

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

1

Flare-On 7: Challenge 11 – Rabbit Hole
Challenge Author: Sandor Nemes (@sandornemes)

“But I don’t want to go among mad people," Alice remarked.
"Oh, you can’t help that," said the Cat: "we’re all mad here. I’m mad. You’re mad."

"How do you know I’m mad?" said Alice.
"You must be," said the Cat, "or you wouldn’t have come here.”

― Lewis Carroll, Alice in Wonderland

Overview
In the past years, FLARE-On always had at least one challenge that was written in object-oriented C++ and
was a nightmare to reverse engineer. It would often involve either a system of linear equations, or a Turing
tarpit 1 that usually manifested itself as some sort of virtual machine using an esoteric programming
language (some challenge authors even took that to an extreme level by having a virtual machine inside
another virtual machine). While these are nice for the first few times, I assumed people are now a bit tired
of these, so my design goal for this year was to implement a relatively complicated challenge, that does not
have any of these aforementioned features. The challenge was named “Rabbit Hole” because this is a
“needle in a haystack” type of challenge, as there could be many different approaches, some being dead
ends, and eventually you probably won’t be able (and you are not expected to) to uncover every single
detail in the code, but that is okay, and that also happens to be one of the main tenets of malware reverse
engineering: "Always focus on the big picture, and do not get lost in the tiny details". The challenge is x64-
based, for the simple reason that most Windows operating system installations today are 64 bits, but on
most CTF games x64 code challenges are usually painfully underrepresented, and not reflecting the real-
life prevalence of x64 code.

HOW THIS CHALLENGE WAS MADE

My team specializes in malware configuration extraction and network traffic emulation, so it was a natural
choice to leverage this knowledge and do it the other way around this time: change a malware’s
configuration and write tools that make it possible put the updated configuration back into the malware
sample, and optionally add some new plugins too. Thus, I took a Gozi V3 (aka. RM3) malware sample, ran
it in a VM with a live internet connection waited until it downloaded all the necessary modules for its normal
operation. Then I meticulously reverse engineered the code and changed the configuration to practically
defang the malware sample and turn it into a harmless executable. The module responsible for the network

1 https://en.wikipedia.org/wiki/Turing_tarpit

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

2

communication was patched to make sure it saves the most recent data exfiltration request to the registry
before the actual network communication takes place. This was needed to actually make the challenge
solvable (as I had to make sure that every information that was necessary for the solution was in the registry
hive file).

Now if you think this challenge was complicated, then remember that most of the things in there came from
the actual, in-the-wild malware, and were already part of the code, and not something just added to hinder
your progress. The only parts that were altered are the following (and I obviously do not have, and never
had access to the actual malware source code for this family, so all these were performed via reverse
engineering and binary patching):

1. The configuration was modified in all the modules (e.g. C2 servers, RSA public key, Serpent key,

webinjects, etc.), to make sure that the sample can't call home over the network or exfiltrate any

data from the computer it is running on.

2. The network module was binary patched to save the most recently exfiltrated data packet to the

registry each time.

3. A very simple custom plugin was added that tries to prevent running some common debuggers and

analysis tools (WinDbg, OllyDbg, x64dbg, IDA, Process Monitor, Process Explorer, Autoruns) while

the malware is active and running. This custom plugin merely displays a message, and then

terminates the debugger/analysis tool, so it should be fairly trivial to circumvent.

ANALYZING THE REGISTRY HIVE

This challenge consists of a single file with the name "NTUSER.DAT". The file is not directly executable,
but those having some deeper knowledge of Windows internals will probably recognize by its name that
this file is a user registry hive, that usually resides in the %USERPROFILE% directory (usually
C:\Users\<username> on Windows 10). Otherwise you can use standard tools (e.g. the Linux "file" utility)
to find out the file type, or just Google the first 4 bytes of the file (that is "regf"):

$ file NTUSER.DAT
NTUSER.DAT: MS Windows registry file, NT/2000 or above

Figure 1 - Using the "file" utility to determine the file type

There are several free tools that you can use to open the registry hive and examine its contents. These are
the ones that I have personally tested:

• NirSoft RegFileExport2

• Eric Zimmerman’s Registry Explorer3

2 https://www.nirsoft.net/utils/registry_file_offline_export.html
3 https://ericzimmerman.github.io/

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

3

• The built-in Windows reg.exe utility

FINDING THE PERSISTENCE METHOD

Simply trying to replace the NTUSER.DAT file on a Windows installation, or trying to restore the hive using
the reg.exe utility will unlikely to work out of the box. The registry hive files store permission information
which will be tied to the security identifier (SID) value of the particular user for which this registry hive was
created for. Your best option here is to convert the registry hive to a .reg file using the NirSoft RegFileExport
tool (which will not preserve permission information), then you can import that .reg file (although you will
get a warning dialog that some keys could not be imported as they are in use). Now you can use standard
tools, like Sysinternals Autoruns4 to examine the executables that are trying to automatically start in one
way or another.

Note: to make this an even more challenging exercise, the persistence method was intentionally set up in
a way that it is not displayed using the Autoruns default settings. You will need to uncheck the "Hide
Windows Entries" menu option under "Options".

Figure 2 - Unchecking "Hide Windows Entries" will reveal the local group policy logon script

There is a logon script set up in the local group policy5, that runs the command below:

C:\Windows\System32\forfiles.exe /p C:\WINDOWS\system32 /s /c "cmd /c @file -ec
aQBlAHgAIAAoAGcAcAAgACcASABLAEMAVQA6AFwAUwBPAEYAVABXAEEAUgBFAFwAVABpAG0AZQByAHAAcgBvACcAKQAuAEQA"
/m p*ll.*e

Figure 3 - The command used in the login script

This script will enumerate files in the C:\WINDOWS\system32 directory matching the pattern "p*ll.*e", then
invoke that file using the specified command line arguments. The only file that should match that pattern is
"powershell.exe", so basically this is just a fancy and less obvious way to invoke a PowerShell command.

