl’
Recall that Eq. (5.19) requires d—, SO
Y

av__ 4, (5.30)

dy b \/1_4y7
b2




so that the downwash becomes
b

2
Lo ol (5.31)

e

we can again invoke geometry and use

y= 30050, dy = —gsinﬁdﬁ (5.32)
where @ : 7 — 0 as y:—é—>é
2 2
So Eq. (5.31) becomes
L % cos@
w(o,)=—_" do 5.33
(©) 27Zb,'[00890 —cos@ (5-33)
or
w(@,) =] %% g (5.34)

27h cos@ —cosb,

which is a standard integral form

w(l,)=— L 7Z'S.1nn90 with n=1 (5.35)
27nb  sin6,
I

0)=——" 5.36

w(d,) b (5.36)

Downwash is constant for an Elliptical Lift Distribution
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However, this also implies:

w I
o, =— =2 (5.37)
V. 2bV,

Induced a.o.a. is constant for an Elliptical Lift Distribution

In the end we want to determine the lift and drag coefficient for the
elliptic lift distribution and also the shape of this wing. To do this
we go back to Egs. (5.14) and (5.29)

5 b 2)’ 2
L= [L'(y)dy=pV,T, [ ,1- [—j dy
b, B b

0
=p,V.I,[v1-cos® 0(— gj sin 6d 6

=pV.T, gj\/ sin’@sinédf = p, VT, gjsin2 6do  (5.38)
0 0

T

—pv.0,2 Lo Lsinoe
212 4

}:pOOVOO 0__

0
L=p VI, %7:
(5.39)



We can next use the definition of C; and Eq. (5.39) to give

1 b

L= EponfSCL =p V.T e (5.40)
or
I, = —2V°°SCL (5.41)
br
Then going back to Eq. (5.37) we find
I
o, =—"2—= SZCL (5.42)
26V, b'x
Nomenclature
b2
Aspect Ratio, AR = < (5.43)
So that
a; = ¢ (5.44)
AR
We can then get induced drag from Eq. (5.27)
5 %
Cp, =< [T, (»)dy (5:27)

0

VS_%

43
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0
= 2ai£0 I J1—cos” 8| — g) sin 6d 6 geometry

V.
_ LT Gane = 4l Ly Lgiog
) 0 VooS 2 0
al brx
=12 5.45
%= g o (5.45)

Which can be rewritten by substituting Egs. (5.41) and (5.44) into
(5.45)

_C, 2, SC, b«
" 7AR bz V.S2

C2
Cc, =—4*L 5.46
% AR (5:40)

C, «C ? - a typical drag result

1
Cp * R use high AR wing (long and thin)

But what’s the geometry?!!!
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The geometry can be found by going back to the lift coefficient
and Eqgs. (5.23), (5.21) and (5.2)

c = 2LW,) (5.23)
Vee(y,)

C =2rla,-a,] (5.21)

o, =0—0, (5.2)

eff i

Then using the idea that the induced a.o.a. is constant and if there
is no aerodynamic twist we see from Egs. (5.21) and (5.2) that

C, = const. (5.47)

Elliptic Lift Distribution

Combining Egs. (5.47) and (5.23) gives

20
const. = 200,) = c(y,)=const.,I'(y,) (5.48)

V,ce(y,)

With the end result:
An elliptic lift distribution is found from

an elliptic wing planform.
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Application of Prandtl’s Lifting Line Theory for an Elliptic Wing

The previous section demonstrated that an elliptic wing planform
develops an elliptic lift distribution but did not answer the question
of how one can find the aerodynamic properties of an elliptic wing.
Consider an elliptic wing

c(y)=c, |1- (27‘);) (5.49)

It is clear from Eq. (5.23) that C, can be written in terms of I but
Egs. (5.21) & (5.2) also show that C,depends on &;, which in turn
depends on C,, which then depends on an integrated value of C,.

