
FL E COPy
David Taylor Research Center
Bethesda, Maryland 20084-5000

N

SSPD-90-175-1 4 January 1990

Ship Structures and Protection Department

Research and Development Report

0 A FAST PC-BASED SOLVER FOR SIMULTANEOUS LINEAR EQUATIONS

H by

Peter N. Roth

APPROVED FOR PUBLIC RLEASE: DISTRIBUTION UIMII TED

_DTIC
< ELECTE 1

0

90 04 09 004

CODE 011 DIRECTOR OF TECHNOLOGY, PLANS AND ASSESSMENT

12 SHIP SYSTEMS INTEGRATION DEPARTMENT

14 SHIP ELECTROMAGNETIC SIGNATURES DEPARTMENT

15 SHIP HYDROMECHANICS DEPARTMENT

16 AVIATION DEPARTMENT

17 SHIP STRUCTURES AND PROTECTION DEPARTMENT

18 COMPUTATION, MATHEMATICS & LOGISTICS DEPARTMENT

19 SHIP ACOUSTICS DEPARTMENT

27 PROPULSION AND AUXILIARY SYSTEMS DEPARTMENT

28 SHIP MATERIALS ENGINEERING DEPARTMENT

DTRC ISSUES THREE TYPES OF REPORTS:

1. DTRC reports, a formal series, contain information of permanent technical value.
They carry a consecutive numerical identification regardless of their classification or the
originating department.

2. Departmental reports, a semiformal series, contain information of a preliminary,
temporary, or proprietary nature or of limited interest or significance. They carry a
departmental alphanumerical identification.

3. Technical memoranda, an informal series, contain technical documentation of
limited use and interest. They are primarily working papers intended for internal use. They
carry an identifying number which indicates their type and the numerical code of the
originating department. Any distribution outside DTRC must be approved by the head of
the originating department on a case-by-case basis.

NOW-OTNSROC SO2/S1 (Rev. 2-N)

David Taylor Research Center
Bethesda. Maryland 20084-5000

SSPD-90-175-14

January 1990

A FAST PC-BASED SOLVER FOR SIMULTANEOUS LINEAR EQUATIONS

by

Peter N. Roth

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

CONTENTS

1. Abstract .1..

2. Introduction . o . . . o 1
2.1 Motivation . 1...

3. Data Storage on PC's 3

3.1 Capacity . o 3
3.2 Floating Point Numbers 3

4. A Comparison of Matrix Storage Techniques 4

4.1 Square 4

4.2 Triangular 5

4.3 Banded 6

4.4 Skyline 6

5. Implementation of the Skyline Data Structure in Turbo Pascal 9

5.1 Pointers 9

5.2 Memory allocation in Turbo Pascal10

5.3 The New D ata Structure 10

6. The code 12

6.1 Allocation of Storage 12

6.2 The solver 18

6.3 Accessing the Data Structure via Utility Routines 22

7. Using the KxR Program 25

7.1 Command line 25

7.2 Input file 25

7.3 Output file 26

8. Acknowledgements. 27

9. References 27

APPENDIX- Source code for KxR A-1

Looseson For
HTIS (MRA&

D TIC .SAB
Unannounced 13~~Just lftcation

Distribution/

Availability Codes
Avail and/or

Dist Speoial

KV 1. Abeta.
An indirect (pointer-based) datastructure for th storage of a metc, positive definite
matrix of coefficients, and the corresponding right hand side vector is presented. This
datastructure is useful in many kinds of engineering work, most notably finite element analysis.Procedures for accessing the datastructure are demonstrated via the small Turbo Pascal

program KgR.

if 2. I ntrodutlon

Matrix methods in general, and the finite element method (FEM) in particular, are now
common engineering tools.\ The equations to be solved in the vast majority of finite element
stress analyses are - -2

kl k12 k13 k14 k1& .. .
kl k22 k2 k24 k26 k s xi rl

k3 k k 4 k. kss 2 (2

k 41 ke k 43 k4 k4" k 4 S4 -
r 4

ka, ku ku k&4 k*5 k1 g6

ke, k#2 k$3 k64 k#6 keg ISO reI

or, in matrix notation,

Kx=

where K is the positive definitet stiffness matrix, x is the vector of unknowns, and R is the
vector of knowns. In the general ease, of course, the number of equations is much larger than
6, often numbering into the thousands.

The majority of techniques for solving (1) are variants of a method introduced by the
mathematical genius Carl F. Gauss. See, for example, [Ralston]lI or [Carnahan], for an
explication of the technique. The demonstrations in [Bathe] and [Wilson] are outstanding.
The original Gaussian method has been supplanted in recent times by methods that are
appropriate for computer implementation.

2.1 Motivation

Since there are published programs, why bother writing yet another solver? The major need
was for a solver of "reasonable" capacity, in Pascal, for a personal computer (PC).

2.1.1 Pscal in yeneran Pascal, a programming language invented in the early 1970's by Niklaus
Wirth, is intrinsicly legible code. That is, a reader and writer of the code can understand a
Pascal program more easily than code written in other languages. Pascal also facilitates data
structuring, a language capability that is absent from FORTRAN and BASIC. Finally, Pascal is a
readable step along the pathway to C, the inscrutable (but ubiquitous) language in which it
seems most programs will eventually be written.

L1.2 Tsrbo Pascal in paricslr Version 5.0 of the Turbo Pascal compiler manufactured by
Borland International [BorlandPU], [BorlandR] provides a superb built-in debugger. Borland
has implemented the Modulsa2 module concept, which allows separate compilation of code
modules while retaining the strong type-checking of Pascal t The module concept, present in

t AmatrixQ Is pen*edefa&eiftheproductxTQx > 0foranyson-sero X.
* References are listed at the *ad of the paper.
t Borland's spelling for the word "module" is "Unit."

-1-

almost all languages except BASIC and standard Pascal, speeds up program development
enormously. Overlays are available in Turbo Pascal to allow very large programs to fit into the
DOS3x memory limitation of 640K bytes. And, finally, Turbo Pascal is faster than any other
compiler for the PC, for any language, especially FORTRAN. This extremely high speed makes
for a good environment for program development, for "small" programs.

2.1.3 Dr backe to Turbo Peecal Turbo Pascal is not Pascal: some of Turbo Pascal is not
portable to other machines.

-2-

3. Data StenW an PCFs

2.1 Cap.dt

The maximum addressable storage on a DOS machine is usually abbreviated to the number
640K bytes. The architecture of the 80x86 series machines accesses storage in segments. The
maximum size of a single segment is 65520 bytes.

3.2 Floating Point Numbers

Turbo Pascal allows five representations of floating point numbers, as shown in Table 1:

Table 1: Floting Point in Turbo Pascal
STs N/segment

single 4 16380
real 6 10920

double 8 8190
extended 10 6552

comp 10 6552

The first column gives the name of the Pascal floating point type, and the second column shows
the number of bytes required for that type. The third column of the table shows the maximum
number of floating point variables allowed in a segment. This effectively limits the maximum
size of data a program can use, and the maximum size of a single array, unless other techniques
are used. Some PC FORTMAN compilers map arrays to appropriate portions of segments, but
control of this process is not available in the language directly.

