
FlexNet Embedded Client
2020 R3
.NET XT SDK User Guide

Legal Information

Copyright Notice
Copyright © 2020 Flexera Software

This publication contains proprietary and confidential information and creative works owned by Flexera Software and its licensors, if any. Any use,
copying, publication, distribution, display, modification, or transmission of such publication in whole or in part in any form or by any means without the
prior express written permission of Flexera Software is strictly prohibited. Except where expressly provided by Flexera Software in writing, possession of
this publication shall not be construed to confer any license or rights under any Flexera Software intellectual property rights, whether by estoppel,
implication, or otherwise.

All copies of the technology and related information, if allowed by Flexera Software, must display this notice of copyright and ownership in full.

The FlexNet Embedded Client .NET XT SDK incorporates software developed by others and redistributed according to license agreements. Copyright
notices and licenses for these external libraries are provided in a supplementary document that accompanies this one.

Intellectual Property
For a list of trademarks and patents that are owned by Flexera Software, see https://www.revenera.com/legal/intellectual-property.html. All other brand
and product names mentioned in Flexera Software products, product documentation, and marketing materials are the trademarks and registered
trademarks of their respective owners.

Restricted Rights Legend
The Software is commercial computer software. If the user or licensee of the Software is an agency, department, or other entity of the United States
Government, the use, duplication, reproduction, release, modification, disclosure, or transfer of the Software, or any related documentation of any kind,
including technical data and manuals, is restricted by a license agreement or by the terms of this Agreement in accordance with Federal Acquisition
Regulation 12.212 for civilian purposes and Defense Federal Acquisition Regulation Supplement 227.7202 for military purposes. The Software was
developed fully at private expense. All other use is prohibited.

Book Name: FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Part Number: FNE-UAI-2020R3-NXTSDK-UG00

Product Release Date: July 2020

Documentation Last Updated: August 02, 2019

https://www.revenera.com/legal/intellectual-property.html

Contents
1 About the FlexNet Embedded Client .NET XT Toolkit and this Guide . 11
Toolkits Described in This Book . 11

FlexNet Embedded Client .NET XT Toolkit. 11
FlexNet Embedded Client .NET Core XT Toolkit . 12

User Guide Overview . 12

Product Support Resources . 13

Contact Us . 14

2 Quick Start with the .NET XT Toolkit . 15
Toolkit Requirements . 15

Downloading the Toolkit . 15

Creating the Producer Identity . 16
Creating the Identity Binary Files. 16
Generating .NET-compatible Identity Data . 18
Distributing Identity Data . 18
Updating Identity Data. 19

Building and Running the “BasicClient” Licensing Example . 19
Building the “BasicClient” Example . 20

Troubleshooting Compilation Errors for the “BasicClient” Example . 20
Preparing to Run “BasicClient” . 20

Generate License Rights . 21
Install the FlexNet Embedded Client Libraries for FlexNet Embedded . 21

Running “BasicClient” . 22
Troubleshooting Build Errors for the “BasicClient” Example. 22

Building and Running the “Notification” Example . 23
Building the “Notification” Example . 23

Troubleshooting Compilation Errors for the “Notification” Example . 23
Preparing to Run “Notification” . 24

Install the FlexNet Embedded Client Libraries for Updates and Insights . 24
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 3

Contents
Add a Product and Its Update to the Publisher Site . 24
Running “Notification”. 25

Troubleshooting Build Errors for the “Notification” Example . 27

Next Steps . 27

3 Quick Start with the .NET Core XT Toolkit . 29
Toolkit Requirements . 29

Downloading the Toolkit . 29

Creating the Producer Identity . 30
Create the Identity Binary Files . 30
Generate .NET-compatible Identity Data. 32
Distribute Identity Data . 32
Update Identity Data . 32

Building and Running the “BasicClient” Licensing Example . 33
Phase 1: Provide the Prerequisites for “BasicClient” . 33

Client Identity File: Copied to Proper Location . 34
License Rights: Created and Copied to Proper Location . 34
.Net Core: Installed on the Target Machine . 35

Phase 2: Prepare to Build “BasicClient” Executable . 35
Step 1: Ensure Project File Points to Correct .NET Core Framework Version . 35
Step 2: Run “restore” to Obtain Latest Packages . 35
Step 3: Copy “FlxCore” to the Project Folder . 36

Phase 3: Build and Run the “BasicClient” Example . 36
Troubleshooting Compilation or Execution Errors for the BasicClient Example . 37

Next Steps . 38

4 Toolkit Overview . 39
Concepts: Licensing and Updates Functionality . 39

FlexNet Embedded Concepts . 40
Hostids . 40
Feature Definitions. 41
Back-office Servers and License Servers. 43
Trusted Storage . 44
Capability Requests and Responses . 44

Concepts of Updates and Insights . 45
Updates and Insights Client . 45
Notifications . 46
Producer Site and Portal. 46
Notification Server . 46

Toolkit Requirements . 46

FlexNet Embedded Client .NET XT Toolkit Contents. 46

FlexNet Embedded Client .NET Core XT Toolkit Contents . 48

About the Example Projects . 49
FlexNet Embedded Examples . 49
4 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Contents
Updates and Insights Examples . 50

Building and Running the Examples in the .NET XT Toolkit . 50
Obtaining Producer Identity Data . 50
Building the Examples . 51
Running the Examples . 51

Displaying Usage Help for an Example . 51
Running the FlexNet Embedded Examples . 52
Running the Updates and Insights Example . 53

Building and Running Examples in the .NET Core XT Toolkit. 54
Obtaining Producer Identity Data . 54
Basic Process for Building and Running an Example in the .NET Core XT Toolkit . 54

Phase 1: Provide the Prerequisites. 54
Phase 2: Prepare to Build the Executable for an Example . 56
Phase 3: Build and Run the Example . 57
Displaying Usage Help for an Example . 58

Toolkit Files to Distribute with Your Product. 58
.NET XT Toolkit Files to Distribute . 58
.NET Core XT Toolkit Files to Distribute . 59

5 Overview of the .NET XT APIs. 61
FlexNet Embedded API Interfaces . 61

Updates and Insights API Interfaces . 62

FlexNet Common API Interfaces . 63

Conventions for Retrieving Exception Information . 63

6 Using the FlexNet Embedded APIs . 65
Common Steps to Prepare for Licensing. 66

Creating Your Producer Identity Files . 66
Creating Core Licensing Objects . 66

Specifying the Trusted Storage Location . 67
Specifying the Hostid Type to Use . 68
Final “Get Licensing” Argument . 69

Detecting a Containerized Environment . 69
Detecting a Cloned Environment . 70
Detecting Clock Windback. 70
Identifying the Device User . 71
Retrieving Feature Expiration and Grace Period Information . 71

Types of Expiration Information Available for Retrieval . 71
.NET Properties Used to Retrieve Expiration Information. 72

Including Vendor Dictionary Data . 72
Advanced Topic: Secure Anchoring. 73

Prerequisites . 73
Enabling Secure Anchoring . 73

Buffer Licenses . 73
Setting Up the License File . 74
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 5

Contents
Step 1: Create an Unsigned License File . 74
Step 2: Generate a Signed Binary License File . 74

Using the License on the Client . 74
Step 1: Create and Populate the License Sources. 75
Step 2: Acquire the License(s) . 75
Step 3: Read the License Details . 76

Licenses Obtained from the Back-Office Server . 76
FlexNet Operations as “Back-Office Server” . 77
Configuring the Back-office Server to Provide Access to Licenses. 77
 Activation or Upgrade Steps . 77

Step 1: Create the License Source . 77
Step 2: Create the Capability Request . 78
Additional Capability-Request Options. 78
Step 3: Send the Request to the Back-Office Server. 80
Step 4: Process the Capability Response . 81

Licenses Obtained from a License Server . 82
Provision the License Server with Licenses for the Demonstration. 83
Register the Client with the Cloud Licensing Service . 83
Provide the URL for the License Server in the Command. 83
Modify the Example Code to Request “desired features” . 84
Additional Capability-Request Options . 84

Incremental Capability Requests . 84
Attribute to Check Out All Available Quantity for a Feature If Requested Count Cannot Be Satisfied . 86
Feature Selectors in a Capability Request . 88
Secondary Hostids . 89
Option to Force a Capability Response . 90
Borrow Interval and Granularity Overrides . 90

License Checkout from the License Server . 91
Capability Preview. 92

Types of Preview Counts. 92
Creating a Preview Capability Request . 93
Processing the Preview Capability Response . 94
Creating a Regular Capability Request Based on Preview Features . 96
Other Considerations . 96

Limited-duration Trials . 97
Trial Preparation . 97

Create the Binary Trial License Rights . 97
Getting and Using the Trial on the Client System. 98

Step 1: Create and Populate the License Sources. 98
Step 2: Get Trial Data from the Binary Trial File . 98

Secure Re-hosting . 99
Removing Capabilities from Host A. 100

Step 1: Start License-Enabled Code on Host A . 100
Step 2: Submit Capability Request from Host A to the Back-Office Server . 100
Step 3: Back-Office Server Processes Request and Sends “Reduced” Response Back to Host A. 101
Step 4: Process “Reduced” Capability Response on Host A . 101
6 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Contents
Step 5: Submit Another Capability Request from Host A to the Back-Office Server . 102
Step 6: Back-Office Server Processes Capability Request from Host A . 102

Adding Capabilities to Host B . 103
Step 7: Start License-Enabled Code on Host B . 104
Step 8: Submit Capability Request from Host B to the Back-Office Server . 104
Step 9: Back-Office Server Processes Request and Sends Response Back to Host B . 104

Capturing Feature Usage on the Client . 104
Capability Requests and Usage Capture . 105

Operation Type . 105
Correlation ID . 106
Other Optional Identifiers. 106
Desired Features and Rights IDs . 106

Preparation in FlexNet Operations . 107
License Source Creation . 107
Client Registration with the Cloud Licensing Service . 108
Uncapped Usage Capture . 109
Capped Usage Capture. 110

Recall a “Used” Metered Feature . 111
Post-Usage-Capture: Managing Usage Data . 111
Additional Metered License Attributes . 111

Examining License Rights in a License Source . 112
Step 1: Create and Populate a Diagnostic License Source. 113
Step 2: Examine Features in the Feature Collection . 114

Advanced Topic: FlexNet Publisher Certificate Support . 117
Preparing Your Identity Data for Certificate Support . 117
Using the Lmflex Example . 118

Create the Certificate License Source . 118
Acquire Features from the Certificate License Source . 118

Differences in Certificate Licensing Behavior . 119

Advanced Topic: Multiple-Source Regenerative Licensing . 119
Use Cases for Multiple-Source Regenerative Licensing . 120
Providing Support for Multiple-Source Regenerative Licensing in the Client Code. 120

