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 First Course in VHDL Modeling and FPGA Synthesis of Digital Systems 

 

Abstract 

 

Digital Systems is a core course taken by Electrical Engineering, Computer Engineering and 

Computer Science students worldwide. In this class students learn the building blocks of digital 

systems and how to put them together to reach larger systems. For implementation purposes, 

students additionally learn a hardware description language such as VHDL to model their 

circuits, and then use FPGA chips, cutting-edge technology, to physically build and test their 

circuits described in VHDL. In this paper we address the challenges faced in teaching VHDL 

modeling and FPGA synthesis in such an introductory course, and then share our experience in 

teaching this part of the course. We explain the topics covered in class, we show our lecture 

slides as well as amount of lecture time to present them to students. Class performance has been 

encouraging. 

 

Keywords: Design of Digital Systems, FPGA, Implementation of Digital Systems, VHDL 

 

Introduction 

 

Digital Systems is a core course taken by Electrical/Computer Engineering (ECE) as well as 

Computer Science (CS) students worldwide. This course is a must to understand the basics of 

hardware architecture of revolutionizing microprocessors that are increasingly and inevitably 

entering our lives especially in the era of IoT, the internet of things. 

Digital Systems has 3 one-hour lecture and one 2-hour lab per week in our ECE department. Our 

academic terms are 10 weeks long. Number of students in this class varies each term, but 15 to 

25 should be a reasonable range to describe our class size in general. In this class, “laboratory 

work” is an irreplaceable portion, where students learn how to physically build circuits. This may 

be done in different ways: Students place off-the-shelf chips on a breadboard, and wire them up 

manually. The more sophisticated the circuit is, the more chips, time and space are used.  Or, 

students use cutting edge technology, Field Programmable Gate Arrays (FPGAs), but first they 

should learn a hardware description language, e.g. VHDL, to write the right code to describe 

their circuit. Students then use CAD tools to compile and map their code into an FPGA chip, 

which amazingly takes only a couple seconds! In a 10-week academic term, our students 

perform 9 lab assignments out of which 7 assignments are VHDL/FPGA-based. 
  

Teaching a first course in VHDL to sophomores is a challenge. Unlike software programming 

languages, such as C, that ECE students learn in the first year of college, VHDL is a so-called 

concurrent language; students should understand what concurrency means in this context. 

  

There is a second reason that makes it a challenge to incorporate VHDL in Digital Systems: 

VHDL is added on top of a course that used to be taught in one academic term by itself. 

Therefore, topic scheduling becomes more crucial especially if academic terms, such as ours, are 

only 10 weeks long. 

 



VHDL is a big language; so the third challenge in teaching VHDL is to decide what to teach. We 

have crafted a 9-chapter manuscript for “Digital Systems”. There are two parts in each of 

Chapters 3 through 9, and one part in each of Chapters 1 and 2.  Students learn digital systems’ 

theory in Chapters 1 and 2 as well as Parts I of the rest of the chapters. This is basically what we 

used to teach before we added the VHDL portion to the course. VHDL modeling and FPGA 

synthesis of digital systems are covered in Parts II of Chapters 3 through 9. Our paper 

focusses on the topics and their specific order to teach this portion. (Please note that VHDL 

modeling and FPGA synthesis of digital circuits is only one portion of this course. So that 

students get up to 26% for their lab work, up to 17% for the VHDL portion and up to 57% for the 

non-VHDL portion.) We teach the nine chapters in the order illustrated in the following table. 

Note that Chapter 5 is covered last to reach the “sequential logic”, and therefore be able to do 

more advanced assignments as soon as possible.  

 

 
 

As shown in the above table, Part II of each chapter is taught after Part I of that chapter has been 

covered. Therefore, the VHDL portion in our class is distributed across the whole academic 

term. For this portion we spend almost 135 minutes of our class time. Additionally, students 

Subtopics Slides No 

Chapter 1 Digital Circuits, Binary Numbers and Truth Tables 

Chapter 2 Gates: Basic Building Blocks of Digital Circuits 

Chapter 3, Part I Switching Algebra  

and 

Analysis and Design of Digital Circuits 

Chapter 3, Part II Getting Started 

Computer Aided Design of Digital Circuits 

VHDL Modeling and FPGA Synthesis of Digital Circuits 

Chapter 4, Part I Logic Minimization Using Karnaugh Maps 

Chapter 4, Part II Hierarchical Designs and Structural Modeling 

Chapter 6, Part I Frequently Used Digital Circuits 

Chapter 6, Part II Behavioral Modeling of Digital Circuits 

Selected Signal Assignments and Conditional Signal Assignments 

Chapter 7, Part I Memory Cells and Analysis of Sequential Circuits 

Chapter 7, Part II Behavioral Modeling of Digital Circuits 

Process Constructs 

Chapter 8, Part I Design of Sequential Circuits 

Chapter 8, Part II VHDL Modeling of Finite State Machines 

Chapter 9, Part I Frequently Used Sequential Circuits 

Chapter 9, Part II Register Transfers 

The Backbone of Digital Systems 

Chapter 5, Part I Binary Number Systems and Binary Arithmetic 

 



spend some 15 minutes on student-oriented class activity: students are provided with a class-

exercise packet; we stop lecturing at some points, and ask students to work on one or more 

questions pertaining to the current lecture subtopic to develop a better understanding of the 

lecture material. We specifically encourage them to either teach each other or learn from each 

other. We have seen firsthand how enthusiastically students participate in this teaching/learning 

activity. In a recent survey, we asked a class of 14 students for their opinions about the following 

statement: 

 
“Class Exercises” are useful. They are a good learning aid. They also help me evaluate 
myself. 

