

Lesson Menu

Five-Minute Check (over Lesson 4-3)
CCSS
Then/Now
New Vocabulary
Example 1: Parallel Line Through a Given Point
Example 2: Real-World Example: Slopes of Perpendicular Lines
Example 3: Parallel or Perpendicular Lines
Example 4: Parallel Line Through a Given Point
Concept Summary: Parallel and Perpendicular Lines
(5-Minute Check Over Lesson 4-3

1 What is the point-slope form of an equation for a line that passes through the point $(5,-5)$ with the slope $m=2$?
A. $y=2 x+5$
B. $y=2 x-5$
C. $y+5=2(x-5)$
D. $y=2(x-5)$

© 5-Minute Check Over Lesson 4-3 abs New Vocabulary

- Slope-Intercept Form

$$
y=m x+b
$$

- Standard Form

$$
A x+B y=C
$$

- Point-slope Form

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

(5-Minute Check Over Lesson 4-3

2 What is the point-slope form of an equation for a line that passes through the point $(-1,5)$ with the slope $\boldsymbol{m}=-\frac{7}{16}$?
A. $y=-\frac{7}{16}(x+1)$
B. $y-1=-\frac{7}{16} x$
C. $y+5=\frac{7}{16}(x+1)$
D. $y-5=-\frac{7}{16}(x+1)$

41-4 Parallel and Perpendicular Lines

(5-Minute Check Over Lesson 4-3
3 What is $y-3=\frac{8}{9}(x+18)$ in slope-intercept form?
A. $y=\frac{8}{9} x+15$
B. $y=\frac{8}{9} x+19$
C. $y=\frac{8}{3} x+15$
D. $y=\frac{8}{3} x+19$

(ᄌ) 5-Minute Check Over Lesson 4-3

4 A. What is the standard form of the equation of the diagonal $\overline{A C}$?
\longrightarrow A. $x+10 y=18$
B. $x+5 y=9$

C. $10 x+y=18$
D. $x-10 y=9$

4-4) Parallel and Perpendicular Lines

(5-MHinute Check Over Lesson 4-3

4) B. What is the slope-intercept form of the equation of the diagonal $\overline{A C}$?
A. $10 y=18-x$
B. $y=-\frac{1}{10} x+\frac{9}{5}$

C. $y=-\frac{1}{10} x+9$
D. $y=18-x$
(V) 5-Mhute Check Over Lesson 4-3

Standardized Test Practice

5 Which equation has a graph that passes through the points at $(3,4)$ and $(-1,-4)$?
A. $y-3=2(x-4)$
B. $y+1=2(x+4)$
C. $y+4=2(x-1)$
D. $y-4=2(x-3)$

Content Standards

F.LE. 2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table).
S.ID. 7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.

Mathematical Practices
5 Use appropriate tools strategically.

Then

You wrote equations in point-slope form.

Now

- Write an equation of the line that passes through a given point, parallel to a given line.
- Write an equation of the line that passes through a given point, perpendicular to a given line.

- parallel lines
- perpendicular lines

ConceptSummary Parallel and Perpendicular Lines

	Parallel Lines	Perpendicular Lines	
Words	Two nonvertical lines are parallel if they have the same slope.	Two nonvertical lines are perpendicular if the product of their slopes is -1 .	
Symbols	$\overleftrightarrow{A B} \\| \overleftrightarrow{C D}$	$\overleftrightarrow{E F} \perp \overleftrightarrow{G H}$	
Models			

EXADMPLE $]$ Parallel Line Through a Given Point

Write the slope-intercept form of an equation for the line that passes through $(4,-2)$ and is parallel to the graph of $y=\frac{1}{2} x-7$.

The line parallel to $y=\frac{1}{2} x-7$ has the same slope, $\frac{1}{2}$.
Replace m with $\frac{1}{2}$, and $\left(x_{1}, y_{1}\right)$ with $(4,-2)$ in the point-slope form.

EXAMPLE $]$ Parallel Line Through a Given Point

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-(-2) & =\frac{1}{2}(x-4) \\
y+2 & =\frac{1}{2}(x-4) \\
y+2 & =\frac{1}{2} x-2 \\
y+2-2 & =\frac{1}{2} x-2-2
\end{aligned}
$$

Point-slope form
Replace m with $\frac{1}{2}$,
y_{1} with -2 , and x_{1} with 4 .
Simplify.

Distributive Property

Subtract 2 from each side.

EXADMPLE $]$ Parallel Line Through a Given Point

$$
\begin{array}{ll}
y=\frac{1}{2} x-4 & \begin{array}{l}
\text { Write the equation in } \\
\text { slope-intercept form. }
\end{array}
\end{array}
$$

Answer: The equation is $y=\frac{1}{2} x-4$.

$41-4$ Paralleland Perpendicular Lines

EXAMPLE $]$ Gheck Your Progress

Write the slope-intercept form of an equation for the line that passes through $(2,3)$ and is parallel to the graph of $y=\frac{1}{2} x-1$.
A. $y=-2 x+3$
B. $y=\frac{1}{2} x+3$
C. $y=\frac{1}{2} x+2$
D. $y=-2 x-1$

EXADMPLE 4 Perpendicular Line Through a Given Point

Write an equation in slope-intercept form for the line that passes through $(4,-1)$ and is perpendicular to the graph of $7 x-2 y=3$.

