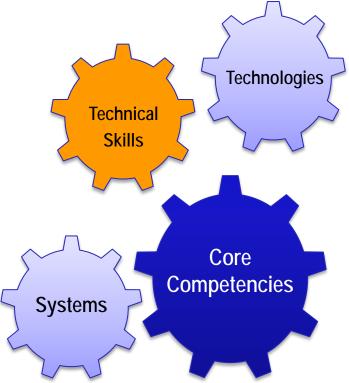
Federal Energy Management Program

Achieving Energy-Efficient Data Centers with New ASHRAE Thermal Guidelines

Semin@RS

Presented by: Don Beaty, DLB Associates Will Lintner, FEMP

femp.energy.gov/training


1 | FEMP First Thursday Seminars

Core Competencies Addressed in this Seminar

Energy/Sustainability Managers and Facility Managers Building Technologies Operations and Maintenance

Operating Engineers/Building Technicians

Building Cooling Systems Building Heating System HVAC Systems Operations and Maintenance

Results Expectations

Develop plans to plan for and implement processes to control temperature and air volume in high-intensity data centers based on new ASHRAE TC 9.9 information.

Presentation Objectives

Arm yourself with the knowledge to improve energy performance in Federal data centers and research facilities <u>WITHOUT</u> compromising reliability, voiding warranties or increasing the risk of failure.

Learn about:

- 1) The latest ASHRAE TC9.9 standards with regards to allowable and recommended temperature and humidity ranges.
- 2) The real impact on IT equipment failures from operating at higher temperatures (based on IT OEM actual data).
- 3) The increased potential for data centers WITHOUT any mechanical refrigeration (i.e. NO CHILLERS, COMPRESSORS, ETC.).
- 4) Resource materials from the major IT OEMs and data center industry thought leaders.

Opening Comments

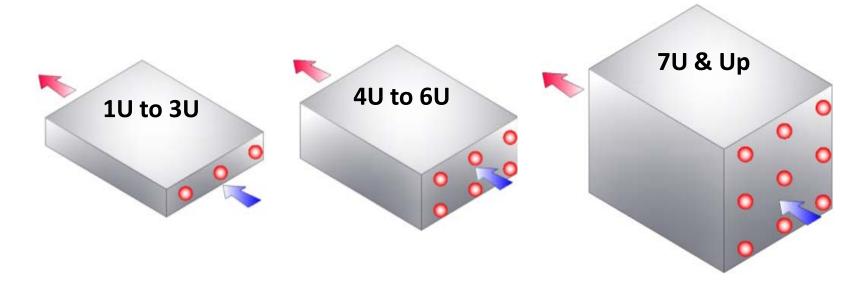
Common reasons for reluctance to increase temperature and humidities

- 1) Concern over increased outage potential
- 2) Concern over voiding IT manufacturer's warranty's
- 3) Concern over having less safety margin & / or resilience

ASHRAE's TC 9.9 IT Subcommittee is comprised of the major IT OEM's. The ASHRAE temperatures and humidities were produced by the IT OEMs

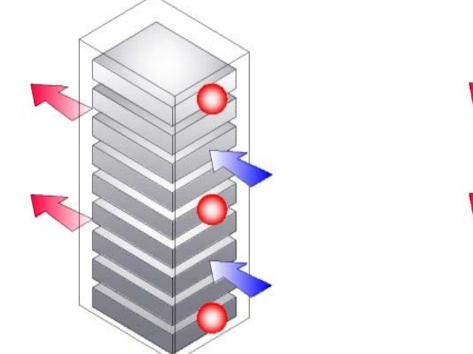
Opening Comments (continued)

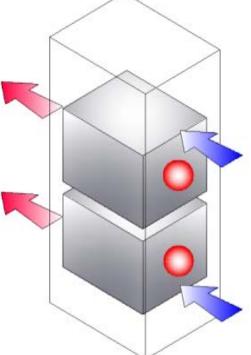
In 2004, ASHRAE TC 9.9 standardized temperature (68 F to 77 F) & humidity by publishing vendor NEUTRAL guidelines approved by the IT OEMs and within their WARRANTIES.


In 2008, ASHRAE TC 9.9, widened the temperature range (64.4 F to 80.6 F) while still being within WARRANTY requirements (including LEGACY equipment).

In 2011, ASHRAE TC 9.9 White Paper provides scenarios for ranges as wide as 41 F to 113 F. These wider ranges are NOT compliant with LEGACY equipment warranties.