What’s needed is a way to close the loop. To do this consider again
Egs. (5.23), (5.21) and (5.2)

2T
C = VOOC‘; = 27r[aeﬁ, —aLZO]
2T
= Vwcor = 2”[05 —a; - aLzO]

=27 o — L, -
v

0

from which we see

r{ 2 7 }=27r[a—a“)]

+
Ve V.b
2, la—a, ] (5.50)

7+7
c. b




48

Therefore, given the root chord, span and airfoil shape I, can be
found. Upon rearranging Eq. (5.41)

bl
= 2 5.41b
Loars (-410)
and from Eq. (5.46)
C2
c, =—+ 5.46
% 7AR (5:40)

Example Problem: Consider an elliptic wing with 10m span and
2.5m root chord. If the wing is made up of NACA 64-210 wing
sections and is flying 50m/s at a geometric angle of attack of 8
degrees, compute

I. C and C),
2. Land D,
3. The acceleration of this wing if it has a mass of 1 Mg at
sea level.
& 03¢

\ ?/
_2 ;
0 2 p 6 8 07
z/c

NACA 64-210
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32

28

24

20
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~
N
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e o
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>

Section lift coefficient, ¢,

= 4+ =

S
S

s

g
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o
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~&

'
W

|
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N

A
it
o)

Moment coefficient, r

()

-2.0

-32 -24 -16 -8 o 8
Section angle of attack, e, deg

NACA 64-210 Wing Section

The chart shows that &, _, = —1.8, so that

16

24

Jée
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o 2n(50m/s)8" ~(-1.8")| _ o, m’-rad
0 { 2 N 7[} sec
2.5m 10m
¢_ be (10m)(2 Sm)
22

b IOm/ _
AR=b/c = (o a2 =509
ﬂ(lOm)(48.23 ”“dj

brl’, sec
2V, 8 2(50m/s)19.63m*)

=19.63m’

L:

C, =0.77

_ ¢ _(0.77)
P 7mAR  7(5.09)

=0.037

Lift and Drag calculations

L= %pijSCL

L= %(l.ZZSkg/m3)(50m/s)z (19.63m X0.77) = 23.1kN

D, = %(1.225kg/m3 X50m/s) (19.63m>)0.037) = 1.1kN

So it can lift 2.38Mg

50



Acceleration calculations

[.=23.1TkN

F, =23.1kN —9.8kN =13.3kN

a~136g

W=9.8kN

Exercise: Develop €, and C), over the range of a.0.a from
—-10° = +10°

Lift Coefficient - Elliptic Wing - b=10m Cr=2.5m
V=50m/s

T T U T T
-15 -10 / ) 5 10 15
fal

Angle of Attack

\

Induced Drag Coefficient - Elliptic Wing - b=10m
Cr=2.5m V=50m/s

a o

=
Il

C_Di
@

© 9 090 9 9
O O O O O O

LN N

;

+-0 5 10 15

@]

al
=U.

Angle of Attack
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Elliptical Wing Lessons: Design Considerations

Equations (5.50), (5.41b) & (5.46) give us a clear path for the
aerodynamic analysis of an elliptical wing of given dimensions and
airfoils. On the other hand, the analyst’s job is to determine
properties of a given wing, a designer’s job is to decide the
geometry itself so that it reaches a specific design objective. This is
a distinctly different skill. The above equations can give the
designer some insight if they are manipulated properly. Of course,
one should be careful about drawing conclusions for a general
from this analysis since it applies strictly to elliptic planforms, but
it turns out that other wings behave similarly for many parameters,
although their analysis 1s more complicated.

Start by again considering Eq. (5.50)
_ 27Z-Voo [0[ — aL:O]

r =
) {2 ”} (5.50)
7+7
c. b
_ 27V, la—«a,_,] _ 27, bV, la—«a,_,]
:Zbc {2b+ﬂcr} 2b+ e,
4 r e —
c.b
:8SVOO[0:;;:LO] ) 45
26+ " b
- _ASV.bla-a, ]

’ b>+2S8
So that if S is a constant, I’ goes down as b goes up. However,
this really doesn’t tell us anything about lift and drag on the wing.
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To get that information we need to consider Eq. (5.41b)

brd
= £ 5.41b
LS s (5.41b)
_ bz 4ASV,bla-a,,| 27la-a,]
v s (BP+2s) 28
s (p°+25) 1+ Az
B 27r[a — aLZO]

C, =
2

142 ¢

Therefore if keep the wing area the same C, goes up with b. Note

that this result drops back to the two-dimensional airfoil result as
b— .

