
FireEye and Splunk:
Intro to Integration

1 www.fireeye.com

Table of Contents

Introduction . 3

Current Integration Efforts . 3

Architecture Note . 4

FireEye LMS -> Splunk Architecture: . 4

Multiple FireEye LMS -> Splunk Architecture: 4

FireEye CMS -> Splunk Architecture: . 5

Demo Setup . 6

Download . 6

Extract Splunk . 6

Start Splunk . 6

Creating Connectors . 7

Splunk Listener . 7

FireEye Data . 8

Examining a Raw Event . 10

How to Replicate a FireEye Dashboard . 11

Simple Searches . 11

Piping Search Results . 12

Using Regular Expressions . 13

Get the Event Type . 14

Get the Event Time . 15

Using Conditionals . 16

2 www.fireeye.com

If statement . 16

Case statement . 18

Sorting Searches . 19

Multiple LMS sort by Time . 20

Renaming the Columns . 20

Save As Dashboard Panel . 22

Time frames . 23

Parsing Other Formats . 24

Quick Differences . 27

Sample FireEye Dashboards . 28

wMPS (NX) . 28

Alerts -> Alerts . 28

CEF: . 28

CSV: . 28

Alerts -> Callback Activity . 28

CSV: . 28

Panels to Enhance Visibility . 29

wMPS (NX) . 29

Conclusion . 30

About the Author . 31

Special Thanks . 31

About FireEye . 31

3 www.fireeye.com

Introduction
Are you a Splunk ninja that just purchased a FireEye appliance? If so, this paper should help
introduce you to FireEye and Splunk integration options in less than an hour. The majority of
this information is designed to walk the reader through building a dashboard while learning how
to carve Splunk data. For those readers that want to quickly get to one possible end product,
they should start with the “Sample FireEye Dashboards” section.

Current Integration Efforts
If your organization is using the latest version of Splunk (6.x), try out our free FireEye App for
Splunk Enterprise v3 (http://apps.splunk.com/app/1845/). This new app provides increased
flexibility by supporting multiple FireEye appliances as well as multiple protocols and formats
for sending data to Splunk. This app may not be fully backward compatible because it takes
advantage of many Splunk 6.x features that were not previously available.

If your organization is still using Splunk version 4.x or 5.x, you can easily download and use
the free--but unsupported--Splunk for FireEye v2 app to integrate the two technologies. This
Splunk app utilizes and parses FireEye’s rich extended XML output. This downloadable app is
available here: https://apps.splunk.com/app/409/.

The rest of this article is written for those that want to start from scratch or start from one
of the above apps and learn to customize them. This article will outline various protocols and
formats available from FireEye and explore the parsing options provided by Splunk.

4 www.fireeye.com

Architecture Note
The devices linked to Splunk will depend heavily on the environment’s architecture—mainly the
number and type of appliances you have deployed. This may also have an effect on adding or
removing fields from our provided Splunk queries. Fortunately, Splunk is flexible allowing users
to choose the fields they want displayed. Let’s quickly review what your architecture may look
like.

FireEye LMS -> Splunk Architecture:
This is the smallest architecture because there are only one or two FireEye devices with no
CMS. In this case the event IDs in the FireEye Local Management System (LMS) Appliances will
match the event IDs in Splunk. Additionally, the source appliance field may not be as important
with one FireEye sensor because it will be evident which appliance the event originated from.
This will all make more sense later.

Having only one appliance may be somewhat of a rare deployment unless it is a fairly small
organization or sub organization. Due to the limitations of our test environment, we developed
most of the dashboards in this type of a setup, however, we added the field for originating
appliance in the enhanced queries for clients that have multiple appliances.

Multiple FireEye LMS -> Splunk Architecture:
This architecture is currently required even if a CMS is present because the CMS itself cannot
yet send notifications—it instructs each LMS to do so. With multiple appliances sending events,
we want our Splunk search to identify the appliance that witnessed the event. Advantage: Event
IDs in LMS and Splunk will match. Event notification does not have to go to CMS first, which
may be slightly faster. Disadvantage: Events IDs in CMS and Splunk will not match.

5 www.fireeye.com

FireEye CMS -> Splunk Architecture:
This architecture has become a possibility in the 7.1 version of the FireEye CMS. It functions
similarly to the first architecture where only one LMS is feeding the Splunk receiver. Advantage:
Event IDs in CMS and Splunk will match. Disadvantage: Event IDs in LMS and Splunk will not
match.