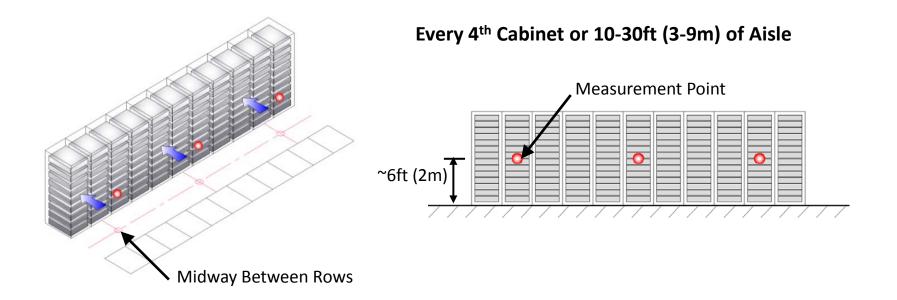
THE OPPORTUNITIES FOR COMPRESSORLESS COOLING (NO REFRIGERATION) ARE HIGH





Server Troubleshooting

© ASHRAE Graphics reformatted by DLB Associates

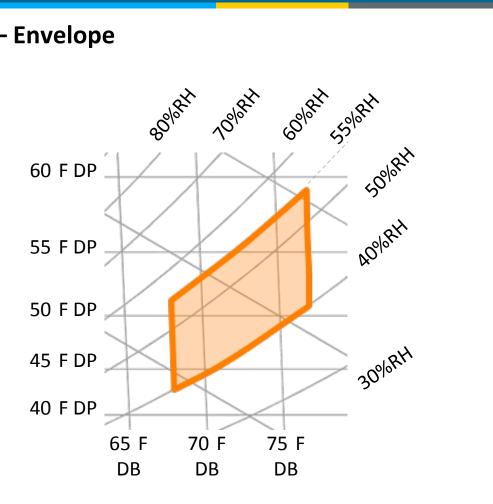


Rack Troubleshooting

© ASHRAE Graphics reformatted by DLB Associates

Facility Health

ITE Environment – Envelope


Recommended – The purpose of the Recommended Envelope is to give guidance to operators on the combination of <u>maintaining high reliability</u> and energy efficiency.

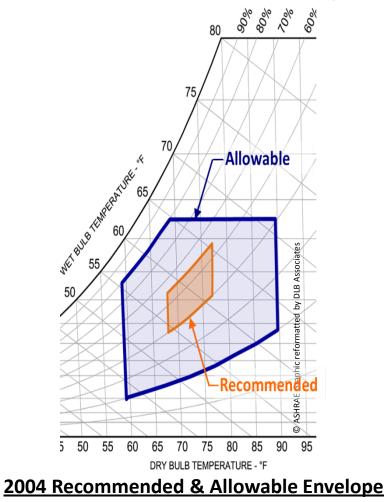
The recommended envelope is based on IT OEM's expert knowledge of server power consumption, reliability & performance vs. ambient temp.

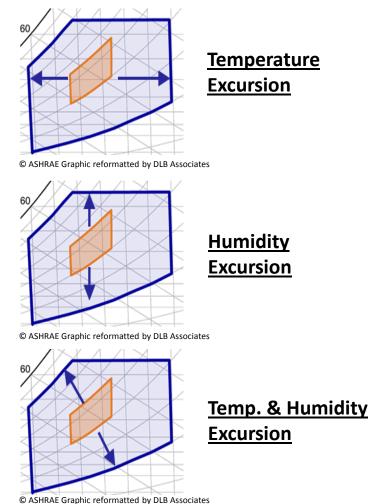
Allowable – The Allowable Envelope is where the IT manufacturers test their equipment in order to verify that the <u>equipment will function</u> within those ENVIRONMENTAL BOUNDARIES.

ITE Environment – Envelope

Envelope

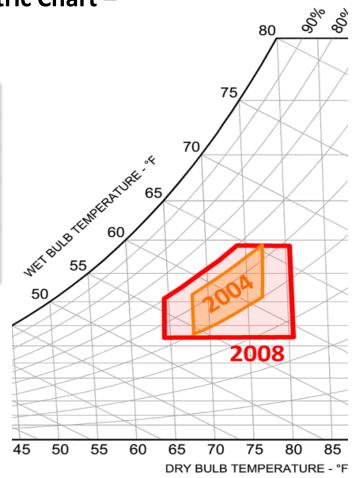
© ASHRAE Graphic reformatted by DLB Associates


ITE Environment – Envelope


Prior to ASHRAE; single operating point, say 68 F, 50% RH

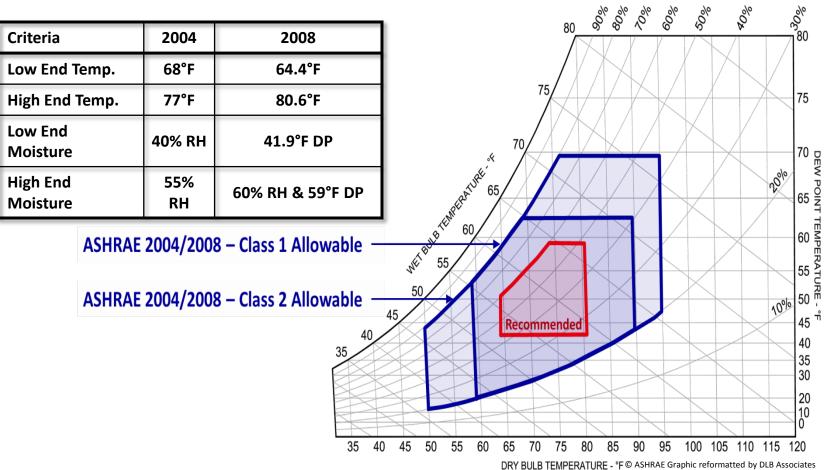
2004	2004 Recommended Envelope – Many Operating Points (160)																
Dry	% Relative Humidity																
Bulb	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	
68	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	=16
69	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	=16
70	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	=16
71	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	=16
72	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	=16
73	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	=16
74	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	=16
75	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	=16
76	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	=16
77	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	<u>=16</u>
	=10	=10	=10	=10	=10	=10	=10	=10	=10	=10	=10	=10	=10	=10	=10	=10	=160

