
Paper ID #19049

First Course in VHDL Modeling and FPGA Synthesis of Digital Systems

Prof. Nozar Tabrizi, Kettering University

Dr. Nozar Tabrizi received his BS and MS degrees from the Electrical Engineering Department at Sharif
University of Technology, and his PhD degree from The University of Adelaide. He is currently an asso-
ciate professor of Computer Engineering at Kettering University. His research interests include Computer
Microarchitecture, Computer Arithmetic, Parallel Processors and Network on Chip. He is also interested
in and actively working on innovative methods of teaching.

c©American Society for Engineering Education, 2017

 First Course in VHDL Modeling and FPGA Synthesis of Digital Systems

Abstract

Digital Systems is a core course taken by Electrical Engineering, Computer Engineering and

Computer Science students worldwide. In this class students learn the building blocks of digital

systems and how to put them together to reach larger systems. For implementation purposes,

students additionally learn a hardware description language such as VHDL to model their

circuits, and then use FPGA chips, cutting-edge technology, to physically build and test their

circuits described in VHDL. In this paper we address the challenges faced in teaching VHDL

modeling and FPGA synthesis in such an introductory course, and then share our experience in

teaching this part of the course. We explain the topics covered in class, we show our lecture

slides as well as amount of lecture time to present them to students. Class performance has been

encouraging.

Keywords: Design of Digital Systems, FPGA, Implementation of Digital Systems, VHDL

Introduction

Digital Systems is a core course taken by Electrical/Computer Engineering (ECE) as well as

Computer Science (CS) students worldwide. This course is a must to understand the basics of

hardware architecture of revolutionizing microprocessors that are increasingly and inevitably

entering our lives especially in the era of IoT, the internet of things.

Digital Systems has 3 one-hour lecture and one 2-hour lab per week in our ECE department. Our

academic terms are 10 weeks long. Number of students in this class varies each term, but 15 to

25 should be a reasonable range to describe our class size in general. In this class, “laboratory

work” is an irreplaceable portion, where students learn how to physically build circuits. This may

be done in different ways: Students place off-the-shelf chips on a breadboard, and wire them up

manually. The more sophisticated the circuit is, the more chips, time and space are used. Or,

students use cutting edge technology, Field Programmable Gate Arrays (FPGAs), but first they

should learn a hardware description language, e.g. VHDL, to write the right code to describe

their circuit. Students then use CAD tools to compile and map their code into an FPGA chip,

which amazingly takes only a couple seconds! In a 10-week academic term, our students

perform 9 lab assignments out of which 7 assignments are VHDL/FPGA-based.

Teaching a first course in VHDL to sophomores is a challenge. Unlike software programming

languages, such as C, that ECE students learn in the first year of college, VHDL is a so-called

concurrent language; students should understand what concurrency means in this context.

There is a second reason that makes it a challenge to incorporate VHDL in Digital Systems:

VHDL is added on top of a course that used to be taught in one academic term by itself.

Therefore, topic scheduling becomes more crucial especially if academic terms, such as ours, are

only 10 weeks long.

VHDL is a big language; so the third challenge in teaching VHDL is to decide what to teach. We

have crafted a 9-chapter manuscript for “Digital Systems”. There are two parts in each of

Chapters 3 through 9, and one part in each of Chapters 1 and 2. Students learn digital systems’

theory in Chapters 1 and 2 as well as Parts I of the rest of the chapters. This is basically what we

used to teach before we added the VHDL portion to the course. VHDL modeling and FPGA

synthesis of digital systems are covered in Parts II of Chapters 3 through 9. Our paper

focusses on the topics and their specific order to teach this portion. (Please note that VHDL

modeling and FPGA synthesis of digital circuits is only one portion of this course. So that

students get up to 26% for their lab work, up to 17% for the VHDL portion and up to 57% for the

non-VHDL portion.) We teach the nine chapters in the order illustrated in the following table.

Note that Chapter 5 is covered last to reach the “sequential logic”, and therefore be able to do

more advanced assignments as soon as possible.

As shown in the above table, Part II of each chapter is taught after Part I of that chapter has been

covered. Therefore, the VHDL portion in our class is distributed across the whole academic

term. For this portion we spend almost 135 minutes of our class time. Additionally, students

Subtopics Slides No

Chapter 1 Digital Circuits, Binary Numbers and Truth Tables

Chapter 2 Gates: Basic Building Blocks of Digital Circuits

Chapter 3, Part I Switching Algebra

and

Analysis and Design of Digital Circuits

Chapter 3, Part II Getting Started

Computer Aided Design of Digital Circuits

VHDL Modeling and FPGA Synthesis of Digital Circuits

Chapter 4, Part I Logic Minimization Using Karnaugh Maps

Chapter 4, Part II Hierarchical Designs and Structural Modeling

Chapter 6, Part I Frequently Used Digital Circuits

Chapter 6, Part II Behavioral Modeling of Digital Circuits

Selected Signal Assignments and Conditional Signal Assignments

Chapter 7, Part I Memory Cells and Analysis of Sequential Circuits

Chapter 7, Part II Behavioral Modeling of Digital Circuits

Process Constructs

Chapter 8, Part I Design of Sequential Circuits

Chapter 8, Part II VHDL Modeling of Finite State Machines

Chapter 9, Part I Frequently Used Sequential Circuits

Chapter 9, Part II Register Transfers

The Backbone of Digital Systems

Chapter 5, Part I Binary Number Systems and Binary Arithmetic

spend some 15 minutes on student-oriented class activity: students are provided with a class-

exercise packet; we stop lecturing at some points, and ask students to work on one or more

questions pertaining to the current lecture subtopic to develop a better understanding of the

lecture material. We specifically encourage them to either teach each other or learn from each

other. We have seen firsthand how enthusiastically students participate in this teaching/learning

activity. In a recent survey, we asked a class of 14 students for their opinions about the following

statement:

“Class Exercises” are useful. They are a good learning aid. They also help me evaluate
myself.

The survey results are shown in the following table:

We also spend some time on the pre-labs.