Interestingly enough, computations m faster using the Turbo Pascal "double" than the
"real", (using a numerical co-processor chip) because the truncation of the result of floating
point arithmetic operations is avoided. Certainly, computations are more accurate in "double"
than in "real" or "single".

-3-

4. A OQmparson d Matrix Storage Techniques

The crucial datastructure in a FEM program is the stiffness matrix. Because the majority of the
procedures not involved with reading input or printing output are related to accessing this great
datastructure, the form of the stiffness matrix dictates the structure of the FEM code.

Usually, one wishes to mesh a structure with the economically largest possible number of
elements (nume) because accuracy of analysis is directly related to the fineness of the grid.
Imagine a mesh of 2D planar 8-noded isoparametric elements. These elements have two
degrees of freedom per node, and therefore, 16 equations per element. In order to solve a 2D
FEM mesh with ONE of these elements, one must be able to store and solve at least 18
equations. Let us consider the following four storage forms for K Square, Triangular, Banded,
and Skyline.

4.1 Square

An n-dimensional square matrix may be illustrated with

11 12 13 14 15 16 17 18 19
21 22 23 24 25 26 27 28 29
31 32 33 34 35 36 37 38 39
41 42 43 44 45 46 47 48 49
51 52 53 54 55 56 57 58 59
61 62 63 64 65 66 67 68 69
71 72 73 74 75 76 77 78 79
81 82 83 84 85 86 87 88 89
91 92 93 94 95 96 97 98 99

where n= in this case. Assuming that calculations will be performed using "doubles", the
total storage for this matrix is a2 < 8190 where a is the size of K Thus, the maximum n is
90, and the upper bound on numel in a 2D mesh is about 8, which is interesting, but not very
useful.

A complete (and naive) Pascal program to solve equation (1) is developed in [Wirth] using the
stepwise refinement technique.

.4-

program gauss elimination;
const

n =6;
var

i, j, k: I n
p: real;
A :array[1 .. n, 1 .. n] of real;
B: array [1.. n] of real;

X:array [1 .. n] of real;
begin

{ assign values to A and B }
for k:=1 ton do begin

p :-1.0 / A[k,k]
for j:-k+ 1 to n do

A[k,j] :=p * A[k,j]
B[k] :=p * B[k] ;
for i:=k+ 1 to n do begin

for j:==k+ 1 to n do
A[ij I :=A[i,j] - A[i,k] * A[k,j];

Bli] :=B[i] - A[i,k I B[k I
end (i}

end (k);
k :=n;
repeat

p :=B[k]
for j:-k+ I to n do

p :=p - A[k,j] X[j];
Xjk] :-ffp;

k:=k- 1
until k =0
(X[1 I ... X[n] are the solutions)

end.

Propum is Gaussian Solution of Simultaneous Equations

Program 1 gives the flavor of Gaussian elimination, but needs some improvement. There

should at least be a check for division by zero.

4.2 Triangular

Because K is symmetric, or can be made so by appropriate multiplications, only "half" the

array, either above or below the diagonal, need be stored.

11 12 13 14 15 16 17 18 19
22 23 24 25 28 27 28 29

33 34 35 36 37 38 39
44 45 46 47 48 49

55 56 57 58 59
68 67 68 69

77 78 79
88 89

99

The storage required for K is n(a+1)/2 _5 8190 , so a :5 127 , and the maximum snme is

-5-

about 12. This is an improvement over the square scheme, but hardly enough to make the
derivation of a structure to store the array worthwhile.

4.3 Banded

A further observation of FEM stiffness equations shows that for judiciously numbered meshes,
the matrix appears to be "banded"; ie., all of the non-zero terms in K are within a certain
distance from the diagonal. E.g.,

11 12 13 14 0 0 0 0 0
22 23 24 25 0 0 0 0

33 34 35 36 0 0 0

44 45 46 47 0 0
55 56 57 58 0

66 67 68 69
77 78 79

88 89
99

If it is known that certain values of K are zero, then they need not be stored. This leads to the
auxiliary descriptor of K the maximum bandwidth, commonly represented in programs as the
variable mazbw. The smaller the bandwidth, the less storage required.

K can then be stored in a rectangular array of the form

11 12 13 14
22 23 24 25
33 34 35 36
44 45 46 47
55 56 57 58
66 67 88 69
77 78 79 *
88 89 *
99 * * *

where the asterisks indicate "wasted" space. Storage required: n'maxbw < 8190 . Thus, a
varies from 90 (with a mszbw of 90) to 8190 (with a mazbw of 1). Recalling the simplistic 2D
mesh, the maximum number of elements is 8190/16 -511. Now we're getting somewhere!
Of course, the algorithm that solves equation (1) when K is stored in banded form will be more
complicated than Program 1, because it will have to map the subscripts of K to the coordinates
of the rectangular array.

4.4 Skyline

Wilson, and others, have observed that K stored in banded form may store unnecessary zeroes.
The bandwidth at any location in K may vary from small to large, forming a "skyline", as
shown typically below for n -17. Note that the solvers described in [Wilson] and [Bathe]
eliminate computations that use terms outside the skyline, and are among the fastest solvers in
common use.

-8-

x x x
x x x x

x x x

x x x

x x x x x

x x x x x

x x x x x

x x x x X X

x x x x x x

x X X X X X

x x x X X

x x X X X

x x x x

X X X X
x x x

x x

x

Since the "columns" are of arbitrary height, so a little more information about K than n and
mazbw is needed. Unfortunately, FORTRAN has no direct facility for storing this datastructure.

The technique used in [Wilson] and [Bathe] to store the skyline array in the programs SAP4,
NONSAP and ADINA conceptually numbers each element of the array consecutively. The
indexing scheme proceeds from the diagonal element, numbered first, through each element in
the column, numbering towards the skyline, vir,

1 3 25
2 5 8 24

4 7 23
6 10 22

9 12 21 54 70
-11 14 20 53 69

13 16 19 52 68
15 18 28 32 51 67

17 27 31 36 50 68
26 30 35 40 49 65

29 34 39 48 64
33 38 43 47 63

37 42 46 62
41 45 57 61

44 56 60
55 59

58

K is then stored in a one-dimensional (linear) array, with an auxiliary integer array D to point
to the diagonal terms of K, thus:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
D[i] 1 2 4 6 9 11 13 15 17 26 29 33 37 41 44 55 58 71

For example, the indexes of all terms in the upper portion of column 9 are defined by the
limits Di9] to D[10J- I (- 17 to 25). The last term (D[18]) is a sentinel pointer to the n+Ith
column. Wilson uses these FORTRAN "pointers" to calculate column heights, and requires an
additional pointer to enable calculation of the height of the last column.