 

The survey results are shown in the following table: 
 

 
We also spend some time on the pre-labs. 

 

Our lecture topics are of course found (more or less) in other resources as well [1]-[5]. However, 

we believe that the sequence of materials, the way that they are presented (especially how  they 

start and  how end) and interleaved with the lab assignments, and the  amount of time spent on a 

subtopic can make a difference. And the purpose of this paper is to share our experience with 

other faculty members who are new to this course, or they feel that their current teaching 

approach is not efficient enough. Our work is similar to many other works in the literature as 

pointed out in the next section. One major difference between these works and our work is that 

we focus more on the teaching details of VHDL rather than explaining the tools that are used in 

the lab and how they work, or the history of course development, etc. 

 

We have had productive class based on our approach. Students’ test results are encouraging. 

Moreover, our students have done excellent work (in general) on the last and challenging lab 

assignment to be explained in this paper. 

 

The rest of the paper is organized as follows: Some previous work is reviewed first. We then go 

over our lecture materials; we also take a quick look at our lab assignments, and then will present 

some test results. The last section is the conclusion. 

 

Previous work 

 

Pang proposes an integration of online tools for digital circuit design to provide students with an 

active learning environment [6]. Logicly, Multisim, Modelsim and a FPGA-based design 

software are considered in this work, where Verilog is used as the hardware description language 

for FPGA synthesis. However, the topics covered to teach this language are not presented in the 

paper. In [7] Fida El-Din and Krad use the same CAD tool and development board as we use to 

add a lab project to a Computer Architecture and Organization course. This project is about 

modeling, simulation and FPGA synthesis of an 8-bit Arithmetic and Login Unit. However, the 

paper does not show the lecture materials to teach VHDL. Wang explains his VHDL teaching 

 Strongly Agree Agree Neutral Disagree Strongly Disagree 

No of students out of 14 8 4 1 1 0 

 



experience in [8]. The challenge is his work is also to teach a minimum subset of VHDL in an 

introductory course; however, the topics and therefore the order they are taught are not shown in 

this paper. Additionally and unlike this work, we do not teach variables in our introductory 

course as we believe that this concept will cause confusion while it is not necessary to know 

variables to perform the lab assignments of this course. In [9] Wang and Goryll describe their 

Online Digital Design Course. They use a CAD tool called Logisim [10]. Logisim is an 

educational simulator for digital circuits. It takes graphical description of hierarchical circuits 

through a user friendly interface. We have, however, used CAD tools that are widely used in 

academia. Vera et al explain the challenges they faced to set up a reconfigurable lab that was 

used to teach students a first course in digital design [11]. They explain the lab work, but 

unfortunately the lecture topics and how they are presented are not provided. 

 

Lecture materials 

 

In this section, we will present the sequence of topics, the slides under each subtopic and 

approximate amount of time spent on each subtopic to cover VHDL modeling and FPGA 

synthesis of digital circuits in this introductory course. Please note that before our students are 

exposed to VHDL modeling of digital circuits, they learn the concepts and non-VHDL design of 

the digital circuits. Additionally, they spend two hours (or more) per week in the lab to go over 

the lab assignments and do the lab assignments in which VHDL and FPGAs are used from week 

3 through week 10. We also use part of our lecture time to better prepare for the lab assignments. 

 

The following table shows the subtopics, slide numbers for each subtopic and the approximate 

duration of lecture for each subtopic. As shown in this table, there are 100 slides with the total 

lecture time of some two hours to cover VHDL modeling and FPGA synthesis of digital circuits. 

The 100 slides are shown at the end of this section. 

 

 

Subtopics Slides No Lecture Duration 

(minutes) 

Getting Started: HDL and FPGAs 1:7 9 

Entity and Architecture: Simple Signal Assignments; vector 

and non-vector signals 
8:14 9 

Structural Modeling and Hierarchical Designs 15:34 30 

Behavioral Modeling 

Selected and Conditional Signal Assignments 
35:56 20 

Behavioral Modeling 

Process Constructs: If Then Else and Case statements 
57:70 22 

VHDL Modeling of State Machines 71:82 20 

Register Transfers: The Backbone of Digital Systems 83:100 25 

Total  lecture time 100 slides 135 

Generate Statements and Generic Constructs (Optional reading 

and lab assignment) 

-- -- 

 



The 100 lecture slides are presented in the appendix at the end of the paper. Please note that we 

have made some minor changes to the lecture PowerPoint slides to get a better fit for this paper. 

We have also added some text for clarification purposes. 

 

From our experience in teaching this class for many years, we recommend that the following two 

points should always be taken into consideration in order to avoid common confusions: 

 

1- Students should frequently be reminded that logic gates in FPGAs are realized using Look-

Up Tables (LUTs), unlike semicustom or full-custom VLSI. See Slide 4. 

 

2- Students should be encouraged and convinced to look at different pieces of a VHDL code as 

different pieces of hardware. This will significantly help them better understand the 

concurrency that naturally exists in this language.  

 

As a final comment before reviewing the slides, we would like to mention that in order to further 

minimize the material covered in this introductory course, the following two topics may be 

omitted without significantly affecting students’ ability to model complex digital circuits in this 

introductory course: Selected Signal Assignments; Case Statements. 

