
Flex: High-Availability Datacenters With
Zero Reserved Power

Chaojie Zhang∗§, Alok Gautam Kumbhare∗, Ioannis Manousakis†, Deli Zhang∗¶, Pulkit A. Misra∗,
Rod Assis†, Kyle Woolcock†, Nithish Mahalingam†, Brijesh Warrier†, David Gauthier‡,

Lalu Kunnath‡, Steve Solomon‡, Osvaldo Morales‡, Marcus Fontoura†, Ricardo Bianchini∗

∗Microsoft Research †Microsoft Azure ‡Microsoft CO+I

Abstract—Cloud providers, like Amazon and Microsoft, must
guarantee high availability for a large fraction of their workloads.
For this reason, they build datacenters with redundant infras-
tructures for power delivery and cooling. Typically, the redundant
resources are reserved for use only during infrastructure failure
or maintenance events, so that workload performance and
availability do not suffer. Unfortunately, the reserved resources
also produce lower power utilization and, consequently, require
more datacenters to be built. To address these problems, in this
paper we propose “zero-reserved-power” datacenters and the
Flex system to ensure that workloads still receive their desired
performance and availability. Flex leverages the existence of
software-redundant workloads that can tolerate lower infrastruc-
ture availability, while imposing minimal (if any) performance
degradation for those that require high infrastructure availability.
Flex mainly comprises (1) a new offline workload placement
policy that reduces stranded power while ensuring safety during
failure or maintenance events, and (2) a distributed system that
monitors for failures and quickly reduces the power draw while
respecting the workloads’ requirements, when it detects a failure.
Our evaluation shows that Flex produces less than 5% stranded
power and increases the number of deployed servers by up
to 33%, which translates to hundreds of millions of dollars in
construction cost savings per datacenter site. We end the paper
with lessons from our experience bringing Flex to production in
Microsoft’s datacenters.

Index Terms—Datacenter power management, redundant
power, power capping, workload availability.

I. INTRODUCTION

Motivation. As the demand for cloud services (e.g., In-

frastructure as a Service or IaaS) keeps growing unabated,

cloud providers must build datacenters to keep up. Highly

utilizing the infrastructure (e.g., power, space, cooling) of

each datacenter is critical to reduce the number of datacenters

that must be built and save cost. As power is often the bot-

tleneck resource, large providers use power oversubscription

coupled with power capping (via performance throttling) to

safely increase utilization by deploying more servers to each

datacenter [3], [8], [14], [15], [37]. They carefully select the

amount of oversubscription to prevent excessive performance

degradation due to capping.

§Chaojie Zhang is affiliated with the University of Chicago, but was at
Microsoft Research during this work.

¶Deli Zhang is now affiliated with Facebook, but was at Microsoft Research
during this work.

However, as providers must maintain high infrastructure

availability, especially for their IaaS offerings, a large source

of inefficiency remains. Specifically, providers provision re-

dundant resources [32], including power and cooling, in data-

centers to ensure availability in case of planned maintenance

or infrastructure failures (aka unplanned maintenance). These

redundant resources are typically “reserved” for use only

during relatively rare (planned or unplanned) maintenance. For

example, the reserved power is used only when part of the

supply of power is lost. Worse, existing power oversubscrip-

tion approaches ignore these reserves and aim to restrict the

peak power utilization so performance does not need to suffer

during maintenance. In other words, even during normal (non-

maintenance) operation, the peak power draw cannot exceed

the failover power budget.

The reserved resources provide an enormous opportunity

for increasing datacenter utilization and reducing costs. For

example, in a typical high-availability datacenter, 10%-50%

of the power and cooling resources are reserved [20], [32],

[36]. Leveraging these resources to deploy more servers would

significantly increase power usage, reduce the overall cost

per provisioned watt, reduce the number of new datacenters

that need to be built, and improve the sustainability of cloud

providers. The downside is the potential performance and/or

availability impact of having to bring the power draw below

the failover budget during maintenance events.

Our work. In this paper, we propose “zero-reserved-power”

datacenters and how to manage them so that workloads still

receive their desired availability and performance. In more

detail, we demonstrate that large cloud providers can allocate

all reserved resources in highly available datacenters for

deploying additional servers, while minimizing the impact of

maintenance events. Our work relies on three key observations:

1) Cloud services typically exhibit relatively low power

utilization with occasional peaks. Hence, the joint probability

of critical infrastructure failure (or planned maintenance) and

power peaks is small, even after employing state-of-the-art

oversubscription strategies.

2) Providers typically host a mix of workloads with differ-

ent infrastructure availability requirements in each datacenter,

where some software-redundant workloads (e.g., Web search,

data analytics) can tolerate infrastructure failures due to their

built-in redundancy.

3) Workloads that are not inherently redundant (e.g., in-

dividual IaaS virtual machines) cannot tolerate infrastructure

unavailability. However, some of them (e.g., first-party VMs)

can often tolerate slight levels of performance throttling. In

fact, the existence of such workloads was the motivation for

combining power oversubscription and capping via throttling.

Observation #1 suggests that maintenance events would

rarely require corrective actions to bring the power draw down,

given that the power utilization of the servers provisioned us-

ing the reserved resources would also only spike occasionally.

Observation #2 and #3 suggest that some workloads can be

shut down (by cutting off their power) and others throttled

upon those rare events.

Unfortunately, accomplishing all this is challenging. First,

since we allocate the reserve power for servers, the infrastruc-

ture must immediately transfer the load under a failed power

supply to the remaining supplies, and temporarily support

overdraw while corrective actions are being taken to lower the

power draw below the failover budget. Second, the provider

must place the workloads across the datacenter so as to

guarantee safety against failures while minimizing “stranded”

power (i.e., power fragmentation). Third, during a maintenance

event, the provider must take corrective actions within the

short duration over which overdraw can be sustained. Failure

to bring the power down within this time will cause a power

outage. As the infrastructure does not have information about

workload characteristics and requirements, the actions must be

performed in software and in the presence of potential server

and communication failures. These constraints make managing

zero-reserved-power datacenters even more challenging.

To address these challenges, we build the Flex system.

First, we extend the (highly available) power infrastructure of

the most recent generation of Microsoft datacenters to ensure

it can draw more power and to create enough time to take

corrective actions in software.

Second, we introduce a new offline workload placement

policy that reduces stranded power while ensuring safety

during maintenance events. The policy leverages mathematical

programming and optimization to select an efficient placement

for each workload (e.g., the servers for a Web search engine,

servers for running IaaS VMs) in a batch of workload deploy-

ments. We call this policy Flex-Offline.

Third, we build a highly available distributed system that

dynamically monitors for infrastructure failures and takes

corrective actions to bring the power down below the failover

budget within a few seconds. The monitoring relies on a

highly available power telemetry pipeline that we also build.

The actions, including throttling or shutting down workloads,

respect pre-defined workload performance and availability

requirements. We call this system Flex-Online.

We have deployed Flex-Online in production in multiple

datacenters; Flex-Offline will come next. We discuss the

lessons from bringing the system to production.

Our evaluation shows that Flex-Offline produces less than

4% median stranded power when we batch Microsoft’s work-

load deployments, whereas simpler policies strand at least

ReservedUtilized(a)

Maximum utilization target

Slack

Increase utilization through oversubscription

Flex CapacityUtilized(b) Slack

Increase utilization using reserved power Additional oversubscription

ReservedUtilized(a) Slack

Increase utilization through oversubscription

Flex CapacityUtilized(b)

Maximum utilization target

Slack

Fig. 1. Difference between traditional oversubscription (a) and Flex (b).

37% more power at the median. Using simulation, emulation,

and large-scale experiments, we also show that Flex-Online

manages power quickly and effectively, while respecting the

workloads’ performance and availability requirements. Over-

all, Flex can increase the server deployments to each data-

center by up to 33%. Depending on the exact building costs

per Watt, this increase translates to savings between $211M

($5/W) and $422M ($10/W) for each 128MW site (multiple

datacenters). The savings can be passed on to customers via

differentiated pricing based on their workloads’ requirements.

Related work. Prior work [3], [4], [6], [8], [9], [11], [13]–

[18], [22], [28], [31], [34], [37], [39] has focused on power

oversubscription and capping under normal (non-maintenance)

operation.. These works did not explicitly consider allocating

reserved power for additional server deployments. Figure 1

illustrates this difference. Oversubscription leverages under-

utilization of the allocated power for deploying more servers,

while keeping the peak power draw under a budget. In con-

trast, Flex enables fully allocating the reserved power, while

mitigating supply of power disruptions. Allocating reserved

power is orthogonal to power oversubscription, i.e. allocated

power that is underutilized can be oversubscribed.