-7-

The profile P is defined mathematically as

i-4

which is simply the number of non-zero terms within the skyline. The total storage (in bytes)
required to store K must now include storage for D:

Storage = P'Sizeof(float) + (n +1)'Sieof(integer)

where Sicof returns the number of bytes required to store its argument. The skyline technique
will probably be a gain over the banded storage scheme although K is still stored in a single
segment.

Note that the trade-offs made to gain storage space will make the solution algorithm more
complex and harder to understand than Program 1. Since Wilson uses FORTRAN, that
language's built-in features to clearly calculate subscripts must be supplemented by array access
mechanisms which map K to the skyline. Now consider Pascal, a language that has the facility
for direct access to unusual and arbitrary datastructures.

-8-

5. Implementation of the Skyline Data Structure In Tarbo Pascal

So far, about the best that any of the storage schemes yield is an upper limit on the number of
2D elements somewhere around 500, certainly enough for programs analyzing small models. Is
it possible to do any better without resorting to a file-based storage scheme? The answer is of
course "yes", but it requires that the use of pointers, a data structuring tool present in most
modem languages.

5.1 Pointers

From [Jensen], Chapter 10:

"A static variable (staticly allocated) is one which is declared in a
program and subsequently denoted by its identifier. It is called static, for
it exists (ie., memory is allocated for it) during the entire execution of
the block to which it is local. A variable may, on the other hand, be
generated dynamically (without any correlation to the static structure of
the program) by the procedure new. Such a variable is consequently
called a dnarmi variable.

Dynamic variables do not occur in an explicit variable declaration and
cannot be referenced directly by identifiers. Instead, generation of a
dynamic variable introduces a pointer value (which is nothing other than
the storage address of the newly allocated variable). Hence, a pointer
type P consists of an unbounded (si) set of of values pointing to
elements of a given type T. P is then said to be bound to T. The value
nt7 is always an element of P and points to no element at all.

type <identifier> --- <type identifier>

If, for example, pis a pointer to a variable of type T by the declaration
var p: ^T

then p is a reference to a variable of type T, and p^ denotes that
variable.t In order to create or allocate such a variable, the standard
procedure new is used. The call new(p) allocates a variable of type T and
assigns its address to p.

Pointers are a simple tool for the construction of complicated and flexible
data structures. If the type T is a record structure that contains one or
more fields of type ^T, then structures equivalent to arbitrary finite
graphs may be built, where the T's represent the nodes, and the pointers
are the edges."

Pointers have several advantages: they permit programmers to develop the most flexible of data
structure; they permit fast access to data items without need for subscript computation; they do
not require recourse to assembly language; and they allow access to all of available memory.
The latter is crucial. For example, the memory available to a PC program is typically 470
Kbytes, (approximately 58750 doubles as opposed to the 8190 indicated in Table 1). By using

t If p is a pointer to a type T, the expression p' is said to demenms the pointer. Alterntively, p Is the addres p^ is
the "value" at the address.

-9-

pointers to access this storage, the upper bound on numul for our simple 2D problem becomes
5874 elements! Furthermore, the upper bound on numel for a 20-node 3D isoparametric
element mesh is 1631. The pointer data storage technique therefore affords the capability to
solve significant FEM problems in main storage on the PC.

The First Law of Thermodynamics paraphrased states that you don't get something for nothing.
Great flexibility means that the programmer must impose discipline to control code and data.
(Pointers have been called the datastructure equivalent of the GOTO statement.) The pointer
concept is foreign to the FORTRAN programmer, so a significant number of engineers are
unlikely to easily understand pointer code without sufficient time to study the concept. The
program becomes more intellectually dense, since more concepts are embedded in each
character. Access to a data item is by indirection, rather than directly. Both programmer and
code readers not only move their lips when reading pointer code, but read out loud, assume
awkward postures, and draw little diagrams. So much for "intrinsicly legible code" in Pascal.
However, pointers are supported by the language itself, so learning and using pointers becomes
more natural and straightrforward with practice.

5.2 Memory allocation In Turbo Pascal

The memory available to a Turbo Pascal programmer comes from the "Heap", an area in
memory accessible by several Turbo procedures and functions.

Dispose Releases storage previously allocated to a variable. Used in cooperation with
New.

Freemem returns to the heap exactly the number of bytes allocated to a pointer by
Getmem.

Getmem allocates any number of bytes (and therefore, partial records) to a pointer.
Used in cooperation with Freemem.

Mark establishes a pointer to a location on the heap; used in cooperation with
Release.

Memavail returns the memory available at the current point in the program's execution.

Maxavail returns the maximum memory available on the heap.

New allocates storage to a variable. Used in cooperation with Dispose.

Release frees all memory above a pointer established by Mark.

The cooperating procedure pairs are therefore: New, Dispose; Mark, Release; and Getmem,
Freemem. Getmem and Freemem are non-standard Pascal, and are the closest to the C
language storage allocation routines.

5.3 The New Data Staucture

The ingredients include:

1. Memavail from Turbo Pascal. This procedure will indicate the total storage available.

2. Mark and Release from Turbo Pascal. Mark will allocate the total heap storage to the
arrays needed for the solution of (1). Release will return the heap storage to the
operating system on completion of the job. Although this may seem unnecessarily
fastidious, my machine has run out of memory during the development of MiR, because
"no one told him" that he regained the memory.

3. Getmem from Turbo Pascal (the key ingredient). Getmem will be used to allocate to
each column only that storage needed to contain the colvmn.

-10-

4. height, a pointer to a variable length integer array that describes the height of each
column. This replaces the D array of Wilson's method, and all the explicit calculations of
columnar bounds are handled directly by the language.

5. K, a pointer to an array of pointers containing the elements of K The stiffness matrix is
therefore accessed doubly indirectly (pointers to pointers). Although this may seem
complicated, it actually makes the code simpler and clearer than the linear FORTRAN
technique.

The skyline structure in Pascal will therefore be represented in a manner similar to Wilson's.
However, each column of the array will be numbered from the diagonal to the uppermost
element, rather than numbering each element of the array. This alternative can be
demonstrated:

1 2 9
1 2 3 8

1 2 7
1 2 6

1 2 5 11 13
1 2 4 10 12

1 2 3 9 11
1 2 3 4 8 10

1 2 3 4 7 9
1 2 3 4 6 8

1 2 3 5 7
1 2 3 4 6

1 2 3 5
1 2 3 4

1 2 3
1 2

1

Figure 1: Conceptual Layout of K

The array of column heights is then
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

height-[i] 1 2 2 3 2 2 2 2 9 3 4 4 4 3 11 3 13

where we write "height[i]" to show what the valwes are. Remember, "height" is just a
pointer; the presence of the "" dereferences the pointer.

With this groundwork laid, it is possible to write the code to implement this structure.