Our lecture topics are of course found (more or less) in other resources as well [1]-[5]. However,

we believe that the sequence of materials, the way that they are presented (especially how they

start and how end) and interleaved with the lab assignments, and the amount of time spent on a

subtopic can make a difference. And the purpose of this paper is to share our experience with

other faculty members who are new to this course, or they feel that their current teaching

approach is not efficient enough. Our work is similar to many other works in the literature as

pointed out in the next section. One major difference between these works and our work is that

we focus more on the teaching details of VHDL rather than explaining the tools that are used in

the lab and how they work, or the history of course development, etc.

We have had productive class based on our approach. Students’ test results are encouraging.

Moreover, our students have done excellent work (in general) on the last and challenging lab

assignment to be explained in this paper.

The rest of the paper is organized as follows: Some previous work is reviewed first. We then go

over our lecture materials; we also take a quick look at our lab assignments, and then will present

some test results. The last section is the conclusion.

Previous work

Pang proposes an integration of online tools for digital circuit design to provide students with an

active learning environment [6]. Logicly, Multisim, Modelsim and a FPGA-based design

software are considered in this work, where Verilog is used as the hardware description language

for FPGA synthesis. However, the topics covered to teach this language are not presented in the

paper. In [7] Fida El-Din and Krad use the same CAD tool and development board as we use to

add a lab project to a Computer Architecture and Organization course. This project is about

modeling, simulation and FPGA synthesis of an 8-bit Arithmetic and Login Unit. However, the

paper does not show the lecture materials to teach VHDL. Wang explains his VHDL teaching

 Strongly Agree Agree Neutral Disagree Strongly Disagree

No of students out of 14 8 4 1 1 0

experience in [8]. The challenge is his work is also to teach a minimum subset of VHDL in an

introductory course; however, the topics and therefore the order they are taught are not shown in

this paper. Additionally and unlike this work, we do not teach variables in our introductory

course as we believe that this concept will cause confusion while it is not necessary to know

variables to perform the lab assignments of this course. In [9] Wang and Goryll describe their

Online Digital Design Course. They use a CAD tool called Logisim [10]. Logisim is an

educational simulator for digital circuits. It takes graphical description of hierarchical circuits

through a user friendly interface. We have, however, used CAD tools that are widely used in

academia. Vera et al explain the challenges they faced to set up a reconfigurable lab that was

used to teach students a first course in digital design [11]. They explain the lab work, but

unfortunately the lecture topics and how they are presented are not provided.

Lecture materials

In this section, we will present the sequence of topics, the slides under each subtopic and

approximate amount of time spent on each subtopic to cover VHDL modeling and FPGA

synthesis of digital circuits in this introductory course. Please note that before our students are

exposed to VHDL modeling of digital circuits, they learn the concepts and non-VHDL design of

the digital circuits. Additionally, they spend two hours (or more) per week in the lab to go over

the lab assignments and do the lab assignments in which VHDL and FPGAs are used from week

3 through week 10. We also use part of our lecture time to better prepare for the lab assignments.

The following table shows the subtopics, slide numbers for each subtopic and the approximate

duration of lecture for each subtopic. As shown in this table, there are 100 slides with the total

lecture time of some two hours to cover VHDL modeling and FPGA synthesis of digital circuits.

The 100 slides are shown at the end of this section.

Subtopics Slides No Lecture Duration

(minutes)

Getting Started: HDL and FPGAs 1:7 9

Entity and Architecture: Simple Signal Assignments; vector

and non-vector signals
8:14 9

Structural Modeling and Hierarchical Designs 15:34 30

Behavioral Modeling

Selected and Conditional Signal Assignments
35:56 20

Behavioral Modeling

Process Constructs: If Then Else and Case statements
57:70 22

VHDL Modeling of State Machines 71:82 20

Register Transfers: The Backbone of Digital Systems 83:100 25

Total lecture time 100 slides 135

Generate Statements and Generic Constructs (Optional reading

and lab assignment)

-- --

The 100 lecture slides are presented in the appendix at the end of the paper. Please note that we

have made some minor changes to the lecture PowerPoint slides to get a better fit for this paper.

We have also added some text for clarification purposes.

From our experience in teaching this class for many years, we recommend that the following two

points should always be taken into consideration in order to avoid common confusions:

1- Students should frequently be reminded that logic gates in FPGAs are realized using Look-

Up Tables (LUTs), unlike semicustom or full-custom VLSI. See Slide 4.

2- Students should be encouraged and convinced to look at different pieces of a VHDL code as

different pieces of hardware. This will significantly help them better understand the

concurrency that naturally exists in this language.

As a final comment before reviewing the slides, we would like to mention that in order to further

minimize the material covered in this introductory course, the following two topics may be

omitted without significantly affecting students’ ability to model complex digital circuits in this

introductory course: Selected Signal Assignments; Case Statements.

Lab assignments

Week 1 (basic concepts on discrete and manual logic):

Truth Tables and Voltage Tables

Analysis of Simple Digital Circuits

Week 2 (basic concepts on discrete and manual logic, cont’d):

Gates:

Basic Building Blocks of Digital Circuits

Weeks 3:

Switching Algebra and Analysis and Design of Digital Circuits

Getting Started: Altera Quartus II Software, DE2 Board and

ENTITY, ARCHITECTURE, and Simple Signal Assignments in VHDL

Week 4:

Logic Minimization using Karnaugh Maps

Hierarchical Designs and Structural Modeling

Getting Started with Simulation of Digital Circuits (ModelSim)

In this lab, students structurally model, implement and test a 4-bit hierarchical full comparator.

Week 5:

Behavioral Modeling of Digital Circuits

Selected Signal Assignments and Conditional Signal Assignments

In this lab and after an introductory assignment, students build a min-max circuit. They also

build the following circuit:

The circuit takes eight request lines and determines two of them that have the highest priorities

among all the asserted inputs.