CapMaestro [15] is the only prior system that uses the

reserved power to deploy more servers. However, it does

not consider each workload’s availability requirements in

workload placement or for runtime decisions during a failover.

This limits the amount of reserved power that can be used. In

contrast, Flex can use the entire reserved power for server

deployment and provide each workload’s desired availability.

Summary. We make the following main contributions:

• We propose the notion of highly available, zero-reserved-

power datacenters and demonstrate that it can be achieved by a

combination of infrastructure support and distributed software.

• We design and implement Flex, a system for manag-

ing zero-reserved-power datacenters with minimal impact to

workloads. Flex comprises an offline component responsible

for smartly placing workloads and an online component for

dynamically managing power, availability, and performance.

• We thoroughly evaluate Flex, via simulations and exper-

imentation with realistic workloads, to show that it reduces

stranded power at the same time as managing power with

minimal impact to workloads.

• We made changes to the power infrastructure of Mi-

crosoft’s datacenters and deployed Flex in production with live

loads. We present lessons from this experience.

II. BACKGROUND AND MOTIVATION

A. Distributed redundant power infrastructure

To provide a high-availability infrastructure, cloud providers

build datacenters with redundant power devices and lines,

such as Uninterruptible Power Supplies (UPSes), Generators,

Transformers, and Power Distribution Units (PDUs) [32]. The

redundancy may take several forms, e.g. single-backup (N+1),

full (2N) [25], [30], [36], [37], or distributed (xN/y) [20], each

with its own tradeoff in cost, maintainability, and fault toler-

ance. Based on these tradeoffs, designers often use different

redundancy patterns at different levels in the power hierarchy.

For example, Figure 2 shows the power hierarchy for a

single datacenter server room with xN/y distributed redundancy

at the UPS level (x=4, y=3) and 2N redundancy at the PDU

level; 2N redundancy is simpler and more maintainable at

lower levels of the power hierarchy. A datacenter consists of

several such rooms with isolated power distribution hierar-

chies. In this design, the IT racks are connected to two PDUs

(a PDU-pair) in an active-active manner such that both PDUs

support roughly equal load. The two PDUs are then connected

to two different upstream UPSes, as shown in the figure, which

ensures each UPS shares roughly a third of its IT load with

each of the other three UPSes.

When a UPS becomes out of service (due to planned

or unplanned maintenance) or stops providing power (due

to concurrent utility and generator failures), the entire load

from that UPS is instantaneously transferred to the remaining

three UPSes based on the PDU-to-UPS mapping. (This is the

key difference between 4N/3 and N+1, in which the power

would transfer to a single backup UPS.) To provide high

availability in such a scenario, the total load on each of the

three UPSes must not exceed their rated power capacity during

such failover event. This can be done by limiting the power

allocation for each UPS to the following:

UPS Allocation Limit = UPS capacity ×
y

x

This implies UPS capacity × (1 − y
x
) power is reserved

on each UPS and remains unallocated to any servers. This is a

massive source of inefficiency. We propose to allocate all this

reserved power to additional servers, increasing the number of

servers by x
y
− 1 (i.e., 33% for a 4N/3 design). We refer to

the sum of the UPSes’ reserve and non-reserve capacities as

the “provisioned” power.

For Flex’s ability to use all the reserved resources, a

distributed redundant architecture is key. N+1 cannot accom-

modate Flex because the redundant power supply is not active,

i.e. we cannot allocate servers to use it. 2N is not ideal because

a supply failure would require one of the redundant supplies

to take on twice its normal load in the worst case.

B. Workload and hardware heterogeneity

Workloads. Large cloud providers offer many services rang-

ing from IaaS, which provides VMs, to Software-as-a-

Service (SaaS), which provides end-user services built on the

Utility

Rack

G

UPS1

PDU1 PDU2 PDU3 PDU4 PDU5 PDU6

G

UPS2

G

UPS3

G

UPS4

R
o
w

Server

PSU

CPU

P
D
U
5

P
D
U
6

P
D
U
5

P
D
U
6

Fig. 2. 4N/3 power hierarchy design. G = generator; UPS = Uninterruptible
Power Supply; PDU = Power Delivery Unit; PSU = Power Supply Unit.

provider’s own software stack. IaaS requires high availabil-

ity from the underlying infrastructure to ensure availability

Service-Level Agreements (SLAs) are met for individual (or

groups of) VMs. Individual VMs do not embody any redun-

dancy that can be used to tolerate infrastructure failures. In

contrast, SaaS is typically a distributed system designed by

the provider to tolerate failures, minimizing the reliance on

high-availability infrastructure. Specifically, SaaS components

are replicated across availability zones (AZs), where each AZ

has an independent supply of power. SaaS can tolerate server

failures in one AZ by service-healing or scaling-out in another.

For this reason, we refer to SaaS as software-redundant and

all other workloads, including IaaS VMs, as non-redundant.

SaaS may be implemented on top of IaaS VMs or on bare-

metal hardware. For example, Google’s search engine runs

on its own set of dedicated bare-metal servers. Similarly, Mi-

crosoft runs several of its large SaaS offerings (e.g., the Bing

search engine and the Exchange messaging service) and other

distributed systems (e.g., the Cosmos data processing system

[26]) on bare-metal servers that share the same datacenters

with its VM service, Microsoft Azure.

From the perspective of Flex datacenters, “workloads” are

those services/systems that are large enough (or require special

hardware) to have their own rack deployments. To represent

and account for the differences between workloads, Flex

relies on pre-defined workload performance and availability

requirements called “impact functions”.

Hardware. Providers deploy a variety of hardware configura-

tions (e.g., compute clusters, GPU clusters, storage clusters)

to meet customer demand. Different hardware configurations

have varying support for reducing power draw as we re-

quire in Flex. For example, server hardware often includes

CPU/memory power capping mechanisms, such as Intel’s

Runtime Average Power Limit (RAPL). RAPL lowers power

by throttling CPU frequency (and possibly voltage) and, if

necessary, memory accesses. However, other power-hungry

hardware (e.g., GPUs, disk arrays) may not have similar capa-

bilities. Moreover, services may not be amenable to throttling.

Thus, we divide the cloud workloads broadly into three

categories: software-redundant, non-redundant but power-cap-

able, and non-redundant and non-cap-able. Figure 3 shows the

Region1 Region2 Region3 Region4
0

20

40

60

80

100
W

or
kl

oa
d

di
st

rib
ut

io
n

(%
)

Software-redundant Power cap-able Non-cap-able

Fig. 3. Workload distribution across 4 Microsoft regions.

distribution of workloads into these categories in 4 Microsoft

regions. Clearly, a significant portion of the deployed capacity

is either software-redundant or non-redundant but cap-able.

Flex relies on this observation to fully allocate the reserved

power. We expect that other large cloud providers exhibit sim-

ilar workload distributions and can leverage Flex to run zero-

reserved-power datacenters. However, for datacenters hosting

a mix of non-redundant cap-able and non-capable workloads,

but no software-redundant workloads (e.g., public VM cloud),

Flex still allows using a smaller portion of the reserved

power based on the cap-able deployments. Microsoft’s first

deployments of Flex target this scenario, as we describe in

Section VI.

C. Capacity planning and workload deployment

Providers use short-term (few weeks to months) demand

forecasting to procure IT resources (e.g., servers). This short-

term planning and deployment is typically done in large

discrete chunks (e.g., 20 racks of servers) to optimize the

supply-chain pipeline, and to provide predictable and sizable

capacity growth to the workloads.

Each deployment has power, cooling, networking, and space

requirements that must be satisfied. In particular, the network-

ing requirement typically forces each deployment to be treated

as an unbreakable unit. As power is typically the bottleneck

resource, we focus only on it in this paper. The power

requirement (defined per rack) is a conservative estimate of

the peak rack power obtained by running existing benchmarks

(e.g., SPECPower [12]) at the expected average utilization for

a particular workload. This estimate is used to allocate power

to the deployment in the datacenter. Any system responsible

for workload placement must account for such requirements

and optimize placement decisions to minimize the stranded

power (fragmentation) due to large deployment sizes.

III. FLEX FEASIBILITY ANALYSIS

Since Flex datacenters might involve throttling and/or shut-

ting down some workloads, we first need to confirm that

the expected frequency of these corrective actions would be

very low. Corrective actions are necessary when maintenance

downtime coincides with a power utilization higher than the

failover budget. Thus, we performed a mathematical analysis

to estimate the joint probability of these factors and the

potential impact on workloads.

~

75%

100%

~

75%

100%

Fig. 4. Power profile for conventional datacenter with reserved power (left)
and Flex datacenter with zero reserved power (right).