4 https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
5 This is under the SOFTWARE\Microsoft\Windows\CurrentVersion\Group Policy\Scripts\Logon\0\0
registry key

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

4

The "-ec" part is an abbreviation for the "-EncodedCommand" parameter, and you can use this Python code
snippet to decode it:

>>> import base64

>>>
print(base64.b64decode('aQBlAHgAIAAoAGcAcAAgACcASABLAEMAVQA6AFwAUwBPAEYAVABXAEEAUgBFAFwAVABpAG0AZ
QByAHAAcgBvACcAKQAuAEQA').decode('utf-16le'))

iex (gp 'HKCU:\SOFTWARE\Timerpro').D

>>>

Figure 4 - Decrypting the encoded PowerShell command

(Note: "iex" stands for "Invoke-Expression", and "gp" is an alias for "Get-ItemProperty")

This new piece of information should direct your attention to the HKCU\SOFTWARE\Timerpro registry key,
which is the main key that stores the malware's components.

THE 1ST STAGE LOADER

You can import the content of the malware's registry key into your own HKEY_CURRENT_UESR hive using
the commands below:

C:\Users\User\Desktop> reg load HKU\Test NTUSER.DAT
The operation completed successfully.

C:\Users\User\Desktop> reg save HKU\Test\SOFTWARE\Timerpro Timerpro.hiv
The operation completed successfully.

C:\Users\User\Desktop> reg add HKCU\SOFTWARE\Timerpro
The operation completed successfully.

C:\Users\User\Desktop> reg restore HKCU\SOFTWARE\Timerpro Timerpro.hiv
The operation completed successfully.

C:\Users\User\Desktop> reg unload HKU\Test
The operation completed successfully.

Figure 5 - Importing the malware's registry key to the local user hive

Note: If you have already imported the registry hive by converting it to a .reg file (as suggested in the
previous section), you will still need to perform this step, because Windows won't be able to import the
registry value that holds this PowerShell script.

The PowerShell script that is in the "D" registry value under the HKCU\SOFTWARE\Timerpro looks
something like this (the full Base64 encoded parts were omitted for brevity):

$jjw="kcsukccudy";

function hjmk{[System.Convert]::FromBase64String($args[0]);};

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

5

[byte[]]$rpl=hjmk("6feZAAA(...)AAAAAAAA");

function
geapmkxsiw{$kjurpkot=hjmk($args[0]);[System.Text.Encoding]::ASCII.GetString($kjurpkot);};iex(geap
mkxsiw("DQokY3Fs(...)cnU7DQo="));iex(geapmkxsiw("DQoNCiRq(...)Cn0NCn=="));

Figure 6 - Decrypted shellcode loader PowerShell script

This script performs a simple self-injection using the QueueUserAPC6 API call to invoke a new thread using
the Base64 encoded loader shellcode at the beginning of the script. The easiest way to debug this is to use
the age-old trick of replacing the first opcode of the payload with a self-jump (JMP $-5 aka. EB FE). Just
right-click on the "D" value in the Registry Editor and select Modify Binary Data… to replace the first
occurrence of "6feZ" with "6/6Z" (which is the Base64 encoded version of the JMP $-5 opcode).

Figure 7 - Patching the first instruction of the shellcode with a self-jump

It's also important to remember the old value, because you will have to patch back the original value in the
debugger once you get there.

>>> import base64

6 https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-
queueuserapc

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

6

>>> base64.b64decode('6/6Z').hex()
'ebfe99'
>>> base64.b64decode('6feZ').hex()
'e9f799'
>>>

Figure 8 - Python code snippet showing the Base64 decoded bytes

Now all you need to do is to run powershell -Command "iex (gp 'HKCU:\\SOFTWARE\\Timerpro').D", and
attach a debugger of your choice to the process, then restore the original starting bytes (i.e. E9 F7).

Note: you might also need to switch to the correct thread first, usually the one that has spent the longest
time in user mode (this is the "User Time" column on the "Threads" tab in x64dbg).

THE 2ND STAGE LOADER

 This shellcode is a simple PE loader, that processes imports and relocations, then finally jumps to
the entry point. The easiest way to get past this is to set a breakpoint on the CALL R10 instruction that
comes a bit above the final RET instruction.

Figure 9 - PE loader shellcode jumps to the entry point

The executable then finds and decrypts the ".bss" PE section, initializes some global variables including a
machine ID (take a mental note of this, because this will be important later). The machine ID is generated
in the function at 0x18000c928 (assuming that the base address is 0x180000000) from the machine SID,
which is in turn determined by querying the process token, then getting the user SID from the token. The
code then loads two embedded data blobs using the function at 0x18000b354 (let's call this function
get_joined_file):

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

7

• an encrypted RSA public key (for decrypting/verifying configuration data in the registry),

• and a wordlist (for generating random names).

After this step a few GUIDs are generated, and a mutex is created, then finally the loader loads its main
module from the registry.

Note: If you happen to recognize that this is a Gozi sample at some point during the analysis, you can
leverage the leaked Gozi source code7,8 to help getting a better understanding of what is going on in the
code, however please note that Gozi V3 is considerably different in many aspects, so don't expect to find
a very large amount of code overlap.

One of the biggest challenges you will face at this stage, is that all the registry key and value names are
(pseudo-)randomly generated from the words of the wordlist using the machine ID and another seed value.
Because the machine ID is generated based on the machine SID of the computer this was run on, it will be
different on each computer. Thus, the code will very likely not find the required registry keys and will fail to
proceed. In order to solve that you will either need to change your machine SID (which is probably hard) or
patch the function that generates the machine ID, and pretend that you are running on a computer with a
different machine SID that matches the machine SID of the computer the registry hive was generated on
(which sounds complicated, but probably way easier than changing the machine SID in Windows). Let's
see how you can possibly find that machine SID using the data that you have at your hands...