 

Lab assignments 

 

Week 1 (basic concepts on discrete and manual logic):  

Truth Tables and Voltage Tables 

Analysis of Simple Digital Circuits 

 

Week 2 (basic concepts on discrete and manual logic, cont’d):  

Gates: 

Basic Building Blocks of Digital Circuits 

 

Weeks 3: 

Switching Algebra and Analysis and Design of Digital Circuits 

Getting Started: Altera Quartus II Software, DE2 Board and 

ENTITY, ARCHITECTURE, and Simple Signal Assignments in VHDL 

 

Week 4:  

Logic Minimization using Karnaugh Maps 

Hierarchical Designs and Structural Modeling 

Getting Started with Simulation of Digital Circuits (ModelSim) 

 

In this lab, students structurally model, implement and test a 4-bit hierarchical full comparator. 

 

Week 5: 

Behavioral Modeling of Digital Circuits 

Selected Signal Assignments and Conditional Signal Assignments 

 



In this lab and after an introductory assignment, students build a min-max circuit. They also 

build the following circuit: 

 

The circuit takes eight request lines and determines two of them that have the highest priorities 

among all the asserted inputs. 

  

Fostering an Entrepreneurial Mindset through a Jigsaw-Puzzle Model 

In this lab, students are provided with a library of components or puzzle pieces as well as the user 

guide of a product and possibly some other reading material. The user guide explains how the 

product works. The library contains all the necessary puzzle pieces to build the product. Students 

will go over the user guide to understand the underlying product. Then considering what they 

have available in the library, students will design the product by putting the puzzle pieces 

together. Once they come up with an initial idea and are done with their first draft of the design, 

students will collaborate with others who work on the same product to resolve all the possible 

issues and come up with the functional product. We have recently crafted a paper to report our 

novel idea of Jigsaw-Puzzle model, and its implementation. The paper is currently under review.  

 

Week 6:  

D-latches and D-FFs, and Analysis of Finite-State Machines 

Behavioral Modeling of Digital Circuits 

Process Statements 

 

Week 7: 

VHDL Modeling of Finite State Machines 

 

Students model, implement and test a sequence detector. They also model, implement and test an 

LED controller that turns an LED on and off through one pushbutton. The system frequency is 

50 MHz. 

 

Weeks 8 through 10: 

Fostering an Entrepreneurial Mindset through a Producer-Customer Model. In the rest of 

this section we will briefly go over the idea that we developed and used in this lab assignment. 

Interested readers may refer to our recent paper that was published based on this work [12]. 

 

Students work in groups of 3 to 5. Each team will play the role of a customer of a product as well 

as the producer for another product. There are two different types of products: 

Some of the customers are provided with defective products each with one or more undisclosed 

“Implementation Deviations from the Specification”, i.e. a product that does not work as it 

should. The customer will then critically examine the product to identify the discrepancies 

between the product’s behavior and the product’s user guide. The discrepancies will then be 

discussed with a producer who will understand the voice of the customer and work on the 

defective product to eventually locate the discrepancies and fix the product to match the user 

guide. The producer will also resolve the customer’s possible misunderstandings.  

 

The other customers each will receive either a performance-improvable or a size-improvable 

product, i.e., a product that can be improved to get a faster product or to get a smaller product, 



respectively.  The customer will then critically examine the “how it works” of the product to see 

how it can be improved in the relevant domain: performance or size.  The customer will then 

discuss their findings with a producer who will understand the voice of the customer and work 

on the improvable product to eventually improve it. The producer will also resolve the 

customer’s possible misunderstandings. 

 

Test results 

 

Students are encouraged to prepare and use a double-sided cheat sheet on the tests. 

 

Twenty students took the following test: 

 

Look at the transition table shown below. A is the input, Y is the output and Q1 Q0 are the state 

variables. Note: Binary (not symbolic) states are used in this table.  

 
 
The following is an incomplete VHDL code to describe the above table. Read the code carefully 

and then fill in the blanks to complete the code: 

ENTITY fsm_test IS  

 PORT  (A, Clk   : IN STD_LOGIC;  -- A is input from outside world 

          Y  : OUT  STD_LOGIC  -- Y is output to outside world 

  );    

END fsm_test; 

ARCHITECTURE Behavior OF fsm_test IS 

 -- Note: In this question, we use binary states (not symbolic states): 

SIGNAL  Current_Q, Next_Q  : STD_LOGIC_VECTOR (1 DOWNTO 0);  

BEGIN 

-- Output Y is generated here: (More space provided on real test)  

 

-- Next states are generated here. Note: states are in binary (not symbolic):   

Q
n+1

 
 

00 

11 

01 

10 

0 1 
A 

00 

11 

01 

11 

10 

00 

00 

11 

Q1Q0 
A 

0 1 

1 

0 

0 

1 

0 

0 

1 

1 

Y 
 



PROCESS (Current  , K                    )  

 BEGIN 

  CASE Current_Q IS    (More space provided on real test) 

   WHEN  “00” =>  -- Use an IF statement here: 

   … 

WHEN  “01” => 

   … 

   WHEN  “10” =>    -- You do not have to fill in the following blank 

   <= A; END IF;  

   WHEN OTHERS =>  -- You do not have to fill in the following blank 

 

  END CASE; 

 END PROCESS;  

 -- States are updated here: Fill in the blank. (More space provided on real test) 

 PROCESS (Clk) 

 BEGIN 

 ... 

  END IF; 

 END PROCESS; 

END Behavior; 

 

The students’ test scores are summarized in the following table: 

 
Fifteen students took the following test: 

 

Question: A function table for a 4-bit counter/shifter is shown below. Write a neat, complete 

and indented VHDL code to behaviorally describe this counter/shifter.  

 

Score  100% 87% 80% weak 

No of students out of 20 13 2 4 1 

 



 

Notes:  

Call the serial-in input SI (which is used in the shift mode). 

