

Five-Minute Check (over Lesson 4–3)

<u>CCSS</u>

Then/Now

New Vocabulary

Example 1: Parallel Line Through a Given Point

Example 2: Real-World Example: Slopes of Perpendicular Lines

Example 3: Parallel or Perpendicular Lines

Example 4: Parallel Line Through a Given Point

Concept Summary: Parallel and Perpendicular Lines

What is the point-slope form of an equation for a line that passes through the point (5, -5) with the slope m = 2?

A.
$$y = 2x + 5$$

B.
$$y = 2x - 5$$

$$\rightarrow$$
 C. $y + 5 = 2(x - 5)$

D.
$$y = 2(x-5)$$

5-Minute Check Over Lesson 4–3 **New Vocabulary**

Slope-Intercept Form

$$y = mx + b$$

Standard Form

$$Ax + By = C$$

Point-slope Form

$$y - y_1 = m(x - x_1)$$

EXIT

A.
$$10y = 18 - x$$

B.
$$y = -\frac{1}{10}x + \frac{9}{5}$$

C. $y = -\frac{1}{10}x + 9$

D. y = 18 - x

EXIT

EXIT

Standardized Test Practice

🥑 5-Minute Check

5 Which equation has a graph that passes through the points at (3, 4) and (-1, -4)?

Over Lesson 4–3

A.
$$y-3 = 2(x-4)$$

B.
$$y + 1 = 2(x + 4)$$

C.
$$y + 4 = 2(x - 1)$$

$$\longrightarrow$$
 D. $y-4 = 2(x-3)$

Content Standards

F.LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table).

S.ID.7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.

Mathematical Practices

5 Use appropriate tools strategically.

Then

You wrote equations in point-slope form.

Now

- Write an equation of the line that passes through a given point, parallel to a given line.
- Write an equation of the line that passes through a given point, perpendicular to a given line.

New Vocabulary

- parallel lines
- perpendicular lines

ConceptSummary Parallel and Perpendicular Lines		
	Parallel Lines	Perpendicular Lines
Words	Two nonvertical lines are parallel if they have the same slope.	Two nonvertical lines are perpendicular if the product of their slopes is -1 .
Symbols	$\overleftarrow{AB} \parallel \overleftarrow{CD}$	<i>EF</i> ⊥ <i>GH</i>
Models		

EXIT

MENU

EXAMPLE 1 Parallel Line Through a Given Point

Write the slope-intercept form of an equation for the line that passes through (4, -2) and is parallel to the graph of $y = \frac{1}{2}x - 7$. The line parallel to $y = \frac{1}{2}x - 7$ has the same slope, $\frac{1}{2}$. Replace *m* with $\frac{1}{2}$, and (x_1, y_1) with (4, -2) in the point-slope form.

EXAMPLE 1 Parallel Line Through a Given Point

$$y - y_1 = m(x - x_1)$$

$$y - (-2) = \frac{1}{2}(x - 4)$$

$$y + 2 = \frac{1}{2}(x - 4)$$

$$y + 2 = \frac{1}{2}x - 2$$

$$y + 2 - 2 = \frac{1}{2}x - 2 - 2$$

Point-slope form Replace *m* with $\frac{1}{2}$, *y*₁ with –2, and *x*₁ with 4.

Simplify.

Distributive Property

Subtract 2 from each side.

EXAMPLE 1 / Parallel Line Through a Given Point

$$y=\frac{1}{2}x-4$$

Write the equation in slope-intercept form.

Answer: The equation is $y = \frac{1}{2}x - 4$.

EXAMPLE 1 Check Your Progress

Write the slope-intercept form of an equation for the line that passes through (2, 3) and is parallel to the graph of $y = \frac{1}{2}x - 1$. A. y = -2x + 3**B.** $y = \frac{1}{2}x + 3$ **C.** $y = \frac{1}{2}x + 2$ **D.** y = -2x - 1

EXAMPLE 4 **Perpendicular Line Through a Given Point**

Write an equation in slope-intercept form for the line that passes through (4, -1) and is perpendicular to the graph of 7x - 2y = 3.

Step 1 Find the slope of the given line by solving the equation for y.

> 7x - 2y = 3**Original equation**

7x - 7x - 2y = -7x + 3 Subtract 7x from each side.

-2y = -7x + 3 Simplify.

 $\frac{-2y}{-2} = \frac{-7x+3}{-2}$ $y = \frac{7}{2}x + \frac{3}{2}$

Divide each side by -2.

EXIT

Simplify.

EXAMPLE 4 Perpendicualar Line Through a Given Point The slope is $\frac{7}{2}$. **Step 2** The slope of the perpendicular line is the opposite reciprocal of $\frac{7}{2}$ or $-\frac{2}{7}$. Find the equation of the perpendicular line.

