FIRST PRE BOARD EXAMINATION (2019-20)

Subject: MATHEMATICS
Date: 15 .12.2019
Time Allowed: 3 Hours

General instructions:
(1) All questions are compulsory.
(2) Please check that this question paper contains 7 printed pages only.
(3) Please check that this question paper contains 36 questions.
(4) There are four sections, Section A, B, C and D.
(5) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 6 questions of r marks each. Section D comprises of 4 questions of 6 marks each.
(6) There is no overall choice. However, an internal choice has been provided in three questions of 1 mark each, two questions of 2 marks each, two questions of 4 marks each and two questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.
(7) Use of calculators is not permitted.

> Section- A
> [20X1= 20 Marks]
1.Given $A=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right]$, which of the following result is true?
(a) $A^{2}=I$
(B) $A^{2}=-I$
(C) $A^{2}=2 I$
(D) None of these
2. If A is 2 X 3 matrix , B is a matrix such that $A^{\prime} B$ and $B A^{\prime}$ are both defined then B is of the type
(a) 2×3
(b) 2×2
(c) 3×3
(d) 3×2
3. If $(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}=144$ and $|\vec{a}|=4$ then $|\vec{b}|$ will be
(a) 3
(b) 4
(c) 2
(d) 9
4. If A and B are two independent events such that $P(A)=0.2, P(B)=0.4$ then $\mathrm{P}(\mathrm{AUB})$ is
(a) 0.72
(b) 0.62
(c) 1
(d) 0.52
5. $\operatorname{Cos}^{-1}\left(\operatorname{Cos} \frac{7 \pi}{6}\right)+\operatorname{Sin}^{-1}\left(\operatorname{Sin} \frac{2 \pi}{3}\right)$ is equal to
(a) $-\frac{\pi}{6}$
b) $\frac{7 \pi}{6}$
(c) $-\frac{\pi}{4}$
(d) $\frac{\pi}{3}$
6. The point which lie in the half plane $x-2 y \geq 6$
(a) $(8,1)$
(b) $(4,2)$
(c) $(2,3)$
(d) $(4,5)$
7. Probability of solving specific problem by A and B are $1 / 2$ and $1 / 3$ respectively. If both try to solve the problem independently, the probability the problem will be solved is
(a) $2 / 3$
(b) $1 / 3$
(c) $3 / 4$
(d) none of these
8. Value of $\int \operatorname{Cot} x \cdot \log \operatorname{Sin} x d x$ is
(a) $\log \operatorname{Sin} x+c$
$(b)(\log \operatorname{Sin} x)^{2}+c$
(c) $\frac{(\log \operatorname{Sin} x)^{2}}{2}+c$
(d) none of these
9. Distance between the two planes $3 x+5 y+7 z=3$ and $9 x+15 y+21 z=27$?
(a) 0
(b) 3
(c) $6 / \sqrt{83}$
(d) 6
10. Equation of the line $\frac{x-1}{3}=\frac{y-5}{1}, z=2$ in vector form is
(a) $\vec{r}=(3 \hat{\imath}+\hat{\jmath})+\mu(\hat{\imath}+5 \hat{\jmath}+2 \hat{k})$
(b) $\vec{r}=(\hat{\imath}+5 \hat{\jmath}+2 \hat{k})+\mu(\widehat{3 l}+\hat{\jmath})$
(c) $\vec{r}=(\hat{\imath}+5 \hat{\jmath})+\mu(3 \hat{\imath}+\hat{\jmath}+2 \hat{k})$
(d) none of these
11. If $f=\{(1, a),(2, b),(3, c)\}$ and g are two functions such that $f o g=g o f=I$, then value of function g is $\ldots \ldots \ldots$
12. If $f(x)=\left\{\begin{array}{cl}\frac{k \operatorname{Cos} x}{\pi-2 x} & \text { if } x \neq \frac{\pi}{2} \\ 3 & \text { if } x=\frac{\pi}{2}\end{array}\right.$ is continuous at $x=\frac{\pi}{2}$, then value of k is...
13. If $\left[\begin{array}{l}2 \\ 3\end{array}\right]+y\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\left[\begin{array}{c}10 \\ 5\end{array}\right]$, then value of x will be.......
14. If the cost function $C(x)=x^{2}+3 x+2$ and revenue function $R(x)=15 x+7$. What value of x will make Marginal revenue and marginal cost equal?