Creating the License Source for a Server Instance . 120
Identifying the Server Instance in the Capability Request . 121
Processing the Response from a Server Instance . 121

Considerations . 122

7 Using the Updates and Insights APIs. 123
Common Preparation Steps . 124

Obtaining Your Producer Identity Files. 124
Adding a Product and Its Update to Your Producer Site. 124

About the Manifest File for An Update Notification . 125

Creating Core Notification Objects and Registering the Client . 125
Setting Up the Updates and Insights Client Object . 125
Registering the Client Device with FlexNet Operations . 126
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 7

Contents
Setting Up the Product Package Object . 126

Obtaining Notifications and Downloading and Installing the Updates . 127
Obtaining Notifications . 128

Step 1: Send the Notification Request. 128
Step 2: Inspect the Collection . 129

Downloading and Installing an Update . 130
Download Payload and Install the Update. 130
(Optional) Use a Callback Function to Track the Update Progress. 131

One-time Event: Client Device Registration with FlexNet Operations . 133
The Registration Process . 134
Requesting the Client Registration. 134

 About Client Communications for the Updates and Insights . 135

8 Utility Reference . 137
Tools Shared by FlexNet Embedded and Updates and Insights . 138

Publisher Identity Utility . 138
Purpose. 138
Usage. 139
Entering Your Identity Data . 140
Further Tasks and Considerations . 140

Print Binary Utility . 141
Viewing Contents . 141
Viewing Contents and Validating Signatures . 141
Displaying Binary-File Contents in Compiler-Readable Format . 141
Converting License Data to Base 64 Format in FlexNet Embedded . 142
Additional printbin Switches . 142

Tools Specific to FlexNet Embedded . 143
Identity Update Utility . 143

Usage. 143
Device Hostid Types Used to Restrict Hostid Detection . 144
Example Identity Update . 145

License Conversion Utility . 146
Trial File Utility . 146
Capability Server Utility . 147

Considerations for Using the Utility . 148
Usage. 148
Starting and Stopping the Capability Server Utility . 148
About License Templates . 149
Endpoint for Sending Capability Requests to the Utility. 151

Capability Request Utility . 151
Capability Response Utility . 154
Secure Profile Utility . 156

Viewing Available Security Profiles . 156
Enabling Secure Anchoring . 157

.NET XT Toolbox. 157
8 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Contents
Preparing the .NET XT Toolbox . 157
Working with License Sources. 159
Server Communications . 161
License Acquisition . 163

A Manifest File Contents for a Product Update. 165
Manifest File Format . 165

Header Line. 166
File Entries. 166

Manifest File Setup Rules . 167

Manifest File Processing Rules . 167

Index . 169
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 9

Contents
10 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

1

About the FlexNet Embedded Client .NET

XT Toolkit and this Guide
The FlexNet Embedded Client C SDK User Guide provides guidance on how to integrate the .NET XT FlexNet Embedded
licensing and Updates and Insights functionality into your product code.

Toolkits Described in This Book
The guide covers how to get started with and use these two .NET XT toolkits:

• FlexNet Embedded Client .NET XT Toolkit

• FlexNet Embedded Client .NET Core XT Toolkit

FlexNet Embedded Client .NET XT Toolkit
The FlexNet Embedded Client .NET XT toolkit combines the .NET Framework functionality of FlexNet Embedded licensing
and Updates and Insights services, offering implementers a source of APIs and tools to leverage one or both of these
components in their applications. Briefly, the FlexNet Embedded Client .NET XT toolkit offers the following:

• FlexNet Embedded functionality that provides a secure licensing framework in which producers can control features
to which end users are entitled on their client systems. The licensing functionality enables producers to offer different
product configurations, enforce node-locked licensing, and enable hands-free activation, silent trials, and electronic
(field) upgrades.

• Updates and Insights functionality that enables your product to receive notifications about product updates from
FlexNet Operations and provides appropriate methods to download and install available updates.

Note • In some cases, FlexNet Embedded licensing and the Updates and Insights operations share common functionality.
However, where necessary, the guide distinguishes whether a given function is specific to licensing or to Updates and Insights.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 11

Chapter 1 About the FlexNet Embedded Client .NET XT Toolkit and this Guide
User Guide Overview
FlexNet Embedded Client .NET Core XT Toolkit
The FlexNet Embedded Client .NET Core XT toolkit offers the same FlexNet Embedded functionality found in the FlexNet
Embedded Client .NET XT toolkit, but extends this functionality to platforms currently supported by both the FlexNet
Embedded Client C XT toolkit and .NET Core, enabling you to build licensed .NET code that runs on Windows, Linux, or OS X.
(See https://www.microsoft.com/net/core#windowsvs2017 for available .NET Core implementations.)

This toolkit does not support Updates and Insights functionality.

User Guide Overview
The purpose of this user guide is to provide an overview of the FlexNet Embedded Client .NET XT and .NET Core XT toolkits
to help you start integrating licensing code in your product. The guide includes the following chapters:.

Table 1-1 • Overview of the FlexNet Embedded Client .NET XT SDK User Guide

Topic Content

Quick Start with the .NET XT Toolkit Provides an introductory walkthrough of preparing the FlexNet Embedded
Client .NET XT toolkit and then building and running example code that
performs basic licensing and Updates and Insights operations. The chapter is
geared toward potential customers or current customers who want a simple
“getting started” demonstration to see how the licensing and Updates and
Insights functionality works.

Quick Start with the .NET Core XT
Toolkit

Provides an introductory walkthrough of preparing the FlexNet Embedded
Client .NET Core XT toolkit, and then building and running example code that
performs basic licensing operations. The chapter is geared toward potential
customers or current customers who want a simple “getting started”
demonstration to see how the licensing functionality works.

Toolkit Overview Provides an overview of the FlexNet Embedded Client .NET XT and .NET Core
XT toolkits, describing:

• Terminology used for FlexNet Embedded licensing and Updates and
Insights notification services

• Toolkit contents

• Example projects included with the toolkit

• Build instructions for the toolkit examples

Overview of the .NET XT APIs Describes the groups of FlexNet Embedded, Updates and Insights, and
common APIs included in the toolkit.
12 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

https://www.microsoft.com/net/core#windowsvs2017
https://www.microsoft.com/net/core#windowsvs2017

Chapter 1 About the FlexNet Embedded Client .NET XT Toolkit and this Guide
Product Support Resources
Product Support Resources
The following resources are available to assist you with using this product:

• Revenera Community

• Revenera Learning Center

• Revenera Support

Revenera Community

On the Revenera Community site, you can quickly find answers to your questions by searching content from other
customers, product experts, and thought leaders. You can also post questions on discussion forums for experts to answer.
For each of Revenera’s product solutions, you can access forums, blog posts, and knowledge base articles.

https://community.revenera.com

Revenera Learning Center

The Revenera Learning Center offers free, self-guided, online videos to help you quickly get the most out of your Revenera
products. You can find a complete list of these training videos in the Learning Center.

https://learning.revenera.com

Using the FlexNet Embedded APIs Describes the primary objects included in the FlexNet Embedded .NET XT
programming model, and walks through sample implementations of various
scenarios, including:

• Using node-locked licenses on a client system

• Using a back-office server (FlexNet Operations or the test back-office
server utility capservertutil) to activate license rights on a FlexNet
Embedded client device

• Having a license server provision the client with licenses

• Enabling limited-duration trial functionality on a client

• Tracking feature usage

Using the Updates and Insights APIs Walks through a sample Updates and Insights implementation that retrieves a
notification for a product update and then downloads and installs the update.

Utility Reference Explains how to use the toolkit utilities to test and prepare your licensing-
enabled or updates-enabled client application for production.

Manifest File Contents for a Product
Update

Provides a description of a manifest file used by Updates and Insights to
download one or more files needed to install a product update. (Downloaded
files marked for execution can then be run to complete the update.)

Table 1-1 • Overview of the FlexNet Embedded Client .NET XT SDK User Guide

Topic Content
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 13

https://community.revenera.com
https://community.revenera.com
https://learning.revenera.com

Chapter 1 About the FlexNet Embedded Client .NET XT Toolkit and this Guide
Contact Us
Revenera Support

For customers who have purchased a maintenance contract for their product(s), you can submit a support case or check
the status of an existing case by making selections on the Get Support menu of the Revenera Community.

https://community.revenera.com

Contact Us
Revenera is headquartered in Itasca, Illinois, and has offices worldwide. To contact us or to learn more about our products,
visit our website at:

http://www.revenera.com

You can also follow us on social media:

• Twitter

• Facebook

• LinkedIn

• YouTube

• Instagram
14 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

https://community.revenera.com
http://www.revenera.com
https://twitter.com/getrevenera
https://www.facebook.com/flexera/
https://www.linkedin.com/company/revenera/
https://www.youtube.com/c/GetRevenera
https://www.instagram.com/weareflexera/

2

Quick Start with the .NET XT Toolkit
This chapter describes the basics needed to get started with the FlexNet Embedded Client .NET XT toolkit:

• Toolkit Requirements

• Downloading the Toolkit

• Creating the Producer Identity

• Building and Running the “BasicClient” Licensing Example

• Building and Running the “Notification” Example

• Next Steps

The remaining chapters provide more information about the toolkit and delve into actual use of its FlexNet Embedded and
Updates and Insights functionality.

Toolkit Requirements
For information about supported toolkit platforms and prerequisites for developing, building, and deploying your product
with the toolkit, see the current version of the FlexNet Embedded Client Release Notes.

Downloading the Toolkit
The email you received from Revenera provides instructions for downloading the FlexNet Embedded Client .NET XT toolkit
from the Product and License Center. These instructions can vary, depending on whether you are downloading a
purchased toolkit or one that you are evaluating.

Once you have downloaded the appropriate .zip file for the toolkit, decompress the archive somewhere on your system.

In this book, the root directory of the decompressed toolkit is referred to as install_dir.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 15

Chapter 2 Quick Start with the .NET XT Toolkit
Creating the Producer Identity
Creating the Producer Identity
Each producer’s FlexNet Embedded Client .NET XT toolkit is separate, in the sense that no organization’s license-enabled
code can use another organization’s license rights.

Note • The term “producer” is synonymous with “publisher”, a term more commonly used for the .Net XT toolkit user in
previous documentation releases. Certain components of the toolkit functionality still use “publisher”.

Each producer is identified by a unique producer name and producer keys. To enable your FlexNet Embedded Client .NET
XT toolkit, you must generate producer identity data to be used by your back-end tools and by your client code. A set of
producer identity data files contains a combination of cryptographic data and settings used to digitally sign your license
rights and notification messages on the back-office server and to validate these license rights and notification messages
sent to the client.