Fostering an Entrepreneurial Mindset through a Jigsaw-Puzzle Model

In this lab, students are provided with a library of components or puzzle pieces as well as the user

guide of a product and possibly some other reading material. The user guide explains how the

product works. The library contains all the necessary puzzle pieces to build the product. Students

will go over the user guide to understand the underlying product. Then considering what they

have available in the library, students will design the product by putting the puzzle pieces

together. Once they come up with an initial idea and are done with their first draft of the design,

students will collaborate with others who work on the same product to resolve all the possible

issues and come up with the functional product. We have recently crafted a paper to report our

novel idea of Jigsaw-Puzzle model, and its implementation. The paper is currently under review.

Week 6:

D-latches and D-FFs, and Analysis of Finite-State Machines

Behavioral Modeling of Digital Circuits

Process Statements

Week 7:

VHDL Modeling of Finite State Machines

Students model, implement and test a sequence detector. They also model, implement and test an

LED controller that turns an LED on and off through one pushbutton. The system frequency is

50 MHz.

Weeks 8 through 10:

Fostering an Entrepreneurial Mindset through a Producer-Customer Model. In the rest of

this section we will briefly go over the idea that we developed and used in this lab assignment.

Interested readers may refer to our recent paper that was published based on this work [12].

Students work in groups of 3 to 5. Each team will play the role of a customer of a product as well

as the producer for another product. There are two different types of products:

Some of the customers are provided with defective products each with one or more undisclosed

“Implementation Deviations from the Specification”, i.e. a product that does not work as it

should. The customer will then critically examine the product to identify the discrepancies

between the product’s behavior and the product’s user guide. The discrepancies will then be

discussed with a producer who will understand the voice of the customer and work on the

defective product to eventually locate the discrepancies and fix the product to match the user

guide. The producer will also resolve the customer’s possible misunderstandings.

The other customers each will receive either a performance-improvable or a size-improvable

product, i.e., a product that can be improved to get a faster product or to get a smaller product,

respectively. The customer will then critically examine the “how it works” of the product to see

how it can be improved in the relevant domain: performance or size. The customer will then

discuss their findings with a producer who will understand the voice of the customer and work

on the improvable product to eventually improve it. The producer will also resolve the

customer’s possible misunderstandings.

Test results

Students are encouraged to prepare and use a double-sided cheat sheet on the tests.

Twenty students took the following test:

Look at the transition table shown below. A is the input, Y is the output and Q1 Q0 are the state

variables. Note: Binary (not symbolic) states are used in this table.

The following is an incomplete VHDL code to describe the above table. Read the code carefully

and then fill in the blanks to complete the code:

ENTITY fsm_test IS

 PORT (A, Clk : IN STD_LOGIC; -- A is input from outside world

 Y : OUT STD_LOGIC -- Y is output to outside world

);

END fsm_test;

ARCHITECTURE Behavior OF fsm_test IS

 -- Note: In this question, we use binary states (not symbolic states):

SIGNAL Current_Q, Next_Q : STD_LOGIC_VECTOR (1 DOWNTO 0);

BEGIN

-- Output Y is generated here: (More space provided on real test)

-- Next states are generated here. Note: states are in binary (not symbolic):

Q
n+1

00

11

01

10

0 1
A

00

11

01

11

10

00

00

11

Q1Q0
A

0 1

1

0

0

1

0

0

1

1

Y

PROCESS (Current , K)

 BEGIN

 CASE Current_Q IS (More space provided on real test)

 WHEN “00” => -- Use an IF statement here:

 …

WHEN “01” =>

 …

 WHEN “10” => -- You do not have to fill in the following blank

 <= A; END IF;

 WHEN OTHERS => -- You do not have to fill in the following blank

 END CASE;

 END PROCESS;

 -- States are updated here: Fill in the blank. (More space provided on real test)

 PROCESS (Clk)

 BEGIN

 ...

 END IF;

 END PROCESS;

END Behavior;

The students’ test scores are summarized in the following table:

Fifteen students took the following test:

Question: A function table for a 4-bit counter/shifter is shown below. Write a neat, complete

and indented VHDL code to behaviorally describe this counter/shifter.

Score 100% 87% 80% weak

No of students out of 20 13 2 4 1

Notes:

Call the serial-in input SI (which is used in the shift mode).

Negation sign, ~, has not been appended to active-low inputs, if any.

Do NOT use time consuming names such as LEDR or KEY.

Use the signal names shown in the table.

Use the following line as it is:

IF clk'EVENT AND clk = '1' THEN

This is to help you write a more readable code in a less error-prone format!

The students’ test scores are summarized in the following table:

Twenty two students took the following test:

Question: Write a complete, legible and indented VHDL code for a counter with the following

counting sequence:

… 000, 001, 010, 011, 110, 111, 000, 001, 010 …

The students’ test scores are summarized in the following table:

Twenty eight students took the following test:

Question: A digital circuit is shown below. Write a neat, complete and indented VHDL code to

behaviorally describe this circuit.

Score 100% 96% 90% 80% and below

No of students out of 22 6 5 4 7

Score 100% 98% 95% 92% 80% weak

No of students out of 15 2 2 3 3 2 3

R SE CE Next State Mode

1 X X 0000 Reset

0 0 X Shift to right by 1 bit Shift

0 1 1 Current state + 1 Count

0 1 0 Current state Hold

ENTITY Test6 IS (more space on the real test)

…

END Test6;

ARCHITECTURE Behavior OF Test6 IS

BEGIN

PROCESS ()

BEGIN

IF clk'EVENT AND clk = '1' THEN -- Leave this line as it is. (More space on real
test)

…

END IF;

END PROCESS;

END Behavior;

The students’ test scores are summarized in the following table:

Eleven students took the following test:

Question: A logic diagram for a 4-bit counter is illustrated here. Write a neat, complete and

indented VHDL code to behaviorally describe this counter.

Notes:

Negation sign, ~, has not been appended to active-low inputs, if any.

Score 100% 98% 90% 80% and below

No of students out of 28 16 2 1 9

Q(3:0)

D

Register

0
S1

S0

Q2 Q1 Q0 Lin

1 2 3

Rin Q3 Q2 Q1

4

4

4

Sel1
 Sel0

Clk

 Note:
• Do NOT use time consuming names such as LEDR or

KEY; use the signal names shown in this logic diagram.

