Math Curriculum

First Grade

Essential Question(s): How do we solve addition and subtraction sentences to solve real world problems with and without concrete objects?					
21st Century Theme: Business					
21st Century Skills: Critical Thinking and Problem Solving					
Content: Operations \& Algebraic Thinking					
Standards: 1. OA					
A. Represent and solve problems involving addition and subtraction.					
Skills	Instructional Procedures	Assessment	Resources	Interdisciplinary Connections	Vocabulary
1. Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem. 1	*Solve for results unknown: 6- $2=\ldots \text { or } 3+\ldots=8$ *Concrete models to introduce \& solve addition \& subtraction problems. *Picture drawings to solve word problems/and other addition and subtraction problems. *Creation of art projects to depict addition \& subtraction sentences.	Formative Assessment Open- ended Problem Self Assessment Teacher Observation Benchmark Assessment Homework Review Class work Review Project-Based Assessment Timed Drills End of the Year Benchmark Assessment Math Software (ex. Study Island) Group \& cooperative work	Flashcard Math word wall Counters (variety) Connecting Cubes Chalkboard Number line Work mats Computer Software SmartBoard Flannel Board Center Games Math CD songs	Art Creating Pictures depicting adding \& subtracting sentences. Writing- Write on addition \& subtraction word problems.	Vertical subtraction \& addition Horizontal addition \& subtraction Fact families Plus Sum Equal In all Addends Difference Minus Subtract Zero Add symbols How Many All together Double Facts Doubles Plus One Facts Digits

Math Curriculum

First Grade

2. Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.	* Concrete models to solve word problems. *Picture drawings to solve 3 digit addition problems. (ex. $3+2+1=1$	Formative Assessment Open- ended Problem Self Assessment Teacher Observation Benchmark Assessment Homework Review Class work Review Project-Based Assessment Timed Drills End of the Year Benchmark Assessment 	Concrete counters and objects	Art-Draw related picture for given word problem. Music- addition or subtraction songs	Count on Addends Sum Equations Missing number
3. Write numbers from 0 to 20. Represent a number of objects with a written numeral 0-20 (with 0 representing a count of no objects).	*Use concrete objects to correlate with given number. *Modeling of correct numeral formation.	Formative Assessment Open- ended Problem Self Assessment Teacher Observation Benchmark Assessment Homework Review Class work Review Project-Based Assessment Timed Drills End of the Year Benchmark Assessment Math Software (ex. Study Island) Group \& cooperative work	Various concrete items Numeral formation Flashcards		Sets Groups Count

Essential Question(s): How do we solve addition and subtraction problems/ sentences?

21st Century Theme:

21st Century Skills:

Content:	Operations \& Algebraic Thinking
Standards:	1. OA

B. Understand and apply properties of operations and the relationship between addition and subtraction.

Skills	Instructional Procedures	Assessment	Resources	Interdisciplinary Connections	Vocabulary
3. Apply properties of operations as strategies to add and subtract. 2 Examples: If $8+3=11$ is known, then $3+$ $8=11$ is also known. (Commutative property of addition.) To add $2+6+4$, the second two numbers can be added to make a ten, so $2+6$ $+4=2+10=12$. (Associative property of addition.)	*Concrete models to introduce and solve addition and subtraction sentences. *Picture drawing to solve various addition and subtraction sentences.	Formative Assessment Open- ended Problem Self Assessment Teacher Observation Benchmark Assessment Homework Review Class work Review Project-Based Assessment Timed Drills End of the Year Benchmark Assessment Math Software (ex. Study Island) Group \& cooperative work Student produced models	Counters Connecting Cubes Computer Software SmartBoard Chalk Board MiniWhite Boards	Literature: Mission Addition by: Loreen Leedy Subtraction Action by: Loreen Leedy Elevator Magic by: Stuart J. Murphy Science: Using science related items to count (ex. acorns, shells, etc.)	Fact Families (Same as above)

Math Curriculum

First Grade

Essential Question(s): How is addition and subtraction related?