Negation sign, ~, has not been appended to active-low inputs, if any. 

Do NOT use time consuming names such as LEDR or KEY.  

Use the signal names shown in the table. 

Use the following line as it is:  

IF clk'EVENT AND clk = '1' THEN 

 

This is to help you write a more readable code in a less error-prone format! 

The students’ test scores are summarized in the following table: 

 

 
 

Twenty two students took the following test: 

 

Question: Write a complete, legible and indented VHDL code for a counter with the following 

counting sequence: 

… 000, 001, 010, 011, 110, 111, 000, 001, 010 … 

The students’ test scores are summarized in the following table: 

 

Twenty eight students took the following test: 

 

Question: A digital circuit is shown below. Write a neat, complete and indented VHDL code to 

behaviorally describe this circuit.  

Score  100% 96% 90% 80% and below 

No of students out of 22 6 5 4 7 

 

Score  100% 98% 95% 92% 80% weak 

No of students out of 15 2 2 3 3 2 3 

 

R SE CE Next State Mode 

1 X X 0000 Reset 

0 0 X Shift to right by 1 bit Shift 

0 1 1 Current state + 1 Count 

0 1 0 Current state Hold 

 



 

ENTITY Test6 IS    (more space on the real test) 

… 

END Test6; 

ARCHITECTURE Behavior OF Test6 IS 

BEGIN 

PROCESS (                             ) 

BEGIN  

IF clk'EVENT AND clk = '1' THEN -- Leave this line as it is. (More space on real 
test) 

… 

END IF; 

END PROCESS;   

END Behavior; 

 

The students’ test scores are summarized in the following table: 

 
Eleven students took the following test: 

 

Question: A logic diagram for a 4-bit counter is illustrated here. Write a neat, complete and 

indented VHDL code to behaviorally describe this counter. 

 
Notes:  

Negation sign, ~, has not been appended to active-low inputs, if any. 

Score  100% 98% 90% 80% and below 

No of students out of 28 16 2 1 9 
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       Note:  
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Do NOT use time consuming names such as LEDR or KEY. Use the I/O names shown in the 

diagram. 

 

In your VHDL code use the following line as it is:  

IF clk'EVENT AND clk = '1' THEN 

 

Where clk is the clock signal. This is to help you write a more readable code in a less error-prone 

format! 

 
The students’ test scores are summarized in the following table: 

 
 

Conclusion 

 

In this paper we shared our experience in developing a first course in VHDL modeling and 

FPGA synthesis of digital circuits that result in a so-called 2-dimentional course. The first 

dimension is the traditional design of digital circuits, in which different components are drawn 

on paper, and properly interconnected. This can then be transferred onto a breadboard using off-

the-shelf chips wired manually. The second dimension of this course is how to use FPGAs, 

cutting edge technology, instead of discrete components. We addressed the three major 

challenges that an instructor normally faces in developing such a course. Our achievements in 

this course design (that can be easily used by our colleagues) are summarized as follows: 

 

• What lecture topics to choose  

• What order to choose to cover the lecture topics 

• How much time (approximately) to spend on each topic 

Score  100% 98% weak 

No of students out of 11 5 5 1 
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1 

4 
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4 

CE 

+1 
 

 

4 

 Register clk

4 



• What lab topics to choose and in what order to perform them in order to keep them 

synchronized with the lecture topics. 

 

We finally presented students’ test results, which are encouraging. However, we aim for 

continuous improvement. We see that some students are not very comfortable with preparing 

good cheat sheets. Some may even do not appreciate how useful a cheat sheet is to answer test 

questions better and faster, or they may not realize how cheat-sheet preparation by itself provides 

students with a deeper understanding of the concepts. A couple of students may occasionally 

forget to prepare and bring one. Writing a good cheat sheet is a skill, and we plan on spending 

some time to help students improve this skill. We believe that cheat sheet preparation is the 

counterpart of what we do in professional ASIC design: When we decide to develop a code, we 

do not normally do it from scratch; we look at the codes that we have already designed and 

tested, and then choose the closest one to what we need in the current project. We then make the 

necessary changes to tailor the (old) code to our needs. We believe that this step will greatly 

improve our students’ performance and their test results. 
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Appendix: Lecture Slides 



 

 

ENTITY light IS  

PORT (A, B: IN     STD_LOGIC;  

                  L: OUT  STD_LOGIC  

            ); 

END light; 

ARCHITECTURE algebraic OF light IS 

BEGIN 

  L <= (A AND NOT B) OR (B AND NOT A); 

END algebraic; 

 

Two switches control one light independently. 

 

 

 

                                                 

  

                                                

 

L = A’ . B + B’ . A 

i.e., use a Simple Signal Assignment: 

L <= (NOT A AND B) OR (NOT B AND A); 

 

 

ENTITY triple_nand IS  

PORT 

   (A2, A1, A0, B2, B1, B0:  IN      STD_LOGIC;            

                          Z2, Z1, Z0:  OUT   STD_LOGIC 

    ); 

END triple_nand; 

 

ARCHITECTURE Algebraic OF triple_nand IS 

BEGIN 

   Z2 <=  A2 NAND B2; 

   Z1 <=  A1 NAND B1; 

   Z0 <=  A0 NAND B0; 

END Algebraic; 
 

 

 

 

 

 

 

Entity and Architecture  
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Vector and non-vector Signals 

                                  

                 

 

 

 

Simplified view of FPGAs 

 

 

Vectors 

 

Write a VHDL code to describe the following gates: 
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1-bit partial comparator 
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4-bit partial comparator 
 

You may repeat 1-bit comparator 4 times � 

See next slide. 

