

- ► FIXATION FIRST
- WEAR REDUCTION
- OXIDATIVE STABILITY
- MECHANICAL INTEGRITY
- PROVEN TECHNOLOGY

FIXATION FIRST

1958 Charnley[®] Hip Over 1,000,000 implanted¹ 96.2 percent survivorship at 32 years²

- 1977 Porocoat[®] Porous Coating Over 1,000,000 prostheses with Porocoat Porous Coating implanted¹
- 1977 AML® Hip Over 275,000 implanted¹ 98.5 percent survivorship at 15 years³
- 1981 Tri-Lock[®] Hip Over 5,000 implanted¹ 98 percent survivorship at 13.5 years⁴
- I985 S-ROM[®] Hip Over 75,000 implanted¹ 98 percent survivorship at 5.3 years⁵

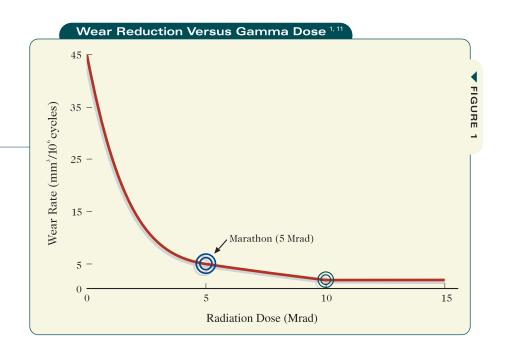
"Before discussing polyethylene performance, it is imperative to understand that proven fixation technology remains the single most important factor in ensuring successful clinical outcomes."¹

C.A. ENGH, MD

- 086 Corail[™] Hip Over 85,000 implanted¹ 97.7 percent survivorship at 10 years⁶
- 1986 HPS II[™] Hip
- 1989 P.F.C.[®] Hip
- 1990 Solution System[®] Hip Over 35,000 implanted¹ Over 95 percent survivorship at 13.2 years⁷
- 1991 Duraloe[®] Cup Over 250,000 implanted¹ 98 percent survivorship at 5 years⁸
- 1992 Prodigy[®] Hip
- 1993 Endurance[®] Hip Over 40,000 implanted¹ 98.8 percent survivorship at 3-5 years⁹
- l994 C-Stem[™] Hip
- 1997 Marathon[™] Polyethylene 86 percent wear reduction in hip simulator studies^{1, 10, 11}
- 1999 Pinnacle[™] Acetabular Cup System
- 2001 Summit[™] Tapered Hip System
- 2001 AML[®] Hip System
- 2001 Summit[™] Cemented Hip System

"Decreasing wear utilizing optimally cross-linked polyethylene will make a good hip even better."¹

T. SCHMALZRIED, MD


5 Mrad of cross-link inducing gammairradiation used in the Marathon process results in an 86 percent wear reduction in hip simulator studies.*1 This minimal increase in gamma irradiation above historical levels of 2.5 - 4.0 Mrad dramatically reduces wear rates when compared to noncross-linked polyethylene.^{1, 10, 11}

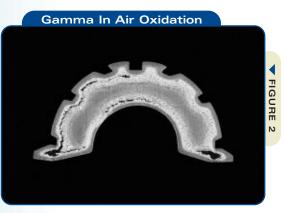
Excessive wear and particulate generation can lead to osteolysis. The 25-year survivorship of arthroplasties with wear rates less than 15mm³/year exceeds 90 percent; in contrast, arthroplasty survivorship with wear greater than 56mm³/year is less than 30 percent at 20 years.¹²

Þ

Doubling the cross-link inducing radiation dose to 10 Mrad decreases wear only an additional four percent but adversely impacts important material physical properties (Figures 1 and 4).^{10, 11}

Even when articulating against roughened femoral heads, Marathon Polyethylene continues to demonstrate significant reduction in wear rates in hip simulator studies.^{*11} Marathon wear reduction benefits both primary and revision patients through the potential reduction of osteolysis.

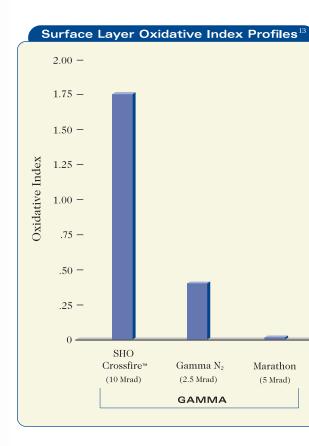
WEAR REDUCTION

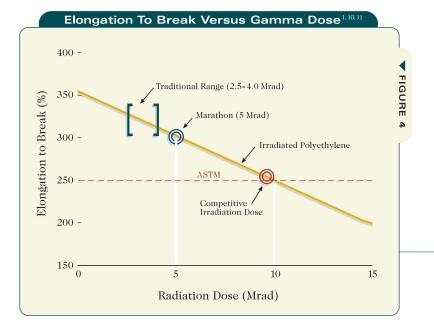

Marathon Polyethylene is the first FDA-cleared, third generation, cross-linked polyethylene.