• Q, D and Sel are vectors.

4
4

Do NOT use time consuming names such as LEDR or KEY. Use the I/O names shown in the

diagram.

In your VHDL code use the following line as it is:

IF clk'EVENT AND clk = '1' THEN

Where clk is the clock signal. This is to help you write a more readable code in a less error-prone

format!

The students’ test scores are summarized in the following table:

Conclusion

In this paper we shared our experience in developing a first course in VHDL modeling and

FPGA synthesis of digital circuits that result in a so-called 2-dimentional course. The first

dimension is the traditional design of digital circuits, in which different components are drawn

on paper, and properly interconnected. This can then be transferred onto a breadboard using off-

the-shelf chips wired manually. The second dimension of this course is how to use FPGAs,

cutting edge technology, instead of discrete components. We addressed the three major

challenges that an instructor normally faces in developing such a course. Our achievements in

this course design (that can be easily used by our colleagues) are summarized as follows:

• What lecture topics to choose

• What order to choose to cover the lecture topics

• How much time (approximately) to spend on each topic

Score 100% 98% weak

No of students out of 11 5 5 1

Counter’s
output

4

4

Q

 0

R
1

4

0

4

CE

+1

4

 Register clk

4

• What lab topics to choose and in what order to perform them in order to keep them

synchronized with the lecture topics.

We finally presented students’ test results, which are encouraging. However, we aim for

continuous improvement. We see that some students are not very comfortable with preparing

good cheat sheets. Some may even do not appreciate how useful a cheat sheet is to answer test

questions better and faster, or they may not realize how cheat-sheet preparation by itself provides

students with a deeper understanding of the concepts. A couple of students may occasionally

forget to prepare and bring one. Writing a good cheat sheet is a skill, and we plan on spending

some time to help students improve this skill. We believe that cheat sheet preparation is the

counterpart of what we do in professional ASIC design: When we decide to develop a code, we

do not normally do it from scratch; we look at the codes that we have already designed and

tested, and then choose the closest one to what we need in the current project. We then make the

necessary changes to tailor the (old) code to our needs. We believe that this step will greatly

improve our students’ performance and their test results.

References

[1] S. Brown and Z. Vranesic, Fundamentals of Digital Logic with VHDL Design, 3

rd
 edition, McGraw Hill.

[2] A. B. Marcovitz, Introduction to Logic Design, 3
rd

 edition, McGraw Hill.

[3] R. S. Sandige, M. L. Sandige, Fundamentals of Digital and Computer Design with VHDL, McGraw Hill.

[4] F. Vahid, Digital Design with RTL Design, VHDL, and Verilog, 2
nd

 edition, John Wiley & Sons.

[5] J. F. Wakerly, Digital Design, Principles and Practices, 4
th

 editon, Prentice Hall.

[6] J. Pang 2015. “Active Learning in the Introduction to Digital Logic Design Laboratory Course,” Proceddings
of 2015 American Society for Engineering Education, (Zone III).

https://www.asee.org/documents/zones/zone3/2015/Active-Learning-in-the-Introduction-to-Digital-Logic-

Design-Laboratory-Course.pdf

[7] Aws Yousif Fida El-Din and Hasan Krad, “Teaching Computer Architecture and Organization using Simulation
and FPGAs,” International Journal of Information and Education Technology, Vol. 1, No. 3, August 2011.

[8] Guoping Wang, “Lessons and Experiences of Teaching VHDL,” Proceedings of the 2007 American Society for
Engineering Education Annual Conference & Exposition

[9] Chao Wang and Michael Goryll, "Design and Implementation of an Online Digital Design Course," ASEE's
123rd Annual Conference & Exposition, New Orleans, pp. June 26-29, 2016.

[10] Logisim, a graphical tool for designing and simulatgin logic circtuiw.

http://www.cburch.com/logisim/

[11] Guillermo A. Vera et al, "Integrating Reconfigurable Logic in the First Digital Logic Course," pp. 10-15.9th
International Conference on Engineering Education, July 23 – 28, 2006, San Juan, PR

[12] Nozar Tabrizi, “Fostering an Entrepreneurial Mindset in Digital Systems Class through a Producer-Customer
Model”, 2016 IEEE Frontiers in Education Conference (FIE), Oct 12-15, 2016, Erie, USA

• FPGA

(Made of up LUTs)

Integrated Circuits

• Full Custom

• Semicustom (ASIC)

Repentant inputs

Manual versus Automated

Discrete versus Integrated

2 TTL chips for this circuit:

We cannot do this to design chips with 100s of

millions of transistors!

Getting Started

Computer Aided Design of Digital Circuits

VHDL Modeling and FPGA Synthesis of

Digital Circuits

1 2

3 4

5 6

A

B
Y

C

z =

high a1:

low

a2:

high

VDD

GND

P1 P2

N1

N2

Address Content

3

000

001

010

011

100

101

110

111

1

1

1

1

1

1

1

0

Output
Y

Input

A , B, C

A: MSB

A

B Y

C

Y <= A NAND B

LUT

2

1

1

1

0

Y A, B

Standard

CMOS

z =

high a1:

low

a2:

high

VDD

GND

P1 P2

N1

N2

A
Y

B

A
Y

B

Address Content

Output

Y

A

MSB

B
C

000

001

010

011

100

101

110

111

1

x

1

x

1

x

0

x

Appendix: Lecture Slides

ENTITY light IS

PORT (A, B: IN STD_LOGIC;

 L: OUT STD_LOGIC

);

END light;

ARCHITECTURE algebraic OF light IS

BEGIN

 L <= (A AND NOT B) OR (B AND NOT A);

END algebraic;

Two switches control one light independently.