CL

1.2

0.8
-
L; 0.6 —C_L
0.4
0.2

0 500 1000 1500 2000 2500
AR
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How then does this result affect the induced drag? Eq. (5.46) says:
— Ci _ 47[2[05 _OlL:o]2

D; TAR 7 2
w1+ — | AR
AR

2

4r’la-a,_,]

75(1+ 4 + 42jAR
AR AR
47z[a—aL:0]2
Cp = 4
(AR+4+)
AR

which says that C, decreases as b increases. This is because
l

C, —> C, as b — o and hence C), — 0.

Hence the compromise comes to life between what can be built
and what is aerodynamically efficient.

C_Di

0.04
0.035
0.03 -
0.025 |

| 0.02 C_Di
0.015 |
0.01 -

0.005
g‘

0

0 500 1000 1500 2000 2500
Aspect Ratio
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General Lift Distribution

Our previous analysis for the elliptical wing utilized an elliptic
circulation distribution shown in Eq. (5.28)

I'(y)=T,,/1- (27))) (5.28)

This form was simplified by the geometric transformation

yzgcosﬁ, dy = —%sin@d@ (5.32)
When combined, Eq. (5.28) becomes

['(y)=T,v1-cos* @
=1 sind
The utility of this transformation is apparent, however, its impact is
much bigger because it suggests the use of a sine series to

represent any circulation distribution. The basic idea being that the
circulation can be written as

N
[(y)=2bV_ > A, sinné (5.51)
n=1
Why should this work?

First off, let’s assume that this series is a reasonable approximation
of the actual circulation function and further assume that you can
find values for the N constants, A . Then recall what was done for
the elliptical wing planform; we started things out not knowing
what isI, but by rearranging equations we were able to determine
it in terms of the velocity, root chord, span and airfoil shape. In

addition, all of this information was obtained at a single location,
the wing root.
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If we use equation (5.51) for a general airfoil, there are now N
unknown coefficients needed to determine the circulation. These
coefficients will be determined later by using conditions and
geometry at NV locations on the wing. However, before we do that it
is important to recognize why Eq. (5.51) might be reasonable.

Fourier Sine Series

A very useful engineering tool is the Fourier Series, which is
essentially a summation function composed of sines, cosines or
both depending on the function to be represented. Mathematicians
have proven that any function can be represented by infinite series
of this form and practical experience shows that only a limited
number of terms are needed to get a reasonable approximation.

The functions themselves look as shown below for the first 5 terms

i © =
Sl \\b\‘b
© 0 © s

NV ixeowe: [
NSV SN
" O, -
QR T \




A severe example of its application for a square and a sawtooth

wave are shown below

% fix)
_‘ I-._
0 T 2r x
g 1

—

-

fa) The given function fix) (Periodic square wave)
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\ |
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(b) The first three partial sums of the corresponding Fourier series
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FIGURE 7.1-8 The graph of Eq. (7.1-20) for N = 5, 10, 20.
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Dr. Orkwis has used this approximation approach to represent the
wakes behind a turbine stator and found that only 4 terms were
needed to get about 95% of the total energy. The approximation
functions are generally good representations of the actual functions
if the actual function is smooth. Discontinuous functions like
square or saw tooths produce “ringing” or “Gibb’s phenomenon”
unless a very large number of terms are included. Fortunately,
wing circulation distributions are usually quite smooth and require
relatively few terms. Keep in mind that finite wing theory requires

both I'(y) and d—, so ringing can be a problem as the derivative

can be badly distorted even though the function is well
represented.

Application to Prandtl’s Lifting Line Theory

As stated above, Eq. (5.51) must be differentiated to be used in the
Prandtl Lifting Line Theory. We get

N
di”_ dt 49 =2bV_> nA, cosnﬁﬁ (5.52)
dy dfdy n=1 dy
Substitute the above into Eq. (5.15)
N (5.53)
op N 10 1 0 2 nA, cosnd
a(f)= > A,sinnb, +a, (0,)—+—[*! déd
me(8,) dy m;,cos@, —cos6
or
inA cosn@
N T n
a(6,)= 22 3 4 sinn6, +a, (6,20 + L] do
mc(8,) dy mycos@—cosb,
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where the integral is the familiar standard form used earlier, so that

a(,)= 2b iAn sinnf, +a,_, (00)ﬁ + inAn sn.lné?o (5.54)
7c(6, )i dy o siné,

Which can be used to find the N, 4, ’s if Eq. (5.54) is evaluated at

N, 6 values. A system of equations is thus developed and easily

solved. We should recognize that the original elliptic wing still
lives in this equation if we compare Eq. (5.54) to Eq. (5.15) and
note that N=1.