The analysis models datacenter power utilization (average

and variance) and the distributions of power device planned

and unplanned downtime, using data from 128 fully allocated

(non-Flex) datacenter rooms for September 2020. The data

shows peak utilizations ranging from 65% to 80% of the non-

reserve provisioned power. Unplanned maintenance that would

take out a power supply averages to 1 hour/year, whereas

planned maintenance that would do the same averages to

40 hours/year. Since planned maintenance can be scheduled

during periods of low utilization, these events are highly

unlikely to actually engage Flex-Online. In fact, in our dataset,

utilizations are 15%-19% lower at night or on weekends than

the peaks during weekdays. These lower utilizations last for

6-12 hours, providing enough time for planned maintenance.

Assuming that only unplanned maintenance can coincide

with a high enough utilization, the analysis shows that 99.99%

(4 nines) of the time a datacenter room would operate with

no need for corrective actions. Assuming the default behavior

where Flex-Online would throttle all servers that are cap-able

before shutting down any servers from software-redundant

workloads, the analysis also shows that the probability that

any such server would have to be shut down is only roughly

0.005%. So, availability for the servers of software-redundant

workloads would be at least 4 nines (availability for servers

of non-redundant workloads is 5 nines, as the datacenters are

designed for such high availability and any corrective action

would at most involve throttling). Through impact functions

(Section IV-D), customers can change this default behavior;

e.g. a software-redundant workload may offer to be shut down

more aggressively for a reduction in price.

These results suggest that Flex will not impose excessive

unavailability even for software-redundant services/systems.

IV. FLEX SYSTEM DESIGN

The goal of Flex is to use as much of the reserved power as

possible while ensuring safety (i.e., prevent cascading failures)

and guaranteeing the workloads’ performance and availability

SLAs. The distributed redundant power hierarchy coupled with

mixed workload requirements are key enablers of Flex.

A. Overview

In a conventional, non-Flex datacenter with 4N/3 distributed

redundancy, only 75% of the total provisioned power is allo-

cated to IT equipment and the rest is reserved. Figure 4(left)

illustrates such a datacenter; the horizontal line at 75% marks

the failover budget, i.e. the amount of provisioned power that

can be safely allocated and used. Because of the reserved

UPS

...

...

Server Rows

Workload

placement

optimization

(A)

Short-term

demand

Flex-Offline

Highly available

Flex Controllers

(C)

UPS UPS UPS

Flex-Online

Fig. 5. Flex system overview.

power, during a failover event (A), the total power load on

the remaining power devices (e.g., UPSes) remains below

their aggregate capacity (B). This scenario does not require

corrective actions, but at the cost of the reserved power.

In a Flex datacenter, we instead use the entire provisioned

power to deploy IT equipment. As we show in Figure 4(right),

this could push peaks in power usage beyond the failover bud-

get (A). During normal (non-failure) operation, the aggregate

capacity of all power devices is sufficient to withstand this

high load. However, when a failure (or planned maintenance)

event coincides with a high load (B), the total load on the

remaining devices exceeds their capacity. If this overdraw lasts

too long, it would lead to a cascading failure where the initial

device failure causes another device to shutdown, which in

turn causes another one to shutdown and so on.

To prevent cascading failures, we must shave the power

usage above the capacity of the remaining devices quickly,

within their overload tolerance (C). We propose to do so with

a combination of shutting down software-redundant workloads

and power capping non-redundant but cap-able workloads.

Once the failure is mitigated or maintenance is completed,

the power caps can be lifted and the servers can be turned

back on (D) to resume operations at full capacity.

Our approach involves several challenges:

• The deployment of IT equipment should ensure that suffi-

cient software-redundant and cap-able workloads are available,

even in the worst case (i.e., 100% power utilization), to bring

the power draw below the failover budget. The inability to

produce such workload diversity can lead to stranding power.

• The device telemetry and the Flex system controller

become mission critical and must be highly available to ensure

no overload conditions are missed and actions are taken within

the tolerance duration (based on the overload trip curves).

• Enforcing power caps or shutting down servers can have

a significant impact on the workloads, either in terms of

performance and/or availability. While it is critical to ensure

safety, it is also important to minimize workload impact and

act only on the smallest subset of servers needed to safely

bring the power below the failover budget.

Flex tackles these challenges with three components as

in Figure 5. First, an offline component (called Flex-Offline

and labeled A) that takes the short-term capacity demand for

different workloads and optimizes the placement of servers

(Section IV-B). Second, the highly reliable power telemetry

pipeline (B) that provides real-time monitoring of power

devices (Section IV-C). Third, the highly available Flex con-

0 10 20 30 40 50 60 70 80 90 100 110 120 130
UPS load (%)

0

50

100

150

200

UP
S

to
le

ra
nc

e
tim

e
(m

in
s) Beginning of life

End of life

100 110 120 130
0

5

1
2
3
4
6
7
8

Fig. 6. UPS tolerance as a function of load.

trollers (C) that make and enforce decisions to shutdown or

power cap a subset of the deployed servers during failover

(Section IV-D). We call the set of controllers Flex-Online.

Flex-Online relies on the temporary overload capacity of

UPSes and their batteries; other parts of the infrastructure (e.g.,

switchboards, cables, breakers) typically have higher tolerance.

For example, Figure 6 shows our UPSes’ tolerance curves

for the beginning and end of the battery life, as a function

of load. At the worst-case failover load of 133%, the UPS

provides 10 seconds of tolerance, followed by an additional

3.5 minutes at 100% load (not shown). This additional ride-

through allows the generators to start up and receive the load

from the batteries. As a result, we enforce a 10-second limit

on the end-to-end latency of Flex-Online, including failover

detection, telemetry collection and controller actions, to reduce

the power below the rated (100%) UPS capacity.

B. Flex-Offline: Workload placement optimization

As we describe in Section II-C, each server deployment

request specifies the number of racks, the power allocation

per rack, and the workload (e.g., Web search, IaaS VMs).

We additionally associate an availability attribute with each

deployment that states whether the servers in the deployment

can be shut down during failover. Similarly, a capping attribute

defines whether the deployment is cap-able or non-cap-able.

Finally, for the cap-able deployments, we associate a “flex

power” value that defines the lowest power cap that can be in-

stalled on these racks. For provider-owned cap-able workloads,

we determine the flex power value by running experiments to

find the power cap that produces the maximum acceptable

performance impact. For external cap-able workloads (e.g.,

IaaS VMs), we leverage historical power utilization coupled

with statistical multiplexing to bound the average power

reduction to an acceptable threshold (e.g., 10-15%) at high

utilization (i.e., when Flex-Online may actually engage). This

requires no knowledge of individual external workloads, just

historical rack power profiles. The impact is thus spread across

workloads in the affected datacenter room and does not overly

penalize any specific customer. Finally, for provider-owned

software-redundant workloads, we set the flex power value

to 0 as those racks can be shut down if needed.

Our goal is to place all deployments requested in the short-

term demand so that the stranded power (due to either small

pockets of power or lack of workload diversity) is minimized,

while ensuring enough power can be shaved in the worst case

(i.e., 100% utilization) during any maintenance scenario. Thus,

we assume that the maximum power that can be shaved from

software-redundant racks is the entire allocated power, and for

non-redundant but cap-able racks it is the difference between

the allocated and the flex power. No power can be recovered

from the non-redundant and non-cap-able racks.

Historically, this placement has been done manually to

each datacenter room one deployment at a time using simple

approaches, like first-fit or round-robin across the UPSes in

the room. Simple modifications to these approaches can bal-

ance the shave-able and non-shave-able workloads across the

UPSes, and ensure that power constraints are met during both

normal and failover operation. However, simple approaches

could cause high stranded power due to suboptimal placement.

Thus, we propose Flex-Offline as an automated workload

placement algorithm based on Integer Linear Programming

(ILP) that seeks an optimal placement for all the requests in

the short-term demand at the same time. Next, we present a

simplified formulation focusing on UPS power during normal

and failover operation. For brevity, we omit other constraints

(e.g., space, cooling) and other power devices (e.g., PDUs).

Let d̂ be a set of deployment requests in the short-term

demand, û be the set of UPSes, and p̂ the set of PDU-pairs.

Map(p ∈ p̂) → (u1, u2) | u1, u2 ∈ û models the mapping

from the PDU-pair p to the two upstream UPSes. Let Powd

be the total allocated power to deployment d ∈ d̂. We associate

an indicator variable, Pd,p, representing whether a deployment

d ∈ d̂ is placed under the PDU-pair p ∈ p̂.

Each deployment must be placed at most once:

∀d ∈ d̂,
∑

p ∈ p̂

Pd,p ≤ 1 (1)

During normal operation, the total allocated power is con-
strained by UPS power capacities accounting for distributed
redundancy (i.e., distribute half the load across the two UPSes
connected to each PDU-pair).