L = A’ . B + B’ . A

i.e., use a Simple Signal Assignment:

L <= (NOT A AND B) OR (NOT B AND A);

ENTITY triple_nand IS

PORT

 (A2, A1, A0, B2, B1, B0: IN STD_LOGIC;

 Z2, Z1, Z0: OUT STD_LOGIC

);

END triple_nand;

ARCHITECTURE Algebraic OF triple_nand IS

BEGIN

 Z2 <= A2 NAND B2;

 Z1 <= A1 NAND B1;

 Z0 <= A0 NAND B0;

END Algebraic;

Entity and Architecture

Simple Signal Assignments

Vector and non-vector Signals

Simplified view of FPGAs

Vectors

Write a VHDL code to describe the following gates:

 Graphical entity

7 8

9 10

11 12

A0
Y0

B0

A1
Y1

B1

A2
Y2

B2

triple_nand

A0

A1

A2

B0

B1

B2

Z0

Z1

Z2

1

1

0

0

0

1

0

1

0

0

0

1

1

1

0

0

1

0

1

1

1

0

0

0

1

1

0

0

1

1

1

1

Programmable

Switches

Interconnects

LUT
1

1

0

0

1

1

1

1

1

1

0

0

0

1

0

1

Row A B L

0 0 0 0

1 0 1 1

2 1 0 1

3 1 1 0

A
L

B

light

XOR function:

1-bit partial comparator

Logic symbol or graphical

entity

4-bit partial comparator

You may repeat 1-bit comparator 4 times �

See next slide.

Time consuming and error prone especially for large

circuits.

Structural Modeling: Introduction

-- 1-bit partial comparator
ENTITY comp_1 IS

PORT (A, B: IN STD_LOGIC;

 Y: OUT STD_LOGIC

);

END comp_1;

ARCHITECTURE Algebraic OF comp_1 IS

 SIGNAL T, U, W: STD_LOGIC;

BEGIN

 Y <= W NAND U;

 W <= B NAND T;

 U <= A NAND T;

 T <= A NAND B;

END Algebraic;

Y0 <= W0 NAND U0;

W0 <= N0 NAND T0;

U0 <= M0 NAND T0;

T0 <= M0 NAND N0;

Y1 <= W1 NAND U1;

W1 <= N1 NAND T1;

U1 <= M1 NAND T1;

T1 <= M1 NAND N1;

Y2 <= W2 NAND U2;

W2 <= N2 NAND T2;

U2 <= M2 NAND T2;

T2 <= M2 NAND N2;

Y3 <= W3 NAND U3;

W3 <= N3 NAND T3;

U3 <= M3 NAND T3;

T3 <= M3 NAND N3;

MEQN <= NOT(Z3 OR Z2 OR Z1 OR Z0)’;

Note:

Z <= A NAND B;

is equivalent to

Z(2) <= A(2) NAND B(2);

Z(1) <= A(1) NAND B(1);

Z(0) <= A(0) NAND B(0);

You may generalize it to longer vectors.

Easier way; use the following shorthand:

ENTITY triple_nand IS

PORT

 (A, B: IN STD_LOGIC _VECTOR (2 DOWNTO 0);

 Z : OUT STD_LOGIC _VECTOR (2 DOWNTO 0)

);

END triple_nand;

ARCHITECTURE algebraic OF triple_nand IS

BEGIN

 Z <= A NAND B;

END algebraic;

13 14

15 16

17 18

B(2:0)

A(2:0)

Z(2:0)

triple_nand

Y A

B

U
T

W

MEQN

U3
T3

Z3
M3

N3 W3

U0
T0

Z0 M0

N0 W0

U1
T1

Z1
M1

N1 W1

U2
T2

Z2

M2

W1

N2 W2

Comp_4h

MEQN

M3:M0

N3:N0

Structural Modeling

Reuse (instantiate) components as many times as

needed.

You need to interconnect them properly.

See next slide.

Note:

Z0-Z3

Intermediate signals

Declare them in architecture

M0-M3, N0-N3, MEQN

Formals or Interface signals

Declare them in entity

Component:

Formals: Inputs/Outputs of component

Instantiate: copy and paste component into new

design

Instance: resulting copy

Actuals: Inputs/Outputs of instance (see next slide)

Use the 1-bit partial comparator to design a 4-bit

partial comparator (Structural Modeling)

ENTITY comp_4h IS

PORT

 (M, N : IN

 STD_LOGIC_VECTOR (3 DOWNTO 0);

 MEQN : OUT

 STD_LOGIC

);

END comp_4h;

Graphical version of entity (logic symbol)

19 20

22

23 24

Comp1

Y A

B

Comp1
 YA

B

21

Comp_4h

MEQN

M3:M0

N3:N0

MEQN

Z3

M3

N3

Z1 M1

N1

Z2

M2

W1

N2

Comp1

Y A

B

Z0
M0

N0

Comp1

Y A

B

Comp1

Y A

B

Comp1

Y A

B

ARCHITECTURE Structure OF comp_4h IS

COMPONENT comp_1

 PORT (A, B: IN STD_LOGIC;

 Y: OUT STD_LOGIC

);

END COMPONENT;

SIGNAL Z: STD_LOGIC_VECTOR (3 DOWNTO 0);

BEGIN

 First_Comparator: comp_1

 PORT MAP (M(0), N(0), Z(0)); -- Actuals

This needs a new component, nor4.

nor4 will be instantiated in architecture.

BEGIN

 First_Comparator: comp_1

 PORT MAP (M(0), N(0), Z(0));

 Second_Comparator: comp_1

 PORT MAP (M(1), N(1), Z(1));

 Third_Comparator: comp_1

 PORT MAP (M(2), N(2), Z(2));

 Fourth_Comparator: comp_1

 PORT MAP (M(3), N(3), Z(3));

 norGate: nor4

 PORT MAP (Z(0), Z(1), Z(2), Z(3), MEQN);

-- Note: Component nor4 is described on next slide.

END Structure;

BEGIN

 First_Comparator: comp_1

 PORT MAP (M(0), N(0), Z(0));

 Second_Comparator: comp_1

 PORT MAP (M(1), N(1), Z(1));

 Third_Comparator: comp_1

 PORT MAP (M(2), N(2), Z(2));

 Fourth_Comparator: comp_1

 PORT MAP (M(3), N(3), Z(3));

 MEQN <= NOT (Z(3) OR Z(2) OR Z(1) OR Z(0));

END Structure;

-- Note: The NOR gate is described algebraically and not

structurally.