21st Century Theme:

Content:	Operations \& Algebraic Thinking				
Standards:	1. AO				
C. Add and subtract within 20.					
Skills	Instructional Procedures	Assessment	Resources	Interdisciplinary Connections	Vocabulary
5. Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).	*Use drawings to solve addition and subtraction problems. *Use models to introduce and practice addition \& subtraction problems.	Formative Assessment Open- ended Problem Self Assessment Teacher Observation Benchmark Assessment Homework Review Class work Review Project-Based Assessment Timed Drills End of the Year Benchmark Assessment Math Software (ex. Study Island) cooperative work	Number line Manipulatives	Literature: A Bag Full of Pups by: Dick Gackenbach	Counting on counting back

Math Curriculum
First Grade

6. Add and subtract within 20, demonstrating fluency for addition and subtraction within 10 . Use strategies such as counting on; making ten (e.g., $8+6=8+2+4=10+4$ $=14$); decomposing a number leading to a ten (e.g., 13-4 = $13-3-1=10-1=9$); using the relationship between addition and subtraction (e.g., knowing that $8+4=12$, one knows $12-8=4$); and creating equivalent but easier or known sums (e.g., adding 6 +7 by creating the known equivalent $6+6+1=12+1=$ 13).	*Use songs, chants, rhymes related to addition/ subtraction to enhance fluency. *Continue to use concrete models, picture drawings to solve addition \& subtraction problems.	Formative Assessment Open- ended Problem Self Assessment Teacher Observation Benchmark Assessment Homework Review Class work Review Project-Based Assessment Timed Drills End of the Year Benchmark Assessment Math Software (ex. Study cooperative work	Math CD songs Addition charts Adding and subtracting website for songs: http://songsfortea ching.com/math/a dditionsubtractions ongs.htm	Literature: Have students write their own addition/ subtraction rap.	

First Grade

Essential Question(s):	How do we determine if number sentences are true or false?				
21st Century Theme:					
Content:	Operations and Algebraic Thinking				
Standards:	1.0A				
D. Work with addition and subtraction equations.					
Skills	Instructional Procedures	Assessment	Resources	Interdisciplinary Connections	Vocabulary
7. Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. For example, which of the following equations are true and which are false? $6=$ $\begin{aligned} & 6,7=8-1,5+2=2+5,4+1 \\ & =5+2 . \end{aligned}$	Concrete modeling to introduce equal/not equal concepts. Picture drawings to show equal and not equal sets.	Formative Assessment Open- ended Problem Self Assessment Teacher Observation Benchmark Assessment Homework Review Class work Review Project-Based Assessment Timed Drills End of the Year Benchmark Assessment Math Software (ex. Study Island) Group \& cooperative work	Concrete objects/manipulati ve Number lines Counting Cubes SmartBoart Chalkboard Computer Software	Language Arts: Have students create their own problems for center time.	Equal Signs True False Correct Incorrect Equals "Equal To" Symbol Equal Sets Unequal sets

Math Curriculum

First Grade

8. Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8+$? $=11,5=$ _ $-3,6+6=$.	Use concrete models, pictures or drawings to solve addition and subtraction problems.	Formative Assessment Open- ended Problem Self Assessment Teacher Observation Benchmark Assessment Homework Review Class work Review Project-Based Assessment Timed Drills End of the Year Benchmark Assessment Math Software (ex. Study Island) Group \& cooperative work	Math CD songs Center games Counting Cubes and other manipulative counters	Have students write addition and subtraction equations related to problems in the classroom. Ex. I have 3 pieces of paper and 6 students, how many more do I need? $3+\ldots=6$	```Missing addends Vertical addition/subtractio n Unknown number```

Math Curriculum

First Grade

Essential Question(s):

21st Century Theme:					
Content:	Numbers \& Operations in Base Ten				
Standards:	1. NBT				
B. Understand place value.					
Skills	Instructional Procedures	Assessment	Resources	Interdisciplinary Connections	Vocabulary
2. Understand that the two digits of a two-digit number represent amounts of tens and ones. Understand the following as special cases: 10 can be thought of as a bundle of ten ones - called a "ten." The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones. The numbers $10,20,30,40$, $50,60,70,80,90$ refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones).	*Understand that the two digits of a two digit number represent amounts of tens and ones. *Write number sentences to represent the place value. *Use money to represent place value.	Formative Assessment Open- ended Problem Self Assessment Teacher Observation Benchmark Assessment Homework Review Class work Review Project-Based Assessment Timed Drills End of the Year Benchmark Assessment Math Software (ex. Study Island) Group \& cooperative work	Ten frame Number line Blocks Computer software A+Math (website) Study Island Calendar Word Wall Connecting Cubes 100 Chart Songs Poems Calculators Flash Cards	Literature: Monster Math by: Anne Miranda A Dozen Dogs by: Harriet Ziefert	Ones Tens Grouping Fact Families Facts Doubles Counting on Left/ Right Vertical Horizontal Columns Alignment
3. Compare two -digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols $>,=$, and $<$.	*Compare and order whole numbers to 100. *Use <, >, = to compare whole numbers.	Same as previous standard.	Coins Money Counters	Literature: Just Enough Carrots by: Stuart J. Murphy	More Greater Than Less Than Equal Estimate

Essential Question(s):	
21st Century Theme:	
Content: \quad Numbers \& Operations in Base Ten	
Standards: \quad 1.NBT	
C. Use place value understanding and properties of operations to add and subtract.	