Marathon Polyethylene reduces wear by 86% in hip simulator studies, resists oxidation and exceeds minimum ASTM mechanical standards.*^{1, 10, 11}

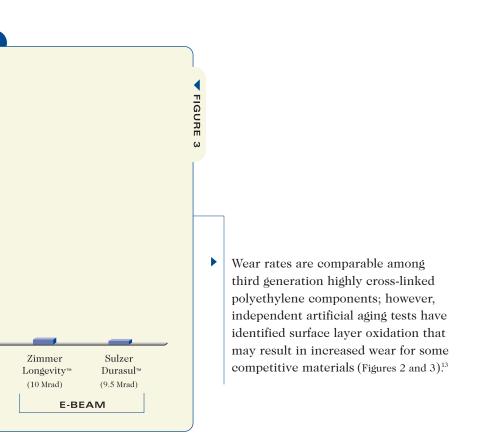
Marathon Polyethylene is an optimally cross-linked patented polyethylene.

Oxidoxidative stability




Shelf-aged, gamma in air-sterilized polyethylene demonstrating significant oxidation.

"Eliminating oxidation while maintaining mechanical properties is imperative



MECHANICAL INTEGRITY

for clinical performance."¹ J. COLLIER, DE

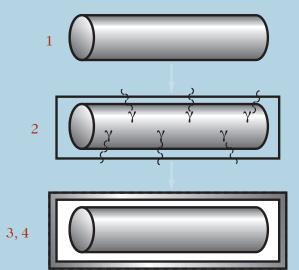
- Physical and mechanical property measurements, such as elongation, predict material behavior. Maintaining these properties while reducing wear is critical to the successful clinical performance of cross-linked polyethylene.
- Marathon Polyethylene exceeds minimum ASTM standards for elongation and other important properties.^{1, 10, 11} As the radiation dose increases to 10 Mrad, elongation properties approach minimum ASTM standards.
- The results of mechanical property testing and wear simulations predict that Marathon Polyethylene will sustain the cyclic loads and motions required of a total hip arthroplasty.^{1, 10, 11}

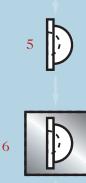
PROVEN TECHNOLOGY

"Polyethylene that was cross-linked with gamma radiation has been the clinical gold standard for over 25 years."¹

H. MCKELLOP, PHD

Cross-Link Inducing Gamma Radiation


- The clinical success of polyethylene cross-linked by gamma radiation is well documented and has been the orthopaedic "gold standard" for more than 25 years.¹⁴⁻¹⁷
- Gamma-irradiated polyethylene in the absence of oxidative degradation has been clinically successful. A process that combines the wear reduction benefits of gamma crosslinking and oxidative stability, such as the Marathon Polyethylene process, may benefit the patient.
- Alternative cross-link inducing radiation sources, such as electron beam, have no reported clinical documentation.


Gas Plasma Terminal Sterilization

- Marathon Polyethylene is terminally sterilized using gas plasma technology, which has been clinically proven through years of successful use with polyethylene.
- Gas plasma terminal sterilization introduces no radiation or free radicals into the polyethylene component, thus reducing oxidative potential.

Proven Technology

MARATHON PROCESS

RESULTS

The Marathon process provides 86 percent wear reduction in hip simulator studies, no free radicals and reduced oxidation.¹ Marathon Polyethylene is optimally cross-linked and processed for clinical success.

Raw Material Quality controlled, calcium stearatefree polyethylene.

1

2 Radiation Cross-Linking Consolidated polyethylene is treated with 5 Mrad of gamma radiation to induce cross-linking. The creation of free radicals during this process is a by-product of this step.

3 Thermal Treatment

Irradiated polyethylene bars are thermally treated through a patented, proprietary process to force molecular recombination, extinguish free radicals, enhance material consolidation and reduce oxidative potential.

4 **Quality Assurance**

After thermal treatment, each Marathon Polyethylene bar is thoroughly tested using Electron Spin Resonance (ESR). This test confirms the elimination of free radicals, assuring oxidative resistance.

