

Third European Summer School on Hydrogen Safety July 21 – 30, 2008

Fire Hazards of Small Hydrogen Leaks

Peter B. Sunderland

Dept. of Fire Protection Engineering University of Maryland College Park MD, U.S.

Acknowledgments

- Third European Summer School on Hydrogen Safety.
- NIST (Grant 60NANB5D1209) under the technical management of J. Yang.

- R.L. Axelbaum (Washington Univ.) and B.H. Chao (Univ. of Hawaii).
- Students: M.S. Butler, C.W. Moran, N.R. Morton.

- Steel embrittlement
- Lowest MW of any fuel, thus requiring the highest storage pressure
- Highest volumetric leak propensity of any fuel
- Permeation leaks
- Smallest ignition energy of any fuel in air (0.028 mJ)
- Lowest autoignition temperature of any fuel ignited by a heated air jet (640 °C)
- ✤ Widest flammability limits of any fuel in air (4 75% by volume)
- Highest laminar burning velocity of any fuel in air (2.91 m/s)
- Smallest quenching distance of any fuel premixed with air (0.51 mm)
- Dimmest flames of any fuel in air

- A small leak develops in a H₂ system, e.g., a H₂ vehicle.
- The leak could arise from H₂ embrittlement, H₂ permeation, impact, equipment failure, or improper repair.
- > The leak ignites from static discharge or heat.
- The leak burns undetected for a long period, damaging the containment system and providing an ignition source for a subsequent large release.

- Swain and Swain (1992) modeled and measured H₂, CH₄, and C₃H₈ leak rates.
- Quenching and blowoff of CH₄ and C₃H₈ flames were measured and modeled by Matta et al. (2002) and Cheng et al. (2006).
- Khan et al. (2002) considered the effects of heat on carbon fabric composites.
- No codes or standards exist for permissible H₂ leak rates.

> Measure quenching and blowoff limits for H_2 , CH_4 and C_3H_8 on small round burners.

- Measure quenching limits for leaky compression fittings.
- Examine material degradation arising from exposure to H₂ and CH₄ flames.

Experimental

Quenching and blowoff limits
Fuels: H₂, CH₄, and C₃H₈
Diameters: 8 μm – 3.2 mm
Leaky compression fittings

Pinhole Burner

Curved-wall Burner

Tube Burner

Materials degradation

- ✤ Fuels: H₂ and CH₄
- Materials: aluminum alloy 1100, galvanized steel, stainless steel, SiC
- Test times: up to 300 hours

Quenching Scaling

Flame length: $L_f / d = a Re = a \rho u_0 d / \mu$ Length at quenching: $L_f = L_q / 2$ Equating these: $m_{fuel} = \pi L_q \mu / (8 a)$

Fuel	а	L_q	SL	μ	m _{fuel}
		[mm]	[cm/s]	[g/m-s]	[mg/s]
					predicted
H_2	0.236	0.51	291	8.76e-3	0.008
CH_4	0.136	2.3	37.3	1.09e-2	0.085
C_3H_8	0.108	1.78	42.9	7.95e-3	0.063

- A H₂ flame at its quenching limit is shown.
- This flame is not visible without aid and required 30 s camera exposures.
- Stand-off height is about 0.25 mm.
- Thermocouples were used to identify flaming conditions.

Tube Burner Limits

- Quenching limits are nearly independent of *d*.
- H₂ has the lowest quenching limit and the highest blowoff limit.
- CH₄ and C₃H₈ have similar quenching and blowoff limits.

H₂ Quenching Limits

- Three burner types are shown.
- For large the d limits converge.
- losses Heat are for greatest pinholes, least for tube burners.
- Limits increase at the smallest d.
- plot helped This identify the world's weakest flame (0.25 W).

- No significant effect of orientation is seen.
- Choked flow is likely at the smallest diameter.

- Upstream pressure required for 8 μ g/s H₂ isentropic choked flow is shown.
- Viscous effects are neglected here.
- This predicts that very small pinholes can support flames in high pressure H₂ systems.

Leaky Fittings Tests

- Leak path shown obtained with loose fittings.
- Flow rates were measured downstream of the leaks.

Leaky Fittings

- Previous slide shows flaming leak quenching limits for compression fittings (vertical orientation).
- H₂ flame is smallest here, attributed to quenching distance.
- H_2 mass flow rate is an order of magnitude lower than CH_4 or C_3H_8 .
- Leaks large enough to burn produce bubbles when soap water is applied.

- Quenching limits for a 6 mm compression fitting are shown.
- H₂ limits are the lowest.
- Limits are independent of pressure.
- Results should guide future codes and standards.

Orientation Effects

- Quenching limits for 6 mm compression fittings are shown.
- Orientation has a weak effect.
- Inverted orientation has the lowest heat loss rates.

Materials Degradation

AI Degradation

> Aluminum failed in H_2 flame at 8 hours.

304 SS Degradation

> Corrosion after prolonged H_2 flame exposure.

SiC Degradation

> SiC filaments failed at 12 minutes in the H_2 flame, and at 356 minutes in the CH_4 flame.

AI Degradation Microscopy

• Control specimen is shown.

AI Degradation Microscopy

• Images following exposure to H₂ flame.

> Apply intumescent paints.

> Apply steel wool or ceramic blankets.

Consider novel flame detectors:

- Cable heat detectors
- UV and IR detectors

Conclusions

- Stable H₂ flames were observed on round burners and leaky compression fittings at flow rates down to 4 and 28 μg/s, respectively.
- Fuel mass flow rate at quenching is largely independent of burner diameter.
- ➤ H₂ has a lower mass flow rate at quenching and a higher mass flow rate at blowoff than either CH₄ or C₃H₈.
- ➢ H₂ flames caused much faster corrosion than CH₄ flames to aluminum and SiC fibers.