Whether you intend to use FlexNet Embedded functionality only, Updates and Insights functionality only, or both sets of
functionality, you must compile your code with access to this identity data.

To generate your organization’s identity files for testing purposes, you can use the Publisher Identity utility pubidutil
utility in the FlexNet Embedded Client .NET XT toolkit. While this utility can be used to generate identity data for your
production environment, typically you would use FlexNet Operations to generate and download these identity files for
your production environment.

The following sections describe how to generate the identity files using pubidutil and how to distribute these files:

• Creating the Identity Binary Files

• Generating .NET-compatible Identity Data

• Distributing Identity Data

Creating the Identity Binary Files
Identity files are created as binary files. To use the pubidutil utility provided in the FlexNet Embedded Client .NET XT
toolkit, you need the organization-specific production keys included in your email from Revenera.

To run the pubidutil tool in graphical mode, launch install_dir\bin\tools\pubidutil.bat.

In the Publisher Identity Utility window, enter:

• Names and locations where your server-identity and client-identity files will be created (or reopened, if the files
already exist).

• An Identity Name—such as demo-med-rsa—for this collection of identity settings. This name must be unique on your
FlexNet Operations site.

• The Publisher Name, which is a case-sensitive value such as demo, and Publisher Keys, which are the five
hexadecimal numbers that you obtained based on your email message from Revenera.

• The desired digital signature type and strength. For this example, select RSA from the Signature Type options, and
select Medium (1024 bit) and SHA-256 from the Signature and digest strength options.
16 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 2 Quick Start with the .NET XT Toolkit
Creating the Producer Identity
Figure 2-1: Entering Producer-specific Information in the Publisher Identity Utility

Click Finish when you have entered this information, and the Publisher Identity utility creates the identity files in the
location you specified.

• The back-office identity data—by convention called IdentityBackOffice.bin—is used by the back-office server to
digitally sign license rights and notification messages, and must be kept secure.

For FlexNet Embedded, the back-office server is either FlexNet Operations or the test back-office server utility
capserverutil (Capability Server utility). For Updates and Insights, the back-office server is Revenera-hosted FlexNet
Operations.

• The client identity data—by convention called IdentityClient.bin—is included in your code in order to acquire
license rights or procure notification messages at run time.

• The client–server identity data—IdentityClientServer.bin—is used when preparing a license server, which is a
separately downloaded component (not addressed here) used with FlexNet Embedded licensing. Information about
the functionality that the client can use to obtain licenses from a license server is described in the Using the FlexNet
Embedded APIs.

You can also run the Publisher Identity utility in text mode by opening a command prompt window to the
install_dir\bin\tools directory and running the pubidutil script with the -console switch, entering information in the
prompts that follow.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 17

Chapter 2 Quick Start with the .NET XT Toolkit
Creating the Producer Identity
For information about updating producer identity data, see Updating Identity Data.

Generating .NET-compatible Identity Data
The Publisher Identity utility generates your identity files in binary format. FlexNet Embedded Client .NET XT API methods
that initialize client-side identity information in product code take an array of bytes as an argument. To generate a text
representation of your client-identity data, you can use the printbin utility, also in the install_dir\bin\tools directory
of your FlexNet Embedded Client .NET XT toolkit.

To generate a C# array of bytes for use in FlexNet Embedded Client .NET XT code, run the following command:

printbin -cs IdentityClient.bin -o IdentityClient.cs

The output should look similar to the following:

using System;

/* ...comment listing signature name, type, and keys... */

namespace IdentityData
{
 internal static class IdentityClient
 {
 internal static readonly byte[] IdentityData = new byte[] {
 0x68, 0x61, 0x70, 0x70, 0x79, 0x20, 0x6c, 0x69, 0x63, 0x65,
 0x6e, 0x73, 0x69, 0x6e, 0x67, 0x21, 0x20, 0x2d, 0x72, 0x6f,
 ...
 0x62, 0x65, 0x72, 0x74, 0x64, 0x00};
 }
}

Distributing Identity Data
To prepare the client-identity data for use in the FlexNet Embedded Client .NET XT code, copy the file IdentityClient.cs
into a directory where it can be accessed by and compiled into your executable code. (To run the FlexNet Embedded Client
.NET XT examples, copy the identity data to the install_dir\examples\identity directory.)

Caution • For security reasons, it is strongly recommended that your client identity data be embedded in your code in this
fashion, as opposed to loading the binary identity data from an external file at run time.

Finally, upload the IdentityBackOffice.bin to one or both locations as needed:

• If you are enabling your code for FlexNet Embedded licensing, either use the Producer Portal to upload the file to
FlexNet Operations; or, if testing your license-enabled code against the back-office server utility, capserverutil, copy
IdentityBackOffice.bin to the install_dir/bin/tools directory so that it is accessible by the utility.

• If you are enabling your code for Updates and Insights functionality, use the Producer Portal to upload
IdentityBackOffice.bin to FlexNet Operations. Once the identity is uploaded, it is available to the Updates and
Insights notification server.
18 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 2 Quick Start with the .NET XT Toolkit
Building and Running the “BasicClient” Licensing Example
For information about using the FlexNet Operations Producer Portal to upload the back-office identity, refer to the FlexNet
Operations User Guide that is available in the Producer Portal. For information about using capserverutil, see Capability
Server Utility in the Utility Reference chapter.

Updating Identity Data
In some cases you might need to update existing identity data with new information. For example, if you purchase
additional platforms from Revenera and therefore receive new publisher keys, you need to update your identity data so
that it reflects the new platform information. New identity data is always generated based on existing identity data. In
other words, the publisher keys contained within the identity files are replaced with the new values. Other elements, such
as signing and encryption keys, remain unchanged.

Using FlexNet Operations

Typically, you would use FlexNet Operations to update identity data for production systems. For information about how to
do this, refer to the FlexNet Operations documentation. After you update identity data, you need to export the new client
identity and embed it in any new clients. Existing clients in the field do not need to be updated if only publisher keys have
been updated.

Using pubidutil

If you want to generate new identity data for testing purposes, you can use the pubidutil utility (either in command-line or
GUI mode). To ensure that pubidutil generates new identity data that is compatible with the previous set of identity files,
you need to specify the existing back-office identity file when running pubidutil.

To update identity data using pubidutil in UI mode, follow the instructions in section Creating the Identity Binary Files.
Make sure that you use all original settings (identity files, identity name, publisher name, and signature details), with the
exception of the publisher keys which you need to replace with the new keys that you received from Revenera.

To update identity data using pubidutil in console mode, run the pubidutil script in the bin/tools subdirectory of the
toolkit with the -console switch:

pubidutil -console

You will prompted for all of the required information at the command line, with the previous identity information provided
as default values. Press Enter to accept the default values, except for the publisher keys. When prompted, enter the new
publisher keys.

Next Steps

Follow the instructions in the sections Generating .NET-compatible Identity Data and Distributing Identity Data to update
client and server components with the new identity data.

Building and Running the “BasicClient” Licensing
Example

This section walks you through the process of building and running the BasicClient example found in the FlexNet
Embedded Client .NET XT toolkit. The process is geared toward those producers who intend to use only the FlexNet
Embedded functionality in the toolkit or who intend to use both Updates and Insights functionality and FlexNet
Embedded, but simply want to observe how a product license works.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 19

Chapter 2 Quick Start with the .NET XT Toolkit
Building and Running the “BasicClient” Licensing Example
The BasicClient example is the simplest example of code that uses FlexNet Embedded APIs to enable licensing. This
example acquires license rights from a local binary file and prints a message if the license acquisition succeeds. The
following sections walk you through BasicClient build and execution process:

• Building the “BasicClient” Example

• Preparing to Run “BasicClient”

• Running “BasicClient”

Whether you are in a demo or production environment, the build step is required to run the example.

Building the “BasicClient” Example
To build the BasicClient example, use these steps:

1. Open the install_dir\examples\client_samples\BasicClient directory and open the Visual Studio project file
BasicClient.csproj. (The source code for the example is in BasicClient.cs.)

2. In Visual Studio, pull down the Build menu and select Build Solution, saving the solution file BasicClient.sln when
prompted.

When the build finishes, the BasicClient executable is in a Debug subdirectory relative to the project file.

Note • The projects are set up to build the “Any CPU” configuration. It may be necessary to select a different configuration,
depending on your development and target platforms. For example, if building a 32-bit toolkit example on a 64-bit system, you
should select the “x86” configuration.

In the Preparing to Run “BasicClient” section, you will get ready to run the BasicClient example by generating the license
rights to be acquired by the example and by installing the FlexNet Embedded client libraries required by FlexNet
Embedded.

Troubleshooting Compilation Errors for the “BasicClient” Example
If your BasicClient project fails to compile with the error License-enabled code requires client identity data,
which you create with pubidutil and printbin -cs or with FlexNet Operations, make your sure you have done
the following:

• Copied the C#-compatible identity file that you created with pubidutil and printbin into examples\identity.

• Named the identity file IdentityClient.cs.

Preparing to Run “BasicClient”
Before running the BasicClient executable, do the following:

• Generate License Rights

• Install the FlexNet Embedded Client Libraries for FlexNet Embedded
20 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 2 Quick Start with the .NET XT Toolkit
Building and Running the “BasicClient” Licensing Example
Generate License Rights
License rights used by license-enabled code are specific to each producer, which means that a producer’s license-enabled
code can work with only that producer’s licenses. One way to store license rights on a client is in a digitally signed binary
file, which you can create based on an unsigned text representation of the license rights.

Create a text file called license.txt with the following contents:

INCREMENT survey demo 1.0 1-jan-2025 uncounted HOSTID=ID_STRING=1234567890
INCREMENT highres demo 1.0 1-jan-2025 uncounted HOSTID=ID_STRING=1234567890

Each line in the text representation is made up of the following components:

• The names after the INCREMENT keyword (survey and highres) are your feature names; at run time your license-
enabled code attempts to acquire license rights for those features, and reacts accordingly based on whether valid
rights are available.

• Each feature is tied to a particular producer name: demo for the demo toolkit, and your producer name for a production
toolkit.

• Each feature is versioned; the license-enabled code requests a particular version, and if the version in the license
rights is greater than or equal to the requested version, the request succeeds.

• Each feature has an expiration date; if the license rights have expired, the attempt to acquire the license will fail.

• A feature is tied to a particular client using a HOSTID value. In the default toolkit examples, clients are assumed to have
a hard-coded string identifier “0123456789”, while in practice your code specifies the desired type of client identifier
(such as an Ethernet address) to examine at run time in order to compare it with the identifier in the license rights. For
more information, see Hostids.