-11-

6. The code

The allocation of the data structure is discussed first, followed by the solver itself. Additional
utility routines for access to the data structure follow.

6.1 Allocation d Stasge

The allocation of storage follows this algorithm:

1. Assume the number of equations neq is known.

2. Then an array of neq integers is needed to hold height. Allocate this array.

3. Determine the height of each column and store it in the appropriate location of height.

4. Since neq and height are known, the shape of K is completely determined. Allocate
storage for an array of neq pointers to columns of K (as i varies from I to neq, K[i]
points to column i). To each pointer K[iJ, allocate height ̂ i] floating point values. With
this scheme, the term on the diagonal in the i-th column is written K[I] ^[1] and the j-th
term from the diagonal in the i-th column is written K'[i] ̂ [j].

5. Allocate neq floating point values for the right hand side vector R.

The Turbo Pascal procedures to accomplish the algorithm outlined above are shown below.

-12-

6.1.1 Allocation of height The data types involved are

TYPE
float - double ; (* change to suit accuracy *)

CONST
MAXEQNS = 65520 div Sizeof(float)

TYPE
columnjieight.array = array [I .. MAXEQNS] of word;
columnheighttype = ^columnJheightarray;

VAR
height: columnJieighttype;

Note that Turbo Pascal allows the declarative matter of a program to be in arbitrary order (not
standard Pascal). Also, simple computations are permitted in the declarations: dlv is the Pascal
"integer divide" operation. The type word permits variables of that type to assume values
between 0 and 65532. Float is defined as double only once in the solver; thus the accuracy may
be changed with the alteration of this single switch. MAXEQN is arbitrarily defined as the
maximum number of floats that will fit in a single memory segment.

The procedure to allocate height:

* allocate_height - allocate storage for the column heights.

,)

procedure allocatejieight;
VAR

c : longint;
begin (* allocate-height)

c := neq * sizeof(word)

if c > MemAvail then begin
writeln('Out of memory attempting to allocate ', c,

' bytes to column heights - allocate_height.')
abort

end
else

Getmem (height, c)

end (* allocate-height)

In addition to the procedures already mentioned, allocate.Jelght makes use of abortz

-13-

* abort - release memory and die.

*t

procedure abort ;

begin (* abort*)

release(origin)
halt()

end (* abort*)

which presumes that the initialization of the program includes the statement

mark(origin) ;

Halt is the Turbo Pascal procedure which terminates program execution.

-14-

6.1.2 Allocation ofK Declarations of the data types associated with the storage of K and R:

TYPE
column-type , array [1 .. MAXEQNS] of float;
columnptr ^ column-type ;

column-array = array [1 .. MAXEQNS] of column..pt ;
matrix = columnarray;

VAR
K: matrix
R : columnptr;

The procedure to allocate the storage for K begins with "allocate.K" which allocates storage to
the pointers to the columns:

* allocatejK - allocate storage for the matrix of coefficients.

procedure allocate_K;
VAR

c : longint;
i :word;

begin (* allocate_K)

c :== neq * sizeof(pointer)

if c > MemAvail then begin
writeln ('Out of memory attempting to allocate ',c,

'bytes to [K] - allocate_.') ;
abort

end
else

Getmem (K, c);

for i:-1 to neq do
allocatecolumn(i, height^[i])

end (* alocateK)

-15-

The first part of this procedure is similar to allocati.jhelght. In the second part, the for
statement calls ulloe atAohm to allocate the storage for each column of . This procedure
is:

* allocate.olumn - arrange storage for the i-th column.

procedure allocate_column (i : integer; (* the column of interest *)
r : word (* the size desired)

VAR
c : longint;

begin

c :- r * sizeoffloat;

if c > MemAvail then begin
writeln ('Out of memory attempting to allocate ', c,

'bytes to column ',i, '- allocate...olumn.')
abort

end
else begin

Getmem (K'[i], c)
end

end (* allocate..column)

Allocatjeolum uses a previously computed .izeo.Jl oat which is

sizeofBoat :-Siseof(float);

Note that the neat arrangement of K in Figure 1 is not necessarily how the datastructure is
arranged in memory. Getmim searches the heap for the next block of the appropriate size, and
assigns it to the pointer. Because the iLsxuegc accommodates this process, the actual locations
in storage assigned to each column of K are of little concern.

-16-

8.1.8 AIlocation of R The right hand side vector is allocated by the following:

* allocate_vector - allocate storage for a 'righthand-side-like' vector.

C)

procedure allocatevector (VAR R : column.ptr)

VAR
c : longint;

begin (* allocate.yector)

c :- neq * sizeof._foat;

if c > MemAvail then begin
writeln ('Out of memory attempting to allocate ', c,

'bytes to column vector - allocateyvector.');
abort

end
else

Getmem (R, c)

end (* allocate..yector)

All storage necessary to the solution of (1) has now been allocated.

-17-

0.2 The solver

The solver itself is an adaptation of the LDI T technique demonstrated in [Wilson] and [Bathe].
Control of the solution is via the executive procedure acdveolumn..polve

* activecolumnsolver - Gaussian solution of simultaneous equations.

a)
procedure activecolumn_solver;

begin (* active..column._olver *)

write('Decomposition ... ')
decompose ;
writeln(' done.');

write('Reduction ...
reducerhs ;
writeln(' done.');

write('Back substitution...');
back_.ubstitute ;
writeln(' done.')

end (* activecolumnolver)

Program 2a: Active Column Solver - Executive

Messages surround the major phases of the solution process so the solution may be monitored
from the screen.

-18-

6.2.1 Decomposaion The decomposition is handled by deconpasw
(**

S

decompose - LDU decomposition of coefficient matrix.

,)

procedure decompose;
VAR
b, c : float;
n, p, q, s, t, u, v :word;

begin (* decompose *)
for n := to neq do begin

(,

* propagate effect of previous
" off-diagonal terms to the current column
I)

if height^[n] > 1 then begin
(* p - first previous column of interest *)
p :- n - height'[n] + 2;
for q := height'[n] - I downto 2 do begin

s :- 2;
t:=q+ 1;
(* u _ number of multiplies to perform)

u := min(height^[p] - 1, height^[n] - q)
c :- 0.0 ;
for v:-1 to u do begin

c :- c + K^[p] ̂ [sJ * K^[n] ^[t]
Inc(s)
Inc(t)

end (* v)
Ki[n] ^[q : K[n] [q] - c
Inc(p) (the next 'previous column' *)

end (* q *)
end (* if*)

(,

propagate effect of previous
* diagonal terms to the current column
,)

p:=n;
b :- 0.0;
for q :- 2 to height[ni do begin

Dec(p) ;
S:-K[n^[q / K[lp]l ; (the "Lir terms *
b :-b + c * K^[n] ^[q;
K^n] ^[q] := c

end (* q *)
K'[n] ̂ [1] :- KA[n] [l] - b
if Ktn] ll <- 0.0 then solerr(n)

end (Sn *)
end (*decompose*)

Pkogrm 2ix Active Column Solver - Decomposition

Although the "'" notation may look a little strange, the code bears a striking resemblance to

-19-

non-pointer code (compare with Proam 1). The pointers obviate explicit calculation of
subscripts of terms in K, however, so the code is relatively clean. While studying deomnpose,
bear in mind that K^[p] ^[1] is the diagonal term in column p, and K^[p] ^[21 is the first off-
diagonal term. Probably, the most efficient way to observe how the solver works is to prepare a
small test case (similar to the example demonstrating use of KxR), and watch the program run
with the Turbo Debugger.