5 Manufacturing

6

Cross-linked polyethylene bars are precision-manufactured into liners and packaged.

Terminal Sterilization Packaged liners are gas plasma

sterilized. This technique does not alter the polyethylene's molecular structure or introduce free radicals. *In vitro wear results have not been correlated to clinical experience.

References

- 1. Data on file at DePuy Orthopaedics, Inc.
- 2. Wroblewski, B.M. et al.: Lesson of Three Decades of Total Hip Arthroplasty. Contemporary Techniques and Issues in Orthopaedics: An Interactive Forum, Snowmass, Colorado, January 29-February 2, 2000.
- 3. Engh, C.A. et al.: Porous-Coated Total Hip Replacement, CORR, No. 298, pp. 89-96, 1994.
- 4. Pellegrini, V.D. et al.: The Tri-Lock Femoral System (Chapter 11). Total Hip Arthroplasty Outcomes, Churchill Livingston, New York, New York, 1998.
- 5. Christie, M.J. et al.: Primary Total Hip Arthroplasty with Use of the Modular S-ROM Prosthesis. JBJS, Vol. 81-A, No. 12, pp. 1707-1716, December 1999.
- 6. Vidalain, J.P.: Corail in Primary THR-Ten Year Experience. International Corail Conference, Malta, 1998.
- 7. Paprosky, W.G. et al.: Minimum 10-Year Results of Extensively Porous-Coated Stems in Revision Hip Arthroplasty. CORR, No. 369, pp. 230-242, 1999.
- 8. Fisher, D.A.: 5-Year Review of Second-Generation Acetabular Cup with Dome Screws. Journal of Arthroplasty, Vol. 14, No. 8, pp. 925-929, 1999.
- 9. Fisher, D.A.: Five to Eight Year Evaluation of a Cemented Stainless Steel Femoral Stem with a Grit Blasted Surface Finish. Advanced Techniques in Knee and Shoulder Reconstruction Meeting, September 30-October 3, 1999.
- McKellop, H. et al.: Development of an Extremely Wear-Resistant Ultra High Molecular Weight Polyethylene for Total Hip Replacements. Journal of Orthopaedic Research, Vol. 17, No. 2, pp. 157-166, 1999.
- 11. McKellop, H. et al.: Wear of Gamma-Crosslinked Polyethylene Acetabular Cups Against Roughened Femoral Balls. CORR, No. 369, pp. 73-82, December 1999.
- 12. Sochart, D.H.: Relationship of Acetabular Wear to Osteolysis and Loosening in Total Hip Arthroplasty. CORR, No. 363, pp. 135-150, June 1999.
- 13. Muratoglu, O.K. et al.: The Comparison of the Wear Behavior of Four Different Types of Crosslinked Acetabular Components. 46th Annual Meeting, Orthopaedic Research Society, March 12-15, 2000.
- 14. Ranawat, C.S. et al.: Long-Term Results of the Total Condylar Knee Arthroplasty. CORR, No. 286, pp. 94-102, 1993.
- 15. Schulte, K.R. et al.: The Outcome of Charnley Total Hip Arthroplasty with Cement After a Minimum Twenty-Year Follow-up. JBJS, Vol. 75-A, No. 7, pp. 961-975, July 1993.
- 16. Neumann, L. et al.: Long-Term Results of Charnley Total Hip Replacement. JBJS, Vol. 76-B, No. 2, pp. 245-251, March 1994.
- 17. Kristensen, O. et al.: Long-Term Results of the Total Condylar Knee Arthroplasty in Rheumatoid Arthritis. JBJS, Vol. 74-B, No. 6, pp. 803-806, November 1992.

Crossfire[™] is a trademark of Stryker Howmedica Osteonics Corp., Longevity[™] is a trademark of Zimmer, Inc. and Durasul[™] is a trademark of Center Pulse. US Patents 6,316,158; 6,281,264; 6,242,507; 6,228,900; 6,017,975.

For more information about DePuy products, visit our web site at www.jnjgateway.com/pinnacle.

DePuy Orthopaedics, Inc. 700 Orthopaedic Drive Warsaw, IN 46581-0988 USA Tel: +1 (800) 366 8143 Fax: +1 (574) 267 7196 **DePuy International Ltd** St Anthony's Road Leeds LS11 8DT England Tel: +44 (113) 387 7800 Fax: +44 (113) 387 7890

Printed in USA. ©2000 DePuy Orthopaedics, Inc. All rights reserved.