ITE Environment – ASHRAE Psychrometric Chart



ITE Environment – ASHRAE Psychrometric Chart – 2004 / 2008 Recommended

Criteria	2004	2008
Low End Temp.	68°F	64.4°F
High End Temp.	77°F	80.6°F
Low End Moisture	40% RH	41.9°F DP
High End Moisture	55% RH	60% RH & 59°F DP



© ASHRAE Graphic reformatted by DLB Associates

RELATIVE HUMIDITY

ITE Environment – ASHRAE Psychrometric Chart – 2004 / 2008 Recommended / Allowable

ITE Environment – 2011 Environment Specifications Table (Partial)

Class		Dry Bulb (°F)	Humidity Range	Max Dew Point (°F)	Max Elevation	Max Rate of Change		
Previous	Current				(ft)	(°F / hr)		
Recomme	Recommended							
1&2	A1 to A4	64.4 to 80.6	41.9°F DP to 60% RH & 59°F DP		N/A			
Allowable	Allowable							
1	A1	59 to 89.6	20% to 80% RH	62.6	10,000	9 / 36		
2	A2	50 to 95	20% to 80% RH	69.8	10,000	9 / 36		
N/A	A3	41 to 104	10.4°F DP & 8% RH to 85% RH	75.2	10,000	9 / 36		
N/A	A4	41 to 113	10.4°F DP & 8% RH to 90% RH	75.2	10,000	9 / 36		

* More stringent rate of change for tape drives

© ASHRAE Table reformatted by DLB Associates

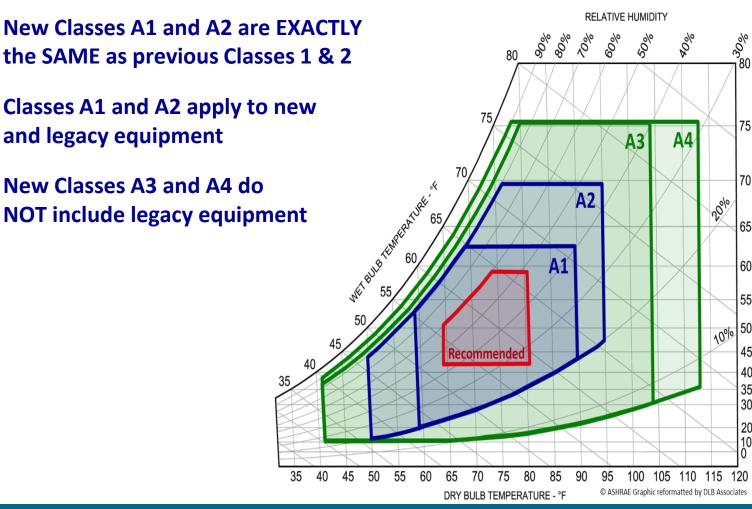
SKIPPED DURING PRESENTATION

OPTIONAL READING /

ITE Environment – New Data Center Classes

Previously there were four data center classes (Class 1 through 4). Two of the four classes applied to ITE used in data center applications (Class 1 & 2).

The new environmental guidelines have more data center classes to accommodate different applications and priorities of ITE operation.


This is critical because a single data center class forces a single optimization whereas each data center needs to be optimized based on the operator's own criteria (e.g. fulltime economizer use vs. maximum reliability).

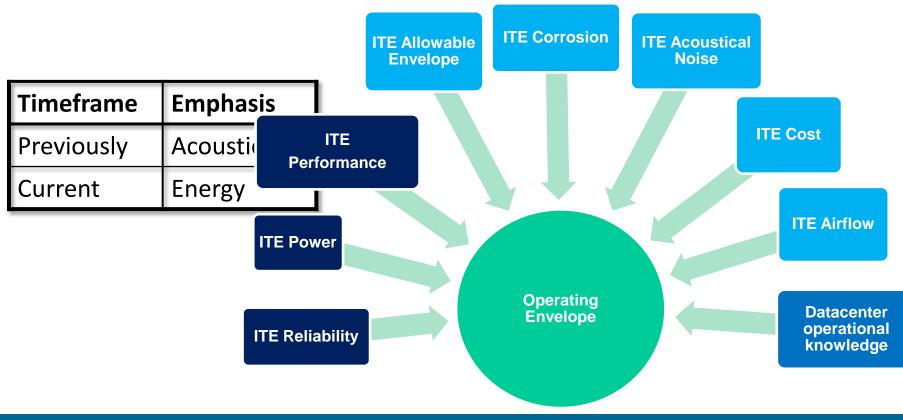
The naming conventions have now been updated to better delineate the types of IT equipment. The old and new classes are now specified differently with the previous Classes 1, 2, 3 and 4 directly mapped to **A1**, **A2**, **B** and **C**.