The function mn is simply:

Sain - returns smallest integer value.

5)

function min (a, b : integer) integer;
begin (* min *)

if a <= b then min := a else min: b
end (*min*) ;

Inc and Dee are Turbo Pascal procedures that, respectively, increment, and decrement, their
arguments. They map directly to machine instructions, so are quite fast.

In case of trouble, decmpose calls solemn

Ssolerr - prints error message and dies.

,)

procedure solerr (n : integer)
begin (* solerr *)

writeln(' D Diagonal term in column ', n,'- ',K^[n i[])
writeln(' Coefficient matrix is NOT positive definite. - solerr.');
halt(I)

end (* solerr)

Soleor should probably use abort, rather than halt.

-20-

6.2.2 Reduction The reduction of the right hand side is performed by reducejha:

S

* reducejhs - using factors computed by 'decompose'.

,)
procedure reduce_.rhs;

VAR
c : float;
n, p, q: word;

begin (* reduce.rhs *)
for n :1 to neq do begin

p := n - 1; (* first "previous columns *)

c := 0.0;
for q :- 2 to height^[n] do begin

c :- = + K'In]{q * R^Jp ;
Dec(p) (next "previous column')

end (* q *)
R^[n]-= R[n] - c

end (n)
end (*reducerhs*)

Progam 2: Active Column Solver - Reduction

6.2$ Back Substitution The back substitution step is handled by backsubetitute:

* backjaubstitute - complete solution of the equations.

,)

procedure backjubstitute;
VAR

n, p, q :word;
begin (* back-pubstitute 5)

for n :- 1 to neq do
R'[n] :- Ri[n] / K[n] [I]i

for n :- neq downto 2 do begin
p :- n - 1;
for q :- 2 to height^[n] do begin

R^[p] :- R^[p] - K[n] ^[q] * Ri[n]
Dec(p)

end (*q)
end (n *)

end (*backjsubstitute*);

Pip 2di Active Column Solver - Back Substitution

-21-

6.3 Accesslng the Data Structure via Utility Routines

Several of the procedures and functions that provide an interface to the datastructure are
commented on below. A more complete set is listed in the Appendix.

6.3.1 Clearing K In order to use the datastructure, most FEM programs will require a "clean
slate." The following procedure sets the contents of K to 0.0:

* clearK - set the contents of K to 0.0.

procedure clear_;
VAR

i word;
begin (* clearJK *)

for i := 1 to neq do
set_vector(K[i], height'[i], 0.0)

end (* clearK) ;

Clear_K makes use of the more general procedure setvecter (below). The danger lurking
here is that undisciplined use of setvectcr will clear more storage than has been allocated,
possible destroying the program or operating system code.

set.vector- set Vi..nj to W.

C)

procedure set.vector (V : column..ptr, n : word; W float)
begin (* set-vector *)

for n :- 1 to n dov^[n] := W
end (* setvector)

-22-

6.3.2 Adding a Term to K Given the location aLrow, at-col in a "full" K, this procedure adds
term to the appropriate location in K stored in skyline form. That is, add.to.K maps the
standard matrix subscripts to the skyline. Relatively cheap insurance is provided by the if
statements, which avoid storing a term in a random memory location.

* addto_.K - add 'term' at 'at_ow,t_col'
where atrow, at. col give the location in
a "full" matrix.

procedure addtoK (term : float; at_yow, at_col : word)
VAR

i: word;
begin (* addjoJ *)

if at_row <- at..col then begin (K is upper triangle only *)
i - Succ(at-col - at-ow) ;
if i <= height^[t..coll then (* insurance *)

K^[at.colJ'[iJ := K^[atcol]'[i] + term
end (if *)

end (* add_to_,);
6.8.8 Te Prodvct f = K * z The usual definition of a matrix multiplying a vector is f = Kx

U

or, using indices, fi = tk~zi. Let K be symmetric, and consider the equation
i-I

fi k1i k12 k13 111f2 = k22 k3 5Z2

f3 k 1 k23 k33 "

Performing the multiplication yields the following terms for f:

fI ==kl1 z1 + k12z + k13z 3
f/ 2-=k 12z + k2z, + k 2ss
ft 3=k 1 3ZI + k 3X:2 + k33Z3

The datastructure only stores "half" of K, however. Hence, the computation of the product is
reordered such that all the terms on and above the diagonal are used first, thus:

fs =k1 1 :1

f2 m--k 12XI + k22
f3 k13z1 + k 23g + k333

This of course is equivalent to using all the terms to the left of the diagonal in a full matrix.

Then, each column is considered in turn; the terms at the appropriate "row" (= height) are

used to accumulate the missing terms into f: Using column 2,

f1 =fI + k1222

and using column 3,

f, -fl + k13 23
f 2-f + k3s3

It is seen that the resulting f is correct. This algorithm is implemented by the following
procedure. Note that the numbering of K in the procedure agrees with that of the
datestructure.

-23-

* KtimesX - column vector F := skyline matrix K times column vector X.
uses global variables 'neq', 'K' and 'height'

,

* K is symmetric:

* kl k44
* k21 k43
* k3i k42
* (sym) k41
,

* Part 1 uses each column from the diagonal to the maximum
height in each column as a row. This ensures that

* the terms to the left of the diagonal are used in the
* multiplication.

* Part 2 adjusts the previous sums by using the terms above
" the diagonal as the remainder of the row.

,)
procedure KtimesX (F, X : column..ptr);
VAR

i, j, q : word;
s : float ;

begin (* KtimesR a)
for i := to neq do begin

(* Part I*)
q : height'[i];

s : 0.0 ;
for j :-I to height^[i] do begin

s :- s +. K[i] [c] a X^[i]
dec(q)

end;
F'[iJ

(* Part 2
q := i- 1
for j :- 2 to height'[i] do begin

F^[q] := F^[q] + K°[i] [J] * X[i];
dec(q)

end
end (* for a)

end (* KtimesX*)

-24-

7. Using the KxR Propam

7.1 onmmnd line

kxr input output

7.2 Input file

The input is free format. Each entry separated by blank, tab, or <cr>. The maximum
number of numbers on a line will usually depend on the operating system, and most likely,
requires that a line be less than 256 characters.

It is good practice to begin each kind of data on a new line.