∀u ∈ û,









Loadu =
∑

d∈d̂
p∈p̂

0.5×Pd,p×Powd|u∈Map(p)









≤Capacityu

(2)

During failover of UPS f , in addition to its regular load,
each UPS u must take its share of f ’s load. Let CapPowd

be the power for each deployment d after capping or shutting
down the servers based on their workloads.

CapPowd =











0 d ∈ Software-redundant

FlexPowd d ∈ Non-redundant, cap-able

Powd d ∈ Non-redundant, non-cap-able

(3)

IT load
Mech.
load

UPS

M

M
M

M

Total load

Redundant power meters per UPS Tier-0

n/w switch

diversity

S1

S2

Redundant

Pollers

Pub/sub

Pub/sub
P2

P1

Flex
Controllers

To S1

To S1

To S2

To S2

Fig. 7. Highly reliable telemetry pipeline.

The total load on each UPS (u) for any failure (f) after
power shaving must be constrained by the UPS capacity.

∀f ∈ û, u ∈ û, f 6= u,








∑

d∈d̂
p∈p̂

0.5×Pd,p×CapPowd|u∈Map(p)









+









∑

d∈d̂
p∈p̂

0.5×Pd,p×CapPowd|u∈Map(p), f ∈Map(p)









≤ Capacityu

(4)

Finally, the objective is to find a workload placement plan to

minimize the total stranded power across all the UPS devices.

StrandedPow =
∑

u∈û

Capacityu − Loadu (5)

A solution to this ILP problem determines (a) whether to

place a deployment in the datacenter, and (b) which PDU-pair

p to pick for selected deployment d. Note that cloud providers

may have additional soft constraints, such as bounding the

impact on external non-redundant workloads (e.g., external

VMs), which we omit here, but include in the evaluation.

C. Highly available power telemetry pipeline

Flex’s success hinges on a reliable, high-fidelity, and low-

latency power telemetry from the power devices. For Flex,

the importance of the telemetry pipeline is significantly higher

than for usual power oversubscription approaches (e.g., [37]).

This is because a device failover in a Flex datacenter would

cause instantaneous load transfer and, soon after, cascading

failure, if not detected and tackled within the device tolerance

duration. In contrast, load spikes during normal operation

are usually gradual, especially at the higher layers of the

power hierarchy, so slower detection is typically acceptable.

Further, in a Flex datacenter, unreliable telemetry could lead

to unnecessary throttling or shutting down of servers to ensure

safety when data is missing, and cause high workload impact.

Given these factors, we build a highly reliable telemetry

pipeline with no single point of failure. Figure 7 shows the

pipeline, starting with the meters monitoring the power devices

on the left and reaching the Flex controllers on the right. We

build in redundancy and diversity in each pipeline stage.

The pipeline comprises meters, network switches, pollers,

and publish/subscribe (pub/sub) systems. As we explain in the

next section, it is sufficient to monitor only the power of the

power devices (UPS in the figure); there is no need to monitor

explicitly for device failures. However, relying on a single

meter is subject to errors due to meter failure or misreadings.

Hence, we use three logical meters that provide the equivalent

of the device power (after accounting for losses). For example,

in Figure 7, UPSMeter ∼ ITMeter ∼ (TotalMeter −
MechMeter) measure the equivalent of the power drawn by

the UPS. This redundancy allows a consensus-based approach

that tolerates failure or misreading of one meter.

To prevent a single point of failure at the network switch,

we build network diversity by connecting these logical meters

to management switches in two datacenter rooms (network

paths beyond this are also redundant). Similarly, we deploy

independent data pollers (on separate fault domains and phys-

ically separated), as well as independent pub/sub systems to

which Flex controllers connect.

Our experimental observations show a telemetry pipeline

latency of less than 1 second, which is fast enough to meet

the 10-second end-to-end limit for Flex.

D. Flex-Online: Runtime decision-making

Controller operation: The Flex controllers are responsible

for detecting failover and taking corrective actions. While

several failure or maintenance events (e.g. UPS, generator,

utility transformer, main switch board, busways) could lead

to failover from one UPS to the others, the Flex controllers

only need to monitor for power overdraw on individual UPS

devices (vs for specific failures). This is sufficient because

the distributed redundant architecture coupled with workload

placement constraints ensure that UPS overdraw occurs only

during failover (even at 100% utilization).

Like the telemetry pipeline, the controllers must be highly

available. Thus, we run the controllers in a multi-primary

configuration with each instance running in a separate fault

domain (e.g., different PDU and top-of-the-rack switch). As

the power telemetry from the UPSes (∼1.5s frequency) and

individual racks (∼2s frequency) may arrive at each controller

instance at different times, each instance could take different

actions. This could lead to overcorrection as the throttle and

shutdown actions are idempotent and are taken independently,

but does not compromise safety.

Algorithm 1 shows the policy the controllers execute to

select a subset of racks to throttle or shut down when power

overdraw is detected at any UPS. The goal is to ensure

safety and to minimize the overall impact on the workloads.

The policy first picks a candidate workload w that is either

software-redundant or non-redundant but cap-able (line 6). The

PickRack(w) function returns a rack from the given workload

either randomly or as prioritized by the workload (line 7). It

then decides the corresponding action Ar (line 8), computes

the estimated recovered power Rr (line 9), and calculates the

estimated total impact Iw on the workload due to capping

or throttling the selected rack (line 10). To complete the

Algorithm 1 Online decision policy based on impact functions

1: Actions← { }
2: Pu ← {UPSPowerSnapshotu}
3: Pr ← {RackPowerSnapshotr}
4: while any(Pu > Limitu − buffer) do

5: C ← { }
6: for w ∈ workloads do

7: r ← PickRack(w)

8: Ar ←

{

Shutdown w ∈ Software-redundant

Throttle w ∈ Non-redundant, cap-able

9: Rr ←

{

Pr w ∈ Software-redundant

Pr − FlexPowr w ∈ Non-redundant, cap-able

10: Iw ← Impact(w,Actions ∪ (r, Iw, Ar, Rr))
11: C ← C ∪ (r, Iw, Ar, Rr)
12: end for

13: a← argminc∈C{Ic}
14: Actions← Actions ∪ a

15: Pu ← Pu −Ru
a

16: end while

17: return Actions

inner loop, the policy accumulates the candidate racks with

the corresponding impacts, actions, and estimated recovered

powers across workloads (line 11). It finally selects the single

rack from the candidates with minimum impact (line 13)

and updates the estimated UPS power based on the rack’s

portion of load on each UPS (line 15). This continues until

the estimated power for all UPS devices is lowered below their

limits. The policy returns the set of actions to be taken.

As the policy needs to estimate the amount of power that

can be recovered from the candidate racks, the Flex controllers

need to continuously monitor all racks in the datacenter. A

recent snapshot or an estimate based on time series models

can be used (line 3). To ensure safety, we add a small buffer

to account for mis-estimation (line 4).

Flex-Online enforces the corrective actions by limiting the

selected non-redundant cap-able racks to their corresponding

flex power value (e.g., using RAPL) or by shutting down

software-redundant racks. To prevent instability due to auto-

recovery or scaling-out, Flex-Online sends a notification about

the power emergency to the software-redundant workloads,

which in turn recover or scale out in a different AZ.

Once the actions are enforced, the controllers must continue

to monitor the power draw as any changes in the workload

characteristics could again increase the power over the device

limits and additional actions may be needed. Conversely, if the

power draw falls significantly, some power caps may be lifted

or servers restored to reduce the impact (not shown here).

The policy also needs to estimate an action’s impact on the

workload to pick a candidate (line 10). We allow each work-

load to define the perceived performance or availability impact

as a function of the percentage of its affected (either shut down

or throttled) racks. For this, we use impact functions.

Impact functions: Figure 8 shows a few example functions.

Each workload defines the impact from 0 to 1 (Y-axis), given

0 20 40 60 80 100
% impacted racks

0.0

0.2

0.4

0.6

0.8

1.0
W

or
kl

oa
d

Im
pa

ct

A
B

C

Fig. 8. Impact functions for different workloads.

the percentage of the racks of the workload that have been

impacted (X-axis). y = 0 means that throttling or shutting

down a percentage of racks would have no perceivable impact

on the workload performance or availability, whereas y = 1
means that a percentage of racks is critical and should not

be touched (unless this would be absolutely vital for safety).

0 < y < 1 means that a percentage of racks can be throttled

or shut down with incremental impact on the workload. Note

that y = 1 does not mean a complete halt to forward progress,

as workloads can implement business continuation processes

and failover to another datacenter. All software-redundant

workloads typically plan for such a scenario.

In Figure 8, functions A, B, and C illustrate potential impact

functions for three large-scale services operated by Microsoft.

