

V. Lateral-Torsional Buckling of Beams

C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland

Introduction

Following subjects are covered:

- Lateral Torsional Buckling (LTB)
- Flange Local Buckling (FLB)
- Web Local Buckling (WLB)
- Shear strength
- Lateral Bracing Design

Reading:

- Chapters 9 of Salmon & Johnson
- AISC LRFD Specification Chapters B (Design Requirements) and F (Design of Members for Flexure)

2

Introduction

A beam can fail by reaching the plastic moment and becoming fully plastic (see last section) or fail prematurely by:

- LTB, either elastically or inelastically
- 2. FLB, either elastically or inelastically
- 3. WLB, either elastically or inelastically

If the maximum bending stress is less than the proportional limit when buckling occurs, the failure is elastic. Else it is inelastic.

For bending $\varphi_h M_n (\varphi_h = 0.9)$

Design of Members for Flexure (about Major Axis)

TABLE User Note F1.1 Selection Table for the Application of Chapter F Sections					
Section in Chapter F	Cross Section	Flange Slenderness	Web Slenderness	Limit States	
F2	$\pm \pm$	С	С	Y, LTB	
F3	\pm	NC, S	С	LTB, FLB	
F4		C, NC, S	C, NC	Y, LTB, FLB, TFY	
F5		C, NC, S	S	Y, LTB, FLB, TFY	

- Compact Members (AISC F2)
- Failure Mode
- Plastic LTB (Yielding)
- Inelastic LTB
- Elastic LTB
- Moment Gradient Factor C_b

Failure Mode
 A beam can buckle in a lateral-torsional mode when the bending moment exceeds the critical moment.

5

Lateral Torsional Buckling (cont.)

- Nominal Flexural Strength M_n
 - plastic when

 $L_b \le L_p$

and $M_n = M_p$

inelastic when

 $L_p < L_b \le L_r$

and $M_p > M_n \ge M_r$

elastic when

 $L_b > L_r$

and $M_n < M_r$

I-Beam in a Buckled Position

Lateral Torsional Buckling (cont.)

- Elastic LTB
 - coupled differential equations for rotation and lateral translation $M_z = GJ \frac{d\phi}{dz} EC_w \frac{d^3\phi}{dz^3}$ (8.5.10)

where

- M_z = moment at location z along member axis
- z = axis along member length
- φ = angle of twist
- *G* = shear modulus
- *J* = torsional constant (AISC Table 1-1 for torsional prop.)
- *E* = modulus of elasticity
- C_w = warping constant (AISC Table 1-1 for warping)

9

Lateral Torsional Buckling (cont.)

- Plastic LTB (Yielding)
 - Flexural Strength $M_n = M_p = F_v Z$ (AISC F2-1)

where Z= plastic section modulus & $F_v=$ section yield stress

- Limits
 - Lateral bracing limit $L_b < L_p = 1.76 r_y \sqrt{\frac{E}{F_y}} \qquad \text{(AISC F2-5)}$
 - Flange and Web width/thickness limit (AISC Table B4.1)

(Note: L_{pd} in Salmon & Johnson Eq. (9.6.2) is removed from AISC 13th Ed.)

10

Lateral Torsional Buckling (cont.)

- Inelastic LTB $L_p < L_b \le L_r$
 - Flexure Strength (straight line interpolation)

$$M_n = C_b \left[M_p - (M_p - M_r) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right] \le M_p$$
 (9.6.4)

or

$$M_n = C_b \left[M_p - (M_p - 0.7F_y S_x) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right] \le M_p$$
 (AISC F2-2)

Lateral Torsional Buckling (cont.)