7.2.1 Input File Format First, on a line by itself, the number of equations.

Second, the height array. This may use as many lines as necessary to completely describe the

array.

Third, the terms of K, in order from the diagonal towards the top of each column.

Fourth, the terms of R, from first equation to last.

For example, consider the set of simultaneous equations[.0 -4.0 1.0 0.0
4.0 6.0 -4.0 1.0 Z: I
1.0 -4.0 6.0 -4.0 zs 0
0.0 1.0 -4.0 5.0 4

Pertinent data for this set:

- The number of equations neq is 4.

- The column heights are, respectively, 1, 2, 3, and 3.

- The terms of column 1: 5.0.

- The terms of column 2: 6.0, and -4.0.

- The terms of column 3: 6.0, -4.0, and 1.0

- The terms of column 4: 5.0, -4.0, and 1.0

- Finally, the terms of the right hand side are: 0.0, 1.0, 0.0, and 0.0

The input file for this case might therefore look like:

4
1 2 3 3
5.0
6.0 -4.0
6.0 -4.0 1.0
5.0 -4.0 1.0
0.0 1.0 0.0 0.0

-25-

7.3 Output file

The output file contains the solution vector, one term per line. Since the solution vector will
most likely be used by another program, there is no label or "pretty-print" information written
to this file.

To use the solution vector R in another program:

1. Allocate storage for seq floats, to hold R.

2. Open the file access to the tezt file containing R. Turbo Pascal statements would have the
form

var
f : text

assign(f, 'solution.dat');

reset(f)

3. Read R with statements of the form

for i :- 1 to neq do
read(f, R'[i])

-26-

S. Acknowledgenents

The author sincerely thanks Professor Theodore Toridis for his careful reading of, and his
helpful comments on, the text.

9. References

Bathe Bathe, Klaus-Jirgen, and Edward L. Wilson, Numerical Methods in Finite

Element Analysis, Prentice-Hall, 1976.

BorlandD -, Turbo Debuier, Version 1.0, Borland International, 1988.

BorlandPR -, Turbo Pascal Reference Guide, Version 5.0, Borland International, 1988.

BorlandPU -, Turbo Pascal User's Guide, Version 5.0, Borland International, 1988.

Carnahan Carnahan, Brice, HA. Luther, & James 0. Wilkes, Applied Numerical
Method, Wiley, 1969.

Jensen Jensen, Kathleen and Niklaus Wirth, Pascal User Manual and Report,
Springer-Verlag, 1974.

Ralston Ralston, Anthony, A First Course in Numerical Analysis, McGraw-Hill,
1965.

Wilson Wilson, Edward L., et. al, "Direct Solution of Large Systems of Linear
Equations," Computers 8 Structures, Vol. 4, pp. 363-372, Pergamon Press,
1974.

Wirth Wirth, Niklaus, Systematic Propammlnjp An Introduction, Prentice-Hall,
1973.

APPENDIX

The following pages contain the complete source code for KxR.

-27-

A1

.....CCCCC float. inc CCCCCCCCCCCCCCCCCCCCCC.C......a..e...

TYPZ

float = double ; (C change to suit accuracy C)

*..asesses globals.pas *******CCCCCCCCCCCCCCCCCCCCCCC

Unit global;

(s. globals - where all the global variables are kept. 0)

Interface (C public declarations *)

($I float.inc } (C defines the numerical precision C)

CONST

NAXZQNS = 65520 div 8izeof(float)

TYPE
columanheight-array a array [1 .. KAXQNS] of word
coluan height type - ^column_height..array

columntype - array [1 .. KAXZQNS] of float
column_ptr - columntype ;

column-array a array [1 .. AZQS] of coluan_ptr
matrix a ^coluan-array ;

atrixfile a file of float ;

ito = record case boolean of
true (w : word)
false: (f : float)

end (0 item)

VAR

column : oolumn_ptr ; (0 pointer to the K column C)

f: text ; (* input file 0)
g : text ; (0 output file C)

height : columnpheight type

K : matrix ; (m atrix of coefficients C)

neq word ; (# # of equations, this problem C)

sfile : matrixfile ;
afile.name : string[1];

orig in : pointer ; (m arks the start of storage C)

pre.dmax. pre_dain : float

postjdax. post,_dmin : float

a : column.ptr; (0 "Right hand side* of equation C)

A-2

sizeof.float : longint

c column_ptr ; (e used to check accuracy C)

- + ---- + + + + -

Implementation (s private declarations *)

(--- + -----------.- +--...+

begin (* globals initialization code *)

height := nil
K :U nil

I := nil

end (S globals *)

..es..S~e kr.pas e.eseee*S*,SSSSCSSvCS

(so+)
program KxR

lxi - solve the matrix equation (K](x) ({R)
where (K] is symmetric and stored in
skyline form per Bathe/Wilson.

Copyright (c) Peter N Roth - January 189.
S

*

Uses overlay
. globals
, kxrutil
,intit

C olo
, fini

(SO kurutil)
(so init }
(So Colo)
(So fini }

(+ + + +
begin

ovrinit("kxr.or)
initialize ; (* unit INIT *)
calculate ; (S unit CALC C)

finish C* unit FiN! *)
end (Kwe).

A-3

****so**** init.pas C~C~ee~ee~es~.eCe..

unit init

(C. it - set up the machine, read input. etc. C)

Interface (Cpublic declarations C

Uses overlay
*global.
*kxrutil

(So kxrutil

procedure initialize

(SC+------+---- ------------- ------ C

Implementation (Cprivate declarations C

VAR
al. a2 longint ;(C temporary variables for storage calculations C

C* usage ' how to invoke the program.,-

procedure usage
begin (C usage C

writeln(CCusage: -. paramstr(0 , input output

end (Cusage C

C* ommand..line -get end vet commend line parameters.

procedure commandline
begin (C commend-line C)

if paramount -cm I then begin
usage
halt(1)

end;

if paraustr(I paramstr(2) then begin
usage
writeln(- input and output file names must differ.'
halt(I

end;

assignl(f, paramstr(1I
reset(t);
if eof(f y then begin

Usage

A-4

writeln(immediate end of file on 1. parmstr(1I
usage
abort

end;

assign(C, paramstr(2));(0 will overwrite an existing file 0)
rewrite(9

end (Ccommand.line C

a. gtneq - read the number of equations from <f>.

procedure get-neq
begin (* getneq 0)

readln(f. neq);

if noq > KAXQNS then begin
writeln('Number of equations exceeds current capacity ,

NAXEQNs,) getneq.'
halt 1)

end
else if neq <= 0 then begin

writeln('Number of equations <- 0 ??? Can't solve. -getneoq.'

abort
end (Cif C)

end (Cgetneq s)

a. et-heights - read the heights of each column.

procedure gethesights
VAR

i :word
begin (* getjieights C

for i :=I to noq do begin
read(f, height ii]);
if height Iii <- 0 then begin

writeln('Non-positive column height at entry '4)
abort

end (s if C

end (s for s)

end (s gethesights s)