6 www.fireeye.com

Demo Setup
If you are looking to demo Splunk to see how it fits in your environment, you can download a
free trial to try it out before you buy it. For our demonstration purposes, we installed Splunk on
a Kali Linux VM that we had sitting around. To download and install your free trial of Splunk, use
the following steps:

Download
• Go to: http://www.splunk.com/download
• Register for a free account
• Download the appropriate package

 - Kali 32-bit VM uses: splunk-6.0.1-189883-Linux-i686.tgz
• Drag and drop the tgz into VMware

Extract Splunk
• tar -zxvf splunk-6.0.1-189883-Linux-i686.tgz -C /opt

 - Splunk is now extracted to /opt/splunk

Start Splunk
• /opt/splunk/bin/splunk start
• Accept the EULA and you can now use Splunk

7 www.fireeye.com

Creating Connectors
Now that we have Splunk ready to go, we have to create the connection between the FireEye
and Splunk devices. This involves creating a Splunk listener and configuring the FireEye device
to send the data.

Splunk Listener
The Splunk listener needs to be configured so it can receive data from other devices. Perform
the following steps to create the listener:

Log into the web UI using a web browser: http://<SplunkBox>:8000
• username: admin
• password: changeme

*Note: It will prompt you to change the password upon first login.

Set up the Splunk listener:
• Click the “Add Data” button
• Select “Syslog”
• Select “Consume syslog over UDP”
• Enter “514” for the port and click the “Save” button
• Click the “Back to home” link

Both FireEye and Splunk allow syslog over TCP as well. There is more overhead, but also more
reliable.

Figure 1: Adding a data connector in Splunk

8 www.fireeye.com

FireEye Data
Now that Splunk is listening and ready for data, we have to configure FireEye to send syslog
data to the connector. The FireEye appliances are very flexible regarding Notification output and
support the following formats under syslog:

CEF Text – Normal JSON – Normal XML – Normal

LEEF Text – Concise JSON – Concise XML – Concise

CSV Text –Extended JSON –Extended XML –Extended

For our tutorial, we will use CEF — but it does not mean that it is the best format. It is just
one possible option (see the “Parsing Other Formats” section for more details). Complete the
following steps to send data to Splunk using CEF:

• Log into the FireEye appliance with an administrator account
• Click Settings
• Click Notifications
• Click rsyslog
• Check the “Event type” check box
• Make sure Rsyslog settings are:

 - Default format: CEF
 - Default delivery: Per event
 - Default send as: Alert

Next to the “Add Rsyslog Server” button, type “Splunk”. Then click the “Add Rsyslog Server”
button. Enter the IP address of the Splunk server in the “IP Address” field, and click the “Update”
button below. Change the protocol dropdown to TCP if you decided to use TCP when setting up
the Splunk receiver.

9 www.fireeye.com

Now you can test the sending and receiving of notifications on the same FireEye Notifications
page by clicking the “Test-Fire” button at the bottom. Flip back over to the Splunk interface and
check out the raw event data.

Figure 2: Steps to configure the FireEye appliance to send data to Splunk

10 www.fireeye.com

Examining a Raw Event
Now that the connectors are set up, we can view the raw data.

After clicking on the Data Summary button, you can see the raw CEF events. They will look
something like the following:

Feb 2 11:57:59 192.168.33.131 fenotify-2.alert: CEF:0|FireEye
|MPS|6.2.0.74484|WI|web-infection|5|rt=Feb 02 2014 16:57:47 Z
src=169.250.0.1 dpt=20 shost=OC-testing.fe-notify-examples.com
proto=tcp dst=127.0.0.20 dvchost=WebMPS cs3Label=osinfo cs3=FireEye-
TestEvent OS Info filePath=compl_0_2- someurl.x1y2z3.com spt=10
dvc=192.168.33.131 smac=XX:XX:XX:XX:XX:XX cn1Label=vlan cn1=0
externalId=2 cs4Label=link cs4=https:// WebMPS.localdomain/event_
stream/ events_for_bot?inc_id\=2 dproc=IEx123 dmac=XX:XX:XX:XX:XX:XX
cs2Label=anomaly cs2=anomaly-tag datatheft keylogger cs1Label=sname
cs1=FireEye-TestEvent-SIG

dpt = 20 dst = 127.0.0.20 proto = tcp spt = 10 src = 169.250.0.1

At first when looking at this data, it looks a bit confusing. Fortunately, the Splunk dashboard
highlights and separates the data so it is a little easier to view and understand.