OR
Find the interval in which $10-6 x-2 x^{2}$ is strictly decreasing.
15. The magnitude of projection of $(\hat{\imath}-\widehat{2 \jmath}+\hat{k})$ on $(\widehat{\imath+} \widehat{\jmath+3 k})$ is OR
If $(\hat{\imath}+\widehat{2 \jmath}+5 \hat{k}) \times(p \dot{\hat{\imath}}-q \hat{\jmath}+5 \hat{k})=\overrightarrow{0}$, then value of ' q ' is...
16. Is $\left|\begin{array}{lll}x & a & x+a \\ y & b & y+b \\ z & c & z+c\end{array}\right|=0$? Justify your answer.
17. Evaluate $\int_{0}^{1} \frac{2 x}{1+x^{2}} d x$
18. $\int x^{6} \operatorname{Sin}\left(5 x^{7}\right) d x=\frac{k}{5} \operatorname{Cos}\left(5 x^{7}\right), x \neq 0$ then the value of k if constant of integration is zero.

OR

Find $\int \frac{d x}{\sec x+\tan x}$
19. Find $\int \frac{d x}{\operatorname{Sin}^{2} x \cdot \operatorname{Cos}^{2} x}$
20. Find the general solution of the differential equation $\frac{d y}{d x}=y \cdot \tan x$.

Section- B

[6X2= 12 Marks]
21. Write the value of $\operatorname{Cot}^{-1}\left(\sqrt{1+x^{2}}-x\right)$ in the simplified form.

OR

Check whether the relation R on real numbers defined by $R=\left\{(x, y): x \leq y^{3}\right\}$ is transitive.
22. If $y=\operatorname{Sin}^{-1} x$ then prove that $\left(1-x^{2}\right) y_{2}-x y_{1}=0$
23. Find the approximate change in the surface area of a cube of side x meters caused by decreasing the side by 1%.
24. Find μ if the vectors $\vec{a}=\hat{\imath}+3 \hat{\jmath}+\hat{k}, \vec{b}=2 \hat{\imath}-\hat{\jmath}-\hat{k}$ and $\vec{c}=\mu \hat{\imath}+7 \hat{\jmath}+3 \hat{k}$ are coplanar.

OR
Prove that $[\vec{a}, \vec{b}, \vec{c}+\vec{d}]=[\vec{a}, \vec{b}, \vec{c}]+[\vec{a}, \vec{b}, \vec{d}]$

25 . Find the angle between the lines
$\frac{2-x}{2}=\frac{y-1}{2}=\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{y-4}{8}, z=5$
26. A die is thrown. If E is the event 'the number appearing is a multiple of
3^{\prime} and F be the event 'the number appearing is even' then find whether E and F are independent?

Section- C
 [6X4= 24 Marks]

27. Let $f: N \rightarrow R$ be a function defined as $f(x)=4 x^{2}+12 x+5$. Show that $f: N \rightarrow s$ where S is the range of f is invertible. Find the inverse of f.
28. Prove that $-1 \leq \frac{2^{x+1}}{1+4^{x}} \leq 1$ hence differentiate the following w.r.t. x , $y=\operatorname{Sin}^{-1}\left(\frac{2^{x+1}}{1+4^{x}}\right)$.

OR
If $y=e^{a \cos ^{-1} x},-1 \leq x \leq 1$. Show that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-a^{2} y=0$
29. Show that the differential equation $2 x y+y^{2}-2 x^{2} \frac{d y}{d x}=0$ is homogenous hence find its particular solution at $\mathrm{y}=2$ when $\mathrm{x}=1$.
30. Evaluate $\int_{0}^{\pi} \frac{x d x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x}$
31. Two numbers are selected at random (without replacement) from first 7
natural numbers. If X denotes smaller of two numbers obtained. Find the probability distribution of X. Also, find mean of the distribution. OR

Assume that the chance of a patient having a heart attack is 40%. It is also assumed that a meditation and yoga course reduce the risk of heart attack by 30% and prescription of certain drug reduces its chances by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga?
32. Minimise $Z=x+2 y$ subject to $2 x+y \geq 3, x+2 y \geq 6, x, y \geq 0$.

Section- D

[4X6= 24 Marks]
33. Using properties of determinants, prove that

$$
\left|\begin{array}{ccc}
3 a & -a+b & -a+c \\
-b+a & 3 b & -b+c \\
-c+a & -c+b & 3 c
\end{array}\right|=3(a+b+c)(a b+b c+c a)
$$

OR
If $A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]$, find A^{-1}. Using A^{-1} solve the system of equations $2 x-3 y+5 z=11,3 x+2 y-4 z=-5, x+y-2 z=-3$.
34. Using integration, find the area of the region bounded by

$$
\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}
$$

35. A given quantity of metal is to be cast into a solid half circular cylinder with a rectangular base and semi circular ends. Show that in order that total surface area is minimum, the ratio of length of cylinder to the diameter of semi circular ends is $\pi: \pi+2$

OR

Show that the right circular cylinder of given surface and maximum volume is such that its height is equal to the diameter of the base.
36. Show that the lines $\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5}$ and $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$ are coplanar.

Also find the equation of the plane containing them.