A-S

(***

. getK - read the coefficient matrix K.

a)

procedure get._K
VAR

i. j : word

begin (* get K *)

for i := 1 to neq do begin
for j :- 1 to height^[i] do begin

read(f. K'i][j])

end

end (e for *)

end (* getK *)

*. get.R - read the right hand side R.
a

C)

procedure get..R
VAR

i : word
begin (C get_ *)

for i :- 1 to neq do

read(f. R [i j

end (g get_R *)

A-6

S. initialize - perform the initialization.

procedure initialize
begin (* initialize 5

command line ; (* got & vat the command line *

al :- memayail
sizeof-float :usizeof(float

mark(origin) swhere the heap begins 0)

goet

allocateheight
get-heights

*allocate ALL space first, to ensure
*that we can compute, THEN read
Sthe stuff.

allocate-K
allocate-vector(R)
allocate. vector(X);

" It in not necessary to clear the arrays.
e since we will re-initialize the arrays
" via the READ.

clearK;
set -vector(R, neq. 0.0);
set-vector(1, noq. 0.0);

getjt

m2 := memavail
write('Memory saalable (bytes): a l)
writeln('; used: '. ml m 2

assign(afile, 'Junk.mat')
rewrite(nfil*);

end (0 initialize *)

---- -- ------------ - ------ - -- --------)

end (5 it .

A-7

*CC*CCesC* calo.pas OCS** s*s~eC*e.e*.a*.........

Unit alc

(c. oalc - the seat of the crunching. 0)

Interface (C public declarations *)

Uses overlay
, globals
* kxrutil
* solver

(SO kxrutil)

(So solver)

procedure calculate

(* - - - - - - - - - - - -)

Implementation (' private declarations *)

(*8*

C. calculate - control the crunching.
C

C)

procedure calculate

begin (* calculate *)

diagonal extremes(pro dmax, pre_dmin)

activoecoluan..solver ; (* unit SOLVER *)

diagonalpxtremes(post dmax. postjoin)

end (s calculate C)

(------- ----- ++

end (0 calc).

A-

CCCC*CCCCC fini.pas C*CCCCCC*CCCCCCCCCCC******CC..........

Unit fini ;

(s. fini - clean up & go home, 0)

Interface (C public declarations C)

Uses overlay
* globals
, kxrutil

($0 kxrutil }

procedure finish;

(S + + +- + +)----)
Implementation (C private declarations *)

(s~em

C. writeR - put the solution vector to <g>.
C

C)

procedure write.R
VAR

n : word
begin (* writer C)

for n := 1 to neq do
writeln(g, R[nj)

end (0 write!);

C. finish - out of here.

C)

procedure finish
begin (* finish C)

write!;

writeln('Diagonal extremes before decomposition:'
writeln(predmax:30. predmin:30) ;

writeln('Diagonal extremes after decomposition:")
writeln(post dmax:80, postdmin:$0) ;

release(origin m ; (C nemory back to system C)

close(f)
close(C)

end (e finishe) ------ - ----- - --

end (C fini C).

A-9

{sslver.pas

($0+)
Unit solver

(*. solver. *)

Interface (* public declarations 5)

Uses overlay
* globals
, kirutil

procedure active columnsolvor
procedure decompose

procedure reduce rha
procedure back substitute

(* ---- - - --- ----- - ----- - ----- - -----)

Implementation (o private declarations *)

A-1O

e. decompose - LDU decomposition of coefficient matrix.
C

C)

procedure decompose
VAR

b. c : float
n, p. q, a. t. u, v word

begin (0 decompose *)

for n :- 1 to neq do begin
(C

* propagate effect of previous
* off-diagonal terms to the current column
C)

if height'[n] > 1 then begin
(o p - first previous column of interest 0)

p :- n - height'[n + 2
for q :- heighta(n] - 1 downto 2 do begin

s :a 2;
t :-q + I

(C u - number of multiplies to perform C)

u :- sin(height[pl - 1. height^[n] - q

a :u 0.0 ;
for v :a I to u do begin

c :a o + K[p'[s] C K^[n]1[t;
Inc(s)
Inc(t)

end (* v *) ;

K^(n]*(q) :a Kn)q) - c

Inc(p) (C the next "previous oolumn" C)

end (0 q C)

end (0 if C)
(C

• propagate effect of previous
• diagonal terms to the current column
C)

p :a n
b :- 0.0
for q := 2 to height^[n] do begin

Deoc(p) ;
o :- K^[nl'(q) / K'[pJ1 ; (the RLij = terms 0)

b :- b + a K^n '(q;
(*[n]*fq) :- a

end (* q *) ;

K'[nj[lj :- K-(n]'(1] - b,

if K(n]'[1] 4= 0.0 then 8olerr(n)

end (e n *)

end (C decompose C)

A-11

*. reducerha - using factors computed by 'decompose,.
*

C)

procedure reduce rhs
VAR

c float

n word

p word
q word

begin (o reducerhs)

for n := I to neq do begin
p :- n - I ; (C first "previous column" 5)

c :M 0.0 ;
for q := 2 to height^[n) do begin

o :w c + K^[n]'[q] 0 R'[p] ;
Dec(p] (S next *previous column* 5)

end (* q C)
R'(n] :n VIn) - c

end (0 n *) ;

end (C reducerhe a

(*5*0

5. back_substitute - complete solution of the equations.

5)

procedure back "ubstituts
VAR

n : word
p : word
q : word

begin (* backsubstitute e)

for n := 1 to noq do
R^[n] := Rl(n] / K'(nJ~]

for n :- neq downto 2 do begin

p :a n - ;
for q :a 2 to height'(n) do begin

V(p] :a R(pJ - K(n](q R"(nJ
Dec(p)

end (0 q 0)
end (e n *)

end (e baok_substitute C)

A-l2

*. activ, column-solver - Gaussian solution of simultaneous equations.

procedure activeoluoansolver

begin (* active columwnsolver C

write('Decomposition .-)
decompose;
writeln(I done.')

write(C 'Reduction
reduce-rhs
writeln(' done.'-

writ*('Back substitution
back substitute;
writeln(I done.'-

end (s active~olumn,.solver C

end (0 solverC)

CCCCCCCCCkirutilpas CSCCCCCCCSSCC*CCC

(so+)

Unit kzrutil

(M kxrutil -utility routines for the xZi package. C

Interface (Cpublic declarations C

uses overlay

C lobals

procedure abort
procedure addtoKr (term float ; atrow, atopol word
procedure allooat*_colu (i :integer ; r :word
procedure allocatehight
procedure allooatejL
procedure alloeateveoctor (VAR R :cclunptr)
procedure cloarX
function diagonalamverase CVAR dave float) float
procedure diaganale"treme a VAR da, dami float)
procedure Ktimesl (F, X : olumi~ptr);
function sin (a. b :integer) :integer
function normK VAR vnorm :float) float
procedure print_9
procedure retrieveR C VAR h : atrizfile)
procedure eolerr (a integer);
procedure set~yeotor V : aolumnjptr; a word; W float
procedure storeR (VAR h : atrixfilo

Implementation (0 private declarations C)

A-13

*. abort - release memory and die.
a

C)

procedure abort
begin (* abort 0)

release(origin)
halt(I)

end (0 abort s)

*. addtoK - add term' at 'at.rowatool'
* where at row, at..ol give the location in
* a *full* matrix.