Function (A) represents a typical non-redundant but cap-able

workload (e.g., VM service) with incremental impact of throt-

tling any rack, and a set of critical management racks that must

be protected. In contrast, function (B) is a software-redundant

stateless workload where shutting down a large percentage of

racks has no impact as the load is migrated seamlessly to the

remaining racks or another datacenter. Finally, function (C)

is a software-redundant stateful workload partitioned across

racks with a growth buffer (which can be shut down with no

impact), a set of racks performing useful work (incremental

impact from shutting down), and a set of critical management

racks that must be protected.

In the absence of impact functions for any software-redun-

dant workloads, Flex-Online only acts on them if necessary,

after non-redundant cap-able workloads have been throttled.

Summary. The deployment time workload placement opti-

mizations (Flex-Offline) coupled with the runtime Flex con-

trollers (Flex-Online) allow us to use the reserved power and

safely lower power during failover scenarios, while providing

the desired performance and availability to the workloads.

V. EVALUATION

A. Workload placement with Flex-Offline

We evaluate Flex-Offline using simulations of short-term

demand based on Microsoft’s historical production workload

deployments. We also simulate our datacenter server room size

and power delivery infrastructure.

Methodology. Our workload placement simulator faithfully

models a 4N/3 distributed redundant power hierarchy (Fig-

ure 2) in a 9.6MW room. The simulator models the placement

of each deployment of racks to a specific row in the room. It

validates the space, cooling, and power constraints, including

normal and failover limits for all power devices, and rejects de-

ployments that cannot be placed without violating constraints.

We drive the simulator with a trace containing short-term

demand deployment requests. Each request specifies the num-

ber of racks (e.g., 10, 20), provisioned power per rack (e.g.,

14.4kW, 17.2kW), flags indicating software redundancy and

capping capability coupled with the flex power value.

We evaluate the placement policies using a trace repre-

senting the typical deployments at Microsoft. For example,

a typical deployment size is 20 racks, but there are also a

few smaller deployments of 10 and 5 racks. For the workload

distribution, we use an average 13% software-redundant, 56%

non-redundant but cap-able, and the rest 31% non-redundant

and non-capable workloads (Figure 3). For the flex power

values, we use 75-85% of the corresponding allocated rack

power. We generate the trace with 15% more power demand

than the provisioned power, which gives flexibility to the

placement policies. The undeployable requests can be routed

to other rooms for placement. Finally, to study the impact of

the order of deployment requests, we shuffle the trace to create

10 variations in total. With these data, the simulator solves the

Flex-Offline ILP problem using the Gurobi [24] solver.

Evaluation metrics. We evaluate the effectiveness of Flex-

Offline using the following metrics:

• Stranded power is the unusable, unallocated power due

to fragmentation (Equation 5 in Section IV-B). We seek

placements that reduce this metric, so lower values are better.

• Throttling imbalance indicates the fairness of throttling

impact for all non-redundant, cap-able workloads across any

UPS failure. We seek to reduce this metric by selecting

placements that balance the power that is recoverable via

throttling as evenly as possible across all possible UPS main-

tenance events. Better balance means that no workload will

be unduly penalized, regardless of the event. We calculate

this metric as follows. For a given UPS maintenance (f), we

determine the worst-case power to be recovered from each

of the other UPSes through throttling (as a fraction, rfu, of

provisioned power) after shutting down software-redundant

workloads. We then calculate the throttling imbalance as

∀fu(max(rfu)) − ∀
f
u(min(rfu)). A value of 0 means perfect

balance, so lower values are better.

Placement policies. We evaluate the following policies:

• Random randomly places a single deployment at a time.

This is the simplest policy but is also clearly naive.

• Balanced Round-Robin places deployments from each

category (software-redundant, non-redundant cap-able, or non-

redundant non-cap-able) across the PDU pairs in a round-robin

manner. The goal is to roughly balance the demand from each

category under each UPS. This simple policy can be imple-

mented as a set of guidelines to datacenter administrators.

• Flex-Offline optimizes the placement for all deployment

requests in the short-term demand horizon. Depending on the

length of the horizon (i.e., batch size), we consider three varia-

tions: Flex-Offline-Short, which batches demand worth about

Random Balanced
Round-Robin

Short Long Oracle
0

2

4

6

8

10

St
ra

nd
ed

 P
ow

er
(%

 o
f P

ro
vi

sio
ne

d
Po

we
r)

Fig. 9. Impact of placement policy on stranded power.

33% of the total power capacity; Flex-Offline-Long, which

batches about 66% of the total capacity; and Flex-Offline-

Oracle, which groups the entire demand trace in a single batch.

The length of the horizon depends on the certainty of the

demand forecast and typically ranges between Flex-Offline-

Short and -Long policies in production.

There are variations of these policies that we purposely

do not consider. First, batching is only helpful for Flex-

Offline and does not improve Random or Balanced Round-

Robin. Second, we do not consider first-fit placement, the

most common policy in real datacenters, because it does

the opposite of what Flex needs by concentrating instead of

spreading load across PDU pairs. Finally, we do not consider

a simple round-robin policy because it is strictly worse for

Flex than Balanced Round-Robin.

Results. Figure 9 shows the stranded power as a percentage

of the total provisioned power in a datacenter room. For

each policy, we show a box delimited by the 25th and 75th

percentile stranded powers across the 10 deployment traces;

the horizontal line crossing each box is the median value. The

whiskers extend from the minimum to the maximum stranded

power across the traces.

The figure shows that all policies produce stranded power

that is less than 10% of the total provisioned power. Although

the Random policy is more flexible, it also exhibits higher

median stranded power. Balanced round-robin improves both

the median and the variation across traces.

All Flex-Offline policies perform better, as they consider

more deployments at a time and search for the optimal solution

within their respective horizons. Flex-Offline-Short provides a

27% reduction in median stranded power compared to Bal-

anced round-robin. Flex-Offline-Long shows the same median

as Flex-Offline-Short but with a narrower range. Finally, Flex-

Offline-Oracle shows that less than 2% stranded power can be

achieved for even longer-term horizons with little variation

(the reason Flex-Offline-Oracle varies at all is that we stop

the ILP solver after 5 minutes, when solution improvements

are already small but non-zero). We are working to improve

our demand forecasting pipeline and lengthen the horizon.

Figure 10 shows the policies’ throttling imbalance. Bal-

anced round-robin outperforms Random as it explicitly tries

to balance the workload categories across PDUs and UPSes.

The Flex-Offline policies provide further improvements with

increase in the horizon. Flex-Offline-Long shows only slightly

higher median throttling imbalance than Flex-Offline-Oracle.

Impact of deployment sizes. The results above use Mi-

Random Balanced
Round-Robin

Short Long Oracle
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Th
ro

ttl
in

g
Im

ba
la

nc
e

Fig. 10. Impact of placement policy on throttling imbalance.

crosoft’s deployment size distribution, which is dominated by

20-rack deployments. Other providers or large Internet services

may have mostly smaller deployments for incremental growth.

Thus, we study the impact of Flex-Offline for such smaller

deployments. Specifically, we used the same traces but limited

the largest deployments to smaller sizes. For example, when

studying 10 racks as the largest deployment, we broke any

20-rack deployments in the traces into two deployments of 10

racks each. As one would expect, smaller deployments tend to

reduce stranded power and throttling imbalance. For example,

when the maximum deployment is 10 racks, Flex-Offline-Short

exhibits roughly half the median stranded power and throttling

imbalance of when the maximum is 20 racks.

Impact of software-redundant workloads. We also study

how much software-redundant workload we need to use all

the reserve power. Again assuming the original traces and

31% non-redundant and non-cap-able workloads, we find that

Flex needs no more than 10% software-redundant workloads

to significantly reduce stranded power. In more detail, at 0%

software-redundant workload, the median stranded power with

Flex-Offline-Long is 15% because allocating more could leave

the datacenter without enough cap-able power to shave upon a

maintenance event. When we increase the software-redundant

workload to 5% and 10%, median stranding goes down quickly

to 4% and 3%, respectively. Larger fractions stay within plus

or minus 1% of this median.

Summary. Flex-Offline improves both stranded power and

throttling imbalance through a combination of batching and

optimizing the solution in the demand horizon via ILP. The

benefits are robust across a range of deployment sizes and

workload distributions. As Flex-Offline-Oracle provides the

optimal solution due to complete visibility into future demand,

we plan to study how a certain short-term demand can be

combined with uncertain long-term demand forecast to fur-

ther increase the practical horizon for placement and thereby

reduce the stranded power and the throttling imbalance.

B. Runtime decisions with Flex-Online

In this section, we evaluate Flex-Online using simulation of

several impact scenarios. We evaluate its performance using

real large-scale experiments in the next section.