FINDING THE ORIGINAL MACHINE SID

A security Identifier (commonly abbreviated SID) is a unique, immutable identifier of a user, user group, or
other security principal. For well-known SIDs this has the structure9 below (by using the SID S-1-5-21-1111-
2222-3333-513 as an example):

• S-1: Indicates a revision or version 1 SID.

• 5: SECURITY_NT_AUTHORITY, indicates it's a Windows specific SID.

• 21: SECURITY_NT_NON_UNIQUE, indicates a Domain/Machine ID will follow.

• 1111-2222-3333: The next three values contain 32-bit random numbers to uniquely identify the

domain/machine

• 513: RID or Relative ID, indicates a unique object ID within the domain/machine.

This has an important implication, that the machine SID (S-1-5-21-1111-2222-3333 in the example) will be
the part of every local user/group SID generated on the local machine. So simply by searching for the value
"S-1-5-21-" in the registry data, you will get a list of SIDs, and stripping away the RID part (the last value)
will result in the machine SID for the computer.

7 https://github.com/gbrindisi/malware/tree/master/windows/gozi-isfb
8 https://github.com/t3rabyt3/Gozi
9 https://en.wikipedia.org/wiki/Security_Identifier#Machine_SIDs

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

8

C:\Users\User\Desktop>RegFileExport.exe NTUSER.DAT ntuser-reg.txt

C:\Users\User\Desktop>find "S-1-5-21-" ntuser-reg.txt

---------- NTUSER-REG.TXT

"Group0"="S-1-5-21-3823548243-3100178540-2044283163-513"

@="defaultroot://{S-1-5-21-3823548243-3100178540-2044283163-1006}/"

@="winrt://{S-1-5-21-3823548243-3100178540-2044283163-1006}/"

"SavePath"="C:\\Users\\Kevin\\Searches\\winrt--{S-1-5-21-3823548243-3100178540-2044283163-1006}-
.searchconnector-ms"

@="csc://{S-1-5-21-3823548243-3100178540-2044283163-1006}/"

Figure 10 - Finding the machine SID in the user registry hive

RANDOM STRING GENERATION

The registry key and value names are generated using a special function identified by Ordinal #60 (in the
8576b0d0.dll/bl.dll module at 0x18000d21c) that generates random words using a wordlist and a seed
value, and it also takes a second parameter that specifies the capitalization of the initial letters in each of
the sub-words. This function uses the xorshift64* PRNG algorithm 10 for generating pseudorandom
numbers. Here's a Python implementation of the string generation algorithm:

#!/usr/bin/env python3

XOR_KEY = 0xedb88320
MACHINE_SID = 'S-1-5-21-3823548243-3100178540-2044283163'

class XorShift64s:

 def __init__(self, seed):
 self.seed = seed

 def generate(self):
 x = self.seed
 x ^= (x >> 12) & 0xffffffffffffffff
 x ^= (x << 25) & 0xffffffffffffffff
 x ^= (x >> 27) & 0xffffffffffffffff
 self.seed = x
 x = (x * 0x2545f4914f6cdd1d) & 0xffffffffffffffff
 return x

class StringGenerator:

 def __init__(self, machine_id, wordlist):
 self.machine_id = machine_id

10 https://en.wikipedia.org/wiki/Xorshift#xorshift*

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

9

 self.wordlist = wordlist

 def generate(self, key, caps=0):
 results = []

 r11 = 0
 while key:
 x = XorShift64s(self.machine_id + ((key + r11) & 0xff)).generate()

 word = self.wordlist[(x & 0xffff) % len(self.wordlist)]

 rcx = x >> 0x20
 if rcx & 1:
 rdx = (rcx & 0xffff) % (len(word) - 1)
 rdx += 2
 word = word[:rdx]

 results.append(word)
 r11 += 2
 key >>= 8

 pos = 0
 while pos < len(results) and caps > 0:
 if caps & 1:
 results[pos] = results[pos].capitalize()
 pos += 1
 caps >>= 1

 return ''.join(results)

def get_machine_id(machine_sid, xor_key):
 machine_id = list(map(int, machine_sid.split('-')[4:7]))
 machine_id = sum(machine_id) + (machine_id[1] << 32)
 machine_id ^= ((xor_key << 32) | xor_key)
 return machine_id

def main():
 machine_id = get_machine_id(MACHINE_SID, XOR_KEY)
 wordlist = (
 'old', 'new', 'current', 'version', 'process', 'thread', 'id',
 'identity', 'task', 'disk', 'keyboard', 'monitor', 'class', 'archive',
 'drive', 'message', 'link', 'template', 'logic', 'protocol', 'console',
 'magic', 'system', 'software', 'word', 'byte', 'timer', 'window',
 'scale', 'info', 'char', 'calc', 'map', 'print', 'list', 'section',
 'name', 'lib', 'access', 'code', 'guid', 'build', 'warning', 'save',
 'load', 'region', 'column', 'row', 'language', 'date', 'day', 'false',
 'true', 'screen', 'net', 'info', 'web', 'server', 'client', 'search',
 'storage', 'icon', 'desktop', 'mode', 'project', 'media', 'spell',
 'work', 'security', 'explorer', 'cache', 'theme', 'solution'
)

 strgen = StringGenerator(machine_id, wordlist)
 assert strgen.generate(0x9eff4536, 5) == 'ThemespellDaytheme'

 for i in range(1, 32):
 key = (i << 8) | i
 print(format(key, '04x'), strgen.generate(key, 3))

if __name__ == '__main__':
 main()

Figure 11 - Reconstruction of the random string generation algorithm in Python

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

10

You can find some of the seed values and strings used by the executable (and its plugins) in Appendix I -
List of pseudorandomly generated words used in the code.