Two new data center classes have been introduced: A3 and A4.

U.S. DEPARTMENT OF Energy Efficiency & **ENERGY** Renewable Energy

ITE Environment – ASHRAE Psychrometric Chart – 2011

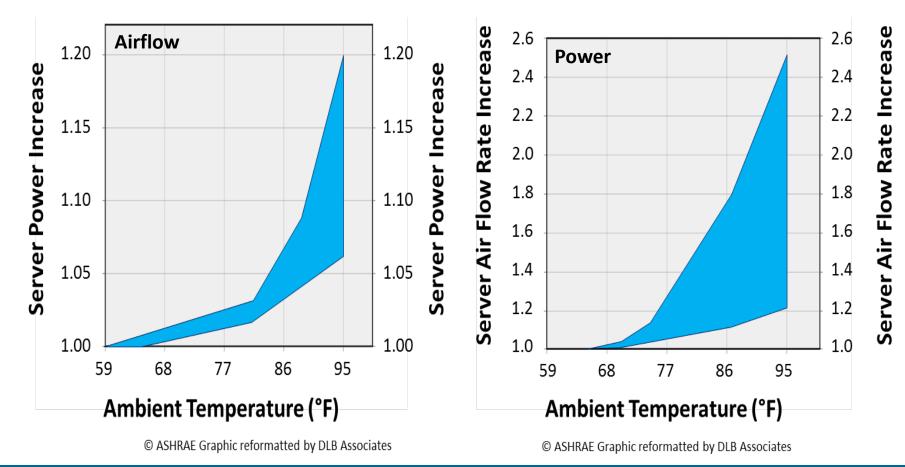
femp.energy.gov/training


70 DEV

POINT 65

т 45

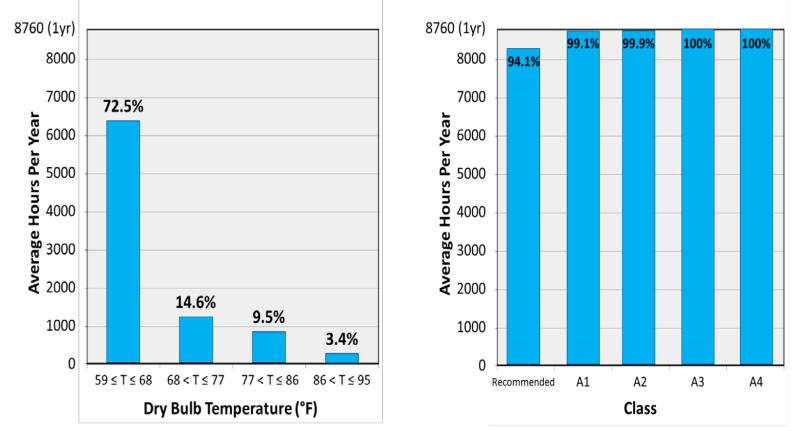
2011 Thermal Guidelines – Operating Envelope


The data center optimization is a complex multi-variable problem and requires a detailed engineering evaluation to be successful.

FEMP First Thursday Seminars

Server Manufacturer's Typical Power vs. Ambient Temperature (multiple manufacturers)

21 | FEMP First Thursday Seminars


Server Manufacturer's Typical Power vs. Ambient Temperature (multiple manufacturers)

Power Increase Extrapolation From Graph							
Deview	Power Increase Due to Temperature						
Power	68°F	77°F	80.6°F	89.6°F	95°F		
Lowest	1.00	1.05	1.10	1.15	1.21		
Highest	1.02	1.27	1.50	2.10	2.50		

- Airflow and total power increase with temperature.
- Fan power required increases to the cube of fan speed (rpm)
- Total power increase includes both fan and component power

Server Reliability Trend vs. Ambient Temperature (cont.)

Avg. yearly dry bulb temp for Chicago with air mixing to maintain 59 F min.

Weather Data From ASHRAE Weather Data Viewer

© ASHRAE Graphics reformatted by DLB Associates

Volume Server Failure Rate versus Ambient Temperature

Volume Server Failure Rate Versus Temperature							
Day Bulk		Annual Serve Rate	er Failure	Comments			
Dry Bulb Temp (°F)	Avg. Failure Rate	Typical	Adjusted Due To Temp.				
А	В	С	D = B x C				
59	0.72	4%	3%	Less Failures			
68	1.00	4%	4%	Baseline			
104	1.66	4%	7%	More Failures			

• Assumes continuous (7 x 24 x 365) operation with Dry Bulb Temp. at ITE inlet.