Figure 3: The Splunk dashboard now shows events

Figure 4: Search term and mouse over highlighting

11 www.fireeye.com

How to Replicate a FireEye Dashboard
Now that we have data in Splunk, we need to figure out how to carve it up. Our example below
will use alert data from a FireEye Web MPS (NX platform).

Simple Searches
Splunk’s search capability is quite powerful. Searching can be as simple as you like — just using a
keyword or two — or it can be complex, using pipes, regular expressions, and built-in functions.

Try using the search term FireEye in Splunk. It should return FireEye events. This is great, but
be careful using such a simple search because you may get unintended results of other logs that
contain the word “FireEye”.

Instead, try using: CEF:0\|FireEye

Remember that the pipe is a reserved character to Splunk so we have to escape it using a
backslash (\). This will look for "CEF:0|FireEye" in the packet, which ensures that the search
result will at least be a CEF packet from a FireEye device.

Figure 5: Using the more specific CEF search, we are ensuring that we receive the specific packets of interest.

12 www.fireeye.com

Piping Search Results
Now that we know how to find the relevant FireEye CEF packets, we only want to select the
relevant columns—not all of them. For this, we will use a pipe in the Splunk search bar.

A FireEye wMPS Alert Dashboard contains the following columns:
Type, ID, File Type (FT), Malware (name), Severity, Time (UTC), Source IP, Target IP, URL/MD5,
Location

Not all of these fields are passed in the CEF packet though. So we should first create a map of
Web MPS dashboard fields to Splunk parsed fields. We have done so in the table below:

FireEye field Splunk field
Type Not a parsed field
ID externalId
File Type Not sent
Malware cs1
Severity Not parsed without some help
Time (UTC) Not a parsed field
Source IP src
Target IP dst
MD5 fileHash
URL (malware callback, domain match, malware object) cs5
URL (web infection) filePath
Location Not sent

Figure 6: FireEye event fields of interest

13 www.fireeye.com

So far, we cannot do much about information that is not sent in the CEF packet because
the data does not exist in Splunk. The information that is present but not parsed as a Splunk
field can be extracted using regular expressions, which we will talk about in the next section.
However, all of the remaining information that is parsed by Splunk is easily accessible and
displayed by piping the field name to the table command as shown in the example below:

Ex: CEF:0\|FireEye | table externalId,cs1,src,dst,fileHash,filePath,cs5

Not a bad start for accessing fields that are already parsed by Splunk. We are only missing Type,
FT, Severity, Time, and Location. Severity requires regex parsing and a lookup table which is
beyond the scope of this article. For now, let's look at parsing the Type and Time fields.

Using Regular Expressions
Since some of the data we are interested in is not parsed as a field (event type and event time),
we must use regular expressions to extract these fields. If you are a regex ninja, feel free to
use your powers for good and get the data you need. If not, no big deal — Splunk includes an
interactive field extractor feature that will build the regex needed to extract data of interest. To
use this field extractor, perform the following:

• Search for the event you are interested in: CEF:0\|FireEye
• Click the black arrow next to an event to drop down the details
• Event Actions -> Extract fields
• Highlight one of the event types and copy and paste it into the example value box
• Click generate and verify the accuracy of the regex by looking at the highlighted values on the

right

We will do this for both the event type and event time.

Figure 7: A simple pipe to table will format the fields in a similar fashion to the FireEye dashboard

14 www.fireeye.com

Get the Event Type
Ex: Domain Match

Interactive field extractor result: (?i)\|.*?\|(?P<FIELDNAME>[a-z]+\-[a-z]+)(?=\|)

Figure 8: The field extractor created an accurate regex to obtain the event type field

Now we can plug the regex into the rex command and surround it with quotes to make it
functional. Ex: rex "(?i)\\|.*?\\|(?P<FIELDNAME>[a-z]+\\-[a-z]+)(?=\\|)"

Note that we can change FIELDNAME to whatever we wish, and we can access the field later by
using the unique name we provide.