Math Curriculum
First Grade

Skills	Instructional Procedures	Assessment	Resources	Interdisciplinary Connections	Vocabulary
4. Add within 100 , including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10 , using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten.	*Solve multi-digit addition and subtraction problems using models and number sentences. *Use fact families and related facts to illustrate the properties. *Teach the relationship between number sentences through ordinary objects.	Formative Assessment Open- ended Problem Self Assessment Teacher Observation Benchmark Assessment Homework Review Class work Review Project-Based Assessment Timed Drills End of the Year Benchmark Assessment Math Software (ex. Study Island) Group \& cooperative work	Flash Cards Counters Available Objects	Social Studies: Relate fact families to students' families	Sum Difference Carry on (move it over) Math Fact Flip Digits Fact Families Selected Facts
5. Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used.	Use mental strategies to add and subtract.				

Math Curriculum

First Grade

6. Subtract multiples of 10 in the range 10-90 from multiples of 10 in the range 10 90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.	Using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.				

Essential Question(s): How can measurements be used to solve problems?

21st Century Theme: Global Awareness

21st Century Skills: Critical Thinking and Problem Solving

Content: Measurement and Data
Standards: 1.MD

Math Curriculum
First Grade

A. Measure lengths indirectly and by iterating length units.					
Skills	Instructional Procedures	Assessment	Resources	Interdisciplinary Connections	Vocabulary
1. Order three objects by length; compare the lengths of two objects indirectly by using a third object.	*Using SmartBoard or models students will order objects from short to shortest and long to longest. *Understand the inverse relationship between the size of an unit and the number of units. *Students will organize classroom objects.	Formative Assessment Open- ended Problem Self Assessment Teacher Observation Benchmark Assessment Homework Review Class work Review Project-Based Assessment Timed Drills End of the Year Benchmark Assessment Math Software (ex. Study Island) cooperative work	SmartBoard Assorted measuring tools	Literature: How Big is a Foot? By: Rolf Myller Language Arts: Grammar lesson on the use or er and est endings. Students can write stories using words with these endings.	Length Inch Foot Yard Meter Centimeter Short -er, -est long -er, -est

Math Curriculum

First Grade

2. Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of samesize length units that span it with no gaps or overlaps. Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or	Model measuring a desk with a pencil or other available nonstandard use of measurement. *Demonstrate the need for exactness. *Discuss how and why measurements differ. *Introduce standard units of measurement. *If students are ready introduce rulers.	Formative Assessment Open- ended Problem Self Assessment Teacher Observation Benchmark Assessment Homework Review Class work Review Project-Based Assessment Timed Drills End of the Year Benchmark Assessment Math Software (ex. Study Island) cooperative work	Funbrain.com (website)	Literature: The Biggest Fish by: Shelia Keenan	Measure end to end

First Grade

Essential Question(s): Why do we need to tell time?					
21st Century Theme: Health Literacy					
21st Century Skill: Life and Career Skills					
Content:	Measurement \& Data				
Standards:	1.MD				
B. Tell and write time.					
Skills	Instructional Procedures	Assessment	Resources	Interdisciplinary Connections	Vocabulary
3. Tell and write time in hours and half-hours using analog and digital clocks.	*Use the Judy Clock or SmartBoard to demonstrate telling time to the hour and half hour. Model how to write time properly using both analog and digital units. *Play bingo game match analog to digital time. *Have children practice telling time in small groups using small clocks. *Survey class to gather data about times they eat dinner, go to sleep, wake up, etc.	Formative Assessment Open- ended Problem Self Assessment Teacher Observation Benchmark Assessment Homework Review Class work Review Project-Based Assessment Timed Drills End of the Year Benchmark Assessment Math Software (ex. Study Island) Group \& cooperative work	Judy Clocks Smart Boards Small Clocks for the students Time Bingo Game Digital Clock Analog Clock	Literature: The Grouchy Ladybug by: Eric Carle Social Studies: Create a time line of the students day. Science: Sun rise and sun set Health: How much sleep is needed? Physical Education: Use of the stopwatch.	Hour Minute Second Half Hour Clock Face Minute hand Hour Hand Second Hand Analog Digital

First Grade

Essential Question(s): How can the collection, organization, interpretation, and display of data be used to answer questions?