Time consuming and error prone especially for large 

circuits. 

 

Structural Modeling: Introduction 
 

-- 1-bit partial comparator 
ENTITY comp_1 IS  

PORT (A, B: IN STD_LOGIC; 

                 Y: OUT STD_LOGIC 

           ); 

END comp_1; 

 

ARCHITECTURE Algebraic OF comp_1 IS 

   SIGNAL T, U, W: STD_LOGIC; 

BEGIN 

   Y <= W NAND U; 

   W <= B NAND T; 

   U <= A NAND T; 

   T <= A NAND B; 

END Algebraic; 

 

Y0 <= W0 NAND U0; 

W0 <= N0 NAND T0; 

U0 <= M0 NAND T0; 

T0 <= M0 NAND N0; 

Y1 <= W1 NAND U1; 

W1 <= N1 NAND T1; 

U1 <= M1 NAND T1; 

T1 <= M1 NAND N1; 

Y2 <= W2 NAND U2; 

W2 <= N2 NAND T2; 

U2 <= M2 NAND T2; 

T2 <= M2 NAND N2; 

Y3 <= W3 NAND U3; 

W3 <= N3 NAND T3; 

U3 <= M3 NAND T3; 

T3 <= M3 NAND N3; 

MEQN <= NOT(Z3 OR Z2 OR Z1 OR Z0)’; 

 

 

 

 

 

Note: 
 

Z <= A NAND B; 

 

is equivalent to 

 

Z(2) <= A(2) NAND B(2); 

Z(1) <= A(1) NAND B(1); 

Z(0) <= A(0) NAND B(0); 

 

You may generalize it to longer vectors. 

 

Easier way; use the following shorthand: 
 

 

 

 

 

ENTITY triple_nand IS  

PORT    

  (A, B:  IN     STD_LOGIC _VECTOR (2 DOWNTO 0);    

       Z :  OUT STD_LOGIC _VECTOR (2 DOWNTO 0)     

  ); 

END triple_nand; 

 
ARCHITECTURE algebraic OF triple_nand IS 

BEGIN 

   Z <= A NAND B; 

END algebraic; 
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Structural Modeling 
 

Reuse (instantiate) components as many times as 

needed. 

You need to interconnect them properly. 

See next slide. 

 
Note: 

Z0-Z3 

Intermediate signals 

Declare them in architecture 

 

M0-M3, N0-N3, MEQN 

Formals or Interface signals 

Declare them in entity 

 

 

Component: 

 

 

 

 

 

 
Formals: Inputs/Outputs of component 

Instantiate: copy and paste component into new 

design 

Instance: resulting copy 

Actuals: Inputs/Outputs of instance (see next slide) 

 

 

Use the 1-bit partial comparator to design a 4-bit 

partial comparator (Structural Modeling) 

 

ENTITY comp_4h IS   

PORT  

   (M, N   : IN      

                         STD_LOGIC_VECTOR (3 DOWNTO 0);    

   MEQN : OUT   

                         STD_LOGIC 

    ); 

END comp_4h; 

 

 

 

Graphical version of entity (logic symbol) 
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ARCHITECTURE Structure OF comp_4h IS 

COMPONENT comp_1    

   PORT (A,   B:    IN      STD_LOGIC;     

                      Y:    OUT  STD_LOGIC   

               ); 

END COMPONENT; 

 

SIGNAL Z: STD_LOGIC_VECTOR (3 DOWNTO 0); 

   

BEGIN 

   First_Comparator: comp_1    

   PORT MAP   (M(0), N(0), Z(0));   -- Actuals 

    

 

 

 

This needs a new component, nor4. 

nor4 will be instantiated in architecture. 

BEGIN 

   First_Comparator: comp_1    

   PORT MAP   (M(0),  N(0), Z(0));  

     

   Second_Comparator: comp_1 

   PORT MAP   (M(1), N(1), Z(1)); 

 

  Third_Comparator: comp_1 

   PORT MAP   (M(2), N(2), Z(2)); 

  

   Fourth_Comparator: comp_1 

   PORT MAP   (M(3), N(3), Z(3)); 

 

   norGate: nor4  

   PORT MAP (Z(0), Z(1), Z(2), Z(3), MEQN); 

-- Note: Component nor4 is described on next slide. 

 

END Structure; 

 

BEGIN 

   First_Comparator: comp_1    

   PORT MAP (M(0),  N(0), Z(0));    

  

   Second_Comparator: comp_1 

   PORT MAP (M(1), N(1), Z(1)); 

 

   Third_Comparator: comp_1 

   PORT MAP (M(2), N(2), Z(2)); 

  

   Fourth_Comparator: comp_1 

   PORT MAP (M(3), N(3), Z(3)); 

 

   MEQN <= NOT (Z(3) OR Z(2) OR Z(1) OR Z(0)); 

END Structure; 

-- Note: The NOR gate is described algebraically and not 

structurally. 

-- The NOR gate is described structurally in next slide. 

 

 
ARCHITECTURE Structure OF comp_4h IS 

   COMPONENT comp_1    

   PORT (A, B:  IN     STD_LOGIC;     

                    Y:  OUT  STD_LOGIC   

               ); 

END COMPONENT; 

 

COMPONENT nor4    

   PORT (A, B, C, D:    IN      STD_LOGIC;     

                              Y:    OUT STD_LOGIC  

               ); 

END COMPONENT; 

 

   SIGNAL Z: STD_LOGIC_VECTOR (3 DOWNTO 0);   
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Hierarchical Designs 

 

 

 

 

 

 

 

Simple Signal Assignments work fine for simple 

circuits. See next slide. 