15 www.fireeye.com

Get the Event Time
There are two times in the CEF packets. In this case we are interested in the FireEye event time,
not the time that Splunk received the event (Splunk time is accessible by referencing the _time
field). When we use the Interactive field extractor for the FireEye time, it yields the following
regex:

"(?i)\|rt=(?P<FIELDNAME>.+?)\s+\w+="

Now that we have the Event type and the Event time, let’s put it all together. Since we feel the
5-tuple data is useful for event correlation, we will add in protocol, source port, and destination
port as a bonus to our new dashboard:

CEF:0\|FireEye | rex "(?i)\\|.*?\\|(?P<Type>[a-z]+\\-[a-z]+)(?=\\|)" |
rex
"(?i)\|rt=(?P<Time>.+?)\s+\w+=" | table Type,externalId,cs1,Time,proto
,src,spt,dst, dpt,fileHash,filePath,cs5

Figure 9: Our dashboard is closer to completion as we add the type and time fields

16 www.fireeye.com

Using Conditionals
If you did not notice, the FireEye appliance dashboard combines the field that contains the
MD5 hash and URL. The data that is populated in that field depends on the event type. If it is
a “Malware Object” event type, the “URL/Md5sum” field contains an MD5 hash. If it is another
event, it contains a URL. The problem that we have is that not all events use the same field for a
URL. A web infection event uses the filePath field. Malware Callback, Domain Match, Malware
Object use the cs5 field (which is not displayed on the FireEye dashboard. We can either have
3 separate fields on our dashboard (fileHash, filePath, and cs5) or we can find a way to use
conditional statements in Splunk to combine the fields. Let’s investigate combining the fields.

If statement
If this were a case in which we had only two fields to pick between, we could use an if
statement and achieve our aggregation objective with the following Splunk syntax:

eval varname=if(condition,ActionForTrue,ActionForFalse)

Knowing this, our search now utilizes the following conditional:

<previous search> | eval UrlHash=if(Type==”malware-
object”,fileHash,filePath)

Explanation: If Type is equal to malware-object, then UrlHash will be the fileHash field,
otherwise it will be the filePath field.

Combining our previous search and our conditional, our search now looks like the following:

CEF:0\|FireEye | rex "(?i)\\|.*?\\|(?P<Type>[a-z]+\\-
[a-z]+)(?=\\|)" | rex "(?i)\|rt=(?P<Time>.+?)\s+\w+=" | eval
UrlHash=if(Type=="malware-
object",fileHash,filePath) | table Type,externalId,cs1,Time,proto,src,
spt,dst,dpt,Url Hash,cs5

17 www.fireeye.com

Take note of the following:

• The fileHash and cs5 fields were replaced by UrlHash — which will contain the correct value
relative to the event type.

• Even though Malware Object contained both an MD5 hash and a URL, it was overridden by
the MD5 hash which is desirable in this case.

• We still have to deal with the cs5 field if we want to include this additional information

Figure 10: The fileHash and filePath fields were combined using an if statement; however, the cs5 field is not displayed on the
original FireEye dashboard

18 www.fireeye.com

Case statement
Since we find the cs5 field useful, in our custom dashboard, we are choosing to combine the cs5
field into the URL/MD5sum field as well. This is possible by using a Splunk case statement:

eval varname=case(condition,ActionForTrue, condition,ActionForTrue,
condition,ActionForTrue)

Knowing this, our search now utilizes the following conditional:

<previous search> | eval UrlHash=case(Type=="malware-object",fileHash,
Type=="web-in fection",filePath,Type=="malware-callback" OR
Type=="domain-match",cs5)

Explanation: If Type is equal to malware-object, then UrlHash will be the fileHash field; If Type
is equal to web-infection, then UrlHash will be the filePath field; If Type is equal to malware-
callback or domain- match then UrlHash will be the cs5 field.

Combining our previous search and our conditional, our search now looks like the following:

CEF:0\|FireEye | rex "(?i)\\|.*?\\|(?P<Type>[a-z]+\\-[a-z]+)
(?=\\|)" | rex "(?i)\|rt=(?P<Time>.+?)\s+\w+=" | eval UrlHash=case
(Type=="malware-object",fileHash, Type=="web-infection", filePath,
Type=="malware-callback" OR Type=="domain- match",cs5) | table Type,ex
ternalId,cs1,Time,proto,src,spt,dst,dpt,UrlHash

Figure 11: The latest dashboard that has fileHash, filePath, and cs5 combined.