As before, everything follows once I'(8,) is known. C, comes
from Eq. (5.25)

y 7
C,=—< [T(»dy (5.25)

V.S 3,

2
C, =2 [26V.5 4,sinn6] - Zsing a0
L—szj OOZI _sinn (—Esm j
(5.55)
27N, %

——ZA jsinnﬁsin&d@

and, of course, an 1ntegra1 table will reveal that

T T n:l
jsinn@sin@dﬁz A— (5.56)
0 0 n#l

So no matter how many terms you have in the series, it is only the
first one that matters for C,, i.e

2b°
CL == Tﬂ'/ll = Alﬂ'/lR (557)

Keep in mind though that A, is part of a system of equations and
as such depends upon A4, ... A, .
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Next, for the induced drag we need «; as indicated by Eq. (5.27).

Again, Eq. (5.20) says
o),

a. = 5.20
, 4”V _,/( (5.20)
which by comparison to Eq. (5.53) 1S
N
|7 > nA, cosné
a,=—[" do
75 cos@—cosh,
or from Eq. (5.54)
e :
o, =3 na, 019, (5.58)
nel sind,
We then go back to Eq. (5.27)
5 %
Co =y g IF(y)a (y)dy (5.27)

Mz

2 ¢ . N sinn@ b .
C _V—i ( :1A" smn&j(;nA 7 j(—gsm@jdﬁ

Note 0 not 0,
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Upon further evaluation

T/ N N
Cp = 2ARI(ZA,1 sinnHj(ZmAm sinm@)d& (5.59)
0 \n=1 m=1
Which is easily evaluated since
V4 T m=k
Isinm&sink&dé’ [/ (5.56)
0 1 m ?ﬁ k

Hence, the only time the integrals yield something is when n=m.
So

N
C, = 2AR%ZnAj (5.61)
n=1

or equivalently

N
C, = 7[AR[A12 + ZnA,f}
n=2

Joox (A
= TARA2| 1+ > n| 2
n=2 Al

which we can write as

C, =7ARA’[1+ 6]

B (5.62)
_ G [1+6]
R

Eq. (5.62) should be compared with Eq. (5.46) for the elliptic
wing. Yet another way to write Eq. (5.62) is

D:

1

C,
= 5.63
P meAR ( )
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Nomenclature

Span efficiency factor, e — where e = ﬁ (5.64)
_|_

Clearly e=1 for an elliptic wing.

Elliptic vs. Rectangular Compromise: The Tapered Wing

it i

Elliptic wing

Rectangular wing

Tapered wing

Nomenclature

€

c

r

The idea is to match closely the elliptic wing planform, i.e., chord
lengths of similar size, and thereby match the elliptic lift
distribution.

Taper Ratio =
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0.16

0.12

0.08

0.04

0 I
0.2 0.4 0.6 0.8 1.0

Taper ratio, ¢, /c,

Clearly, 0 has a minimum for a taper ratio of about 0.3.
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Numerical Lifting Line Theory

The lifting line theory assumes a linear lift curve slope, as such, it
does not predict the nonlinear or stall regime. Anderson describes a
numerical lifting line process

e Assumea I'(y)

e Calculate ¢

e C(Calculate &

e Use tabulated data for C, to compute ['(y)

e [terate until convergence
The beauty of the technique is that it works in the nonlinear/stall
regime, however, it requires significant table look-ups, which are
slow.

Vortex Lattice Method

A disadvantage of the lifting line theory is that all of the action
associated with the bound vortex occurs at the quarter chord point,
such that only the lift and drag coefficients are computed but not
the moment coefficient. Unfortunately, the moment coefficient is
essential to the performance calculations. An answer is found in
the vortex lattice method which not only provides the pressure
distribution but also anchors the results to the actual geometry
rather than implicitly through the ¢,_,. This is essential not only

for calculating moments but for many practical wing planforms
like delta wings.

ly,, lvw

e

Low aspect ratio Swept wing Delta wing
straight wing
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Voo
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Lifting
i T surface
_-""""--....__.-_._,...--
5, )
‘*\ 'x _ |+ Wake

Essential ideas:

e Panel the wing with discrete spanwise, y, and
streamwise, d , distribution of vorticies.

e Set a “control point” somewhere on this panel to apply the
flow tangency condition.

e Biot-Savart to determine the induced velocity from all
points.

e Solution of a system of equations determines the discrete
vorticity distributions via the downwash equation:

[(x 5) +(y- 77)2F (5.65)
” (y—=n)8, (&.n) d&dn

v [x—&) + (r-n)]?