For more details about feature-definition syntax, see Feature Definitions.

To digitally sign the license rights so that only your license-enabled code can acquire the licenses, use the
licensefileutil utility. From the install_dir\bin\tools directory, run the following command in a console window:

licensefileutil -id IdentityBackOffice.bin license.txt license.bin

The output, license.bin, is a binary representation of your license rights that can be acquired by license-enabled code at
runtime. You will later copy this file to a location where your FlexNet Embedded Client .NET XT code can read it.

Install the FlexNet Embedded Client Libraries for FlexNet Embedded
FlexNet Embedded makes use of certain FlexNet Embedded client libraries for some of its licensing functionality. These
libraries, located in the lib subdirectory of your FlexNet Embedded Client .NET XT toolkit, include the following:

• The FlxCore.dll (on 64-bit systems, FlxCore64.dll) native library

• .NET assemblies FlxClientCommon.dll and FlxLicensingClient.dll

The provided Visual Studio project for the examples automatically copies the libraries to the directory where the
executable resides.

In practice, your installation program should copy these DLLs to an appropriate directory on a target system.

Important • Always use the version of the “FlxCore” library that matches the version of FlexNet Embedded used in your
implementation.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 21

Chapter 2 Quick Start with the .NET XT Toolkit
Building and Running the “BasicClient” Licensing Example
Running “BasicClient”
At this point, you can put the pieces together and test the BasicClient example.

Copy the binary license rights file license.bin you generated in the section Generate License Rights into the current
directory.

Next, launch the BasicClient executable (from the examples\client_samples\BasicClient\Debug directory), specifying
the location of license.bin as a command-line argument:

BasicClient.exe license.bin

If the attempt to acquire the licenses is successful, you will see confirmation that the survey and highres features were
successfully acquired.

INFO: Using default license file .\license.bin
INFO: Reading data from .\license.bin
INFO: License acquisition for feature 'survey' version '1.0' successful
INFO: License acquisition for feature 'highres' version '1.0' successful

Troubleshooting Build Errors for the “BasicClient” Example
If your BasicClient executable fails to launch or is unable to acquire any licenses, try these troubleshooting methods:

• If an error beginning Failed to load FlxCore library is displayed, or the application exits with a
FileNotFoundException or DllNotFoundException message that refers to FlxLicensingClient, FlxClientCommon or
flxcore, verify that the libraries FlxCore.dll, FlxLicensingClient.dll and FlxClientCommon.dll have been
properly installed, as described in Install the FlexNet Embedded Client Libraries for FlexNet Embedded.

In addition, verify that the project has been built for the correct architecture: if building an example from the 32-bit
toolkit on a 64-bit system, change the build configuration from “Any CPU” to “x86”.

• If an error message ERROR: Unable to find file license.bin is displayed, verify that the BasicClient executable
was able to find the binary license rights file license.bin. You can specify the path to the buffer license file as a
command-line argument to BasicClient.

• If an error message Data version is not supported is displayed, verify that the BasicClient executable is loading a
signed binary license file, and not (for example) a text file or other file type.

• Verify that both the client identity (IdentityClient.cs) used by the executable and the back-office identity
(IdentityBackOffice.bin) have been generated from the same information in the pubidutil utility. Both identities
must use the same producer name, producer keys, and signature algorithm and strength. If a discrepancy issue exists,
the example prints exception information (ERROR: Signature didn't pass validation) that the identities do not
match.

• If launching BasicClient displays an error message such as BasicClient.exe is not a valid Win32 application,
verify that the project was built with the correct configuration. For example, this error will occur when building the x64
configuration but executing the code on a 32-bit system.

• The View example that ships with the toolkit will display a simple diagnostic report of the license rights contained in a
binary license file. If the BasicClient executable is unable to acquire licenses, pointing the View example to the
binary license file may indicate issues with the original license’s syntax or attributes.
22 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 2 Quick Start with the .NET XT Toolkit
Building and Running the “Notification” Example
Building and Running the “Notification” Example
This section walks you through the process of building and running the basic Notification example found in the FlexNet
Embedded Client .NET XT toolkit. The process is geared toward those producers who intend to use only the Updates and
Insights functionality in the toolkit or who intend to use both Updates and Insights functionality and FlexNet Embedded,
but simply want to observe a sample product-notification process (in this case, for product updates).

• Building the “Notification” Example

• Preparing to Run “Notification”

• Running “Notification”

The results of running this example can help you verify whether your required Updates and Insights components are in
place.

Building the “Notification” Example
Whether you are in a demo or production environment, the build step is required to run the example.

To build the Notification project do the following:

1. Open the project file install_dir\examples\uai_client_samples\Notification\Notification.csproj in Visual
Studio.

2. In Visual Studio, pull down the Build menu and select Build Solution, saving the solution file notification.sln when
prompted.

When the build finishes, the Notification.exe executable is available in the Debug subdirectory relative to the project file.

Troubleshooting Compilation Errors for the “Notification” Example
If your Notification project fails to compile with the error License-enabled code requires client identity data,
which you create with pubidutil and printbin -cs or with FlexNet Operations, ensure that you have done the
following:

• Copied the C#-compatible identity file that you created with pubidutil and printbin into examples\identity.

• Named the identity file IdentityClient.cs.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 23

Chapter 2 Quick Start with the .NET XT Toolkit
Building and Running the “Notification” Example
Preparing to Run “Notification”
Before running the Notification executable, do the following:

• Install the FlexNet Embedded Client Libraries for Updates and Insights

• Add a Product and Its Update to the Publisher Site

Install the FlexNet Embedded Client Libraries for Updates and Insights
Updates and Insights functionality makes use of certain FlexNet Embedded client libraries for some of its licensing
functionality. These libraries, located in the lib subdirectory of your FlexNet Embedded Client .NET XT toolkit, include the
following:

• The FlxCore.dll native library (FlxCore64.dll for 64-bit systems)

• .NET assemblies FlxClientCommon.dll and FlxUAIClient.dll

The provided Visual Studio project for the examples automatically copies these libraries to the directory where the
executable resides.

In practice, your installation program should copy these DLLs to an appropriate directory on a target system.

Important • Always use the version of the “FlxCore” library that matches the version of the FlexNet Embedded Client toolkit
used in your implementation.

Add a Product and Its Update to the Publisher Site
Before you can successfully run the Notification example, a sample product package must be defined and its update
published in FlexNet Operations for access by the notification server. For instructions, refer to the FlexNet Operations User
Guide that is available in the Producer Portal.

Then, before executing the Notification example, you can access the Package Products or the Updates page in FlexNet
Operations to obtain the following information for the product package and update:

• The package ID for the product for which you will request update notifications. This information is required for
running the example.

• The Microsoft Language Locale Identifier (LCID) for the language of the product package if the default value (1033)
used by Notification example is not applicable. See Running “Notification” for details.

Tip • For best results, follow the exercises in the sections “Getting Started with Entitlement Management” and “Getting
Started with Updates and Insights” in the FlexNet Operations User Guide. There you can create a product, an entitlement,
download packages, and an update that you can use to test the Updates and Insights API implementations.
24 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 2 Quick Start with the .NET XT Toolkit
Building and Running the “Notification” Example
Running “Notification”
At this point, test the Notification example.

From the directory where the executable resides (install_dir\examples\uai_client_samples\Notification\Debug),
run a command similar to this:

notification -server https://siteID-ns-uat.flexnetoperations.com -register ACT01-PhotoPrint
-download -packageid PhotoPrintInstaller -productlang 1033

The following describes the arguments used in the command:

• -server url identifies the location of the notification server to which the Updates and Insights client is connecting to
obtain available notifications. This URL needs to be made available to each of the clients.

Note that the URL above points to a User Acceptance Test (UAT) environment indicated by the -uat following the
siteID. For production environments, the -uat is omitted.

• -register activationid uses a valid activation ID (called rights ID in FlexNet Embedded) to register the hostid of the
client device with Revenera-hosted FlexNet Operations. Registration is a one-time event for the device. If the device
has been previously registered either through Updates and Insights or through FlexNet Embedded client functionality,
you do not need to re-register it. The -register and -packageid arguments can be specified in the same command
first to register the device and then retrieve notifications.

The activation ID specified for this argument must be associated with an entitlement in FlexNet Operations that is
mapped to a valid customer account to which you are registering this device. The entitlement itself must contain an
unmetered, uncounted license for the purpose of simply identifying the client device.

In a production environment, the producer must supply the end user with the appropriate activation ID with which to
register the device. This information is typically conveyed through an email message.

For more information, see One-time Event: Client Device Registration with FlexNet Operations in the Using the
Updates and Insights APIs chapter.

• -download downloads the payload associated with each update notification. If the payload is a single file, that file is
downloaded and, if marked for execution, is run to complete the update installation. If the payload is a manifest file,
the file is downloaded and, in turn, each of the items in the manifest is downloaded. Those items marked for execution
are then run to complete the product update installation.

Currently, the notification server supports only a manifest file as the content type for an update (that is, its payload).

• -packageid identifies the product package for which you are requesting notifications. If this argument is not
specified, the value defaults to Test1.

• -productplat identifies the platform on which the product package runs. Valid values include WIN32 and WIN64. If this
argument is not specified, the operating system of the client device is detected and sent in the request.

• -productlang specifies the Microsoft Language Locale Identifier (LCID) in decimal format for the language of the
current product package. If this argument is not specified, the LCID defaults to 1033 (for U.S English).

• -commproduct creates a communications object at the product-package object level, enabling custom options to be
set for communications with the notification server.

If this argument is not used, communications are handled by a default communications object created in internally for
the product package object.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 25

Chapter 2 Quick Start with the .NET XT Toolkit
Building and Running the “Notification” Example
• -commdownload creates a communications object for a given item marked as “update” in the notification collection,
enabling you to set custom options for each for each item marked as “update” in the notification collection to
download the payload for that item.

If this argument is not used, communications are handled by default communications objects created internally for
the “update” notification items.

• -maxrate sets the maximum rate for downloads in bytes per second across all communications objects created for
those items marked as “update” in the notification collection. This argument automatically implies the
-commdownload argument.

Confirmation Output
If the attempt to run the Notification example is successful, confirmation output similar to the following is displayed.(In
this case, if the -download argument was used in the command.)

Note that the 'To' Product Package ID value is the ID of the product package ID to which the existing product package is
updating.

Registering client with activation id: ACT01-PhotoPrint.
Polling notification server for client registration result.
Client registration complete.