Methodology. We evaluate Flex-Online and its corrective

actions (Algorithm 1) given some example impact functions.

First, we use Flex-Offline-Short to place the deployments

from our original trace in a datacenter room. Next, we use

the historical rack power draws of these workloads in our

0.0
0.2
0.4
0.6
0.8
1.0

W
or

kl
oa

d
Im

pa
ct

a) Extreme 1 b) Extreme 2

0 20 40 60 80 100
% impacted racks

0.0
0.2
0.4
0.6
0.8
1.0

W
or

kl
oa

d
Im

pa
ct

c) Realistic 1

0 20 40 60 80 100
% impacted racks

d) Realistic 2

non-redundant cap-able software-redundant

Fig. 11. Impact functions for workloads.

datacenters to model their rack power distributions. Using

these distributions, we pick a power draw for each rack and

derive the UPS loads accordingly. We use these snapshots as

inputs to the controllers (Algorithm 1, lines 2 and 3).

Figure 11 shows the sample impact function scenarios

we study. For clarity, we show only one function for each

workload category per scenario, assuming that all software-

redundant workloads have the same performance/availability

needs and all non-redundant cap-able workloads have the

same needs as well. Our implementation imposes no such

restrictions. Figure 11(a) and (b) show two extreme scenarios,

where the first represents no impact from shutting down the

software-redundant workloads, and the second represents no

impact from throttling the non-redundant cap-able workloads.

In contrast, Figure 11(c) and (d) are realistic scenarios repre-

senting workloads running in our datacenters.

Evaluation metrics. We simulate the failure of each UPS and

report the average percentage of impacted racks, racks shut

down, and racks throttled across all UPS failures.

Results. Figure 12 compares the impact of the corrective

actions in each scenario (Y-axis), as a function of the room’s

real-time power utilization at the time of UPS failover (X-

axis). For each curve and power utilization, the marker point

represents the mean value and whisker represents the standard

deviation across all UPS failures. We focus on a narrow range

of utilizations on the X-axis, as no actions are needed at

utilizations lower than 74% and sustained utilizations higher

than 85% at the UPS-level are impractical (though Flex-Offline

guarantees safety even at 100% utilization). Figure 12(a)

shows the impacted racks, as a percent of the total number

of racks; Figure 12(b) shows the racks that were shut down,

as a percentage of the total number of racks that can be shut

down; and Figure 12(c) shows the racks throttled, as a percent

of the total number of throttle-able racks.

The figure shows that up to 30-40% of racks may be

impacted by a UPS failure, but this only happens under very

high utilizations. Scenario Extreme-1 impacts the fewest racks

because it is also the most aggressive at shutting racks down

(shut down is the action that recovers the most power). At the

same time, it throttles the fewest racks. The reason is that its

impact functions promote shutting down of software-redundant

racks, while preferring to not throttle any non-redundant cap-

74.0 76.0 77.0 79.0 81.0 83.0 84.0
Power Utilization (%)

0

20

40

60

80

100

Im
pa

ct
ed

 R
ac

ks

 (%
 o

f T
ot

al
 R

ac
ks

) Extreme 1
Extreme 2
Realistic 1
Realistic 2

(a) Percent of impacted racks.

74.0 76.0 77.0 79.0 81.0 83.0 84.0
Power Utilization (%)

0

20

40

60

80

100

Ra
ck

s S
hu

td
ow

n
 (%

 o
f S

/w
-re

du
nd

an
t R

ac
ks

)

Extreme 1
Extreme 2
Realistic 1
Realistic 2

(b) Percent of racks shut down.

74.0 76.0 77.0 79.0 81.0 83.0 84.0
Power Utilization (%)

0

20

40

60

80

100

Ra
ck

s T
hr

ot
tle

d
 (%

 o
f C

ap
-a

bl
e

Ra
ck

s) Extreme 1
Extreme 2
Realistic 1
Realistic 2

(c) Percent of racks throttled.

Fig. 12. Flex-Online runtime decisions during a failover event.

able ones. At the other extreme, scenario Extreme-2 first

throttles all the candidate non-redundant cap-able racks before

shutting down any software-redundant racks.

The remaining scenarios behave between these extremes.

Realistic-1 specifies a lower performance impact for shutting

down than throttling and, therefore, results in shutting down

more and throttling fewer racks, in comparison to Realistic-2.

Summary. Thanks to our impact functions, Flex-Online is

successful at prioritizing its corrective actions according to

the workloads’ performance and availability needs during

maintenance events. Moreover, the ability to aggressively shut

down software-redundant racks enables Flex-Online to reduce

the impact on non-redundant workloads like IaaS VMs.

C. End-to-end Flex-Online performance

As the joint probability of failover and peak utilization

is extremely low in production (Section III) and forcing

a failure event can cause undesirable performance impact,

here we present the end-to-end operation of Flex-Online on

an emulated environment with 360 servers. We discuss the

learnings from our production deployments in the next section.

Methodology. We emulate a datacenter room consisting of

four UPSes, with the distributed redundant hierarchy shown in

Figure 2, each with a capacity of 1.2MW for a total capacity

of 4.8MW with no reserved power. The room has 36 rows,

with space for 10 racks per row. We generate a trace of short-

term demand with the same distribution of workload categories

as in Section V-A, but with one workload per category. We

then use the Flex-Offline-Short policy to determine workload

placement. We emulate each rack placed in the room with

a single server and run synthetic benchmarks to emulate

workload execution. We scale the server power utilization

to a rack by a pre-defined scale factor based on the server

peak power and the rack provisioned power. We use a flex

power value of 85% of the provisioned rack power for non-

redundant, cap-able workloads. We run benchmarks we use

internally to evaluate our software stack. Specifically, we run

TeraSort [23] to represent the software-redundant workload

and a latency-sensitive TPC-E-like [7] benchmark to represent

both the non-redundant cap-able and non-cap-able workloads.

Each workload instance runs independently in its own VM.

We configure the benchmark parameters, including number

of instances running on each server, to emulate an aggregate

utilization of 80% of the provisioned power at the UPS level.

Results. We divide the experiment into four stages: setup,

normal operation, failover, and recovery. Figures 13(a) and

13(b) show the emulated UPS and rack power during the

experiment, respectively. In the setup stage (A), servers spawn

benchmarks according to their assigned workload mapping.

During normal operation (B), the power utilization of all

UPSes stabilizes at about 80% of the provisioned power. We

simulate a UPS failure after twelve minutes (C) and observe

the load transferred to the remaining three UPSes. This causes

a power spike above the 1.2MW capacity for those UPSes (D).

The Flex-Online controller detects this power overdraw and

uses the impact function from Figure 11(c), coupled with the

rack power snapshot based on the real-time power utilization

to make throttling and shutting down decisions. The controller

policy decides to shut down 64% of the racks of the software-

redundant workload, and throttle 51% of the non-redundant,

cap-able racks to shave the needed power. Total corrective

action enforcement takes about 2 seconds (E). Racks running

non-redundant, non-capable workloads remain untouched.

After some time, we restore the failed UPS (F), which re-

sults in load sharing among all four UPSes and a drop in UPS

power. The Flex-Online controller detects this recovery, and

releases the throttle on the racks running the non-redundant

cap-able workload and restarts the racks for the software-

redundant workloads (G) to resume normal operation.

As the amount of throttling is limited by the pre-defined flex

power values, the impact of throttling on non-redundant, cap-

able workloads is small. The overall 95th-percentile latency

of the TPC-E-like benchmark running on the throttled racks

increased only by 4.7% compared to the non-throttled ones.

The worst-case increase (during the highest rack power draw)

was 14%. These losses only occur during extremely rare

events, and can be further reduced with a stricter impact

function for this workload. A small loss in rare cases is a good

tradeoff given the benefits of allocating all reserved resources.

Summary. This large-scale experiment shows the dynamic

05 10 15 20
Minutes Since Start

0

200

400

600

800

1000

1200

UP
S

Po
we

r (
kW

)

A

B C

D

E

F G

UPS1 UPS2 UPS3 UPS4

(a) UPS Power

05 10 15 20
Minutes Since Start

0

2

4

6

8

10

12

14

Ra
ck

 P
ow

er
 (k

W
)

A
B C

D

E F G

Software-redundant
Power cap-able

Non-cap-able

(b) Rack Power

Fig. 13. UPS and rack power during Flex-Online emulation.

behavior of Flex-Online. As expected, it is capable of quickly

reacting to a UPS failure and taking corrective actions. In fact,

the latency of Flex-Online in production has been similar to

what we see in this emulation (Section VI).

VI. LESSONS FROM PRODUCTION DEPLOYMENT

We are deploying Flex to production at Microsoft in stages.