CONFIGURATION STORAGE AND PLUGINS

You already know at this point that everything is stored in the registry under the "Timerpro" key, this includes
various settings, webinjects, and all the plugins used by the challenge executable. A full list of the various
registry keys used can be found in Appendix II - List of registry keys/values and their brief description. In
order to decrypt the data from the registry, you need to find the function that is responsible for this operation.
The function identified by Ordinal #26 (in 8576b0d0.dll/bl.dll at address 0x18000d828) is the one that first
decrypts the RSA public key using a hardcoded Serpent key (which is "90982d21090ef347"), then performs
an RSA encryption (as you can only do encryption with the public key) of the last 128 bytes of the data,
which will have a Serpent session key to decrypt the rest of the data. Finally, you need to decompress the
aPLib compressed blob to get the data.

#!/usr/bin/env python3
import hashlib
import json
import struct

import aplib # from https://github.com/snemes/aplib/blob/master/aplib.py
from malduck import serpent # sudo -H pip3 install malduck
from Crypto.PublicKey import RSA # sudo -H pip3 install pycrypto

ENCRYPTED_PUBLIC_KEY = bytes.fromhex(('''
 36-3C-CD-0C-BC-D0-25-A3-D7-8A-5E-A4-38-58-C1-6E-
 05-18-65-AE-EC-99-0C-70-01-E7-F2-14-94-AC-13-60-
 94-FA-A2-CC-F4-6A-DB-B1-7D-1E-EA-13-63-32-50-2D-
 25-00-16-BC-10-D4-50-E0-32-7E-C0-72-25-F9-1E-E3-
 87-40-CB-E8-7D-F8-39-E1-66-07-76-EE-EC-10-9C-90-
 7A-40-B1-4D-A2-E7-A7-34-97-03-8C-FD-B3-8E-3E-BB-
 68-0C-00-D9-56-D0-D5-DD-48-25-E1-2F-D9-57-7D-83-
 D7-FA-C0-9F-79-0E-AB-2C-4B-3F-17-7A-83-0B-C6-45-
 0B-C8-B0-35-F3-2B-07-55-BB-E6-02-C0-19-78-7B-34-
 0B-59-F9-14-59-04-2C-A0-30-E9-A3-7F-68-39-6B-FD-
 09-43-F8-BF-A1-78-5E-4E-E7-20-53-24-04-05-4B-A8-
 85-A0-4C-D1-E9-3E-1B-58-FE-1E-B6-A1-50-81-35-87-
 25-78-4B-4B-D7-21-CE-5B-65-ED-C3-28-65-95-34-49-
 59-CA-69-19-8A-CC-3B-B4-14-DF-62-71-81-30-21-BE-
 D7-97-2A-F3-F6-92-ED-59-18-EB-8C-FA-8B-D4-56-B0-
 3F-DC-58-51-0A-15-36-5F-F6-B7-81-18-E4-A0-13-5F-
 09-A7-71-75-40-43-B6-51-4D-7F-7A-D2-6E-57-89-AC
''').translate(str.maketrans('', '', '\n -')))

from the "MonitornewWarningmap" value under "HKCU\SOFTWARE\Timerpro\Languagetheme"
REG_DATA = bytes.fromhex(('''
 06-36-3E-35-A4-CB-87-AB-6D-0F-9B-3D-19-8D-A6-D6-
 C4-E3-68-4F-52-79-4B-05-D0-C3-8A-A8-AA-B9-55-41-
 E9-0F-21-CC-37-0A-FC-62-3C-EC-C0-87-27-3E-55-21-
 73-61-FC-90-1D-45-85-B4-F4-DC-61-00-1A-E2-CD-9D-
 66-C9-76-E0-FA-E2-A0-99-58-B5-B8-A5-2C-54-39-79-
 A1-AD-E7-5A-51-B7-12-10-CD-8C-AE-72-9F-00-F4-CE-
 AA-51-68-6D-F3-82-A3-84-33-FA-E4-DD-38-6B-65-2B-
 AB-14-2E-65-03-01-22-C5-FC-77-1C-E4-F1-98-13-E4-
 CA-41-25-1A-8F-CE-E5-83-7F-A6-64-7E-24-34-AF-DA-
 2D-C8-59-7B-DA-74-24-9F-6B-51-9B-20-E0-2B-E3-F7-
 17-06-A1-F1-E1-BA-0F-9A-43-FF-01-AB-A7-19-79-3F-