19 www.fireeye.com

Sorting Searches
This looks great, except it appears that the FireEye dashboard defaults to sorting by the Event
ID. No problem, we can add that as well by piping the data to the sort command:

CEF:0\|FireEye | rex "(?i)\\|.*?\\|(?P<Type>[a-z]+\\-[a-z]+)(?=\\|)" |
rex
"(?i)\|rt=(?P<Time>.+?)\s+\w+=" | eval UrlHash=case (Type=="malware-
object",fileHash, Type=="web-infection", filePath, Type=="malware-
callback" OR Type=="domain-
match",cs5) | table Type,externalId,cs1,Time,proto,src,spt,dst,
dpt,UrlHash | sort
–externalId

Multiple LMS Note: If you have multiple FireEye LMS appliances, their event IDs may be
drastically different depending on when the appliance was installed and how much activity it
sees — thus it is not advisable to sort by event ID (as the FireEye dashboard does). Instead, sort
by time (as long as it is normalized—ex: All appliances use UTC). Sorting by time removes the
event ID order discrepancy.

Figure 12: Dashboards default to the same default sort (by Id)

20 www.fireeye.com

Multiple LMS sort by Time
CEF:0\|FireEye | rex "(?i)\\|.*?\\|(?P<Type>[a-z]+\\-[a-z]+)(?=\\|)" |
rex
"(?i)\|rt=(?P<Time>.+?)\s+\w+=" | eval UrlHash=case (Type=="malware-
object",fileHash, Type=="web-infection", filePath, Type=="malware-
callback" OR Type=="domain-
match",cs5) | table Type,externalId,cs1,Time,proto,src,spt,dst,dpt,Url
Hash | sort –Time

Now we are really close to having a great dashboard, but the column headings could be
renamed to have a cleaner look.

Renaming the Columns
Renaming column headers is very easy in Splunk. Just pipe all of your data to the rename
command and then rename the column headers as you would do in a SQL database using “as”.

Ex: <search> | rename externalId as “ID”

Combining our previous work with the rename command yields the following:

CEF:0\|FireEye | rex "(?i)\\|.*?\\|(?P<Type>[a-z]+\\-[a-z]+)(?=\\|)" |
rex "(?i)\|rt=(?P<Time>.+?)\s+\w
+=" | eval UrlHash=case (Type=="malware-object",fileHash, Type=="web-
infection", filePath, Type=="malware-callback" OR Type=="domain-
match",cs5) | table Type,externalId,cs1,Time,proto,src,
spt,dst,dpt,UrlHash | sort –externalId | rename externalId as "ID",cs1
as "Malware",proto as "Protocol",src as "Source IP",spt as "Source
Port",dst as "Target IP",dpt as "Target Port",UrlHash as "URL/Md5sum"

21 www.fireeye.com

This is just the dashboard we were looking to create. However, no one wants to continue to
type or even copy and paste that monstrosity into the search bar. Fortunately, Splunk allows us
to save a search as a Dashboard Panel.

Figure 13: Fields are renamed to match the FireEye dashboard

22 www.fireeye.com

Save As Dashboard Panel
Now that we have the query that we want, we can save this as a Dashboard Panel for quick
access to the data. After you make sure the search is the way you want it (our latest search
string), click the “Save As” drop-down and select “Dashboard Panel”.

Figure 14: Saving a search to a Dashboard Panel

Since this is a new Dashboard for us, we will use the following settings:

• Dashboard: New
• Dashboard Title: FireEye
• Description: Replicating FireEye Dashboards
• Permission: Shared in App
• Panel Title: wMPS
• Panel Content: Statistics

When content with the data, click the “Save” button and then “View Dashboards”. Now, anytime
we want to view the FireEye wMPS search that we created, we just click the “Dashboards” link
at the top.

Figure 15: Saved our previous search as a Splunk Dashboard.

23 www.fireeye.com

Time frames
What is a dashboard without the ability to adjust time frames? If you noticed, in the screenshot
above, by default we are lacking a time frame selector on our dashboard. So, let’s add one. Click
the “Edit” drop down. Click “Edit Panels”. Click “Add Time Range Picker”. Select Last 24 Hours.
Click the “Done” button.