C)

procedure addctoK (term float ; atrow. atool : word)
VAR

i : word
begin (s add-toK 0)

if at row <a at ol then begin (C K is upper triangle only C)

i :a Suoc(at~ol - atrow) ;
if i <w height'(at_oolJ then (e insurance *)

KXjatoolj'[i) :a K'jatoolj+L + term
end e if C)

end (C addtoK)

e. allocatecolumn - arrange storage for the i-th column.
C

C)

procedure allooato_oolumn (i integer ; (C the column of interest C)

r word (e the size desired 0)
);

VAR
o : longint

begin

o :- r * sizeof-float

if o > lemvail then begin
writeln (Out of memory attempting to allocate ". c,

, bytes to column , , - allooateoolumn. ;
abort

end
else begin

Oetmem (K1iI o)a
end

end (C allooateeolum C)

A-14

a. llocate,_height - allocate storage for the column heights.

procedure allocateheight
VAR

o longint
begin (0 allocate height C

o := neq * sizecf(word

if o :, NmAvail then begin
writeln(out of memory attempting to allocate 1, c.

,bytes to column heights - allocatebeight.'
abort

end
also

Getman (height, o

end (0 allocateheight C

e*allocate-x - allocate storage for the matrix of coefficients.

procedure allocatoR

VAR
0o longint
i :word;

begin (CallocateK o)

oa: neq * siaeof(pointer)

if c > UemAvail then begin
writeln ('out of meam attempting to allocate .c

' bytes to (K) - allocateK. -

abort
end
else

Getmem (K. a

for i :a I to neq do
allocatqeoolumn(i. heightVIJ)

end (Callocate-K

A-15

(*e•

.. allocatevector - allocate storage for a right-hand-side-like" vector.

C)

procedure allocateovector (VAR R : column_ptr)

VAR
a : longint

begin (s allocatevector C)

c :. neq 0 sizeoffloat

if c MeemAvail then begin

writeln (Out of memory attempting to allocate ', C.

I bytes to column vector - allocate vector."

abort

end
else

Getmn (R. c)

end (C allocatevoctor s)

C. olearK - set the contents of K to 0.0.

procedure clear K
VAR

i : word

begin (* clear.K e)

for i :. 1 to neq do

setvector(K^[i], height*ij, 0.0)

end (C cloarK C)

C. diagonal.avorage - return average of values on diagonal of K.

function diagonalaverage (VA davg float) float

VAR
i : word

begin (o diagonalaverage C)

davl :a 0.0

for i := 1 to Ieq do
davg :a davg * K'[iJ(1]

davg :a davg / neq
diaonal_aver :a daig

end C dlagonalaverage C)

A-16

*. diagonal-Pxtremes - return maximum and minimum values on diagonal of K.

a)

procedure diagonaleoxtremes (VAR dmax, dain : float
VAR i : word ;
begin (* diagonalextrenes s)

din K 11[1(lj
dain : 'tltl]
for i :- I to neq do begin

if K^[i]^[l] > dine then dnax := K(i'[1(l
if K^[i]^[1] < dmin then dmin := K(i][1 ;

end
end (o diagonale..xtromes 0)

• . KtimesX - column vector F := skyline matrix K times column vector X.
* uses global variables "neq'. "K" and "height"

• K is symetric:
* kil k44
e k2l k43

• k31 k42
* (sym) k41

• Part 1 uses each column from the diagonal to the maximum
* height in each column as a row. This ensures that
• the terms to the left of the diagonal are used in the

m ultiplication.

• Part 2 adjusts the previous sums by using the terms above
• the diagonal as the remainder of the row.

a)

procedure KtimesX (F. X : oolunptr)
VAR

i. J. q : word
s : float ;

begin Ce KtizesR e)
for : 1 to neq do begin

(0 Part 1 e)
q := height[i)
8 :- 0.0
for j : 1 to height'[iI do begin

a :a a + Kli][l]q] 0 3f
doe(q)

end;

(e Part 2 e)
q := i - I1
for 3 :a 2 to height'[] do begin

F(qI :. 7Lq) + K^i1("J] X^tiJ
deoC q)

end

end (s for C)

WA (a timelx)

A-17

(8*9*8

* min - returns smallest integer value.

*)

function snn (a, b : integer) integer
begin (* mln *)

if a <= b then min := a else min :a b

end (e min)

C. normK - a norm of K.

-)

function normK (VAR vnora : float) float
VAR

i : word
begin (0 norn K 0)

vnorm :a K[1[l (;j
for i :u 1 to noq do

if K^Ci]^[I > vnorm then vnorm := K^[i]'[13

normK := vnorm

end (0 norm K 8)

(8CC1

*

C. printK - print the coefficient matrix (for debugging purposes).

*)

prooeduro print K
VAR

n : word
p : word
begin (0 printK C)

for n := 1 to neq do begin
for p :- I to height^[n] do begin

write(K[n) pj)
end (C p C)
writeln

end (0 n 8)

end (0 printK C)

A-18

(CCCCC

C

a. retrieve K - from ch>.
*)

procedure retrieveK (VAR h matrixfile
VAR

i. j : word;
x : item

begin (* retrievoK)

read(h. x.f)
neq :- x.w

for i := 1 to noq do begin
read(h. x.f) ;
height'[i] := x.w

end ;

for i := 1 to neq do
for j :a 1 to height^[i) do

read(h. K^[i]J])

end (C retrieveK)

(SSI

sot vector - set V^[1..n] to W.
C

C)

procedure setvector (V : oolumnptr; n word; W float)
begin (* setvector e)

for n :a 1 to n do
V'(n) := W

end (0 set octor C)

. solerr - prints error message and dies.
e

procedure soler (n : integer)
begin (* soar C)

writeln(-0*0 Diagonal term in column ". n. - - . Ko(n)(l)
writeln(- Coefficient matrix is NOT positive definite. - solorr.')
halt(1)

end (0 soleer C)

A-19

*. store K - save K on h>.
C

.)

procedure store..K VAR h : matrix..file)
VAR

, j : word
x item ;

begin (* storeK C)

x.w :a neq ; write(h. x.f

for i 1 to noq do begin
x.w := height'[ij
write(h, x.f)

end ;

for i := I to noq do
for j := I to heightt[il do

write(h, K'[i)[j]

end (s *toro.K C)

end (C kxrutil 0).

A-20