 

 

 

--  nor4 is described here: 

 
ENTITY nor4 IS   

PORT (A, B, C, D: IN      STD_LOGIC;     

                           Y: OUT  STD_LOGIC 

            ); 

END nor4; 

 

ARCHITECTURE algebraic OF nor4 IS 

BEGIN 

    Y <= NOT(A OR B OR C OR D):   

END algebraic; 

 

 

 

See how interconnections are made between 

instances, e.g., the output of first comparator is 

called Z(0), so is the first input of the nor gate. 
 

 

 

 

 
Conditional Signal Assignments 

 
and 

 

Selected Signal Assignments 
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Can we still use simple signal assignment? 

 

 

 

 

 

 

 

 

 

 

Simple Signal Assignment � 

 
Logic function: 

 

 

 

 

 

 

 

 

 
M <= (NOT S AND D0) OR (S AND D1); 

Simple Signal Assignment ☺ 

 

Conditional Signal Assignment 

 

 

 

 

 
 

 

M <=  A  WHEN S =  “00” ELSE    -- Use “ ” for vectors.  

           B  WHEN S =  “01” ELSE    

           C WHEN S = “10”  ELSE   

           D;   

-- S is a 2-bit vector comprised of S(1) and S(0). 

 

 

Truth table: 
 

 

Describe a 2-input single-bit mux: 

 

Conditional Signal Assignment 

 

 

 

 

 

 

 

 
M <= D1 WHEN S = ‘1’ ELSE D0; 
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How to Describe Truth Tables? Example: 

 

 

 

 

 

 

 
WITH S SELECT   

 M <=  A  WHEN “00”, 

  B  WHEN  “01”, 

  D  WHEN  OTHERS; 

 

 

 

Shorthand 

 

Same truth table: 

 

WITH ST SELECT   

   

  MJF <=  ‘0’  WHEN “000” | “001” | “010” | “100”, 

     ‘1’  WHEN OTHERS; 

 

Selected Signal Assignment 

 

 

 

 

 

 

 

 

 
WITH S SELECT   

 M <=  A  WHEN “00”, 

  B  WHEN  “01”, 

  C  WHEN “10”, 

  D  WHEN  OTHERS; 

 

 
Example: 

 

 

 

 

 
 

 

M <=  A WHEN  S = “00”  ELSE    

 B WHEN  S =  “01” ELSE   

 D;  

 

 

 

 
WITH ST SELECT   

   

 MJF <=  ‘0’  WHEN “000”, 

  ‘0’  WHEN  “001”, 

  ‘0’ WHEN “010”,  

  ‘1’  WHEN  “011”, 

  ‘0’  WHEN “100”, 

  ‘1’  WHEN “101”,  

  ‘1’  WHEN  “110”, 

  ‘1’  WHEN  OTHERS; 

 
-- Note: Order is not important. 
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Row D1 D0 S mjf 

0 0 0 0 0 

1 0 0 1 0 

2 0 1 0 0 

3 0 1 1 1 

4 1 0 0 0 

5 1 0 1 1 

6 1 1 0 1 

7 1 1 1 1 

 



 

 Priority Encoders 
Example: 8 to 3 active-high 

 

 

 

 
 

 

 

N <= “111” WHEN  R(7)  = ‘1’ELSE 

“110“ WHEN  R(6)  = ‘1’ ELSE  

“101”  WHEN  R(5)  = ‘1’ ELSE 

“100” WHEN  R(4)  = ’1’ ELSE 

“011“ WHEN  R(3)  = ‘1’ ELSE  

“010”  WHEN  R(2)  = ‘1’ ELSE 

“001” WHEN  R(1)  = ’1’ ELSE 

“000”; -- Order IS Important 

Shorthand for repeated bits 

Example  
16-bit data, data_16, is sign extended, and becomes 32-bit 

data:  

data_32 <= (31 DOWNTO 16 => data_16(15)) & 

data_16; 

 

 

Use OTHERS to create a vector with repeated bits: 

Example:  
The following creates a 16-bit vector all zeros: 

zero16 <= (OTHERS => '0'); 

 

 

Now 

order is important! 
 
     

 

L <=  “0000” WHEN  EN_N  = ‘1’ ELSE 

“0001“ WHEN  S = “00”       ELSE  

“0010”  WHEN  S = “01”      ELSE 

“0100” WHEN  S =“10”        ELSE 

“1000”; 

 

  

 

  

 
Binary Decoders 

 
Example: 2 to 4 active-high binary decoder with an 

active-low enable 

 

 
 

 
Concatenation operator, & 

 

Example 

N <= D (0) & D (3 DOWNTO 1);  

D = 1010 

N = 0101  

 

Example 

M <= K (4 DOWNTO 2) & L (3 DOWNTO 1); 

K = 100101 

L =  001001 

M = 001100 
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N 

 No_Req 
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x x x 1 0 0 0 0 0 1 1 0 

x x 1 0 0 0 0 0 0 1 0 0 

x 1 0 0 0 0 0 0 0 0 1 0 

1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 x x x 1 
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ENTITY mux4_1 IS  

PORT (A:  IN   STD_LOGIC_VECTOR(3 DOWNTO 0); 

          Sel:  IN   STD_LOGIC_VECTOR (1 DOWNTO 0); 

           M: OUT STD_LOGIC 

            ); 

END mux4_1; 

 

 

 

 
Process Constructs 

 

IF THEN ELSE 

and 

CASE Statements 

 

 

ENTITY d_latch IS  

PORT ( D, clk: IN             STD_LOGIC; 

     Q: BUFFER   STD_LOGIC 

             ); 