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

11

 82-27-0D-61-F8-E3-17-8D-37-2B-76-CE-98-33-E2-C8-
 44-DB-49-E8-46-95-0C-DD-6C-BA-39-39-15-43-7A-4B-
 88-E3-89-21-89-38-10-5E-03-53-60-62-08-D8-25-C1-
 30-1F-B4-6F-36-CC-20-98-E1-10-23-CE-33-CB-8D-FD-
 EE-9B-81-33-78-C2-E5-09-59-80-D4-A5-71-08-F7-DC-
 71-89-D2-1D-D6-DE-AF-70-21-C2-95-02-90-3F-C5-F2-
 C3-75-D8-E7-4D-FF-66-A5-E8-AC-1F-08-E6-2F-40-51-
 93-CE-56-AF-06-87-2F-93-19-44-4B-83-F7-C4-E0-99-
 BD-46-3C-15-55-F3-DE-F4-3F-98-8D-FB-4E-FB-15-74-
 B2-78-71-D9-89-AA-BE-82-E6-CD-A2-83-63-CF-97-31-
 EF-94-A6-4A-2D-EA-85-37-3D-8E-B8-05-EE-0A-F5-97-
 5C-C4-74-B6-65-51-28-C1-87-58-16-5D-AB-D3-EB-91-
 1D-16-23-E6-3D-21-5C-CF-9A-B7-8C-79-63-4F-03-17-
 38-F2-9B-B3-BB-11-5C-17-58-E4-48-3C-02-AB-96-F5-
 24-97-08-1C-DB-95-4D-07-FA-0B-48-D3-35-32-A1-5B-
 36-FF-8F-F9-8A-99-0C-12-A6-E3-EC-B7-EC-7E-30-CF-
 71-C9-2E-97-CA-6C-4B-33-EC-C8-C8-E3-EA-AD-53-51-
 1C-BA-BA-F8-85-F8-36-0D-E7-E7-F6-F7-FF-41-9D-29-
 23-07-09-EC-7D-8A-5B-FB-EC-1A-69-1D-FF-B9-CC-32-
 45-AD-69-D5-C8-95-DB-9B-F2-DC-23-AD-31-91-78-3E-
 BE-97-3D-FC-D3-7C-FF-BD-2D-43-B2-E3-70-37-44-E0-
 F8-8E-AE-88-DD-9D-3A-22-BB-A3-76-68-58-8A-4E-92
''').translate(str.maketrans('', '', '\n -')))

def parse_rsa_key(data):
 if not data:
 return None

 if len(data) < 4:
 return None

 length = struct.unpack_from('=I', data)[0]
 if length > 0x1000:
 return None

 start = 4
 end = start + (length >> 3)
 if len(data) < end:
 return None

 N = int.from_bytes(data[start:end], 'big')

 start = end
 end = start + (length >> 3)
 if len(data) < end:
 return None

 E = int.from_bytes(data[start:end], 'big')

 return N, E

def rsa_serpent_decrypt(data, rsa_key):
 if not data:
 return None

 public_key = RSA.construct(rsa_key)
 key_size = (public_key.size() + 1) >> 3
 if len(data) < key_size:
 return None

 data, signature = data[:-key_size], data[-key_size:]
 decrypted = public_key.encrypt(signature, 0)[0]

 try:
 decrypted = decrypted.split(8 * b'\xff' + b'\x00')[1]
 except IndexError:

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

12

 return None

 md5 = decrypted[:16]
 serpent_key = decrypted[16:32]
 data_size, salt = struct.unpack_from('=II', decrypted, 32)

 try:
 decrypted = serpent.cbc.decrypt(serpent_key, data)[:data_size].ljust(data_size, b'\0')
 except Exception as e:
 print(e)
 return None

 assert hashlib.md5(decrypted).digest() == md5
 return decrypted

def parse_config(data):
 config = {}

 try:
 num = struct.unpack_from('=I', data, 0)[0]
 except struct.error as e:
 log.info(e)

 for i in range(num):
 offset = 0x8 + 0x18*i
 crc, flag, pos = struct.unpack_from('=III', data, offset)
 start = offset + pos
 end = start + data[start:].find(b'\0')
 if flag & 1:
 key = format(crc, '#010x')
 value = data[start:end].decode()
 config[key] = value

 print(json.dumps(config, indent=4))

 return config

def main():
 rsa_key_data = serpent.cbc.decrypt(b'90982d21090ef347', ENCRYPTED_PUBLIC_KEY)
 crc, size = struct.unpack_from('=II', rsa_key_data)
 rsa_key_data = rsa_key_data[8 : 8 + size]
 public_key = parse_rsa_key(rsa_key_data)

 tmp = rsa_serpent_decrypt(REG_DATA, public_key)
 confdata = aplib.decompress(tmp[20:])

 parse_config(confdata)

if __name__ == '__main__':
 main()

Figure 12 - Decrypting the configuration from the registry using the public key

The script above should yield results similar to this:

$./get-config.py
{
 "0xb892845a": "https://glory.to.kazohinia",
 "0x72476c70": "0",
 "0x2e58945e": "curlmyip.net",
 "0x556aed8f": "12",
 "0x4fa8693e": "GSPyrv3C79ZbR0k1",
 "0x11271c7f": "300",

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

13

 "0x31277bd5": "300",
 "0xd7a003c9": "300",
 "0x7d30ee46": "300",
 "0x955879a6": "300",
 "0x656b798a": "1000",
 "0xdeff811e": "60",
 "0x584e5925": "60",
 "0x09957591": "10",
 "0x6c451cb6": "0",
 "0x754c3c76": "0",
 "0xe3289ecb": "1",
 "0xea5946a5": "no-cache, no-store, must-revalidate",
 "0x97da04de": "300000",
 "0x8de92b0d": "30, 8, notipda",
 "0xc6c4c2fc": "480",
 "0x9571a0ff": "240",
 "0xdb80f551": "240"
}

Figure 13 - Decrypted and parsed bot configuration

The configuration option names are however all just CRCs instead of descriptive names, so you will need
to find out where they are used in the code to be able to infer what they are for, or as an alternative, you
can also just Google them, because some of these CRCs were used by older variants of Gozi too (i.e.
0xb892845a is the C2 server, 0x4fa8693e is the Serpent key used for sending data to the server, the others
are really not important from a challenge perspective).

 You will probably notice that the plugins stored in the registry are not using the PE file format, instead they
all start with the "PX" magic bytes. By finding the function where these are loaded into memory you can
write a script that converts these into a PE format executable, which will let you load these DLL files into
disassembler or debugger. You can find such a script in Appendix III - PX to DLL converter script.

THE NETWORK PLUGIN PATCH

The plugin responsible for the network communication is called 45a0fcd0.dll/netwrk.dll. This plugin was
binary patched for the purposes of this challenge, so that it saves the most recently exfiltrated data packet
into one of the registry values. This was obviously needed to be able to solve the challenge and retrieve
the challenge flag.