--
 Product package id: PhotoPrintInstaller
 Product language: 1033
 Product platform: WIN32
--

Fetching notification collection for product package id: PhotoPrintInstaller.
Polling notification server for notification collection.
Polling notification server for notification collection.
Notification collection received.

1 notification items returned for requested product package id.

Notification item 1 of 1 attributes:
 Type: Update
 Notification ID: PhotoPrint-Update-V12.1
 Product Package ID: PhotoPrintInstaller
 'To' Product Package ID: PhotoPrintInstaller-V12.1
 Notification Name: PhotoPrint-Update
 Title: English
 Content Type: MANIFEST
 Description: English language
 Details: English language
 Download Type: PRESENT_FIRST
 Download URL: https://mytenant-ns-uat.flexnetoperations.com/manifests/c0b6059b-
 11ef-4339-8146-5b88b8d78928
 Download Size: 1024
 Availability Date: 04/30/2018
 Expiration Date: 04/30/2019
 Elevation Required: False

Downloading notification #1
26 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 2 Quick Start with the .NET XT Toolkit
Next Steps
Download started
Download ended
Execution started
Execution ended
Download successful to: C:\Users\JohnFrum\Downloads\c0b6059b-11ef-4339-8146-5b88b8d78928
SUCCESS: Notification application complete

Troubleshooting Build Errors for the “Notification” Example
If your Notification executable fails to launch or is unable to complete the notification and update process, consider the
following:

• If an error beginning with Failed to load FlxCore library is displayed, or the application exits with a
FileNotFoundException or DllNotFoundException message that refers to FlxCore, verify that the FlxCore.dll library
has been properly installed, as described in Install the FlexNet Embedded Client Libraries for Updates and Insights.

• If an error containing this information is displayed, make sure you have provided the correct URL or port number for
the notification server:

ERROR: FlxDotNetClient.ServerResponseException encountered:
Server response error.
The remote name could not be resolved: 'some.bad.url'

• Checking for proxy servers and fire walls might resolve certain communications errors as well.

• Verify that the client identity (IdentityClient.cs) and the back-office identity (IdentityBackOffice.bin) have been
generated from the same information in the pubidutil utility. Both identities must use the same producer name,
producer keys, and signature algorithm and strength. If a discrepancy issue exists, the example prints exception
information that the identities do not match.

• If launching the Notification example displays an error message such as Notification.exe is not a valid Win32
application, verify that the project was built with the correct configuration. For example, this error can occur when
building the x64 configuration but executing the code on a 32-bit system.

Next Steps
This chapter has demonstrated simple scenarios for verifying that your toolkit is working properly. See the remaining
chapters for information about the following:

• The FlexNet Embedded Client .NET XT toolkit directory structure, examples, API groups, and terminology

• Using FlexNet Embedded functionality to create and manage additional sources of license rights: demo licenses,
replacement licenses (served to trusted storage or buffers), and certificate licenses

• Dynamically generating license rights with a back-office serve.

• Using the Updates and Insights functionality to obtain product updates from the notification server and download
and install them

• Using utilities provided with the toolkit.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 27

Chapter 2 Quick Start with the .NET XT Toolkit
Next Steps
28 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

3

Quick Start with the .NET Core XT Toolkit
This chapter describes the basics needed to get started with the FlexNet Embedded Client .NET Core XT toolkit:

• Toolkit Requirements

• Downloading the Toolkit

• Creating the Producer Identity

• Building and Running the “BasicClient” Licensing Example

• Next Steps

The remaining chapters provide more information about the toolkit and delve into actual use of its FlexNet Embedded
functionality.

Toolkit Requirements
For information about supported toolkit platforms and prerequisites for developing, building, and deploying your product
with the toolkit, see the current version of the FlexNet Embedded Client Release Notes.

Downloading the Toolkit
The email you received from Revenera provides instructions for downloading the FlexNet Embedded Client .NET Core XT
toolkit from the Product and License Center. These instructions can vary, depending on whether you are downloading a
purchased toolkit or one that you are evaluating.

You have the option to download either flexnet_client-xt-dotnet_core-version.zip or flexnet_client-xt-
dotnet_core-version.tgz, depending on the archive method most convenient for you. Once the toolkit archive is
downloaded, you decompress it somewhere on your system.

In this book, the root directory of the decompressed toolkit is referred to as install_dir.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 29

Chapter 3 Quick Start with the .NET Core XT Toolkit
Creating the Producer Identity
Creating the Producer Identity
As a producer, your downloaded FlexNet Embedded Client .NET Core XT toolkit is unique to your organization, in the sense
that no organization’s license-enabled code can use another organization’s license rights.

Each producer is identified by a unique producer name and unique producer keys. To enable your .NET XT Core toolkit, you
must generate producer identity data to be used by your back-end tools and by your license-enabled code. A set of
producer identity data files contains a combination of cryptographic data and settings used to digitally sign your license
rights on the back-office server and to validate these license rights messages sent to the client.

To generate your organization’s identity files, use the pubidutil utility available in the toolkit. This utility can be used to
generate identity information in a demo or production environment.

Note • You typically use “pubidutil” to generate demo identity information but use FlexNet Operations to generate your
producer identity data for production.

The following sections describe how to create your producer identity:

• Create the Identity Binary Files

• Generate .NET-compatible Identity Data

• Distribute Identity Data

Create the Identity Binary Files
To create your producer-identity binary files, you need the demo keys or production keys specific to your organization, as
provided in your email from Revenera. You also need access to the pubidutil utility (also called the Publisher Identity
utility) provided in the FlexNet Embedded Client .NET Core XT toolkit.

Task To create the identity binary files for your organization

1. Launch pubidutil by double-clicking install_dir\bin\tools\pubidutil.bat in a Windows environment (or
install_dir/bin/tools/pubidutil in other environments) or by running the utility from a command window.

The Publisher Identity Utility window opens.

2. Enter the following:

• Names and locations where your server identity and client identity files will be created (or reopened, if the files
already exist).

• An Identity Name, which is a unique name—such as demo-med-rsa—for this collection of identity settings.

• The Publisher Name—a case-sensitive value such as demo—and Publisher Keys—five hexadecimal numbers—all
of which are provided in your email message from Revenera.

• The desired digital signature type and strength. For this example, select RSA from the Signature Type options,
and select Medium (1024 bit) and SHA-256 from the Signature and digest strength options.
30 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 3 Quick Start with the .NET Core XT Toolkit
Creating the Producer Identity
Figure 3-1: Entering Producer-specific Information for the Publisher Identity Utility

3. Click Finish when you have entered this information. The pubidutil utility creates the following identity files in the
location you specified.

• The back-office identity data—by convention called IdentityBackOffice.bin—is used by the back-office server
to digitally sign license rights and must be kept secure. The back-office server is either FlexNet Operations or the
test back-office server utility capserverutil (Capability Server utility).

• The client identity data—by convention called IdentityClient.bin—is included in your license-enabled code in
order to acquire license rights at run time.

• The client–server identity data—IdentityClientServer.bin—is used when preparing a FlexNet Embedded
license server, as described in the FlexNet Embedded License Server Producer Guide.

You can also run the Publisher Identity utility in text mode by opening a command prompt window to the
install_dir\bin\tools directory and running the pubidutil script with the -console switch, entering information in the
prompts that follow.

For information about updating producer identity data, see Update Identity Data.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 31

Chapter 3 Quick Start with the .NET Core XT Toolkit
Creating the Producer Identity
Generate .NET-compatible Identity Data
The pubidutil utility generates your identity files in binary format. However, the toolkit API methods that initialize client-
side identity information in your license-enabled assembly code take a C# byte array as an argument. To generate this byte
array, use the printbin utility, found in the install_dir\bin\tools directory of your FlexNet Embedded Client .NET Core
XT toolkit.

Run the following command:

printbin -cs IdentityClient.bin -o IdentityClient.cs

The output should look similar to the following:

using System;

/* ...comment listing signature name, type, and keys... */

namespace IdentityData
{
 internal static class IdentityClient
 {
 internal static readonly byte[] IdentityData = new byte[] {
 0x68, 0x61, 0x70, 0x70, 0x79, 0x20, 0x6c, 0x69, 0x63, 0x65,
 0x6e, 0x73, 0x69, 0x6e, 0x67, 0x21, 0x20, 0x2d, 0x72, 0x6f,
 ...
 0x62, 0x65, 0x72, 0x74, 0x64, 0x00};
 }
}

This array of bytes representing your client identity will be compiled into .NET assembly code. See Distribute Identity Data
for information about where to put this file for inclusion in the build.

Caution • For security reasons, it is strongly recommended that your client-identity data be embedded in your code in this
fashion, as opposed to loading the binary identity data from an external file at run time.

Distribute Identity Data
To prepare the client-identity data for use in .NET code, copy the file IdentityClient.cs into a directory where it can be
accessed by and compiled into your executable code. (To run the FlexNet Embedded Client .NET Core XT examples, copy
the identity data to the install_dir\examples\identity directory.)

Finally, provide the IdentityBackOffice.bin to the licensing back-office server—that is, FlexNet Operations or the test
back-office server utility capserverutil (Capability Server utility).

Update Identity Data
In some cases you might need to update existing identity data with new information. For example, if you purchase
additional platforms from Revenera and therefore receive new publisher keys, you need to update your identity data so
that it reflects the new platform information. New identity data is always generated based on existing identity data. In
other words, the publisher keys contained within the identity files are replaced with the new values. Other elements, such
as signing and encryption keys, remain unchanged.
32 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 3 Quick Start with the .NET Core XT Toolkit
Building and Running the “BasicClient” Licensing Example
Using FlexNet Operations

Typically, you would use FlexNet Operations to update identity data for production systems. For information about how to
do this, refer to the FlexNet Operations documentation. After you update identity data, you need to export the new client
identity and embed it in any new clients. Existing clients in the field do not need to be updated if only publisher keys have
been updated.

Using pubidutil

If you want to generate new identity data for testing purposes, you can use the pubidutil utility (either in command-line or
GUI mode). To ensure that pubidutil generates new identity data that is compatible with the previous set of identity files,
you need to specify the existing back-office identity file when running pubidutil.

To update identity data using pubidutil in UI mode, follow the instructions in section Create the Identity Binary Files.
Make sure that you use all original settings (identity files, identity name, publisher name, and signature details), with the
exception of the publisher keys which you need to replace with the new keys that you received from Revenera.

To update identity data using pubidutil in console mode, run the pubidutil script in the bin/tools subdirectory of the
toolkit with the -console switch:

pubidutil -console

You will prompted for all of the required information at the command line, with the previous identity information provided
as default values. Press Enter to accept the default values, except for the publisher keys. When prompted, enter the new
publisher keys.