So far, we have deployed Flex in several datacenters that

allocate a portion (42% instead of 100%) of the reserved power

for additional servers. For this portion, there is no need to shut

down any workloads during a maintenance event, so we only

use throttling. In this section, we discuss the lessons from

these deployments and the production requirements for using

the entire reserved power.

Infrastructure upgrades: There are two main reasons the

systems we have deployed so far use only a portion of

the reserved power in legacy datacenters. First, the contin-

uous load capacity of upstream devices (e.g., medium-voltage

transformers, feeders, and generators) does not support the

entire load. Second, when all the reserved power is allocated

(maximum potential overload of 33%), the overload capacity

of the UPS batteries during failover is insufficient to sustain

the load long enough to detect a failure and enable the Flex

controllers to lower the power draw. As a result, Microsoft

is building its new datacenters with higher rated upstream

devices and larger UPS batteries, which will allow Flex to

use all reserved resources at a small additional cost (∼3%).

Implications on cooling infrastructure: Flex must consider

the available cooling capacity to safely deploy servers using

the reserved power. Thus, in production, we include rack

cooling requirements, measured in cubic feet per minute

per watt (CFM/W), as constraints in our offline workload

placement optimization. In our experience, these constraints

have not been the bottleneck even with increased server density

for two reasons: (1) there has been a significant drop in server

CFM/W requirements as server airflow and heatsink designs

improve, and (2) datacenters are designed to support much

higher cooling needs for backward compatibility.

Further, just as redundant power, Flex can leverage the

redundancy in cooling for deploying additional servers. Upon

the loss of this redundant cooling, unlike losing redundant

power, several minutes are available for mitigation as datacen-

ter temperature rise is gradual. Hence, other mitigations, such

as workload migration to another cooling domain, can be used

before enacting strict Flex capping/shutdown actions. Thus,

we envision no extra cooling infrastructure cost to support

additional servers with Flex even at zero reserved power.

Power meter fidelity: As we state in Section IV-C, reliable

telemetry is critical for Flex-Online. However, some power

devices like UPSes are not designed for such high-fidelity

external monitoring. For example, in our experience, repeated

polling of the UPS meters would often return the same value

for up to 5 seconds, due to meter inaccuracy. As a result, we

had to deploy additional UPS output meters to compensate.

Further, there are multiple systems in the datacenter that

monitor these and other devices. As these meters only provide

pull-based readings, contention between various systems could

cause a drop in fidelity. We solved this problem with dedicated

Flex meters and careful coordination between these systems,

reducing polling intervals from ∼3 to ∼1 seconds.

Firmware and network status: We use out-of-band mecha-

nisms supported by the rack manager (RM) and the baseboard

management controller (BMC) [21] to throttle or shutdown

servers. It is critical to keep the firmware on the RMs and

BMCs up-to-date, especially when deploying new servers or

when existing servers are serviced or replaced due to failures.

In addition, to ensure that the actions take effect, the RMs

and BMCs must be reachable during a maintenance event. To

ensure both of these, we built a separate background service

that monitors both firmware status and network reachability for

all RMs. It is also responsible for periodically injecting failures

and taking fake actions to ensure no firmware regressions,

software bugs, or other issues cause actions to fail during an

actual maintenance event. If such issues occur, the service

warns operators and engineers to take immediate remedial

actions, e.g. redeployment of firmware or bug fixes.

Performance characteristics: The two key metrics we con-

sider in production are the “data latency”, i.e. the time to detect

a failure, and the latency to take corrective actions. So far, we

have observed the 99.9th percentile data latency in production

to be under 1.5 seconds, including the windowing delay to

consolidate the several physical data points for a given logical

meter. Further, we observe the latency to take throttling or

shutdown actions to be around 2 seconds at 99.9th percentile

for a ∼10MW room in the DC. The end-to-end latency (3.5

seconds) is well below the limits imposed by the power devices

towards their end-of-life (∼10 seconds).

Financial incentives for lower availability workloads: To

use the entire reserved power, it is critical to deploy enough

workloads that are amenable to lower infrastructure availabil-

ity. Microsoft has many such workloads. Unfortunately, not all

existing workloads have been built with this capability (and

some, like individual IaaS VMs, are inherently not redundant).

Still, it is possible to redesign some of them with greater

software redundancy and fault-tolerance. We are currently

developing new charge models that incentivize workloads with

relaxed performance and availability requirements.

VII. RELATED WORK

To our knowledge, this work is the first to propose data-

centers that use their entire reserved power for server deploy-

ments, guarantee safety during failover using offline workload

placement, and provide workloads with their desired availabil-

ity. Nevertheless, works on power oversubscription, workload

awareness, and energy storage are related.

Power oversubscription. Many works have addressed power

oversubscription, typically with power capping for preventing

circuit breaker trips [2]–[4], [8], [11], [14], [15], [28], [30],

[31], [34], [35]. Some authors underprovision the infrastruc-

ture and either discharge batteries [4], [34] and/or throttle

workloads [19] when needed, again during normal operation.

Some recent papers [11], [14], [30], [37] treat workloads

differently based on their priority, interactivity, or availability

requirements for higher oversubscription or lower performance

impact. These works focused on power management during

normal (non-maintenance, non-failover) operation without re-

gard for fully utilizing reserved resources and the associated

challenges. Flex focuses on allocating all reserved resources

for additional servers and managing maintenance events, so it

is orthogonal and can be combined with these prior works.

CapMaestro [15] combines oversubscription with the power

redundancy provided by 2N-redundant datacenters to deploy

more servers. It uses priorities to selectively throttle work-

loads, but does not consider their availability requirements

during placement or failover. This approach ensures safety

but limits the amount of reserved power that can be used. In

contrast, our infrastructure- and availability-aware workload

placement, and the highly-available power telemetry allow

Flex to use the entire reserved power and still guarantee safety.

Oversubscription can be used in addition to Flex to further

increase server density, if the observed utilization is low.

Workload priority awareness. Some prior oversubscription

works recognize the potential performance degradation of

power capping and include some notion of workload pri-

ority [11], [14], [15], [29], [30], [37]. For example, IBM’s

CapMaestro [15] shifts power to servers running high-priority

workloads by throttling servers running low-priority ones

harder even across PDUs. Li et al. provide quality of service

for tasks running on the same server [14]. In contrast, Flex

implements a much more detailed and descriptive approach

to workload awareness. With impact functions, it accounts for

explicit descriptions of workload performance and availability

impact, in both placement and runtime decision-making.

Energy storage and flexible power infrastructure. Re-

searchers have considered repurposing energy storage devices

(ESD) to shave power peaks [1], [5], [10], [33], [38]. Most of

them focus on distributed ESDs that attach to either servers

or racks. These approaches are vulnerable to long-lasting or

unbalanced peaks, which may deplete all or some of the ESDs

quickly. In Flex datacenters, we keep centralized ESDs and use

them as backup until software can react.

Finally, Power Routing [27] adds more connections from

racks and rows to other PDUs so that they form shuffled

distribution topologies. The design lowers the need for re-

served capacity, but does not eliminate it. Moreover, for

the common dual-corded power supply architecture, costly

infrastructure upgrades must be made to enable such richer

physical connectivity.

VIII. CONCLUSIONS

We introduced zero-reserved-power datacenters and the Flex

system to manage them. Flex leverages the lower infrastructure

availability requirements of software-redundant workloads and

combines static workload placement with dynamic power

management to safely allocate the reserved power. Using

simulation and large-scale experiments, we showed that Flex

significantly reduces stranded power while quickly and effec-

tively managing workload availability and performance. Flex

decreases construction costs significantly, producing savings of

hundreds of millions of dollars from each datacenter site. Our

experience deploying Flex in production at Microsoft drew

many lessons that should benefit any other provider.

ACKNOWLEDGMENTS

We would like to thank the anonymous shepherd and re-

viewers for helping us improve this paper. We would also like

to thank several people who helped bring Flex to production:

Dong Wei, Ganesh Narayanan, and Dave Lalor for building the

telemetry pipeline; Keith Krueger and Kris Redding for their

design on management network diversity; Sriram Govindan for

improving the reliability and latency of rack manager opera-

tions; Sunny Gautam and Sagar Dharia for implementing the

platform-agnostic BMC interfaces; and Ajay Gudehosahalli

and Pratish Kumar for their contributions towards building

Flex-Online and the background monitoring services.

REFERENCES

[1] B. Aksanli, E. Pettis, and T. Rosing, “Architecting efficient peak power
shaving using batteries in data centers,” in Proceedings of the 21st

International Symposium on Modelling, Analysis and Simulation of

Computer and Telecommunication Systems, 2013.
[2] R. Azimi, M. Badiei, X. Zhan, N. Li, and S. Reda, “Fast decentralized

power capping for server clusters.” in Proceedings of the 23rd Interna-

tional Symposium on High-Performance Computer Architecture, 2017.