The patch uses the function identified by Ordinal #43 (in the module d6306e08.dll/rt.dll at address
0x180002498) to further encrypt the (already encrypted) data packet using a simple XOR-based encryption
that uses the lower DWORD of the machine ID as the key. Then the function identified by Ordinal #79 (in
the module 8576b0d0.dll/bl.dll at address 0x1800017fc) is used to store the data in the registry using a
randomly generated registry value name using the seed value 0x7f7f (this is the "DiMap" registry value
under the HKCU\SOFTWARE\Timerpro registry key).

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

14

DECRYPTING THE MOST RECENTLY EXFILTRATED DATA PACKET

Now that you have the following clues you can decrypt the data the malware was about to send over the
network, which holds the challenge flag:

1. the fixed XOR key and the machine SID to generate the machine ID;

2. the Serpent decryption key -- from bot config in the registry;

3. the last exfiltrated data (encrypted) -- from the "DiMap" value under the

HKCU\SOFTWARE\Timerpro key;

The data packet is encrypted twice, first using the regular Serpent encryption, then using a custom XOR
based encryption that uses the lower DWORD of the machine ID as the key. Here's a Python script that
shows how to accomplish this:

#!/usr/bin/env python3
import struct
from zipfile import ZipFile
from io import BytesIO

sudo -H pip3 install malduck
from malduck import serpent

XOR_KEY = 0xedb88320
MACHINE_SID = 'S-1-5-21-3823548243-3100178540-2044283163'
SERPENT_KEY = b'GSPyrv3C79ZbR0k1'

from the "DiMap" value under "HKCU\SOFTWARE\Timerpro"
REG_DATA = bytes.fromhex(('''
 04-0C-01-81-E1-85-1F-EF-8D-89-0F-AB-13-A6-A2-64-
 EF-F5-44-B7-10-D0-A8-F5-73-1F-9C-FF-06-9F-FC-23-
 08-4A-11-3A-92-3C-5F-51-71-70-9B-D0-76-9F-50-E7-
 11-A7-22-CE-48-C7-F3-69-78-72-1C-A2-05-B6-F2-31-
 A5-A4-BA-A6-F3-71-E0-61-4B-AD-55-66-BA-34-4F-A0-
 49-37-E6-EF-58-57-56-07-B2-FB-13-63-BC-C2-0B-E3-
 D2-91-F7-B7-1A-76-6A-42-E3-E8-2F-09-31-2F-4F-E2-
 91-44-54-EF-C7-8C-23-35-0D-25-F1-E1-38-80-14-B7-
 F2-7C-55-38-2A-9B-B4-11-D0-63-1F-24-28-90-F1-F3-
 E7-C8-74-46-02-EA-66-CE-1B-A9-71-CC-1B-12-B3-97-
 9E-05-8B-19-04-73-1F-83-E5-D7-DA-F9-05-83-F5-71-
 70-D4-59-C2-1F-D7-D4-7E-6E-77-1A-C3-58-CB-B9-34-
 1C-81-73-C9-DE-A9-64-9A-6E-FD-0F-E2-C3-3D-C3-A3
''').translate(str.maketrans('', '', '\n -')))

def get_machine_id(machine_sid, xor_key):
 machine_id = list(map(int, machine_sid.split('-')[4:7]))
 machine_id = sum(machine_id) + (machine_id[1] << 32)
 machine_id ^= ((xor_key << 32) | xor_key)
 return machine_id

def custom_decrypt(data, key):
 output = BytesIO()

 key1 = key
 key2 = 0
 for i in range(len(data) >> 2):
 x = struct.unpack_from('=I', data, 4*i)[0]

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

15

 tmp = x
 x ^= key1 ^ key2
 key2 = tmp

 rot = ((i % 2) << 2) & 0xffffffff
 x = ((x >> (32 - rot)) | (x << rot)) & 0xffffffff

 output.write(struct.pack('=I', x))

 return output.getvalue()

def main():
 custom_key = get_machine_id(MACHINE_SID, XOR_KEY) & 0xffffffff

 data = serpent.cbc.decrypt(SERPENT_KEY, custom_decrypt(REG_DATA, custom_key))

 with ZipFile(BytesIO(data), 'r') as zf:
 for zi in zf.infolist():
 with zf.open(zi.filename) as f:
 print('%s -> %r' % (zi.filename, f.read().decode().strip()))

if __name__ == '__main__':
 main()

Figure 14 - Python script to decrypt the challenge flag from the registry

Figure 15 - Running the final decryption script

The challenge flag is "r4d1x_m4l0rum_357_cup1d1745@flare-on.com".

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

16

APPENDIX I - LIST OF PSEUDORANDOMLY GENERATED WORDS USED IN THE
CODE

Seed Value Generated String
00000303 DayOld
00000707 SolutionDat
00000808 WordTimer
00000909 DatNew
00000a0a TimerVersion
00000b0b NewFalse
00000d0d FalseLanguage
00000e0e SoftwareColumn
00000f0f LanguageTheme
00001010 ColumnCurrent
00001111 ThemeDay
00001212 CurrentByte
00001616 VersiScreen
00001717 ScaleThr
00001818 ScreenWeb
00001a1a WebFalse
00001b1b CalTimer
00001d1d TimerPro
00007f7f DiMap
8576b0d0 WebsoftwareProcesstemplate
d6306e08 WordlibSystemser
45a0fcd0 WebmodeThemearchive
224c6c42 RowmapGuiprotocol
e6954637 SoflogicMagiclink
5f92dac2 ScreenserProtocolacces
7f23179c DatethrWorkscreen
309d98ff PrintsolutSavetheme
9eff4536 ThemespellDaytheme
7b41e687 CaclibRegionmap
6bb59728 ProtocolmagicWordeskt