Figure 16: Adding a Time Range Picker to our dashboard

Pro-tip: If for some reason, your time frame
button is not working as expected (ours did
not by default), you have overridden the
time picker in your search. Here is how to
fix it:

Go to your dashboard. Click the “Edit”
drop down. Click “Edit Panels”. Click the
magnifying glass drop down, and select
“Edit Search String”. In the “Time Range
Scope” section, select the “Dashboard”
button and click save. Now the “Time Range
Picker” button will function as expected.

Figure 17: Setting the Time Range Scope to use the dashboard
instead of the search string time frame

Figure 18: Dashboard with a functioning Time Range Picker button

24 www.fireeye.com

Parsing Other Formats
We mentioned earlier that FireEye is flexible in its notification output formats because it
supports the following:

CEF Text – Normal JSON – Normal XML – Normal
LEEF Text – Concise JSON – Concise XML – Concise
CSV Text –Extended JSON –Extended XML –Extended

After experimenting with the formats, it appears that CEF, LEEF, and CSV are all viable formats
to send to Splunk (via syslog) because Splunk sees an event as one packet (not many packets).
As a personal choice, it looks like Splunk parses CEF more easily than LEEF. However, CSV
exposes more fields than both CEF and LEEF and appears to be easy to parse — thus it may be a
better choice in formats (without moving to HTTP POST of XML or JSON data).

Since we were just parsing CEF, we have to change the FireEye syslog format to CSV now. This
is a pretty easy change in the FireEye device by going to “Settings” and then “Notifications”.
Then click “syslog”. FireEye provides the ability to change the default syslog format for all of the
syslog servers or the default can be overridden per server. Here, we will override the default
setting for this Splunk server only. Make sure you remember to click the “Update” button when
finished. Finally, fire off a test event so you have CSV data to look at in Splunk.

Figure 19: Changing the FireEye appliance to use CSV for Splunk event notification.

25 www.fireeye.com

We can inspect a CSV field with the following search: CSV:0:FireEye

A typical CSV event looks like the following:

Feb 8 12:27:12 192.168.33.131 fenotify-40.alert: CSV:0:FireEye:Web
MPS:6.2.0.74484:DM:domain-match,osinfo=,sev=minr,malware_type=,
ale rtid=40,app=,spt=10,locations=,smac=XX:XX:XX:XX:XX:XX,header=,cnch
ost=FireEye-TestEvent.example.com,alertType=domain-match,shost=DM-
testing.fe-notify- examples.com,dst=127.0.0.20,original_name=, ap
plication=,sid=5432;30,malware- note=,objurl=,mwurl=,profile=,dmac=
XX:XX:XX:XX:XX:XX,product=Web MPS,sname=FireEye-TestEvent-SIG-
DM;FireEye-TestEvent- SIG-IM,fileHash=,dvchost=WebMPS, occurred=2014-
02-08T17:26:4 0Z,release=6.2.0.74484, link=https://WebMPS.localdomain/
event_stream/events_for_bot? ev_id=40,cncport=20002,src=169.250.0.1,d
pt=20,anomaly=,dv c=192.168.33.131,channel=FireEye-TestEvent Channel
1,action=notified,os=, stype=blacklist;bot- command,

The CSV fields map as follows:

FireEye field Splunk field
Type alertType (CEF required regular expression)
ID alertid
File Type Not sent (Not sent in CEF either)
Malware sname
Severity sev (More difficult to parse using CEF)
Time (UTC) occurred (CEF required regular expression)
Source IP src
Target IP dst
MD5 fileHash
URL (malware callback, domain match,
malware object) cnchost

URL (web infection) objurl
Location locations?

26 www.fireeye.com

Since Splunk can parse the Type and Time fields from the FireEye CSV output, we no longer
need the regular expressions. However, we will still need to use a case statement to combine
the MD5/URL field. Using the same process that we followed above, the following Splunk
search should yield a similar result to what we had before:

CSV:0:FireEye | eval UrlHash=case (alertType=="malware-
object",fileHash, alertType=="web-infection", objurl,
alertType=="malware-callback" OR alertType=="domain-match",cnchost)|
sort -alertid | table alertType,alertid,sname,sev,occurred,src,spt,
dst,dpt,UrlHash,locations | rename alertType as "Type", alertid as
"ID",sname as "Malware",sev as "Severity",occurred as "Occurred",src
as "Source IP",spt as "Source Port",dst as "Target IP",dpt as
"Target Port",UrlHash as "URL/Md5sum",locations as "Location"

Note: When parsing CSV, you get the severity field, but not the protocol field.