• Based on years of Server Manufacturers' actual failures, Component Manufacturer's failure data, and modeling (published by ASHRAE TC 9.9).

CONCLUSION:

Temperature has minimal impact on Server Failure

Volume Server Failure Rate versus Ambient Temperature

Server Reliability Trend vs. Ambient Temperature – Relative Failure Rates							
Dry Bulb	Hardware Failure Rate for Volume Servers (X-Factor)						
Temp. (°F)	Average	Lower Bound	Upper Bound				
59	0.72	0.72	0.72				
63.5	0.87	0.80	0.95				
68	1.00 (Baseline)	0.88	1.14				
72.5	1.13	0.96	1.31				
77	1.24	1.04	1.43				
81.5	1.34	1.12	1.54				
86	1.42	1.19	1.63				
95	1.55	1.35	1.74				
104	1.66	1.51	1.81				
113	1.76	1.67	1.84				

Lower bound, average, and upper bound are included since there is variation in server configuration and utilization ASHRAE Table reformatted by DLB Associates

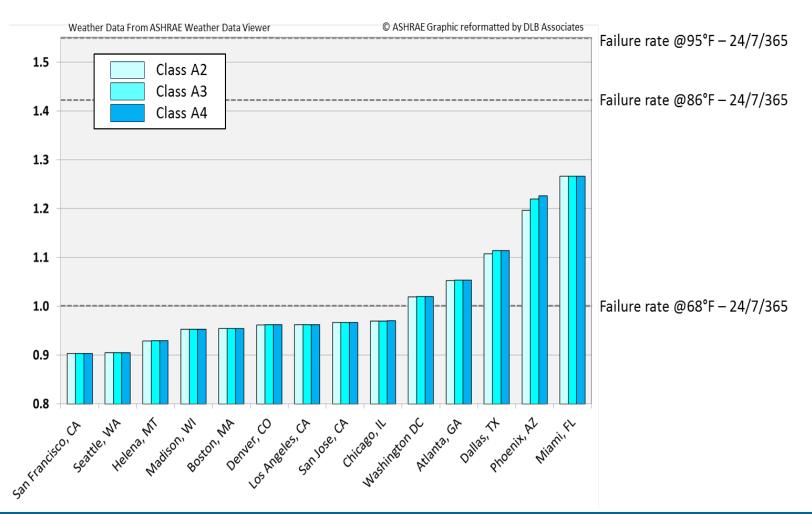
0

Achieving energy-efficient data centers with new ASHRAE thermal guidelines

26 | FEMP First Thursday Seminars

femp.energy.gov/training

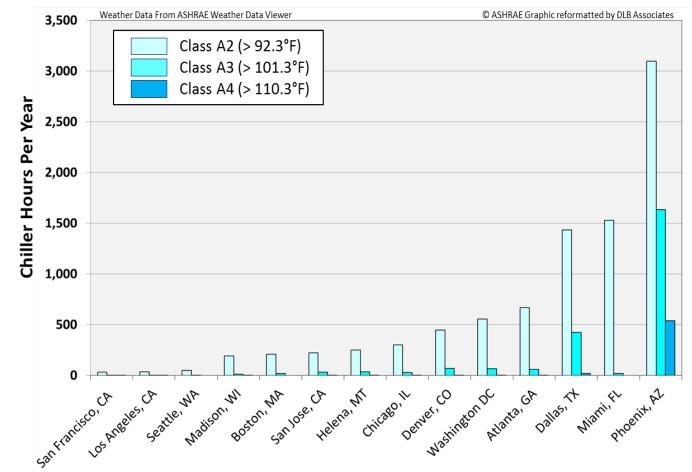
Chicago Net X-Factor Across The Whole Year


Time-at-Temperature Weighted Failure Rate Calculation for ITE in Chicago							
Location	59 ≤ T ≤ 68°F	68 < T ≤ 77°F	77 < T ≤ 86°F	86 < T ≤ 95°F	Annual Failure Rate (Net x-factor Total)		
Chicago % Hours (R1)	72.5	14.6	9.5	3.4	-		
X-factor (R2)	0.865	1.130	1.335	1.482	-		
Failure Rate (R3 = R1 x R2)	0.627	0.165	0.127	0.051	0.970		

Weather Data From ASHRAE Weather Data Viewer

© ASHRAE Graphics reformatted by DLB Associates

IT hardware failure in Chicago with a variable data center temperature is actually LOWER than if the data center was operating at a tightly controlled temperature of 68 F.