- Elastic LTB $L_b > L_r$
 - Flexure Strength

$$M_n = F_{cr}S_x \le M_n \tag{AISC F2-3}$$

$$F_{cr} = \frac{C_b \pi^2 E}{\left(\frac{L_b}{r_c}\right)^2} \sqrt{1 + 0.078 \frac{Jc}{S_x h_o} \left(\frac{L_b}{r_s}\right)^2}$$
 (AISC F2-4)

(The square root term may be conservatively taken equal to 1.0) (c in AISC F2-8a,b for doubly symmetric I-shape, and channel, respectively)

• Limit
$$L_r = 1.95 r_{ls} \frac{E}{0.7 F_y} \sqrt{\frac{Jc}{S_x h_o}} \sqrt{1 + \sqrt{1 + 6.76 \left(\frac{0.7 F_y}{E} \frac{S_x h_o}{Jc}\right)^2}}$$
 (AISC F2-6)

$$r_{ts}^{2} = \frac{\sqrt{I_{y}C_{w}}}{S_{x}}$$
 (AISC F2-7)

Lateral Torsional Buckling (cont.)

- Moment Gradient Factor C_h
 - The moment gradient factor C_b accounts for the variation of moment along the beam length between bracing points. Its value is highest, C_b=1, when the moment diagram is uniform between adjacent bracing points.
 - When the moment diagram is not uniform

$$C_b = \frac{12.5M_{\text{max}}}{2.5M_{\text{max}} + 3M_A + 4M_B + 3M_C}$$
 (9.6.3) (AISC F1-1)

where

 M_{max} = absolute value of maximum moment in unbraced length $M_{A\prime}$ $M_{B\prime}$ M_{C} = absolute moment values at one-quarter, one-half, and three-quarter points of unbraced length

C_b for a Simple Span Bridge

C_b FOR PARABOLIC SEGMENTS USING LRFD-F1.2a, FORMULA (C-F1-3), EQ. 9.6.11*

Case 1	Laterally braced at ends; points	$C_b = 1.14$
	1 and 5 only; M_{max} at 3	
Case 2	Laterally braced at ends and	$C_b = 1.30$
	midspan; points 1,3, and 5 only;	
	M _{max} at 3	
Case 3	Laterally braced at end and 1st	
	quarter point; bracing at points	
	1 and 2; M _{max} at 2	$C_b = 1.52$
Case 4	Laterally braced at 1st and 2nd	$C_b = 1.06$
	quarter points; bracing at points	
	2 and 3; M _{max} at 3	
Case 5	Laterally braced at 1st and 3rd	$C_b = 1.03$
	quarter points; bracing at points	
	2 and 4; M _{max} at 3	

 $C_b = 1.14 (1.00)$

14

Nominal Moment Strength M_u as affected by C_b

4

Flange Local Buckling (FLB)

- Compact Web and Noncompact/Slender Flanges (AISC F3)
- Failure Mode
- Noncompact Flange
- Slender Flange
- Nominal Flexural strength, M_n = Min (F2, F3)

.5

^{*} Values from 1986 LRFD, Eq. 9.6.12 shown in parenthesis.

Flange Local Buckling (cont.)

Failure Mode The compression flange of a beam can buckle locally when the bending stress in the flange exceeds the critical stress.

Flange Local Buckling (cont.)

- Nominal Flexural Strength M_n
 - $b_f/2t_f \le \lambda_p$ plastic when and $M_n = M_p$
 - $\lambda_p \le b_f / 2t_f \le \lambda_r$ and $M_p > M_n \ge M_r$ inelastic when
 - $b_f/2t_f > \lambda_r$ and $M_n < M_r$ elastic when

18

Flange Local Buckling (cont.)

- Noncompact Flange (straight line interpolation)

■ Flexure Strength
$$M_n = M_p - (M_p - 0.7F_y S_x) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right)$$
(AISC F3-1)

Flange Local Buckling (cont.)

- Slender Flange
 - Flexure Strength

$$M_n = \frac{0.9Ek_cS_x}{\lambda^2}$$
 (AISC F3-2)

$$k_c = \frac{4}{\sqrt{h/t_w}}$$

(kc shall not be less than 0.35 and not greater than 0.76)

Limit (AISC Table B4.1)

Web Local Buckling (WLB)

- Compact or Noncompact Webs (AISC F4)
- Failure Mode
- Compact Web (Yielding)
- Noncompact Web
- Slender Web
- Nominal Flexural Strength, M_n=min (compression flange yielding, LTB, compression FLB, tension flange yielding)

Web Local Buckling (cont.)