-- The NOR gate is described structurally in next slide.

ARCHITECTURE Structure OF comp_4h IS

 COMPONENT comp_1

 PORT (A, B: IN STD_LOGIC;

 Y: OUT STD_LOGIC

);

END COMPONENT;

COMPONENT nor4

 PORT (A, B, C, D: IN STD_LOGIC;

 Y: OUT STD_LOGIC

);

END COMPONENT;

 SIGNAL Z: STD_LOGIC_VECTOR (3 DOWNTO 0);

26

28

29 30

MEQN

Z0

27

Z3

M3

N3

Z1 M1

N1

Z2

M2

W1

N2

Comp1

Y A

B

N0

Comp1

Y A

B

Comp1

Y A

B

Comp1

Y A

B

nor4

M0

25

Hierarchical Designs

Simple Signal Assignments work fine for simple

circuits. See next slide.

-- nor4 is described here:

ENTITY nor4 IS

PORT (A, B, C, D: IN STD_LOGIC;

 Y: OUT STD_LOGIC

);

END nor4;

ARCHITECTURE algebraic OF nor4 IS

BEGIN

 Y <= NOT(A OR B OR C OR D):

END algebraic;

See how interconnections are made between

instances, e.g., the output of first comparator is

called Z(0), so is the first input of the nor gate.

Conditional Signal Assignments

and

Selected Signal Assignments

31 32

33

35 36

Top-level Module

Component 1 Component 2 Component 3

Component 4 Component 5 Component 1 Component 6 Component 2

Component 4 Component 5

34

Can we still use simple signal assignment?

Simple Signal Assignment �

Logic function:

M <= (NOT S AND D0) OR (S AND D1);

Simple Signal Assignment ☺

Conditional Signal Assignment

M <= A WHEN S = “00” ELSE -- Use “ ” for vectors.

 B WHEN S = “01” ELSE

 C WHEN S = “10” ELSE

 D;

-- S is a 2-bit vector comprised of S(1) and S(0).

Truth table:

Describe a 2-input single-bit mux:

Conditional Signal Assignment

M <= D1 WHEN S = ‘1’ ELSE D0;

37 38

39 40

41 42

Row D1 D0 S M

0 0 0 0 0

1 0 0 1 0

2 0 1 0 1

3 0 1 1 0

4 1 0 0 0

5 1 0 1 1

6 1 1 0 1

7 1 1 1 1

M = S . D1 + S’ . D0

00

 0 2

 1 3

 6 4

 7 5

D1D0

S

0

1

01 11 10

1

1 1

1

1

M

D1

D0

S

C
D

M

S

B
A

2

0

1

2

3

1

M

D1

D0

S

C
D

M

S

B
A

2

0

1

2

3

How to Describe Truth Tables? Example:

WITH S SELECT

 M <= A WHEN “00”,

 B WHEN “01”,

 D WHEN OTHERS;

Shorthand

Same truth table:

WITH ST SELECT

 MJF <= ‘0’ WHEN “000” | “001” | “010” | “100”,

 ‘1’ WHEN OTHERS;

Selected Signal Assignment

WITH S SELECT

 M <= A WHEN “00”,

 B WHEN “01”,

 C WHEN “10”,

 D WHEN OTHERS;

Example:

M <= A WHEN S = “00” ELSE

 B WHEN S = “01” ELSE

 D;

WITH ST SELECT

 MJF <= ‘0’ WHEN “000”,

 ‘0’ WHEN “001”,

 ‘0’ WHEN “010”,

 ‘1’ WHEN “011”,

 ‘0’ WHEN “100”,

 ‘1’ WHEN “101”,

 ‘1’ WHEN “110”,

 ‘1’ WHEN OTHERS;

-- Note: Order is not important.

43 44

45 46

47 48

D

M

S

B
A

2

0

1

2

3 C
D

M

S

B
A

2

0

1

2

3

D

M

S

B
A

2

0

1

2

3

Row D1 D0 S mjf

0 0 0 0 0

1 0 0 1 0

2 0 1 0 0

3 0 1 1 1

4 1 0 0 0

5 1 0 1 1

6 1 1 0 1

7 1 1 1 1

 Priority Encoders
Example: 8 to 3 active-high

N <= “111” WHEN R(7) = ‘1’ELSE

“110“ WHEN R(6) = ‘1’ ELSE

“101” WHEN R(5) = ‘1’ ELSE

“100” WHEN R(4) = ’1’ ELSE

“011“ WHEN R(3) = ‘1’ ELSE

“010” WHEN R(2) = ‘1’ ELSE

“001” WHEN R(1) = ’1’ ELSE

“000”; -- Order IS Important

Shorthand for repeated bits

Example
16-bit data, data_16, is sign extended, and becomes 32-bit

data:

data_32 <= (31 DOWNTO 16 => data_16(15)) &

data_16;

Use OTHERS to create a vector with repeated bits:

Example:
The following creates a 16-bit vector all zeros:

zero16 <= (OTHERS => '0');

Now

order is important!

L <= “0000” WHEN EN_N = ‘1’ ELSE

“0001“ WHEN S = “00” ELSE

“0010” WHEN S = “01” ELSE

“0100” WHEN S =“10” ELSE

“1000”;

Binary Decoders

Example: 2 to 4 active-high binary decoder with an

active-low enable

Concatenation operator, &

Example

N <= D (0) & D (3 DOWNTO 1);

D = 1010

N = 0101

Example

M <= K (4 DOWNTO 2) & L (3 DOWNTO 1);

K = 100101

L = 001001

M = 001100

49 50

51

53 54

S L

EN

4 2
EN S L

0 00 0001

0 01 0010

0 10 0100

0 11 1000

1 xx 0000

R
N

 No_Req

3 8 R0 R1 R2 R3 R4 R5 R6 R7 N2 N1 N0
No

Req

x x x x x x x 1 1 1 1 0

x x x x x x 1 0 1 1 0 0

x x x x x 1 0 0 1 0 1 0

x x x x 1 0 0 0 1 0 0 0

x x x 1 0 0 0 0 0 1 1 0

x x 1 0 0 0 0 0 0 1 0 0

x 1 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 x x x 1

 52

ENTITY mux4_1 IS

PORT (A: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

 Sel: IN STD_LOGIC_VECTOR (1 DOWNTO 0);