Since we are satisfied with this dashboard, we can take the same steps to save this search as a
dashboard panel. However, we will save this panel to our current FireEye dashboard, so we can
provide a comparison of the fields and layout.

Figure 20: Parsing a CSV event

Figure 21: Severity ratings from the FireEye dashboard

27 www.fireeye.com

Quick Differences
There are a few differences between these two formats (CEF and CSV). Most notably:

• Available fields
 - CEF provides the protocol field
 - CSV provides the severity field and location fields

• Time format
 - CEF is more human readable: Feb 08 2014 13:55:30 Z
 - CSV is more machine friendly: 2014-02-08T19:01:13Z

• Speed
 - CEF is slower due to using two regular expressions

Bottom line: Pick the format that makes the most sense for your organization.

Figure 22: Single FireEye dashboard with two panels showing the differences in exposed data between CEF and CSV events

28 www.fireeye.com

Sample FireEye Dashboards
Now that we have walked you through the process of creating a FireEye dashboard in Splunk,
we will provide some dashboards that we put together.

wMPS (NX)
Our step by step instructions already showed you how to create the Splunk searches for a
wMPS dashboard using CEF and CSV, but here they are again for convenience:

Alerts -> Alerts
CEF:
CEF:0\|FireEye | rex "(?i)\\|.*?\\|(?P<Type>[a-z]+\\-[a-z]+)(?=\\|)" |
rex "(?i)\|rt=(?P<Time>.+?)\s+\w+=" | eval UrlHash=case
(Type=="malware-object",fileHash, Type=="web-infection", filePath,
Type=="malware-callback" OR Type=="domain-match",cs5) | table Type
,externalId,cs1,Time,proto,src,spt,dst, dpt,UrlHash | sort –Time |
rename externalId as "ID",cs1 as "Malware",proto as "Protocol",src as
"Source IP",spt as "Source Port",dst as "Target IP",dpt as "Target
Port",UrlHash as "URL/Md5sum"

CSV:
CSV:0:FireEye | eval UrlHash=case (alertType=="malware-
object",fileHash, alertType=="web-infection", objurl,
alertType=="malware-callback" OR alertType=="domain-match",cnchost)|
sort -occurred | table alertType,alertid,sname,sev,occurred,src,spt,
dst,dpt,UrlHash,locations | rename alertType as "Type", alertid as
"ID",sname as "Malware",sev as "Severity",occurred as "Occurred",src
as "Source IP",spt as "Source Port",dst as "Target IP",dpt as "Target
Port",UrlHash as "URL/Md5sum",locations as "Location"

Alerts -> Callback Activity
CSV:
CSV:0:FireEye alertType="domain-match" | stats count(cnchost) as
"Events", distinct_count(src) as "Hosts", max(occurred) as "Last Seen"
by cnchost | table cnchost, locations, Events, Hosts, "Last Seen" |
rename cnchost as "C&C Server", locations as "Locations" | sort –"Last
Seen"

29 www.fireeye.com

Panels to Enhance Visibility
Now that you have a Splunk dashboard that replicates the FireEye Dashboard, let’s go further
by adding more panels that will enhance the network defender’s visibility into attacks. Splunk
has many visualization features that allow users to build charts and graphs for trending and
analytics.

wMPS (NX)
We can take some of the fields that we exposed in the FireEye dashboard above and create pie
charts to summarize key data points. This can help gauge if an organization is experiencing an
increase or lull in attacks, as well as identifying trends in malware, and Command and Control
(C2) ports. Each chart below is optional and may depend on the organization or security team’s
preferences.

Severity Pie Chart:
CSV:0:FireEye | chart count by sev Select pie chart

After typing in the search above, select the visualization tab, then pie chart. Click the “Save As”
button, select “Dashboard Panel”, click the “Existing” Button. Select the FireEye Dashboard and
provide a title of “Severity”.