Failure Mode
 The web of a beam can also buckle locally when the bending stress in the web exceeds the critical stress.

22

Web Local Buckling (cont.)

- Nominal Flexural Strength M_n
 - plastic when

 $\lambda \leq \lambda_p$

and $M_n = M_p$

inelastic when

 $\lambda_p < \lambda \leq \lambda_r$

and $M_p > M_n \ge M_r$

21

23

elastic when

 $\lambda > \lambda$

and $M_n < M_r$

Web Local Buckling (cont.)

- Compression Flange Yielding
 - Flexural Strength

$$M_n = R_{pc} M_{yc} = R_{pc} F_y S_{xc}$$
 (AISC F4-1)

where R_{pc} = web plasticification factor (AISC F4-9a, b) & F_{v} = section yield stress

Limits (AISC Tables B4.1)

$$L_b < L_p = 1.1 r_t \sqrt{\frac{E}{F_y}}$$

Web Local Buckling (cont.)

- LTB (Inelastic) $L_p < L_b \le L_r$
 - Flexure Strength

$$M_n = C_b \left[R_{pc} M_{yc} - \left(R_{pc} M_{yc} - F_L S_{xc} \right) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right) \right] \leq M_p$$
 (AISC F4-12)

where F_1 = a stress determined by AISC F4-6a, b

Web Local Buckling (cont.)

■ LTB (Elastic)

 $L_b > L_r$

Flexure Strenath

$$M_n = F_{cr} S_{xc} \le R_{pc} M_{vc} \tag{AISC F4-3}$$

$$F_{cr} = \frac{C_b \pi^2 E}{\left(\frac{L_b}{r_t}\right)^2} \sqrt{1 + 0.078 \frac{J}{S_x h_o} \left(\frac{L_b}{r_t}\right)^2}$$
 (AISC F4-5)

(AISC Table B4.1) Limit $L_{r} = 1.95r_{t} \frac{E}{F} \sqrt{\frac{J}{S h}} \sqrt{1 + \sqrt{1 + 6.76 \left(\frac{F_{L}}{E} \frac{S_{x} h_{o}}{J}\right)^{2}}}$ (AISC F4-8)

25

Web Local Buckling (cont.)

- Compression FLB (Noncompact Flange)
 - Flexure Strength

$$M_{n} = \left[R_{pc} M_{yc} - \left(R_{pc} M_{yc} - F_{L} S_{xc} \right) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right) \right] \leq M_{p} \quad \text{(AISC F4-12)}$$

- Compression FLB (Slender Flange)
 - Flexure Strength

$$M_n = \frac{0.9Ek_cS_x}{\lambda^2}$$

$$k_c = \frac{4}{\sqrt{h/t_w}}$$
(AISC F4-13)

(k, shall not be less than 0.35 and not greater than 0.76)

Web Local Buckling (cont.)

- Tension Flange Yielding $S_{yz} < S_{yz}$
 - Flexure Strength

$$M_n = R_{pt} M_{yt} = R_{pt} F_y S_{xt}$$
 (AISC F4-14)

 R_{ot} = web plastification factor to the tension flange yielding limit

(a)
$$h_{e}/t_{w} \le \lambda_{pw}$$

(b) $h_{e}/t_{w} > \lambda_{pw}$

$$R_{pt} = M_p / M_y$$

$$R = \left[\frac{M_p}{M_p} - \left(\frac{M_p}{M_p} - 1 \right) \left(\frac{\lambda - \lambda_{pw}}{M_p} \right) \right] < \frac{M_p}{M_p}$$

$$R_{pt} = \left[\frac{M_p}{M_{yt}} - \left(\frac{M_p}{M_{yt}} - 1\right) \left(\frac{\lambda - \lambda_{pw}}{\lambda_{rw} - \lambda_{pw}}\right)\right] \le \frac{M_p}{M_{yt}}$$