END d_latch; 

 

 

 

Logical and Relational operators may be combined: 

 

Examples 

 

 GT <= '1'  WHEN  A1 > B1 AND B2 < A2 ELSE  '0'; 

 

  y  <= '1'  WHEN  (a AND NOT b) = '1'  ELSE '0'; 

 

   z  <= '1'  WHEN  a = '1' AND b = '0'   ELSE    '0'; 

 

   y  <=  '1'   

               WHEN  ((a AND NOT b) = '1') AND (A1 < B1) 

 

   ELSE  '0'; 

 

 

 
Comparator 

AGTB  <= '1'  WHEN  A > B   ELSE    

                   '0'; 

 

Other relational operators: 

• Equal   = 

• Not equal  /= 

• Less than        < 

• Less than or equal to <= 

• Greater than  > 

• Greater than or equal to >= 

 

 

 

ARCHITECTURE Behavior OF mux4_1 IS 

BEGIN 

PROCESS (A, Sel)     

BEGIN 

  IF Sel = "00" THEN M <= A(0);  

    ELSIF  Sel = "01" THEN M <= A(1); 

    ELSIF  Sel = "10" THEN M <= A(2); 

    ELSE                              M <= A(3); 

 END IF; 

END PROCESS;  

END Behavior;  
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ENTITY dmem IS  

PORT ( D, clk : IN STD_LOGIC;  

 Q : OUT STD_LOGIC 

            ); 

END dmem; 

 

ARCHITECTURE Behavior OF dmem IS 

BEGIN 

  PROCESS (clk) 

  BEGIN 

    IF clk’event AND clk = '1' THEN  Q <= D;  

 

    ELSE                                               Q <= Q;  

  

 END IF; 

 END PROCESS;  

END Behavior; 

Logic Element 

LUT plus a Flip Flop 

 

 

ARCHITECTURE Behavior OF dmem IS 

BEGIN 

  PROCESS (clk, R)  -- R is asynchronous  

   

  BEGIN 

    IF R = '1' THEN        Q <= '0'; 

      ELSIF clk'event AND clk = '1' THEN  Q <= D; 

      ELSE                                                      Q <= Q; 

    END IF; 

  END PROCESS;  

END Behavior; 

 

 
 

 

Note: You may leave this out: 

 

ELSE       Q <= Q; 

 

 

 

 

 

 

 

 

 

ARCHITECTURE Behavior OF d_latch IS 

BEGIN 

  PROCESS (D, clk)   

  BEGIN 

     IF clk = '1' THEN  Q <= D;   

     ELSE        Q <= Q;    

    END IF; 

  END PROCESS;   

END Behavior;  

 

 

 

 

 

Note: You may leave this out: 

 

ELSE       Q <= Q; 
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ARCHITECTURE Behavior OF mux4_1 IS 

BEGIN 

  PROCESS (A, Sel) -- Sensitivity list 

  BEGIN 

    CASE  Sel IS 

        WHEN         "00" => M <= A(0); 

        WHEN         "01“ => M <= A(1); 

        WHEN         "10" => M <= A(2); 

        WHEN OTHERS => M <= A(3); 

    END CASE; 

  END PROCESS;  

END Behavior; 

 

 

 

Case Statement 
 

Example: 4-input one-bit Multiplexer 

 

 

 

 

 

 

 

 
ARCHITECTURE Behavior OF dmem IS 

BEGIN 

  PROCESS (clk, R)  -- R is asynchronous  

  BEGIN 

    IF R = '1' THEN Q <= '0'; 

    ELSIF  clk'EVENT AND clk = '1'  THEN  

       IF C_n = '0' THEN Q <= '0'; 

       ELSE   Q <= D;  

       END IF; 

 

    ELSE                                   Q <= Q; 

 

    END IF; 

 END PROCESS;  

END Behavior; 

 

 

 

 

R, reset input is asynchronous. 

So check it before Clock. 

See next slide. 
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Reminder 

 
 

 

 

 

 

ENTITY fsm_design IS  

  PORT ( data, R_n, Clk: IN STD_LOGIC; 

              found: OUT STD_LOGIC 

             );    

  END fsm_design; 

ARCHITECTURE Behavior OF fsm_design IS 

  TYPE  state_type    IS   (r, a, b, c);        

  SIGNAL Current_Q, Next_Q: State_type; 

BEGIN  -- Continues on next slides … 

-- There are 3 parts in the architecture: 

-- next state logic 

-- output logic 

-- memory (flip flops) 

Example: Synchronous bit-serial input stream is received 

on a single line, data. Develop a state diagram with two 

inputs, R_n (active-low reset) and data, and one output, 

found, such that found will be pulled up only with the ‘0’ 

of any “10” sequence on data line provided that the reset 

input is deasserted. The state machine will then wait to be 

reset in order to resume the above cycle. It is reset by two 

consecutive zeros in the input stream. An asserted R_n 

will also send the machine to the reset state. R_n may be 

asserted in any state. R_n has priority over data. 