 $y - y_1 = m(x - x_1)$ Point-slope form

$$y - (-1) = -\frac{2}{7}(x - 4)$$
 $(x_1, y_1) = (4, -1)$ and $m = -\frac{2}{7}$
 $y + 1 = -\frac{2}{7}(x - 4)$ Simplify.

4–**4** Parallel and Perpendicular Lines

EXAMPLE 4 / Perpendicualar Line Through a Given Point

$$y + 1 = -\frac{2}{7}x + \frac{8}{7}$$

Distributive Property

$$y + 1 - 1 = -\frac{2}{7}x + \frac{8}{7} - 1$$

Subtract 1 from each side.

EXIT

$$y=-\frac{2}{7}x+\frac{1}{7}$$

Simplify.

Answer: $y = -\frac{2}{7}x + \frac{1}{7}$

EXAMPLE 4 Check Your Progress

EXI1

Write an equation in slope-intercept form for the line that passes through (-3, -2) and is perpendicular to the graph of x + 4y = 12.

A.
$$y = \frac{1}{4}x + 10$$

B.
$$y = 4x + 10$$

C.
$$y = -4x + 10$$

D.
$$y = -\frac{1}{4}x + 10$$

4–4 Parallel and Perpendicular Lines

Homework:

Pg 243 #11-15 odd, 23-27 odd

Real-World Example 2

Slopes of Perpendicular Lines

A. GEOMETRY The height of a trapezoid is the length of a segment that is perpendicular to both bases. In trapezoid *ARTP*, *RT* and *AP* are bases. Can *EZ* be used to measure the height of the trapezoid? Explain.

Slopes of Perpendicular Lines

Find the slope of each segment.

Slope of
$$\overline{RT}$$
: $m = \frac{1 - (-3)}{-1 - (-5)}$ or 1
Slope of \overline{AP} : $m = \frac{0 - (-10)}{6 - (-4)}$ or 1
Slope of \overline{EZ} : $m = \frac{-8 - (-1)}{-2 - (-3)}$ or $-\frac{1}{2}$

Answer: The slope of \overline{RT} and \overline{AP} is 1 and the slope of \overline{EZ} is -7. Since $1(-7) \neq -1$, \overline{EZ} is not perpendicular to \overline{RT} and \overline{AP} . So, it cannot be used to measure the height of *ARTP*.

Real-World Example 2 Slopes of Perpendicular Lines

B. GEOMETRY The height of a trapezoid is the length of a segment that is perpendicular to both bases. In trapezoid *ARTP*, *RT* and *AP* are bases. Are the bases parallel?

Slope of
$$\overline{RT}$$
: $m = \frac{1-(-3)}{-1-(-5)}$ or 1
Slope of \overline{AP} : $m = \frac{0-(-10)}{6-(-4)}$ or 1

Answer: Yes, both \overline{RT} and \overline{AP} have a slope of 1.

The graph shows the diagonals of a rectangle. Determine whether JL is perpendicular to KM.

EXIT

 \overline{JL} is not perpendicular to \overline{KM} .

- **B.** JL is perpendicular to KM.
- C. cannot be determined

EXAMPLE 3 Parallel or Perpendicular Lines

Determine whether the graphs of 3x + y = 12, $y = \frac{1}{3}x + 2$, and 2x - 6y = -5 are *parallel* or *perpendicular*. Explain.

Graph each line on a coordinate plane.

EXAMPLE 3 Parallel or Perpendicular Lines

Answer: From the graph, you can see that $y = \frac{1}{2}x + 2$ is parallel to 2x - 6y = -5. They are parallel because they have equal slopes. 3x + y = 12 is perpendicular to them both because the product of their slopes, $\frac{1}{3}$ and -3, is -1.

Determine whether the graphs of y = -2x + 1, x - 2y = -4, and y = 3 are *parallel* or *perpendicular*.

- y = -2x + 1 and x 2y = -4 are perpendicular. None of the lines are parallel.
- **B.** y = -2x + 1 and y = 3 are perpendicular. None of the lines are parallel.
- C. y = -2x + 1 and x 2y = -4 are parallel. None of the lines are perpendicular.
- D. None of the lines are parallel or perpendicular.

EXIT

ConceptSummary Parallel and Perpendicular Lines		
	Parallel Lines	Perpendicular Lines
Words	Two nonvertical lines are parallel if they have the same slope.	Two nonvertical lines are perpendicular if the product of their slopes is -1 .
Symbols	$\overleftarrow{AB} \parallel \overleftarrow{CD}$	<i>EF</i> ⊥ <i>GH</i>
Models		

EXIT

MENU