Next Steps

Follow the instructions in the sections Generate .NET-compatible Identity Data and Distribute Identity Data to update
client and server components with the new identity data.

Building and Running the “BasicClient” Licensing
Example

This section walks you through the process of building and running the BasicClient example found in the FlexNet
Embedded Client .NET Core XT toolkit. The process is geared toward those producers who want to observe how a product
license works.

The BasicClient example is the simplest example of code that uses FlexNet Embedded APIs to enable licensing. This
example acquires license rights from a local binary file and prints a message if the license acquisition succeeds. The
following sections walk you through BasicClient build and execution process:

• Phase 1: Provide the Prerequisites for “BasicClient”

• Phase 2: Prepare to Build “BasicClient” Executable

• Phase 3: Build and Run the “BasicClient” Example

Phase 1: Provide the Prerequisites for “BasicClient”
Before building and running the BasicClient example, ensure that the prerequisites are in place:
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 33

Chapter 3 Quick Start with the .NET Core XT Toolkit
Building and Running the “BasicClient” Licensing Example
• Client Identity File: Copied to Proper Location

• License Rights: Created and Copied to Proper Location

• .Net Core: Installed on the Target Machine

Client Identity File: Copied to Proper Location
Verify that the IdentityClient.cs file (built using steps in Creating the Producer Identity) resides in the
install_dir\examples\identity directory.

License Rights: Created and Copied to Proper Location
License rights used by license-enabled code are specific to each producer, which means that a producer’s license-enabled
code can work with only that producer’s licenses. One way to store license rights on a client is in a digitally signed binary
file, which you can create based on an unsigned text representation of the license rights. The following procedure
describes how to create a binary license file for the BasicClient example.

Task To create the binary license file for the BasicClient example

1. Create a text file called license.txt with the following contents:

INCREMENT survey demo 1.0 1-jan-2025 uncounted HOSTID=ID_STRING=1234567890
INCREMENT highres demo 1.0 1-jan-2025 uncounted HOSTID=ID_STRING=1234567890

Each line in the text representation of license rights is made up of the following components. (For details about
feature definitions, see Feature Definitions.)

• The names after the INCREMENT keyword (survey and highres) are your feature names; at run time your license-
enabled code attempts to acquire license rights for those features, and reacts accordingly based on whether
valid rights are available.

• Each feature is tied to a particular producer name: demo for the demo toolkit, and your producer name for a
production toolkit.

• Each feature is versioned; the license-enabled code requests a particular version, and if the version in the license
rights is greater than or equal to the requested version, the request succeeds.

• Each feature has an expiration date; if the license rights have expired, the attempt to acquire the license will fail.

• A feature is tied to a particular client using a HOSTID value. In the default toolkit examples, clients are assumed to
have a hard-coded string identifier “0123456789”, while in practice your code specifies the desired type of client
identifier (such as an Ethernet address) to examine at run time in order to compare it with the identifier in the
license rights. For more information, see Hostids.

2. Use the licensefileutil utility to digitally sign the license rights so that only your license-enabled code can acquire
the licenses. From the install_dir\bin\tools directory, run the following command in a console window:

licensefileutil -id IdentityBackOffice.bin license.txt license.bin

The output, license.bin, is a binary representation of your license rights that can be acquired by license-enabled
code at run time. This file must be placed in a location where your license-enabled .NET code can read it.
34 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 3 Quick Start with the .NET Core XT Toolkit
Building and Running the “BasicClient” Licensing Example
3. So that license.bin resides in a place where the .NET code for BasicClient can read it, copy the file to the
install_dir\examples\client_examples\BasicClient directory (where the BasicClient project file is located.)

.Net Core: Installed on the Target Machine
Microsoft .NET Core needs to be installed on the machine on which you are building and executing BasicClient. Refer to the
current FlexNet Embedded Client Release Notes for the list of .NET Core framework versions that FlexNet Embedded
supports.

If you need to download and install .NET Core, you can use the following link:

https://www.microsoft.com/net/core#windowsvs2017

Phase 2: Prepare to Build “BasicClient” Executable
Use the following steps to prepare to build the BasicClient executable:

• Step 1: Ensure Project File Points to Correct .NET Core Framework Version

• Step 2: Run “restore” to Obtain Latest Packages

• Step 3: Copy “FlxCore” to the Project Folder

Step 1: Ensure Project File Points to Correct .NET Core Framework Version
By default, the project file for the BasicClient points to a specific .NET Core framework target to build and run
BasicClient. You need to review this file and make any necessary edits to ensure that it specifies the .NET Core framework
version installed on your machine, as described in .Net Core: Installed on the Target Machine.

Task To ensure that the project file points to the correct .NET Core version

1. Navigate to the install_dir\examples\client_samples\BasicClient directory, and open the project file
BasicClient.csproj in a text editor.

2. If necessary, edit the contents to ensure that the project points to the correct .NET Core framework version installed
on your machine.

You have the option to point to multiple target frameworks. If you do so, all specified targets are compiled when you
build the project. However, you will need to designate the specific target under which to execute the assembly
(described later in Phase 3: Build and Run the “BasicClient” Example).

Step 2: Run “restore” to Obtain Latest Packages
A “dotnet restore” process is necessary to ensure that your machine has the latest packages required to build and run the
BasicClient example. In addition to installing required .NET Core packages, this process also installs the required FlexNet
Embedded component flexera.flxlicensingclient.core if it is missing.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 35

https://www.microsoft.com/net/core#windowsvs2017

Chapter 3 Quick Start with the .NET Core XT Toolkit
Building and Running the “BasicClient” Licensing Example
Task To run the “dotnet restore”

At a command prompt, navigate to the install_dir\examples\client_samples\BasicClient directory (that is, the
location of the project file), and run the following:

dotnet restore

This process installs the necessary packages on your machine. Typically, this is in the current user’s .nuget directory.

Step 3: Copy “FlxCore” to the Project Folder
FlexNet Embedded makes use of FlxCore native component for some of its licensing functionality. You must extract the
appropriate FlxCore component in your toolkit and copy it to a location accessible by the BasicClient example. The
FlxCore native components are stored under the FlxCore folder within the
Flexera.FlxLicensingClient.core.2017.11.0.nupkg archive, which is located in the install_dir\lib directory.

Task To locate and copy the native FlxCore component

1. Within the Flexera.FlxLicensingClient.core.2017.11.0.nupkg archive, navigate to the FlxCore directory to
locate the component appropriate for the operating system on which your building and executing the example.

The following are the available FlxCore native components:

• libFlxCore.so.version (for i86 Linux)

• libFlxCore64.so.version (for x64 Linux)

• FlxCore.dll (for i86 Windows)

• FlxCore64.dll (for x64 Windows)

• libFlxCore.version.dylib (for OS X 10)

Important • Always use the version of the “FlxCore” library that matches the version of FlexNet Embedded used in your
implementation.

2. Extract the FlxCore component and copy it to the location of the project file. For BasicClient this is the
install_dir\examples\client_samples\BasicClient directory.

Phase 3: Build and Run the “BasicClient” Example
The following procedure describes how to build and run the BasicClient example.

Note • While the procedure described here uses a command line, you can also build the example using Microsoft Visual
Studio. See the current FlexNet Embedded Client Release Notes for the Visual Studio versions that support this process.
36 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 3 Quick Start with the .NET Core XT Toolkit
Building and Running the “BasicClient” Licensing Example
Task To build and run the BasicClient example

At a command prompt, do one of the following, based on your .NET Core target specification in the project (see Step 1:
Ensure Project File Points to Correct .NET Core Framework Version):

• If you pointed to a single .NET Core framework target in the project, run the following command from the
install_dir\examples\client_samples\BasicClient directory to compile and run the example run using that
framework version:

dotnet run

• If you specified multiple .NET Core framework targets, use the -f argument to specify the framework version under
which to execute BasicClient. (Note that all framework targets that you specify in the project are compiled.) For
example, to run the example under the netcoreapp2.0 target (that is, .NET Core 2.0), you would enter the following:

dotnet run -f netcoreapp2.0

When the example runs, it acquires license rights from the license binary file you created and prints a message if the license
acquisition succeeds.

Troubleshooting Compilation or Execution Errors for the BasicClient
Example

The following sections provide some troubleshooting suggestions for errors that occur during the build or execution of the
BasicClient.

Compilation Errors

Your BasicClient project might fail to compile with the following error:

License-enabled code requires client identity data, which you create with pubidutil and printbin -cs
or with FlexNet Operations

To troubleshoot this problem, make your sure you have done the following:

• Copied the C#-compatible identity file that you created with pubidutil and printbin into examples\identity.

• Named the identity file IdentityClient.cs.

Execution Errors

If your BasicClient executable fails to launch or is unable to acquire any licenses, try these troubleshooting methods:

• If an error beginning Failed to load FlxCore library is displayed, verify that the FlxCore native component has
been properly installed, as described in Phase 2: Prepare to Build “BasicClient” Executable.

• If an error message ERROR: Unable to find file license.bin is displayed, verify that the BasicClient executable
was able to find the binary license rights file license.bin. You can specify the path to the buffer license file as a
command-line argument to BasicClient.

• If an error message Data version is not supported is displayed, verify that the BasicClient executable is loading a
signed binary license file, and not (for example) a text file or other file type.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 37

Chapter 3 Quick Start with the .NET Core XT Toolkit
Next Steps
• Verify that the client identity—that is, the array of bytes in IdentityClient.cs created from IdentityClient.bin
using printbin—and the back-office identity, IdentityBackOffice.bin, used when digitally signing license rights
were generated from the same information in the pubidutil utility. Both identities must be generated from the same
producer name, producer keys, and signature algorithm and strength. If this is the issue, the example prints exception
information (ERROR: Signature didn't pass validation) that the identities do not match.

• The View example that ships with the toolkit will display a simple diagnostic report of the license rights contained in a
binary license file. If the BasicClient executable is unable to acquire licenses, pointing the View example to the
binary license file may indicate issues with the original license’s syntax or attributes.

Next Steps
This chapter has demonstrated simple scenarios for verifying that your toolkit is working properly. See the remaining
chapters for information about the following:

• The FlexNet Embedded Client .NET Core XT toolkit directory structure, examples, API groups, and terminology.

• Using FlexNet Embedded functionality to create and manage additional sources of license rights: trial licenses,
replacement licenses (served to trusted storage or buffers), certificate licenses, and other licenses.

• Dynamically generating license rights with a back-office server.

• Using utilities provided with the toolkit.
38 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

4

Toolkit Overview
Both the FlexNet Embedded Client .NET XT toolkit (which uses the .NET Framework) and the FlexNet Embedded Client .NET
Core XT toolkit (which uses .NET Core) provide a collection of libraries, example source code, and utilities used by a
producer to enable FlexNet Embedded licensing functionality in your product code. The FlexNet Embedded Client .NET XT
additionally supports Updates and Insights functionality to provide notification services.