[3] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in Proceedings of the 34th International

Symposium on Computer Architecture, 2007.

[4] S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubramaniam, and A. Bal-
dini, “Statistical profiling-based techniques for effective power provi-
sioning in data centers,” in Proceedings of the 4th European Conference

on Computer Systems, 2009.

[5] S. Govindan, D. Wang, A. Sivasubramaniam, and B. Urgaonkar, “Lever-
aging stored energy for handling power emergencies in aggressively
provisioned datacenters,” in Proceedings of the 17th International

Conference on Architectural Support for Programming Languages and

Operating Systems, 2012.

[6] A. Guliani and M. M. Swift, “Per-Application Power Delivery,” in
Proceedings of the European Conference on Computer Systems, 2019.

[7] T. Hogan, “Overview of tpc benchmark e: The next generation of
oltp benchmarks,” in Proceedings of the Technology Conference on

Performance Evaluation and Benchmarking, 2009.

[8] C.-H. Hsu, Q. Deng, J. Mars, and L. Tang, “Smoothoperator: Reducing
power fragmentation and improving power utilization in large-scale
datacenters,” in Proceedings of the 23rd International Conference on

Architectural Support for Programming Languages and Operating Sys-

tems, 2018.

[9] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi,
“An analysis of efficient multi-core global power management policies:
Maximizing performance for a given power budget,” in Proceedings of

the 39th International Symposium on Microarchitecture, 2006.

[10] V. Kontorinis, L. E. Zhang, B. Aksanli, J. Sampson, H. Homayoun,
E. Pettis, D. M. Tullsen, and T. S. Rosing, “Managing distributed ups
energy for effective power capping in data centers,” in Proceedings of

the 39th International Symposium on Computer Architecture, 2012.

[11] A. Kumbhare, R. Azimi, I. Manousakis, A. Bonde, F. Frujeri, N. Ma-
halingam, P. Misra, S. A. Javadi, B. Schroeder, M. Fontoura, and
R. Bianchini, “Prediction-based power oversubscription in cloud plat-
forms,” in Proceedings of the USENIX Annual Technical Conference,
2021, to appear.

[12] K.-D. Lange, “Identifying shades of green: The specpower benchmarks,”
Computer, no. 3, 2009.

[13] C. Lefurgy, X. Wang, and M. Ware, “Server-level power control,” in Pro-

ceedings of the 4th International Conference on Autonomic Computing,
2007.

[14] S. Li, X. Wang, X. Zhang, V. Kontorinis, S. Kodakara, D. Lo,
and P. Ranganathan, “Thunderbolt: Throughput-optimized, quality-of-
service-aware power capping at scale,” in Proceedings of the 14th

Symposium on Operating Systems Design and Implementation, 2020.

[15] Y. Li, C. R. Lefurgy, K. Rajamani, M. S. Allen-Ware, G. J. Silva,
D. D. Heimsoth, S. Ghose, and O. Mutlu, “A Scalable Priority-Aware
Approach to Managing Data Center Server Power,” in Proceedings of the

International Symposium on High Performance Computer Architecture,
2019.

[16] Y. Liu, G. Cox, Q. Deng, S. C. Draper, and R. Bianchini, “Fastcap: An
efficient and fair algorithm for power capping in many-core systems,” in
Proceedings of the International Symposium on Performance Analysis

of Systems and Software, 2016.

[17] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: Improving resource efficiency at scale,” in Proceedings of the

42nd Annual International Symposium on Computer Architecture, 2015.

[18] K. Ma, X. Li, M. Chen, and X. Wang, “Scalable power control for many-
core architectures running multi-threaded applications,” in Proceedings

of the 38th Annual International Symposium on Computer Architecture,
2011.

[19] I. Manousakis, Í. Goiri, S. Sankar, T. D. Nguyen, and R. Bianchini,
“Coolprovision: Underprovisioning datacenter cooling,” in Proceedings

of the 6th Symposium on Cloud Computing, 2015.

[20] K. McCarthy and V. Avelar, “Comparing ups system design configu-
rations,” APC white paper 75, Schneider electric Data center science

center, 2016.

[21] S. Mills and P. Sarti, “Open rack specification v2.2,” 2019.
[Online]. Available: https://www.opencompute.org/wiki/Open Rack/
SpecsAndDesigns

[22] A. K. Mishra, S. Srikantaiah, M. Kandemir, and C. R. Das, “Cpm
in cmps: Coordinated power management in chip-multiprocessors,” in
Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, 2010.

[23] O. O’Malley, “Terabyte sort on apache hadoop,” Yahoo, available online

at: http://sortbenchmark.org/Yahoo-Hadoop.pdf, 2008.
[24] G. I. Optimization, “Gurobi optimizer reference manual,” 2018.

[Online]. Available: http://www.gurobi.com
[25] G. Parise and L. Parise, “Electrical distribution for a reliable data center,”

IEEE Transactions on Industry Applications, vol. 49, no. 4, 2013.
[26] H. Patel, A. Jindal, and C. Szyperski, “Big data processing at microsoft:

Hyper scale, massive complexity, and minimal cost,” in Proceedings of

the 10th Symposium on Cloud Computing, 2019.
[27] S. Pelley, D. Meisner, P. Zandevakili, T. F. Wenisch, and J. Underwood,

“Power routing: Dynamic power provisioning in the data center,” in
Proceedings of the Fifteenth International Conference on Architectural

Support for Programming Languages and Operating Systems, 2010.
[28] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu,

“No “power” struggles: Coordinated multi-level power management for
the data center,” in Proceedings of the 13th International Conference

on Architectural Support for Programming Languages and Operating

Systems, 2008.
[29] P. Ranganathan, P. Leech, D. Irwin, and J. Chase, “Ensemble-level power

management for dense blade servers,” in Proceedings of the 33rd Annual

International Symposium on Computer Architecture, 2006.
[30] V. Sakalkar, V. Kontorinis, D. Landhuis, S. Li, D. De Ronde, T. Bloom-

ing, A. Ramesh, J. Kennedy, C. Malone, J. Clidaras, and P. Ranganathan,
“Data center power oversubscription with a medium voltage power plane
and priority-aware capping,” in Proceedings of the 25th International

Conference on Architectural Support for Programming Languages and

Operating Systems, 2020.
[31] R. Sakamoto, T. Cao, M. Kondo, K. Inoue, M. Ueda, T. Patki,

D. Ellsworth, B. Rountree, and M. Schulz, “Production Hardware Over-
provisioning: Real-world Performance Optimization Using an Extensible
Power-Aware Resource Management Framework,” in Proceedings of the

International Parallel and Distributed Processing Symposium, 2017.
[32] W. P. Turner IV, J. PE, P. Seader, and K. Brill, “Tier classification define

site infrastructure performance,” Uptime Institute, vol. 17, 2006.
[33] D. Wang, C. Ren, A. Sivasubramaniam, B. Urgaonkar, and H. Fathy,

“Energy storage in datacenters: what, where, and how much?” in
Proceedings of the 12th Joint International Conference on Measurement

and Modeling of Computer Systems, 2012.
[34] G. Wang, S. Wang, B. Luo, W. Shi, Y. Zhu, W. Yang, D. Hu, L. Huang,

X. Jin, and W. Xu, “Increasing large-scale data center capacity by sta-
tistical power control,” in Proceedings of the 11th European Conference

on Computer Systems, 2016.
[35] X. Wang, M. Chen, C. Lefurgy, and T. W. Keller, “Ship: Scalable

hierarchical power control for large-scale data centers,” in Proceedings

of the 18th International Conference on Parallel Architectures and

Compilation Techniques, 2009.
[36] M. Wiboonrat, “An optimal data center availability and investment

trade-offs,” in Proceedings of the 9th ACIS International Conference

on Software Engineering, Artificial Intelligence, Networking, and Par-

allel/Distributed Computing, 2008.
[37] Q. Wu, Q. Deng, L. Ganesh, C.-H. Hsu, Y. Jin, S. Kumar, B. Li, J. Meza,

and Y. J. Song, “Dynamo: Facebook’s data center-wide power manage-
ment system,” in Proceedings of the 43rd International Symposium on

Computer Architecture, 2016.
[38] J. Yao, X. Liu, W. He, and A. Rahman, “Dynamic control of electricity

cost with power demand smoothing and peak shaving for distributed in-
ternet data centers,” in Proceedings of the 32nd International Conference

on Distributed Computing Systems, 2012.
[39] H. Zhang and H. Hoffmann, “Maximizing Performance Under a Power

Cap: A Comparison of Hardware, Software, and Hybrid Techniques,” in
Proceedings of the International Conference on Architectural Support

for Programming Languages and Operating Systems, 2016.