Step 1 Find the slope of the given line by solving the equation for y.

$$
7 x-2 y=3
$$

$7 x-7 x-2 y=-7 x+3$ $-2 y=-7 x+3$ Simplify.
$\frac{-2 y}{-2}=\frac{-7 x+3}{-2}$
$y=\frac{7}{2} x+\frac{3}{2} \quad$ Simplify.

EXAMPLE 4 Perpendicualar Line Through a Given Point

The slope is $\frac{7}{2}$.
Step 2 The slope of the perpendicular line is the opposite reciprocal of $\frac{7}{2}$ or $-\frac{2}{7}$. Find the equation of the perpendicular line.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \quad \text { Point-slope form } \\
y-(-1) & =-\frac{2}{7}(x-4) \quad\left(x_{1}, y_{1}\right)=(4,-1) \text { and } m=-\frac{2}{7} \\
y+1 & =-\frac{2}{7}(x-4) \quad \text { Simplify. }
\end{aligned}
$$

EXAMPLE 4 Perpendicualar Line Through a Given Point

$$
\begin{aligned}
& y+1=-\frac{2}{7} x+\frac{8}{7} \quad \text { Distributive Property } \\
& y+1-1=-\frac{2}{7} x+\frac{8}{7}-1 \begin{array}{l}
\text { Subtract } 1 \text { from each } \\
\text { side. }
\end{array} \\
& y=-\frac{2}{7} x+\frac{1}{7} \quad \text { Simplify. } \\
& \text { Answer: } y=-\frac{2}{7} x+\frac{1}{7}
\end{aligned}
$$

EXADPLE 4 Gheck Your Progress

Write an equation in slope-intercept form for the line that passes through $(-3,-2)$ and is perpendicular to the graph of $x+4 y=12$.
A. $y=\frac{1}{4} x+10$
(B.) $y=4 x+10$
C. $y=-4 x+10$
D. $y=-\frac{1}{4} x+10$

Homework:

Pg 243 \#11-15 odd, 23-27 odd

MENU

Real-World Example 2
Slopes of Perpendicular Lines
A. GEOMETRY The height of a trapezoid is the length of a segment that is perpendicular to both bases. In trapezoid $A R T P, \overline{R T}$ and $\overline{A P}$ are bases. Can EZ be used to measure the height of the trapezoid? Explain.

Reaj-World Example 2 Slopes of Perpendicular Lines

Find the slope of each segment.
Slope of $\overline{R T}: \quad m=\frac{1-(-3)}{-1-(-5)}$ or 1
Slope of $\overline{A P}: \quad m=\frac{0-(-10)}{6-(-4)}$ or 1
Slope of $\overline{E Z}: \quad m=\frac{-8-(-1)}{-2-(-3)}$ or -7
Answer: The slope of $\overline{R T}$ and $\overline{A P}$ is 1 and the slope of $E Z$ is -7 . Since $1(-7) \neq-1, \overline{E Z}$ is not perpendicular to $\overline{R T}$ and $\overline{A P}$. So, it cannot be used to measure the height of ARTP.

- Real-World Example 2

Slopes of Perpendicular Lines
B. GEOMETRY The height of a trapezoid is the length of a segment that is perpendicular to both bases. In trapezoid ARTP, $\overline{R T}$ and $\overline{A P}$ are bases. Are the bases parallel?

Slope of $\overline{R T}: \quad m=\frac{1-(-3)}{-1-(-5)}$ or 1
Slope of $\overline{A P}: \quad m=\frac{0-(-10)}{6-(-4)}$ or 1
Answer: Yes, both $\overline{R T}$ and $\overline{A P}$ have a slope of 1 .

Real-World Example $2 \sqrt{ }$ Gheck Your Progress
The graph shows the diagonals of a rectangle. Determine whether \bar{J} is perpendicular to $\overline{K M}$.
A. \bar{J} is not perpendicular to $\overline{K M}$.

B. $\overline{J L}$ is perpendicular to $\overline{K M}$.
C. cannot be determined

EXADPLE 3 Parallel or Perpendicular Lines

Determine whether the graphs of $3 x+y=12$,
$y=\frac{1}{3} x+2$, and $2 x-6 y=-5$ are parallel or perpendicular. Explain.

Graph each line on a coordinate plane.

4-4 Parallel and Perpendicular Lines

EXADPLE 3 Parallel or Perpendicular Lines

Answer: From the graph, you can
see that $y=\frac{1}{3} x+2$ is parallel to
$2 x-6 y=-5$. They are parallel
because they have equal slopes.
$3 x+y=12$ is perpendicular to them both because the product of their slopes, $\frac{1}{3}$ and -3 , is -1 .

EXADPLE 3

(V) Gheck Your Progress

Determine whether the graphs of $y=-2 x+1$, $x-2 y=-4$, and $y=3$ are parallel or perpendicular.
$y=-2 x+1$ and $x-2 y=-4$ are perpendicular. None of the lines are parallel.
B. $y=-2 x+1$ and $y=3$ are perpendicular. None of the lines are parallel.

C. $y=-2 x+1$ and $x-2 y=-4$ are parallel. None of the lines are perpendicular.
D. None of the lines are parallel or perpendicular.

ConceptSummary Parallel and Perpendicular Lines

	Parallel Lines	Perpendicular Lines	
Words	Two nonvertical lines are parallel if they have the same slope.	Two nonvertical lines are perpendicular if the product of their slopes is -1 .	
Symbols	$\overleftrightarrow{A B} \\| \overleftrightarrow{C D}$	$\overleftrightarrow{E F} \perp \overleftrightarrow{G H}$	
Models			

${ }^{2} 4-4$ Parallel and Perpendicular Lines