This chapter provides basic information to help you get started with either toolkit:

• Concepts: Licensing and Updates Functionality

• Toolkit Requirements

• FlexNet Embedded Client .NET XT Toolkit Contents

• FlexNet Embedded Client .NET Core XT Toolkit Contents

• About the Example Projects

• Building and Running the Examples in the .NET XT Toolkit

• Building and Running Examples in the .NET Core XT Toolkit

• Toolkit Files to Distribute with Your Product

Concepts: Licensing and Updates Functionality
This section explains basic terminology and concepts used in this guide to describe FlexNet Embedded licensing and
Updates and Insights functionality:

• FlexNet Embedded Concepts

• Concepts of Updates and Insights

The following are some of the concepts and terminology used throughout this documentation.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 39

Chapter 4 Toolkit Overview
Concepts: Licensing and Updates Functionality
FlexNet Embedded Concepts
The following are some of the FlexNet Embedded concepts and terminology used throughout this documentation:

• Hostids

• Feature Definitions

• Back-office Servers and License Servers

• Trusted Storage

• Capability Requests and Responses

Hostids
FlexNet Embedded uses system identifiers, called hostids, for identification and license locking. A feature is tied to a
particular client using a hostid value which is specified in the license file. When the client requests a license for a feature
from the license server, the client includes a hostid in the request to which the license server binds the licenses sent in the
response.

This section focusses on client hostids for the .NET XT SDK. For information about hostids for other SDKs, refer to the user
guide for the respective client kit. For information about server hostids, refer to the FlexNet Embedded License Server
Administration Guide.

Hostid Types

Supported hostid types include:

• String hostid, typically used in testing.

• Ethernet (MAC) address

• IPv4 address

• IPv6 address

• Aladdin dongle (flexid9)

• Wibu-Systems dongle (flexid10)

• UUID of a supported virtual machine

• Container ID of a supported containerization technology.

Hostid Keywords in Feature Definitions

Each feature definition specifies the hostid to which the license is node-locked. The hostid should be expressed as
HOSTID=type=zzz, where type is a keyword indicating the hostid type and zzz is a string of UTF-8 characters. (An exception
is the special expression HOSTID=ANY, which matches any client system, and which is commonly used with served licenses.)
For more detailed information about feature definitions, see the following section, Feature Definitions.

Most of the hostid comparisons are not case sensitive, with the exception of STRING (for example,
HOSTID=ID_STRING=AAAAA is different from HOSTID=ID_STRING=aaaaa).
40 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 4 Toolkit Overview
Concepts: Licensing and Updates Functionality
The following table lists the keywords to use for different types of hostids in the text license file and when creating license
rights using the licensefileutil, capresponseutil, and other testing and development tools:

Feature Definitions
At run time, license-enabled code attempts to acquire one or more licenses, the presence or characteristics of which
enable a certain capability, capacity, or configuration. Licenses are acquired from license sources, which in turn contain
license rights. License rights, in turn, are made up of one or more features, each with a feature definition.

The following provides details about features:

• Feature Definition Syntax

• Required Feature Fields

• Optional Feature Keywords

• More About Feature Processing

Feature Definition Syntax

Each feature definition in an unsigned set of license rights uses the following format:

INCREMENT name producername version exp count [optional keywords] HOSTID=type=zzz

Table 4-1 • Supported Hostid Types and their Keywords

Hostid Type Keyword Example Case Sensitive

String ID_STRING HOSTID=ID_STRING=12345ABcde Yes

Ethernet (MAC) address This type of hostid does not
use a keyword between
HOSTID= and the hostid
value.

HOSTID=0037c0b82e82 No

Internet (IPv4) address INTERNET HOSTID=INTERNET=11.22.33.44 No

Internet (IPv6) address INTERNET6 HOSTID=INTERNET6=2001:0db8:0000:
0000:ff8f:effa:13da:0001

No

Aladdin dongle FLEXID9 HOSTID=FLEXID=9-566d9316 No

Wibu-Systems dongle FLEXID10 HOSTID=FLEXID=10-0bebc202 No

UUID of a supported
virtual machine

VM_UUID HOSTID=VM_UUID=AAAAAAAA-BBBB-
CCCC-DDDDEEEEEEEEEEEE

No

Container ID of a
supported
containerization
technology

CONTAINER_ID HOSTID=CONTAINER_ID=adbdac367028 No
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 41

Chapter 4 Toolkit Overview
Concepts: Licensing and Updates Functionality
Toolkit utilities convert the unsigned text license representation into a digitally signed binary representation that can be
consumed by license-enabled code.

Required Feature Fields

The following shows an example feature definition:

INCREMENT lights demo 1.0 1-jan-2025 uncounted HOSTID=ID_STRING=Bldg123 \
START=1-jan-2013 VENDOR_STRING="Hello, World!"

The first six fields (the INCREMENT keyword through the count field) in an unsigned feature definition must occur in this
order; the HOSTID and optional keywords can occur in any order.

The following describes the required fields:

• Feature names used in FlexNet Embedded Client C XT are case sensitive. For example, a feature named F1 is different
from one named f1.

Caution • A licensing keyword—START, NOTICE, and so forth—cannot be used as a feature name. Moreover, there are
some reserved words that cannot be used as feature names, including CAPACITY, PACKAGE, SUPERSEDE, and UPGRADE.

• The “demo” version of the FlexNet Embedded Client .NET XT or .NET Core XT toolkit uses the demo producer name
(used for evaluation purposes only). The producer name is case-sensitive.

• Feature versions must use the format a.b, where a and b are numbers. The integer part a can be a value from 0 through
32767, and the fractional part b can be a value from 0 through 65535. Version comparisons are performed field by field:
2.0 is a greater version than 1.5; 1.10 is a greater version than 1.1; 1.01 and 1.1 are considered equal versions.

• Expiration dates in a feature definition must be expressed using the format dd-mmm-yyyy, where mmm is the first three
letters of the English month name (jan, feb, mar, and so forth). To indicate a license that does not expire, the
expiration date can be expressed as permanent or as a date with year zero, such as 1-jan-0.

• The count value uncounted (or value 0) is used for uncounted node-locked licenses. Counted licenses, whether to be
used on a client or served by a license server, use a positive integer count. (The count value 2147483647 is also treated
as uncounted.)

• The hostid to which the license is node-locked should be expressed as HOSTID=type=zzz, where type is a keyword
indicating the hostid type and zzz is a string of UTF-8 characters. See Hostids for a list of hostid keywords. You can
express multiple hostids using the space-separated hostid format HOSTID="ID_STRING=A1 ID_STRING=B2". However,
a hostid itself cannot contain a space character. See Specifying the Hostid Type to Use in the Using FlexNet Embedded
APIs chapter for details.

Optional Feature Keywords

The following optional keywords can be used in a feature definition, in the form KEYWORD=value. Keyword values
containing spaces must be surrounded with quotation marks, as in NOTICE="For the use of Example Customer".

Except for the date-related ISSUED and START keywords, the keyword values can be arbitrary UTF-8 text. (If you include
UTF-8 characters in license keyword values and use the FlexNet Embedded Client C XT utilities such as licensefileutil to
generate binary license rights, your unsigned text license file must be saved in UTF-8 format.)

• ISSUED: Date the license was issued, in dd-mmm-yyyy format.

• ISSUER: Organization that issued the license.
42 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 4 Toolkit Overview
Concepts: Licensing and Updates Functionality
• NOTICE: Commonly used to store intellectual property notices.

• SN: Used to store a serial number value for the license.

• START: Date the feature becomes active, in dd-mmm-yyyy format.

• VENDOR_STRING: Arbitrary producer-defined license data, such as feature selectors (described in Feature Selectors in a
Capability Request in the Using FlexNet Embedded APIs chapter for details):

VENDOR_STRING="%%KEY:VALUE[, KEY:VALUE, ...]%%"

For example, the following shows two feature selectors defined as the VENDOR_STRING value:

VENDOR_STRING="%%DEPT:ACCT, ROLE:AUDIT%%"

More About Feature Processing

The toolkit provides utilities—including licensefileutil and the test back-office server utility capserverutil—for
converting unsigned feature definitions into the digitally signed binary format used by license-enabled code. The licenses
are digitally signed using the digital signature algorithm and key size you specified when generating your identity data.

During execution, your license-enabled code contains functions that attempt to acquire a license. The FlexNet Embedded
libraries validate such conditions as the expiration date not having arrived and the feature’s hostid matching the current
client system’s hostid. If the license acquisition succeeds, your code would then enable the corresponding capability.

In your license-enabled code, you can additionally read the values of any license fields (such as VENDOR_STRING) and use
them for any desired purpose.

Back-office Servers and License Servers
Two different categories of “server” used with FlexNet Embedded functionality are back-office servers and license servers.

The back-office server used for licensing purposes is integrated with the producer’s back office. FlexNet Embedded uses
FlexNet Operations (a separately purchased product) as the back-office server. In a typical licensing scenario, FlexNet
Operations receives capability requests from client systems and sends back capability responses that install or update
license rights in the client’s trusted storage. As a back-office server, FlexNet Operations implements business logic that
determines what license rights a particular client is entitled to receive.

A license server, on the other hand, is a system used to manage a counted pool of licenses for a single customer network.
This type of license server can either reside at an enterprise customer site (called a FlexNet Embedded local license server)
or be a CLS (Cloud Licensing Service) instance, and will typically be integrated with a provisioning or configuration system
to manage planned or dynamic deployment scenarios on the customer’s network.

A common situation where the two types of servers interact is when the license server at a customer site receives a pool of
licenses from the producer’s back-office server. The license server sends a capability request to the back-office server,
which in turn responds with a capability response that places license rights in the server’s trusted storage. The license
server can then serve the pool of licenses to client systems.

The license servers for FlexNet Embedded include the FlexNet Embedded local license server, described in the FlexNet
Embedded License Server Producer Guide, and the CLS (Cloud Licensing Service) license server, described in section
“Getting Started with Cloud Licensing Service” in the FlexNet Operations User Guide and in the FlexNet Embedded License
Server Producer Guide.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 43

Chapter 4 Toolkit Overview
Concepts: Licensing and Updates Functionality
Note • For simplicity, this user guide uses the term “FlexNet Embedded license server” or simply “license server” to refer to
both the local and the cloud license-server types. For areas of FlexNet Embedded functionality that support one or the other
license-server type, the documentation notes this as such.