21st Century Theme: Global Awareness

21st Century Skills: Critical Thinking and Problem Solving, Information Literacy					
Content: Measurement \& Data					
Standards: 1.MD					
C. Represent and interpret data.					
Skills	Instructional Procedures	Assessment	Resources	Interdisciplinary Connections	Vocabulary
4. Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.	*Guide students to collect data and discuss how to represent as a graph. Crate class graph. In journal, write a sentence that describes the data. *Ask students questions about data, or have students formulate their own questions in their journals to ask their classmates.	Formative Assessment Open- ended Problem Self Assessment Teacher Observation Benchmark Assessment Homework Review Class work Review Project-Based Assessment End of the Year Benchmark Assessment Math Software (ex. Study Island) Group \& cooperative work	Graph Pocket Chart Clipboards Math Journals	Science: Graph the weather Language Arts- Journal results into sentences Health: Graph Healthy Foods Physical Education: Graph number of jumping jack, how far can everyone kick a ball, etc.	Graph -picture -bar Most Greatest Least More Less

First Grade

Essential Question(s): How do we use shapes and attributes in the real world?					
21st Century Theme: Global Awareness					
21st Century Skills: Communication and Collaboration, Critical Thinking and Problem Solving, Creativity and Innovation					
Content: Geometry					
Standards:1.G					
A. Reason with shapes and their attributes.					
Skills	Instructional Procedures	Assessment	Resources	Interdisciplinary Connections	Vocabulary
1. Distinguish between defining attributes (e.g., triangles are closed and threesided) versus non-defining attributes (e.g., color, orientation, overall size) ; build and draw shapes to possess defining attributes.	*Identify real world two dimensional shapes. *Identify and describe attributes and properties of two dimensional shapes *Sort and classify two dimensional shapes *Identify real world three dimensional shapes *Sort and classify three dimensional shapes *Recognize shapes from different perspectives *Tally shapes in the neighborhood	Formative Assessment Open- ended Problem Self Assessment Teacher Observation Benchmark Assessment Homework Review Class work Review Project-Based Assessment Timed Drills End of the Year Benchmark Assessment Math Software (ex. Study Island) Group \& cooperative work	Tangrams Geometric Shapes Geo-Board District Specific Texts Computer Software Attribute Blocks Craft Sticks Blocks Wiki-Sticks Pattern Blocks	 Engineering: Read the Three Little Pigs then have students build houses in small groups, using different shapes. They are building houses for the little pigs that the wolf can't blow down. (Teachers can use the blow dryer to simulate the wolf blowing.)	Triangles Quadrilaterals Pentagons Hexagons Cubes Sort Classify Alike Different Rectangular Prism Cone Cylinder Sphere Pyramid Face (How many faces does the shape have?) Two-dimensional

Math Curriculum

First Grade

2. Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, halfcircles, and quarter-circles) or three-dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape. 1	*Look at incomplete shapes and identify what the should be. *Compose and decompose two dimensional shapes. *Understand that three dimensional shapes are made up off two dimensional shapes. *Compose and decompose three dimensional shapes. *Identify two dimensional in three dimensional shapes.	Formative Assessment Open- ended Problem Self Assessment Teacher Observation Benchmark Assessment Homework Review Class work Review Project-Based Assessment Timed Drills End of the Year Benchmark Assessment Math Software (ex. Study Island) Group \& cooperative work	Blocks Tangrams Geoboards Three-dimensional Shapes Wiki-Sticks SmartBoards	Art/Engineering: Have students create threedimensional transportation using recyclable materials in small groups. Have students present their creation to the class.	Make Break apart Trapezoid Half Circle Quarter Circle Right Rectangular prisms Right Circular Cones Right Circular Cylinders
3. Partition circles and rectangles into two and four equal shares, describe the shares using the words halves, fourths, and quarters, and use the phrases half of, fourth of, and quarter of. Describe the whole as two of, or four of the shares. Understand for these examples that decomposing into more equal shares creates smaller shares.	*Develop initial understanding of congruence and symmetry. *Using paper create two shapes that are equal size. *Have children use the SmartBoard to "cut" real world items in halves and quarters. *Walk around the school and identify fractions in the school environment.	Formative Assessment Open- ended Problem Self Assessment Teacher Observation Benchmark Assessment Homework Review Class work Review Project-Based Assessment Timed Drills End of the Year Benchmark Assessment Math Software (ex. Study Island) Group \& cooperative work	Fraction Tiles SmartBoard Bar Modeling	Art: Lines of Symmetry Science: Explore Butterflies and the explore the symmetry	Half of Quarter of Halves Quarters Equal Shares Fourth of Cut into