Average Net Failure Rate Projections for Air-side Economization (US Cities)

28 | FEMP First Thursday Seminars

Chiller Hours Per Year for Air-side Economization (US Cities)

* Assumes 2.7 F approach between outdoor air dry bulb and supply air due to fan friction

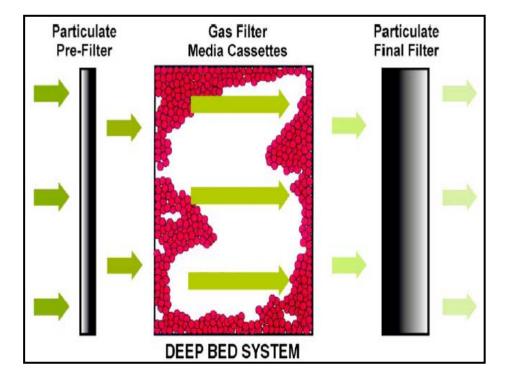
Use & Application Guidance for New ASHRAE Data Center Classes

Server Reliability vs. Contamination

Particulate and gaseous contamination becomes a more important consideration when there is an increased use of economizer systems.

The air quality and building materials should be checked carefully for sources of pollution & particulates and additional filtration should be added to remove gaseous pollution and particulates, if needed.

Products of Combustion


Pollen

IT Equipment Environment – Contamination Filtration

Gas Filtration: scrub the problem gases out of the air stream

Economizer Cycles – Particulates & Gaseous Contamination

Particulates should be filtered as outlined here:

- 1) The room air may be continuously filtered with MERV 8 filters as recommended by ANSI / ASHRAE Standard 127-2007, "Method of Testing for Rating Computer and Data Processing Room Unitary Air Conditioners"
- 2) Air entering a data center may be filtered with MERV 11 or MERV 13 filters as recommended by ASHRAE book titled, "*Particulate and Gaseous Contamination in Datacom Environments*"

Economizer Cycles – Particulates & Gaseous Contamination

Gaseous contamination should be within the modified ANSI / ISA – 71.04-1985 severity level G1 that meets:

- 1) A copper reactivity rate of less than 300Å / month, and
- 2) A silver reactivity rate of less than 300Å / month

For data centers with higher gaseous contamination levels, gas-phase filtration of the inlet air and the air in the data center is highly recommended.

See the TC 9.9 Whitepaper "Gaseous and Particulate Guidelines for Data Centers"

Liquid Cooling

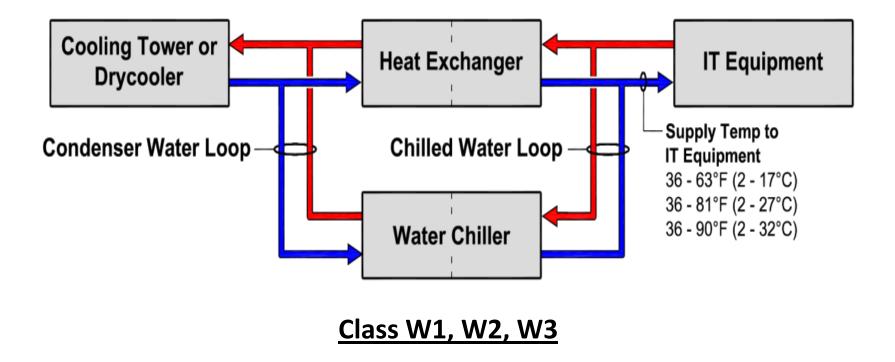
With server heat loads steadily climbing, the ability for data centers to deliver adequate airflow rates or sufficient chilled air is now being stretched to the limit.

Water and other liquids (dielectrics, glycols and refrigerants) may be used for Datacom Equipment heat removal instead of air.

- 1) Heat rejection with liquids typically uses LESS transport energy
- 2) Liquid-to-liquid heat exchangers have closer approach temperatures than Liquid-to-air (coils), yielding increased economizer hours.

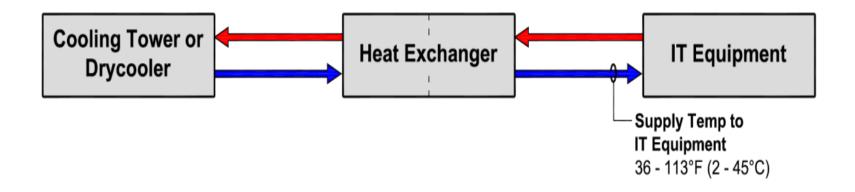
Liquid Cooling

In 2006, ASHRAE published Liquid Cooling Guidelines for Datacom Equipment Centers which established basic guidelines for implementing liquid cooling solutions.

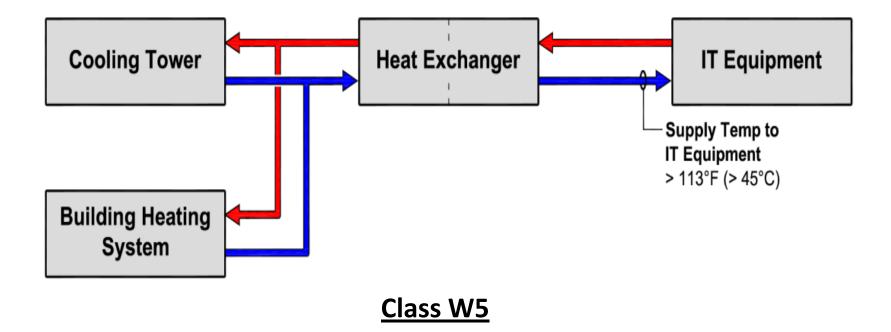

A 2011 whitepaper of the same name further defined classes and envelopes for implementing liquid cooling.