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

17

APPENDIX II - LIST OF REGISTRY KEYS/VALUES AND THEIR BRIEF
DESCRIPTION

Registry key Registry value Description
Timerpro Main registry key
Timerpro D 1st stage PowerShell loader

(start.ps1)
Timerpro SolutionDat Various bot settings
Timerpro DayOld Various bot settings
Timerpro DiMap Most recently exfiltrated data

packet (encrypted)
Timerpro ScaleThr Various bot settings
Timerpro SoftwareColumn Various bot settings
Timerpro ScreenWeb Various bot settings
Timerpro FalseLanguage Various bot settings
Timerpro ThemeDay Various bot settings
Timerpro CurrentByte Various bot settings
Timerpro TimerVersion Various bot settings
Timerpro DatNew Various bot settings
Timerpro VersiScreen Various bot settings
Timerpro WebFalse Various bot settings
Timerpro\Columncurrent 64-bit plugin storage location
Timerpro\Columncurrent WebsoftwareProcesstemplate 8576b0d0.dll / bl.dll
Timerpro\Columncurrent WordlibSystemser d6306e08.dll / rt.dll
Timerpro\Columncurrent WebmodeThemearchive 45a0fcd0.dll / netwrk.dll
Timerpro\Columncurrent RowmapGuiprotocol 224c6c42.dll / explorer.dll
Timerpro\Columncurrent SoflogicMagiclink e6954637.dll / browsers.dll
Timerpro\Columncurrent ScreenserProtocolacces 5f92dac2.dll / iexplore.dll
Timerpro\Columncurrent DatethrWorkscreen 7f23179c.dll / microsoftedgecp.dll
Timerpro\Columncurrent PrintsolutSavetheme 309d98ff.dll / firefox.dll
Timerpro\Columncurrent ThemespellDaytheme 9eff4536.dll / chrome.dll
Timerpro\Columncurrent CaclibRegionmap 7b41e687.dll / msedge.dll
Timerpro\Columncurrent ProtocolmagicWordeskt 6bb59728.dll / mail.dll
Timerpro\Columncurrent CalccalcLogicnew Custom plugin for windbg.exe
Timerpro\Columncurrent TimermagSelink Custom plugin for x64dbg.exe
Timerpro\Columncurrent InflibExplorertru Custom plugin for ida64.exe
Timerpro\Columncurrent DiskproIdbui Custom plugin for procmon64.exe
Timerpro\Columncurrent CalciconLogicthre Custom plugin for procexp64.exe
Timerpro\Columncurrent TasknetCharconso Custom plugin for autoruns64.exe
Timerpro\Languagetheme 32-bit plugin storage location
Timerpro\Languagetheme WebsoftwareProcesstemplate 8576b0d0.dll / bl.dll
Timerpro\Languagetheme WordlibSystemser d6306e08.dll / rt.dll
Timerpro\Languagetheme WebmodeThemearchive 45a0fcd0.dll / netwrk.dll
Timerpro\Languagetheme RowmapGuiprotocol 224c6c42.dll / explorer.dll
Timerpro\Languagetheme MonitornewWarningmap Base configuration data (client.ini)
Timerpro\Languagetheme SoflogicMagiclink e6954637.dll / browsers.dll
Timerpro\Languagetheme ScreenserProtocolacces 5f92dac2.dll / iexplore.dll
Timerpro\Languagetheme DatethrWorkscreen 7f23179c.dll / microsoftedgecp.dll
Timerpro\Languagetheme PrintsolutSavetheme 309d98ff.dll / firefox.dll
Timerpro\Languagetheme ThemespellDaytheme 9eff4536.dll / chrome.dll
Timerpro\Languagetheme CaclibRegionmap 7b41e687.dll / msedge.dll

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

18

Timerpro\Languagetheme ProtocolmagicWordeskt 6bb59728.dll / mail.dll
Timerpro\Languagetheme CalccalcLogicnew Custom plugin for windbg.exe
Timerpro\Languagetheme TimerscreenClientsecur Custom plugin for ollydbg.exe
Timerpro\Languagetheme KeyboardtimerWolib Custom plugin for x32dbg.exe
Timerpro\Languagetheme NewinRegionsea Custom plugin for ida.exe
Timerpro\Languagetheme ThemewebInnet Custom plugin for procmon.exe
Timerpro\Languagetheme ProcesscharProtocomedia Custom plugin for procexp.exe
Timerpro\Languagetheme InfspellTimerver Custom plugin for autoruns.exe
Timerpro\WordTimer Webinjects storage location
Timerpro\WordTimer MAIN Main webinject configuration

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

19

APPENDIX III - PX TO DLL CONVERTER SCRIPT

(Note: @hasherezade also has her own Gozi config parser toolkit11, which includes a PX to DLL
converter feature, so that could work too, but to be fully honest I have not tested it.)

#!/usr/bin/env python3
import os
import argparse
import struct
import logging

__author__ = "Sandor Nemes"

log = logging.getLogger(__name__)