A representative input bit pattern on data and the 

corresponding output bit pattern on found are shown 

below:  

Data: 0 0 0 1 1 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 1 

Found: 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

 

 

 

 

 
 

 

VDHL Description of Finite State Machines 

 

 

 
 

Reminder 
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Output Logic 

 

 

 

 

 

 

 

found <= '1'    --output is generated here:   

WHEN Current_Q = a   AND   data = '0'  AND  R_n = ‘1’ 

ELSE  '0'; 

 

PROCESS (Current_Q, data)      

BEGIN 

  CASE Current_Q IS 

      WHEN r => IF data = '1' THEN  Next_Q <= a;    ELSE 

                                          Next_Q <= r; END IF; 

     WHEN a =>  IF data = '1' THEN Next_Q <= a;  ELSE   

                                                        Next_Q <= b; END IF; 

      WHEN b =>  IF data = '1' THEN Next_Q <= b;  ELSE   

                                                        Next_Q <= c; END IF; 

      WHEN OTHERS =>  IF data = '1'  THEN   

       Next_Q <= b;  ELSE  Next_Q <= r; END IF; 

   END CASE; 

 END PROCESS;  

 

  PROCESS (Clk) 

   BEGIN 

      IF Clk'EVENT AND Clk = '1' THEN 

           IF R_n = '0'  THEN  Current_Q <= r;  ELSE 

                                Current_Q <= Next_Q; 

           END IF; 

       END IF; 

    END PROCESS; 

END Behavior; 

 

PROCESS (Current_Q, data)      

BEGIN 

-- This portion is highlighted as an example: 

  CASE Current_Q IS 

      WHEN r => IF data = '1' THEN  Next_Q <= a;    ELSE 

                                         Next_Q <= r; END IF; 

      

                

 

 

 

 
 

 

 

Next state Logic 

-- States are updated here 
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ARCHITECTURE Behavior OF usr1 IS 

BEGIN 

  PROCESS (clk) 

  BEGIN 

    IF clk'EVENT AND clk = '1' THEN 

        IF rst = '0' THEN Q <= "0000"; ELSE 

          CASE S IS 

 WHEN "11" => Q <= D;  -- Parallel load 

 WHEN "01" => Q <= Q(2 DOWNTO 0) & Lin; 

 -- Shift left    

 WHEN "10" => Q <= Rin & Q(3 DOWNTO 1);

 -- Shift right  

  

ENTITY usr1 IS  

PORT ( D: IN STD_LOGIC_VECTOR (3 DOWNTO 0);  

             clk, rst, Lin, Rin: IN  STD_LOGIC; 

             S: IN STD_LOGIC_VECTOR (1 DOWNTO 0);      

             Q : BUFFER  

                       STD_LOGIC_VECTOR (3 DOWNTO 0) 

     ); 

END usr1; 

  

 

 

 

 

 

                

 

Register Transfers: 
The Backbone of Digital Systems 

 

 
 

 

 

             WHEN OTHERS =>  Q <= Q; 

         END CASE; 

       END IF; 

    END PROCESS;   

END Behavior; 
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 Example 

 

 

 

 

ARCHITECTURE Behavior OF cntr_4b IS 

BEGIN 

  PROCESS (clk) 

  BEGIN 

    IF clk'EVENT AND clk = '1' THEN 

      IF rst = '0'  THEN  Q <= "0000";  

      -- Active-low reset has the highest priority  

      ELSIF le = '0' THEN  Q <= D;  

      -- Active-low load-enable has the second priority 

 

ARCHITECTURE Behavior OF cntr_4b IS 

BEGIN 

  PROCESS (clk)    

  BEGIN 

    IF clk'EVENT    AND   clk = '1'   THEN 

       cntr <= cntr + 1;     -- ‘+’ is the addition operator 

    END IF; 

  END PROCESS;  

END Behavior; 

 

 

 

 

ENTITY cntr_4b IS  

PORT ( clk: IN  STD_LOGIC;  

            cntr: BUFFER  

                           STD_LOGIC_VECTOR(3 DOWNTO 0) 

            ); 

END cntr_4b; 
           

 

 

 

 
 

ENTITY cntr_4b IS  

  PORT  ( D: IN  

 STD_LOGIC_VECTOR (3 DOWNTO 0);  

  clk, ce0, ce1, le, rst : IN  STD_LOGIC; 

  co: OUT           STD_LOGIC; 

 Q: BUFFER  

                 STD_LOGIC_VECTOR (3 DOWNTO 0) 

); 

END cntr_4b; 
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BEGIN 

PROCESS (clock_50) -- Divider 

  BEGIN 

    IF clock_50'EVENT AND clock_50 = '1' THEN 

      IF EN = ‘1’ THEN Q <= 1; ELSE Q <= Q + 1; 

      END IF; 

    END IF; 

  END PROCESS; 

 

  EN  <=  '1'   WHEN   Q = 50000000   ELSE   '0'; 

 

  PROCESS (clock_50)  -- Runs @ 1 Hz  

  BEGIN 

    IF clock_50'EVENT AND clock_50 = '1' THEN 

     IF      EN = '1'      THEN     LEDR <= LEDR + 1; 

      END IF; 

    END IF; 

  END PROCESS; 

END Behavior; 

 
ENTITY tb IS  

PORT (clock_27: IN        STD_LOGIC; 

 LEDR:  

BUFFER   STD_LOGIC_VECTOR(3 DOWNTO 0) 

            ); 

END tb; 

 

ARCHITECTURE Behavior OF tb IS 

SIGNAL EN   :  STD_LOGIC;   

  

SIGNAL Q: INTEGER RANGE 0 TO 50000000; 

 -- NEW! 

 

 

 

 

 

Example: Divide by 50 000 000  

 

 

 

      -- 2 Count Enables: ce1 (active-high) and ce0 (active-

low). Either one can disable the counter. 

      ELSIF (ce1 AND NOT ce0) = '1' THEN  

        Q <= Q + 1; 

       END IF; 

    END IF; 

  END PROCESS; 

  co <= '1' WHEN Q = "1111" AND ce1 = '1' ELSE  '0';  

 -- Carryout (co) is not affected by ce0.   

END Behavior; 
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