Figure 23: The process of saving a severity pie chart to our FireEye dashboard

30 www.fireeye.com

Malware pie chart:
CSV:0:FireEye | chart count by sname Select pie chart

Top 20 most active source IPs:
CSV:0:FireEye | top limit=20 src Select pie chart

Top 20 most active target IPs:
CSV:0:FireEye | top limit=20 dst Select pie chart

Top 20 most active destination ports:
CSV:0:FireEye | top limit=20 dpt Select pie chart

Most active sensor:
CSV:0:FireEye | chart count by dvchost Select pie chart

After adding the desired panels, feel free to move the panels around and combine them on one
line by clicking the “Edit” button, then “Edit Panels”. Experiment by clicking and dragging the
top bar of the panel to rearrange the view. A screenshot below of our demo setup is just one
possible layout.

Figure 24: The FireEye Dashboard designed to enhance visibility

Conclusion
Using a FireEye device, a free demo of Splunk, and Google, we were able to investigate the
different syslog formats and replicate FireEye Dashboards in Splunk. In writing this guide, we
have discovered that there are many ways to tackle this problem because FireEye has robust
event notification and Splunk is flexible when ingesting these events. We are sharing this
information in hopes that you see even a fraction of what is possible. Who knows, it may save
you a little time as well. We would love to hear your feedback, sample FireEye dashboards, and
any pro-tips you have for consuming and displaying data in Splunk.

Email: Tony.Lee -at- FireEye.com
Linked-in: http://www.linkedin.com/in/tonyleevt

Special Thanks
Dennis Hanzlik
Dan Dumond
Ian Ahl
Dave Pany
Karen Kukoda
Leianne Lamb
Brian Stoner
Gunpreet Singh
Kate Scott

About FireEye
FireEye has invented a purpose-built, virtual machine-based security platform that provides real-
time threat protection to enterprises and governments worldwide against the next generation
of cyber attacks. These highly sophisticated cyber attacks easily circumvent traditional
signature-based defenses, such as next-generation firewalls, IPS, anti-virus, and gateways. The
FireEye Threat Prevention Platform provides real-time, dynamic threat protection without the
use of signatures to protect an organization across the primary threat vectors and across the
different stages of an attack life cycle. The core of the FireEye platform is a virtual execution
engine, complemented by dynamic threat intelligence, to identify and block cyber attacks in real
time. FireEye has over 2,500 customers across 65 countries, including over 150 of the Fortune
500.

FireEye, Inc. | 1440 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) | info@fireeye.com | www.fireeye.com

© 2014 FireEye, Inc. All rights reserved. FireEye is a registered trademark of
FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. SPT.CSS.EN-US.102014

About the Author
Tony Lee has more than ten years of professional experience pursuing his
passion in all areas of information security. He is currently a Technical
Director at Mandiant, a FireEye Company, advancing many of the network
penetration testing service lines. His interests of late are kiosk hacking,
post exploitation tactics, and malware research. As an avid educator, Tony
has instructed thousands of students at many venues worldwide, including
government, universities, corporations, and conferences such as Black Hat.
He takes every opportunity to share knowledge as a contributing author
to Hacking Exposed 7, frequent blogger, and a lead instructor for a series
of classes. He holds a Bachelor of Science degree in computer engineering
from Virginia Polytechnic Institute and State University and a Master of
Science degree in security informatics from The Johns Hopkins University.

	Introduction
	Current Integration Efforts
	Architecture Note
	FireEye LMS -> Splunk Architecture:
	Multiple FireEye LMS -> Splunk Architecture:
	FireEye CMS -> Splunk Architecture:

	Demo Setup
	Download
	Extract Splunk
	Start Splunk

	Creating Connectors
	Splunk Listener
	FireEye Data

	Examining a Raw Event
	How to Replicate a FireEye Dashboard
	Simple Searches
	Piping Search Results
	Using Regular Expressions
	Get the Event Type
	Get the Event Time

	Using Conditionals
	If statement
	Case statement

	Sorting Searches
	Multiple LMS sort by Time
	Renaming the Columns
	Save As Dashboard Panel
	Time frames

	Parsing Other Formats
	Quick Differences

	Sample FireEye Dashboards
	wMPS (NX)
	Alerts -> Alerts
	CEF:
	CSV:

	Alerts -> Callback Activity
	CSV:

	Panels to Enhance Visibility
	wMPS (NX)

	Conclusion
	About the Author
	Special Thanks

	About FireEye