Note that the wake is also included.

Another way to look at this is as a system of horseshoe vortices,
each one applied over a single panel with a bound vortex at the
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quarter point of the panel. The control point 1s again defined to
apply the surface tangency condition.

The wing is then tessellated with a vortex lattice system like that
shown in the figure.

Once again the velocity contributions are determined from each
horseshoe vortex and using the flow tangency condition and we are
left with a system of equations for the unknown circulations.

Note that this approach is applied in the plane of the airfoil, not
along the airfoil so that we are really still making a thin airfoil
assumption.
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3D Panel Methods

The next step in the hierarchy of techniques is a direct extension of
the 2D source and vortex panel methods, a 3D panel method. The
text describes these methods briefly and develops the 3D source
and doublet.

Basic Idea:
e Distribute sources, doublets or vortices on the surface
of a body.
e Apply the flow tangency condition.
e Solve for the unknown source, doublet and vortex
strengths.

This approach is widely used in the industry for preliminary design
considerations and allows us to apply the surface tangency
conditions to all points on the wing. A large code is written for this
purpose and generally takes a good deal of effort to define the
geometry and apply the method.



68




69

Separated Flow — Vortex Lift

While we are discussing the inviscid flow about a wing we need to
consider what happens if the flow is massively separated. In most
instances this is a bad thing as it will disrupt the orderly flow about
a wing and lead to pressure drag. However, the case of a delta
wing this is an entirely different issue as separated flow actually
results in enhanced lift, vortex lift.

AN

(a) Simple delta (b) Cropped delta
() Notched delta (d) Double delta

H FUNDAMENTALS OF AERODYNAMICS

Crossflow plane

/ \/ | Primary vortex core

Secondary vortex

e ——
L]
= T o S AP

Secondary attachment line (4%
.

X

Attachment streamline
Primary attachment line (A;)

Primary separation line (§;)
Secondary separation line (5;)
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As illustrated in the figure, severe flow separation and
reattachment occurs for the delta wing. The vortices account for

lift on the wing because they cause the local pressure to drop
considerably.

© ©)

A
=)

T
‘

Fc,,
O AR
} ?1‘/1‘

(+)

The methods we have discussed so far are not good candidates for
predicting these flows; one has to resort to full computational fluid
dynamic analysis, i.e., the field solution of the Euler or Navier-
Stokes equations, which is beyond the scope of this class.
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Moments

An advantage of the vortex lattice method, the 3D panel methods
and CFD, as compared to the lifting line theory, is that the pressure
distribution 1s computed and hence moments can be found. To
recall the details of this process we need to go back to some basic
mechanic.

Consider an airfoil as a beam with distributed loads defined from
the pressure.

LT

RN IR S S S S

LE

We recall that the pressure is a force per unit area and that a force
is defined once the pressure is integrated over an area. In the case
of an airfoil we only integrated in x, since they direction (as
defined for a wing) has unit length. We can then use these ideas to
come up with moments about a point on the wing.

TE

M, = [(C,, ~Cp e (5.66)

LE

However, the moment could as be represented in terms of the
resultant force, R.

M,, = Rx,, (5.67)

where x, 1s the point at which the resultant of the integrated
forces acts to generate the same moment about the LE.
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Let’s return now to an airfoil:

1
Mg

Note that

l.

2.

The chord line is a straight line that connects the LE to the
TE. (Not the mean camber line)

Axial force is assumed to act along the chord line,
therefore no moment 1s developed because of it.

. Normal force acts normal to the chord line at the center of
pressure.
. Moment 1s defined positive clockwise, therefore, a

positive lift force results in a negative M, ..

Ml
Xep = _TL’E (5.68)
. The moment coefficient about the center of pressure is
Zero.
. Moments can be defined about the LE and the quarter

chord point. If & ~0 then L'~ N’ and

! c ! ! !
My, == L'+ M, =—xc,L (5.69)
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This idea can be easily extended from the airfoil to the wing by
turning Eq. (5.66) into a double integral.

% TE
My, = | J(CPW ~C, Jedxdy (5.70)
_é LE
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