MZ_HEADER = bytes.fromhex(
 '4d5a90000300000004000000ffff0000'
 'b8000000000000004000000000000000'
 '00000000000000000000000000000000'
 '00000000000000000000000000010000'
 '0e1fba0e00b409cd21b8014ccd215468'
 '69732070726f6772616d2063616e6e6f'
 '742062652072756e20696e20444f5320'
 '6d6f64652e0d0d0a2400000000000000'
 '00000000000000000000000000000000'
 '00000000000000000000000000000000'
 '00000000000000000000000000000000'
 '00000000000000000000000000000000'
 '00000000000000000000000000000000'
 '00000000000000000000000000000000'
 '00000000000000000000000000000000'
 '00000000000000000000000000000000'
)

def offset_from_rva(rva, sections):
 for section in sections:
 if section['virtual_address'] <= rva < section['virtual_address'] +
section['virtual_size']:
 return rva - section['virtual_address'] + section['physical_offset']
 return 0

def process_px_file(data):
 magic, = struct.unpack_from('=I', data, 0)
 log.debug("Magic: %08x", magic)
 if magic != 0x5850: return None

 checksum, = struct.unpack_from('=I', data, 4)
 log.debug("Checksum: %08x", checksum)

 raw_data_size, raw_data_offset = struct.unpack_from('=II', data, 8)
 log.debug("Raw data size: %08x", raw_data_size)
 log.debug("Raw data offset: %08x", raw_data_offset)

 size_of_image, size_of_headers = struct.unpack_from('=II', data, 0x10)
 log.debug("Size of image: %08x", size_of_image)
 log.debug("Size of headers: %08x", size_of_headers)

 lfanew = len(MZ_HEADER)
 buffer = bytearray(size_of_image)
 buffer[:lfanew] = MZ_HEADER
 buffer[lfanew:lfanew + size_of_headers] = data[raw_data_offset:raw_data_offset +

11 https://github.com/hasherezade/funky_malware_formats/tree/master/isfb_parser

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

20

size_of_headers]
 buffer[lfanew:lfanew + 4] = b'PE\0\0'

 machine_arch, number_of_sections, entry_point = struct.unpack_from('=HHI', data, 0x60)
 log.debug("Number of sections: %#x", number_of_sections)
 sections = []
 for i in range(number_of_sections):
 virtual_address, virtual_size, physical_offset, physical_size, section_flags =
struct.unpack_from('=IIIII', data, 0x68 + 0x14 * i)
 log.debug("- section: %x %x %x %x %x", virtual_address, virtual_size, physical_offset,
physical_size, section_flags)
 section_data = data[physical_offset:physical_offset + physical_size]
 section_name, virtual_size, virtual_address, physical_size, physical_offset, _, _, _, _,
section_flags = struct.unpack_from('=8sIIIIIIHHI', data, raw_data_offset + size_of_headers + 0x28
* (i - number_of_sections))
 buffer[physical_offset:physical_offset + len(section_data)] = section_data
 sections.append({
 'name': section_name.rstrip(b'\0'),
 'virtual_size': virtual_size,
 'virtual_address': virtual_address,
 'physical_size': physical_size,
 'physical_offset': physical_offset,
 'flags': section_flags
 })

 log.debug('Directories:')
 directories = {}
 for i, name in enumerate(('import', 'export', 'iat', 'security', 'exception', 'fixups')):
 rva, size, offset = struct.unpack_from('=III', data, 0x18 + 0x0c * i)
 if not rva or not size: continue
 directory_data = data[offset:offset + size]
 offset = offset_from_rva(rva, sections)
 directories[name] = {
 'rva': rva, # if name != 'security' else offset,
 'offset': offset,
 'size': size,
 'data': directory_data
 }

 size_of_optional_header, = struct.unpack_from('=H', buffer, lfanew + 0x14)
 directory_offset = lfanew + size_of_optional_header - 0x68

 # fix directories
 for i, name in enumerate(('export', 'import', 'resource', 'exception', 'security', 'fixups',
'debug', 'description', 'mips_gp', 'tls', 'load_config', 'bound_import', 'iat', 'delay_import',
'com_runtime', 'reserved')):
 directory = directories.get(name)
 if not directory: continue
 if not directory['rva']: continue
 if not directory['offset']: continue
 if not directory['size']: continue
 struct.pack_into('=II', buffer, directory_offset + 8 * i, directory['rva'],
directory['size'])
 log.debug('- directory: %s %08x %08x', name, directory['offset'], directory['size'])
 buffer[directory['offset']:directory['offset'] + directory['size']] = directory['data']

 struct.pack_into('=H', buffer, lfanew + 0x04, machine_arch)
 struct.pack_into('=I', buffer, lfanew + 0x0c, 0) # pointer to symbol table
 struct.pack_into('=I', buffer, lfanew + 0x10, 0) # number of symbols
 struct.pack_into('=H', buffer, lfanew + 0x16, {0x14c: 0x230e, 0x8664:
0x222e}.get(machine_arch))
 struct.pack_into('=H', buffer, lfanew + 0x18, {0x14c: 0x010b, 0x8664:
0x020b}.get(machine_arch))
 struct.pack_into('=I', buffer, lfanew + 0x28, entry_point)
 struct.pack_into('=I', buffer, lfanew + 0x50, size_of_image)

 file_alignment, = struct.unpack_from('=I', data, raw_data_offset + 0x3c)
 overlay_offset = max(section['physical_offset'] + section['physical_size'] for section in

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

21

sections)
 overlay_offset = (overlay_offset + file_alignment - 1) // file_alignment * file_alignment
 buffer = buffer[:overlay_offset]

 return buffer

def main():
 parser = argparse.ArgumentParser()
 parser.add_argument('sample')
 args = parser.parse_args()

 logging.basicConfig(format='%(message)s', level=logging.DEBUG)

 with open(args.sample, 'rb') as f:
 data = f.read()

 with open(os.path.splitext(os.path.basename(args.sample))[0] + os.extsep + 'dll', 'wb') as f:
 f.write(process_px_file(data))

if __name__ == '__main__':
 main()

	Overview
	How this challenge was made
	Analyzing the registry hive
	Finding the persistence method
	The 1st stage loader
	The 2nd stage loader
	Finding the original machine SID
	Random string generation
	Configuration storage and plugins
	The network plugin patch
	Decrypting the most recently exfiltrated data packet
	Appendix I - List of pseudorandomly generated words used in the code
	Appendix II - List of registry keys/values and their brief description
	Appendix III - PX to DLL converter script