Liquid Cooling – ASHRAE 2011 Guidelines

Liquid Cooling Classes	Typical Infrastructure D	Facility Supply Water Temp.	
	Main Cooling Equipment		
W1	Chillor / Cooling Towor	Ding entSupplemental Cooling EquipmentFacility Supply Water Temp.Mater-side Economizer (cooling tower or drycooler) $36 - 63$ F $(2 - 17$ C) $36 - 81$ F $(2 - 27$ C) $36 - 81$ F $(2 - 27$ C)owerChiller $36 - 90$ F $(2 - 32$ C)ide (cooling (cooler) $36 - 113$ F $(2 - 45$ C)eatingCooling Tower> 113 F 	
W2	Chiller / Cooling Tower		
W3	Cooling Tower	Chiller	
W4	Water-side Economizer (cooling tower or drycooler)	N/A	
W5	Building Heating System	Cooling Tower	



Liquid Cooling – Typical Infrastructures for Data Centers


Liquid Cooling – Typical Infrastructures for Data Centers

Class W4

Liquid Cooling – Typical Infrastructures for Data Centers

Closing Comments

There is a big difference between an Internet Data Center (IDC) and a Financial Services Data Center.

ASHRAE has created the opportunity to optimize on an individual basis to best meet the needs of the user and achieve the best TCO.

To accomplish this requires considering more variables and using an in depth engineering approach.

Closing Comments (cont.)

The payback for using an in DEPTH engineering approach can save NOT only operation expenses but save HUGE capital costs as well.

Holistic cooling design – IT hardware internal cooling and facility cooling infrastructure.

Multi-variable design approach – silicon to the outdoors and the associated tradeoffs.

Multi-discipline designers – Designers need understand IT & facility cooling.

EXPERTS WITH IN DEPTH ASHRAE EXPERIENCE COULD SAVE YOU PLENTY.

TC 9.9 Datacom Book Series

- 1. Thermal Guidelines for Data Processing Environments 3rd Edition (coming soon)
- 2. Datacom Equipment Power Trends & Cooling Applications 2nd Edition (coming soon)
- 3. Design Considerations for Datacom Equipment Centers (2006)
- 4. Liquid Cooling Guidelines for Datacom Equipment Centers (2006)
- 5. Structural & Vibration Guidelines for Datacom Equipment Centers (2008)
- 6. Best Practices for Datacom Facility Energy Efficiency (2008)
- 7. High Density Data Centers Case Studies & Best Practices (2008)
- 8. Particulate & Gaseous Contamination in Datacom Environments (2009)
- 9. Real-Time Energy Consumption Measurements in Data Centers (2009)
- 10. Green Tips for Data Centers (2011)

FEMP First Thursday Seminars

TC9.9 Whitepapers – available for free download at

www.tc99.ashraetcs.org

ASHRAE TC 9.9

2011 Thermal Guidelines for Data Processing Environments – Expanded Data Center Classes and Usage Guidance Whitepaper prepared by ASHRAE Technical Committee (TC) 9.9

Mission Critical Facilities, Technology Spaces, and Electronic Equipment

© 2011, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. All rights reserved. This publication may not be reproduced in whole or in part; may not be distributed in paper or digital form; and may not be posted in any form on the Internet without ASHRAE's expressed written permission. Inquires for use should be directed to publisher@ashrae.org.

© 2011 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. All rights reserved.

© 2011, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrat.org). All rights reserved. This publication may not be reproduced in whole or in part; may not be distributed in paper of digital form; and may not be posted in any form on the Internet without ASHRAE's expressed written permission. Inquirets for use should be directed to publisher@gathure.org.

2011 Gaseous and Particulate Contamination Guidelines For Data Centers¹

EXECUTIVE SUMMARY

Most data centers are well designed and are in areas with relatively clean environments, and most contamination is benign. Therefore, most data centers do not experience particulate or gaseous contamination-related information technology (IT) equipment failures. A small number of data centers, however, do. According to the major IT equipment manufacturers, the number of data centers with contaminationrelated failures is on the rise, though their numbers remain quite small.

In 2009, the IT manufacturer members of ASHRAE TC 9.9 authored a white paper (ASHRAE 2009a), titled "Particulate and Gaseous Contamination Guidelines for Data Centers," primarily targeted toward a minority of data centers that may have harmful environments resulting from the ingress of outdoor particulate and/or gaseous contamination. The document stated that for a small number of data centers, located mostly in the emerging markets, contamination can be a serious risk, and it provided insight into how to manage the contamination risk.