 M: OUT STD_LOGIC

);

END mux4_1;

Process Constructs

IF THEN ELSE

and

CASE Statements

ENTITY d_latch IS

PORT (D, clk: IN STD_LOGIC;

 Q: BUFFER STD_LOGIC

);

END d_latch;

Logical and Relational operators may be combined:

Examples

 GT <= '1' WHEN A1 > B1 AND B2 < A2 ELSE '0';

 y <= '1' WHEN (a AND NOT b) = '1' ELSE '0';

 z <= '1' WHEN a = '1' AND b = '0' ELSE '0';

 y <= '1'

 WHEN ((a AND NOT b) = '1') AND (A1 < B1)

 ELSE '0';

Comparator

AGTB <= '1' WHEN A > B ELSE

 '0';

Other relational operators:

• Equal =

• Not equal /=

• Less than <

• Less than or equal to <=

• Greater than >

• Greater than or equal to >=

ARCHITECTURE Behavior OF mux4_1 IS

BEGIN

PROCESS (A, Sel)

BEGIN

 IF Sel = "00" THEN M <= A(0);

 ELSIF Sel = "01" THEN M <= A(1);

 ELSIF Sel = "10" THEN M <= A(2);

 ELSE M <= A(3);

 END IF;

END PROCESS;

END Behavior;

55 56

57 58

59 60

C
D

M

S

B
A

2

0

1

2

3

ENTITY dmem IS

PORT (D, clk : IN STD_LOGIC;

 Q : OUT STD_LOGIC

);

END dmem;

ARCHITECTURE Behavior OF dmem IS

BEGIN

 PROCESS (clk)

 BEGIN

 IF clk’event AND clk = '1' THEN Q <= D;

 ELSE Q <= Q;

 END IF;

 END PROCESS;

END Behavior;

Logic Element

LUT plus a Flip Flop

ARCHITECTURE Behavior OF dmem IS

BEGIN

 PROCESS (clk, R) -- R is asynchronous

 BEGIN

 IF R = '1' THEN Q <= '0';

 ELSIF clk'event AND clk = '1' THEN Q <= D;

 ELSE Q <= Q;

 END IF;

 END PROCESS;

END Behavior;

Note: You may leave this out:

ELSE Q <= Q;

ARCHITECTURE Behavior OF d_latch IS

BEGIN

 PROCESS (D, clk)

 BEGIN

 IF clk = '1' THEN Q <= D;

 ELSE Q <= Q;

 END IF;

 END PROCESS;

END Behavior;

Note: You may leave this out:

ELSE Q <= Q;

61 62

63 64

65 66

1

1

0

1

1

0

0

1

Q
D

S
I1

I0

I2

Out

LUT

FF

ARCHITECTURE Behavior OF mux4_1 IS

BEGIN

 PROCESS (A, Sel) -- Sensitivity list

 BEGIN

 CASE Sel IS

 WHEN "00" => M <= A(0);

 WHEN "01“ => M <= A(1);

 WHEN "10" => M <= A(2);

 WHEN OTHERS => M <= A(3);

 END CASE;

 END PROCESS;

END Behavior;

Case Statement

Example: 4-input one-bit Multiplexer

ARCHITECTURE Behavior OF dmem IS

BEGIN

 PROCESS (clk, R) -- R is asynchronous

 BEGIN

 IF R = '1' THEN Q <= '0';

 ELSIF clk'EVENT AND clk = '1' THEN

 IF C_n = '0' THEN Q <= '0';

 ELSE Q <= D;

 END IF;

 ELSE Q <= Q;

 END IF;

 END PROCESS;

END Behavior;

R, reset input is asynchronous.

So check it before Clock.

See next slide.

67 68

69 70

A2

A3

M

S

A1
A0

2

0

1

2

3

Reminder

ENTITY fsm_design IS

 PORT (data, R_n, Clk: IN STD_LOGIC;

 found: OUT STD_LOGIC

);

 END fsm_design;

ARCHITECTURE Behavior OF fsm_design IS

 TYPE state_type IS (r, a, b, c);

 SIGNAL Current_Q, Next_Q: State_type;

BEGIN -- Continues on next slides …

-- There are 3 parts in the architecture:

-- next state logic

-- output logic

-- memory (flip flops)

Example: Synchronous bit-serial input stream is received

on a single line, data. Develop a state diagram with two

inputs, R_n (active-low reset) and data, and one output,

found, such that found will be pulled up only with the ‘0’

of any “10” sequence on data line provided that the reset

input is deasserted. The state machine will then wait to be

reset in order to resume the above cycle. It is reset by two

consecutive zeros in the input stream. An asserted R_n

will also send the machine to the reset state. R_n may be

asserted in any state. R_n has priority over data.

A representative input bit pattern on data and the

corresponding output bit pattern on found are shown

below:

Data: 0 0 0 1 1 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 1

Found: 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

VDHL Description of Finite State Machines

Reminder

71 72

73 74

75 76

11

11

11

11

01
01/1

r

a c

0X

b

 data R_n /found

X0

X 0

≠11

X0
Logic

FFs

Input variables Output variables

NextQ CurrentQ

Input

Variables

CurrentQ NextQ

Output

Variables

Next-

state

Logic

FFs

Output

Logic

Output Logic

found <= '1' --output is generated here:

WHEN Current_Q = a AND data = '0' AND R_n = ‘1’

ELSE '0';

PROCESS (Current_Q, data)

BEGIN

 CASE Current_Q IS

 WHEN r => IF data = '1' THEN Next_Q <= a; ELSE

 Next_Q <= r; END IF;

 WHEN a => IF data = '1' THEN Next_Q <= a; ELSE

 Next_Q <= b; END IF;