Shear Strength

- Failure Mode
- Shear-Buckling Coefficient
- Elastic Shear Strength
- Inelastic Shear Strength
- Plastic Shear Strength

For shear $\varphi_v V_n(\varphi_v = 0.9$ except certain rolled Ibeam $h/t_w \le 2.24 \sqrt{E/F_v}$, $\phi_v = 1.0$) $V_n = 0.6F_vA_wC_v$ (AISC G2-1)

29

31

Shear Strength (cont.)

Failure Mode The web of a beam or plate girder buckles when the web shear stress exceeds the critical stress.

30

Shear Strength (cont.)

- Nominal Shear Strength $V_n(\varphi_v = 0.9)$
 - plastic when
- $\lambda \leq \lambda_n$
- and $\tau = \tau_{\nu}$

- inelastic when elastic when
- $\lambda \leq \lambda$... $\lambda > \lambda_{\pi}$
- and
- and $\tau = \tau_{cr}$

 $\tau = 0.8\tau_{\nu}$

Shear Strength (cont.)

- AISC G2 Nominal Shear Strength V_n

$$\frac{h}{t_w} \le 1.10 \sqrt{\frac{k_v E}{F_{yw}}}$$

$$C_{v} = 1.0$$

(AISC G2-3)

- (a) For $1.10\sqrt{\frac{k_v E}{F_y}} \le \frac{h}{t_w} \le 1.37\sqrt{\frac{k_v E}{F_y}}$ $C_v = \begin{bmatrix} 1.10\sqrt{\frac{k_v E}{F_y}} \\ \frac{h}{t_w} \end{bmatrix}$ (AISC G2-4)

- (a) For $1.37 \sqrt{\frac{k_v E}{F_{yw}}} \le \frac{h}{t_w} \qquad C_v = \left| \frac{1.51 E k_v}{\left(h_{/_{\!\! -}} \right)^2 F_v} \right|$

Lateral Bracing Design

-

Lateral Bracing Design

AISC Provisions – Stability Bracing Design for Beams

- 1. For stiffness β_{reqd} , $\beta_{reqd} = 2 \beta_{ideal}$
- 2. For nominal strength F_{br},
 (a) F = B (2A):
 - (a) $F_{br} = \beta_{ideal} (2\Delta_0);$ (b) $F_{br} = \beta_{ideal} (0.004L_b)$ Where $\beta_{ideal} = P_{cr}/L_b$

34

Lateral Bracing Design (cont.)

AISC Provisions – LRFD Stability Bracing Design for Columns

1. Panel bracing

Required
$$V_{br} = 0.005P_r$$
 (A-6-1)

33

 $\Phi = 0.75$

Re quired
$$\beta_{rb} = \frac{1}{\phi} \left(\frac{2P_r}{L_b} \right)$$
 (A-6-2a)

2. Point bracing

Re *quired*
$$P_{rb} = 0.01P_r$$
 (A-6-3)

Re quired
$$\beta_{br} = \frac{1}{\phi} \left(\frac{8P_r}{L_b} \right)$$
 (A-6-4a)

4

Lateral Bracing Design (cont.)

AISC Provisions – LRFD Stability Bracing Design for Beams

1. Lateral Bracing

Required
$$V_{br} = 0.01 \left(\frac{M_r C_d}{h_o} \right)$$
 (A-6-5)

Re quired
$$\beta_{rb} = \frac{1}{\phi} \left(\frac{4M_r C_d}{L_b h_0} \right)$$
 (A-6-6a)

Required
$$V_{br} = 0.02 \left(\frac{M_r C_d}{h_o} \right)$$
 (A-6-7)

Re quired
$$\beta_{br} = \frac{1}{\phi} \left(\frac{10M_r C_d}{L_b h_0} \right)$$
 (A-6-8a)