This white paper is an update to the original 2009 ASHRAE paper. The update is based on an ASHRAE survey of the air quality in data centers and on lessons learned in cleaning the air in contaminated data centers.

The reasons for the increasing number of data centers experiencing corrosionrelated hardware failures are as follows:

- Change from lead-containing solder to lead-free solder, such as copper-tinsilver solder
- · Changes in data center temperature and humidity operating conditions

 This white paper on data center airborne contamination was prepared by ASHRAE TC 9.9, Mission Critical Facilities, Technology Spaces, and Electronic Equipment. The committer's members prepresent the following IT equipment manufacturers: AMD, Cisco, Cray, Dell, EMC, Hitschi, HP, IBM, Intel, Oracle, Seagate, and SGI. Helpful information for technical and nontechnical readers can be found in *Particulate and Gaseous Contaminants in Datacon Environments* (ASHRAE 2009b).

ENERGY Energy Efficiency & Renewable Energy

FEMP Energy Efficient Data Center Resources

U.S. DEPARTMENT OF	Energy Efficiency Efficience Effi	EERE Home Pro	EERE Home Programs & Offices Consumer Information					
Federal Energy Management Program						Federal Energy Management Program		SEARCH
HOME	ABOUT THE PROGRAM	PROGRAM AREAS	LAWS & REGULATIONS	INFORMATION RESOURCES	PROJECT FUNDING	TECHNOLOGIES	SERVICES	NEWS & Events
EERE » Federal Energy Management Program » Program Areas				Site Map	Printable Version	+ Share		
Sustainable Bu Campuses Operations & N	-	Data Center Energy Efficiency The Federal Government is leading by example to alleviate the burden of growing data center energy consumption. FEMP plays a critical role in the execution of that leadership.						
Greenhouse Ga Water Efficienc Data Center En Efficiency	у	FEMP participates i includes the DOE Ir Program and the La	n the Department of E Idustrial Technologies Iwrence Berkeley Nati data centers more effici					
Energy Consu Trends Federal Partne Green Data C	ership for	Specifically, FEMP to adopt best practic	supports data center e ces, construct energy- nnology professionals.					
Resources	enters	Administration to develop a Quick Start Guide 🖉 and offer workshops. FEMP also leads the Federal Partnership for Green Data Centers to facilitate dialogue between agencies.						
Industrial Facil Federal Fleet M Laboratories fo Century	lanagement	Energy Consur	rship for Green Data C	01 0	-			
					ng Working Group and lead lintner@ee.doe.gov or 202-		er Energy Efficiency	Working

http://www1.eere.energy.gov/femp/program/data_center.html

Federal Partnership for Green Data Centers

LA DEPARTMENT OF ENERGY Renewable Energy Efficiency & EERE Home Programs & Offices Consumer Information Renewable Energy								
Federal Energy Management Program					Federal Energy Management Program			
HOME ABOUT THE PROGRAM	PROGRAM AREAS	LAWS & REGULATIONS	INFORMATION RESOURCES	PROJECT FUNDING	TECHNOLOGIES	SERVICES	NEWS & EVENTS	
ERE » Federal Energy Managem	nent Program » Program	n Areas			Site Map	Printable Version	🔸 Share	
Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Data Center Energy Efficiency Energy Consumption Trends Federal Partnership for Green Data Centers	Federal Pathe efficiency and rene 2007 (EISA 2007) = Government's cost The group meets th Specifically, it work Federal Governmen Members The following Fede	ts periodically. Pleas <u>dar of Events</u> for det gs.	arship for Green Data odically. Please see the <u>Events</u> for details on					
Resources Industrial Facilities Federal Fleet Management Laboratories for the 21st Century	Department of Environmental Federal Aviation	Energy Health and Human Se the Interior Justice State Protection Agency	rvices					
	Meetings The Federal Partnership for Green Data Centers meets periodically. Please see the FEMP Calendar of Events for future meetings. Meeting summaries and presentations are available from the following past meetings: September 28, 2011 • ASHRAE's Groundbreaking Environmental Class Changes: Don Beaty of ASHRAE and DLB Associates Participant (LBNL) • FEMP Data Center Building Environmental Class Changes: Don Beaty of ASHRAE and BLB Associates							

U.S. DEPARTMENT OF

Energy Efficiency &

Renewable Energy

http://www1.eere.energy.gov/femp/program/fpgdc.html

Energy Efficient Data Center Training

Data Center Profiler (DC Pro) Tool Training Webinar March 29, 2012

First Thursday Seminar Labs, Data Centers and High Tech Facilities – on demand

http://apps1.eere.energy.gov/femp/training/index.cfm#results

Contact Information

Don Beaty

DLB Associates Tel: (732) 910-1300 Email: <u>dbeaty@dlbassociates.com</u> Will Lintner Federal Energy Management Program Tel: 202-586-3120 Email: <u>william.lintner@ee.gov</u>

ASHRAE TC 9.9 Website

www.tc99.ashraetcs.org