 WHEN b => IF data = '1' THEN Next_Q <= b; ELSE

 Next_Q <= c; END IF;

 WHEN OTHERS => IF data = '1' THEN

 Next_Q <= b; ELSE Next_Q <= r; END IF;

 END CASE;

 END PROCESS;

 PROCESS (Clk)

 BEGIN

 IF Clk'EVENT AND Clk = '1' THEN

 IF R_n = '0' THEN Current_Q <= r; ELSE

 Current_Q <= Next_Q;

 END IF;

 END IF;

 END PROCESS;

END Behavior;

PROCESS (Current_Q, data)

BEGIN

-- This portion is highlighted as an example:

 CASE Current_Q IS

 WHEN r => IF data = '1' THEN Next_Q <= a; ELSE

 Next_Q <= r; END IF;

Next state Logic

-- States are updated here

77 78

79 80

81 82

1 r

a

 data 0

data

Current_Q

Next_Q

next state

logic

data

Current_Q

found

output

logic

01/1

a

b data R_n /found

Next_Q Current_Q

With R_n

FFs

ARCHITECTURE Behavior OF usr1 IS

BEGIN

 PROCESS (clk)

 BEGIN

 IF clk'EVENT AND clk = '1' THEN

 IF rst = '0' THEN Q <= "0000"; ELSE

 CASE S IS

 WHEN "11" => Q <= D; -- Parallel load

 WHEN "01" => Q <= Q(2 DOWNTO 0) & Lin;

 -- Shift left

 WHEN "10" => Q <= Rin & Q(3 DOWNTO 1);

 -- Shift right

ENTITY usr1 IS

PORT (D: IN STD_LOGIC_VECTOR (3 DOWNTO 0);

 clk, rst, Lin, Rin: IN STD_LOGIC;

 S: IN STD_LOGIC_VECTOR (1 DOWNTO 0);

 Q : BUFFER

 STD_LOGIC_VECTOR (3 DOWNTO 0)

);

END usr1;

Register Transfers:
The Backbone of Digital Systems

 WHEN OTHERS => Q <= Q;

 END CASE;

 END IF;

 END PROCESS;

END Behavior;

83 84

85 86

87 88

D

0 S1

 S0

Q2 Q1 Q0 Lin

1 2

Rin Q3 Q2 Q1

Q
rst

4

4

4

Counter’s output

4
4

4

A

Sum

Inc (+1)

Register

 Example

ARCHITECTURE Behavior OF cntr_4b IS

BEGIN

 PROCESS (clk)

 BEGIN

 IF clk'EVENT AND clk = '1' THEN

 IF rst = '0' THEN Q <= "0000";

 -- Active-low reset has the highest priority

 ELSIF le = '0' THEN Q <= D;

 -- Active-low load-enable has the second priority

ARCHITECTURE Behavior OF cntr_4b IS

BEGIN

 PROCESS (clk)

 BEGIN

 IF clk'EVENT AND clk = '1' THEN

 cntr <= cntr + 1; -- ‘+’ is the addition operator

 END IF;

 END PROCESS;

END Behavior;

ENTITY cntr_4b IS

PORT (clk: IN STD_LOGIC;

 cntr: BUFFER

 STD_LOGIC_VECTOR(3 DOWNTO 0)

);

END cntr_4b;

ENTITY cntr_4b IS

 PORT (D: IN

 STD_LOGIC_VECTOR (3 DOWNTO 0);

 clk, ce0, ce1, le, rst : IN STD_LOGIC;

 co: OUT STD_LOGIC;

 Q: BUFFER

 STD_LOGIC_VECTOR (3 DOWNTO 0)

);

END cntr_4b;

89 90

91 92

93 94

Counter’s output

4

4

 Q

D
Registe

r

 S 0

S ~rst 1

S ~le 1

4

0
4

D

4
4

4

+1

ce1

~ce0

co

~rst ~le ce1 ~ce0 Next State Mode

0 X X X 0000 Clear

1 0 X X D Load

1 1 0 X Current State Hold

1 1 X 1 Current State Hold

1 1 1 0 Current State + 1 Count

BEGIN

PROCESS (clock_50) -- Divider

 BEGIN

 IF clock_50'EVENT AND clock_50 = '1' THEN

 IF EN = ‘1’ THEN Q <= 1; ELSE Q <= Q + 1;

 END IF;

 END IF;

 END PROCESS;

 EN <= '1' WHEN Q = 50000000 ELSE '0';

 PROCESS (clock_50) -- Runs @ 1 Hz

 BEGIN

 IF clock_50'EVENT AND clock_50 = '1' THEN

 IF EN = '1' THEN LEDR <= LEDR + 1;

 END IF;

 END IF;

 END PROCESS;

END Behavior;

ENTITY tb IS

PORT (clock_27: IN STD_LOGIC;

 LEDR:

BUFFER STD_LOGIC_VECTOR(3 DOWNTO 0)

);

END tb;

ARCHITECTURE Behavior OF tb IS

SIGNAL EN : STD_LOGIC;

SIGNAL Q: INTEGER RANGE 0 TO 50000000;

 -- NEW!

Example: Divide by 50 000 000

 -- 2 Count Enables: ce1 (active-high) and ce0 (active-

low). Either one can disable the counter.

 ELSIF (ce1 AND NOT ce0) = '1' THEN

 Q <= Q + 1;

 END IF;

 END IF;

 END PROCESS;

 co <= '1' WHEN Q = "1111" AND ce1 = '1' ELSE '0';

 -- Carryout (co) is not affected by ce0.

END Behavior;

95 96

97

100

Divider
(/50 000 000)

Clock_50 (50 000 000 Hz)

1 Hz

Clock_50 Time

20 ns = 20 x 10
-9

 seconds

Divider
(/50 000 000)

1 Hz

4-bit up

Counter
each state lasts

1 sec

+

Divider
(/25 000 000)

Clock_50

2 Hz

/2
1 second (50%)

9 4-

99

1 Hz

4-bit up

Counter each state lasts

1 sec

Clock_50

Divider
(/50 000 000)