Trusted Storage
In addition to storing license rights in binary license files, some types of license rights are stored in trusted storage. Trusted
storage is a secure location bound to a particular client system. The FlexNet Embedded libraries implement file-based and
memory-based trusted storage options. For more information about configuring trusted storage in your code, see Creating
Core Licensing Objects.

In addition to its contents being encrypted, a security feature of trusted storage is anchoring, which provides trust that
trusted storage has not been deleted or rolled back to an earlier state on the same system. This prevents a system from
restarting a trial license if trusted storage is deleted, for example. To achieve this, anchoring stores a small amount of data
in a location that is difficult to observe or access.

If anchoring reports an inconsistency when trusted storage is accessed, the FlexNet Embedded run-time reports a “break”,
which indicates a breach of trust, and you can decide the action to take in such cases.

Trusted storage also provides the means for obtaining metered licenses, as described in the UsageCaptureClient example.

Similar to starting the process of creating binary license rights with a text license file, the trialfileutil utility enables you
to generate binary trial license rights based on an unsigned text license file along with additional trial-related attributes.

Characteristics of trial license rights include:

• The duration of the trial period (10 days from the time the application is first launched, for example)

• The features included in the trial (using the same syntax described earlier in this chapter)

• Various identifiers for the trial

The Trials example in the toolkit shows how to process binary trial data, and then how to acquire license rights from the
trial license source.

Capability Requests and Responses
When a client communicates with a back-office server or a license server to install or update dynamic license rights, the
communications involve capability requests and capability responses.

Standard Request-Response Process

A capability request is generated by the client (either a client directly requesting features that it will acquire, or a license
server requesting a pool of features from the back office to serve to client). The request data contains some combination of
a host identifier, one or more rights identifiers, and any other producer-defined data to pass to the back-office server or the
license server.

The back-office server or license server then processes the capability request, reading the various identifiers and custom
data. If the server determines that the requested licenses are available to the client, it generates a capability response. The
response data contains current license rights available for the client. The capability response is then conveyed back to the
client, which processes the response, after which the license rights are stored in trusted storage and can be acquired by
44 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 4 Toolkit Overview
Concepts: Licensing and Updates Functionality
your license-enabled product code. Just as licenses are digitally signed using the digital signature algorithm and signature
strength you selected when generating identity data, capability responses are digitally signed to prevent tampering and
detect corruption.

Any previous license rights in trusted storage are overwritten with the data from the new capability response. For this
reason, trusted storage rights are sometimes called regenerative license rights or replacement license rights.

Communications with the Back Office or License Server

With FlexNet Embedded functionality, there is no requirement that the client system communicate directly with a back-
office server or license server. As an alternative to direct communication, the capability request can be generated on the
client and then exported as a binary file to be conveyed to the server. Similarly, the server’s capability response can be
generated as an external file, which will then be conveyed to the client for processing.

Concepts of Updates and Insights
The following sections describe common concepts and terminology pertaining to the Updates and Insights functionality:

• Updates and Insights Client

• Notifications

• Producer Site and Portal

• Notification Server

Updates and Insights Client
The Updates and Insights client is functionality that you integrate in your application code to enable your application for
notification operations. Using a set of published interfaces, the client requests product notifications from the Updates and
Insights notification server (see Notification Server) and, once the client receives the available notifications from the
server, can respond to them. For example, if your application logic decides to install an update specified in a notification,
the Updates and Insights client provides an appropriate method to download the update installer.

If your application (or your end user) chooses to launch an update, the Updates and Insights client provides the flexibility
to use the toolkit’s communications (cURL) implementation or your own appropriate method to download the file or files
needed to install the update. If your customer loses the connection during the download, the client can prompt to
reconnect and resume the download where it left off. The client can then execute any files needed to complete the
installation.

• Downloads from HTTP, HTTPS, or FTP

• HTTP or HTTPS protocol for communication

• Proxy servers (the client is not affected by firewalls that allow Web-browsing—that is, allow Internet HTTPS requests)

The Updates and Insights APIs are flexible enough to allow your application to respond to the retrieved notification
information silently or with your own visual interface that lets your end users see the messages or updates and act on
them.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 45

Chapter 4 Toolkit Overview
Toolkit Requirements
Notifications
The term notifications (also called notification items) collectively refers to product update notifications and other messages
that you can deliver to your product end-users using Updates and Insights client code in your application.

Currently, FlexNet Operations supports only update notifications to product end-users (also called Updates and Insights
clients). Future releases will extend this support to include functionality that collects data from client environments.

Producer Site and Portal
Your product updates are published on your FlexNet Operations producer site hosted in the Revenera Cloud. The site is
accessed through the Producer Portal and contains information about your software applications and versions, customer
entitlements to these applications, and the available updates to the applications.

When you want to publish a notification about a product update, the Producer Portal steps you though a series of forms—
which prompt you for information about the update, the location of the files pertaining to the update, and the products or
versions that will receive the update. Once an update is published, its notification is available to those Updates and
Insights clients that request notifications for the products and versions affected by the update.

For more information about the publishing product updates, access the FlexNet Operations User Guide that is available in
the Producer Portal.

Notification Server
The Updates and Insights notification server is a Revenera-hosted application that handles all requests from your Updates
and Insights clients to retrieve notification information about your products. When an Updates and Insights client requests
notifications for a given product package, the server collects the available notifications from FlexNet Operations and
delivers them to the requesting client. Additionally, the notification server caches this collected notification information to
minimize database queries and improve scalability.

The notification server also maintains a history of all client device activity pertaining to notifications, such as the download
and installation progress of product updates and the success and failure statuses of these updates. You can view this
activity from the Devices view in the Producer Portal. Future releases will provide facilities to extract this history and use it
for reporting purposes.

Toolkit Requirements
For information about supported toolkit platforms and prerequisites for developing, building, and deploying your product
with the toolkit, see the current version of the FlexNet Embedded Client Release Notes.

FlexNet Embedded Client .NET XT Toolkit Contents
The .zip file for the FlexNet Embedded Client .NET XT toolkit that you downloaded should be extracted onto your
development environment system. Throughout this documentation, the directory into which you extracted the toolkit is
referred to as install_dir.

The toolkit contains the following directories:
46 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 4 Toolkit Overview
FlexNet Embedded Client .NET XT Toolkit Contents
Figure 4-1: Directories in the FlexNet Embedded Client .NET XT Toolkit

The contents of the toolkit are organized in the following directory structure:

Table 4-2 • FlexNet Embedded Client .NET XT Toolkit Directories

Directory Contents

bin The FlexNet Embedded Client .NET XT development and testing utilities. The bin directory
contains the following subdirectories:

• tools: Contains containing command-line development and testing utilities

• demo\toolbox: Contains the .NET Toolbox, a graphical utility for exploring various
licensing scenarios and processes, including license examination, server communications,
and feature acquisition.

This directory also contains the tra-gen.exe file used when enabling Tamper Resistant
Application (TRA) technology in your application code. See FlexNet Embedded TRA Getting
Started Guide for .NET XT .

examples The files needed to build and run the examples in the FlexNet Embedded Client .NET XT toolkit
to illustrate various FlexNet Embedded and Updates and Insights scenarios and capabilities.
The examples directory contains the following subdirectories:

• client_samples: C# source code and build files for example applications that
demonstrate licensing scenarios using FlexNet Embedded functionality.

• identity: C#-compatible client identity information used by the toolkit samples.

• licenses: Example unsigned license files used by FlexNet Embedded examples.

• uai_client_samples: C# source code for projects that demonstrates notification
operations using Updates and Insights functionality.

• util: Common files used by the example source code.

lib The FlexNet Embedded client .NET assembly and native libraries used in license-enabled and
updates-enabled code.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 47

Chapter 4 Toolkit Overview
FlexNet Embedded Client .NET Core XT Toolkit Contents
FlexNet Embedded Client .NET Core XT Toolkit
Contents

The .zip or .tgz file for the FlexNet Embedded Client .NET Core XT toolkit that you downloaded should be extracted onto
your development environment system. Throughout this documentation, the directory into which you extracted the
toolkit is referred to as install_dir.

The toolkit contains the following directories:

Figure 4-2: Directories in the FlexNet Embedded Client .NET Core XT Toolkit

The contents of the toolkit are organized in the following directory structure:

monoconfig Files needed to configure your application for the Mono platform.

Table 4-3 • FlexNet Embedded Client .NET Core XT Toolkit Directories

Directory Contents

bin The FlexNet .NET development and testing utilities (found in the bin directory). The various
command-line tools create binary producer identity information, generate different types of
license rights, and so forth.

Table 4-2 • FlexNet Embedded Client .NET XT Toolkit Directories

Directory Contents
48 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 4 Toolkit Overview
About the Example Projects
About the Example Projects
A producer name (“demo” in the evaluation toolkit) and producer keys are provided to build and run the example
executables. Keep in mind that once you start creating your own license-enabled code, you will need your specific
producer name and keys from Revenera.

FlexNet Embedded Examples
The BasicClient example, previously described in the Quick Start with the .NET XT Toolkit and the Quick Start with the .NET
Core XT Toolkit chapters, is a minimum-dependency example that you can use to verify that the basic system functions as
expected.

The other FlexNet Embedded examples listed here illustrate the different ways an application can acquire license rights,
such as from a binary license file, a binary trial definition, or a license certificate. The examples also demonstrate how to
use trusted storage to obtain licenses from a back-office server, such as FlexNet Operations, or a license server using a
capability request. (The source code for these FlexNet Embedded examples is found in the
install_dir\examples\client_samples directory.)

The following are the available FlexNet Embedded examples:

• The Client example illustrates how license-enabled code creates various license sources and then attempts to acquire
features from the license sources. When license acquisition succeeds, the code illustrates how to obtain details of the
license, such as its version, expiration date, and other attributes.

• The CapabilityRequest example illustrates how FlexNet Embedded code generates a capability request to send to a
back office or a license server, sends the request, and then processes the server’s response into trusted storage. The
example then illustrates how the client acquires the licenses from trusted storage. It also demonstrates how the client

examples The files needed to build and run the examples in the FlexNet Embedded Client .NET Core XT
toolkit to illustrate various FlexNet Embedded scenarios and capabilities. The examples
directory contains the following subdirectories:

• client_samples: C# source code and build files for example applications that
demonstrate licensing scenarios using FlexNet Embedded functionality.

• identity: C#-compatible client identity information used by the toolkit samples.

• licenses: Example unsigned license files used by FlexNet Embedded examples.

• util: Common files used by the example source code.

lib The Flexera.FlxLicensingClient.core.version.nupkg archive, containing the .NET Core
assembly and native libraries used in license-enabled code.

thirdparty The root certificate your code might need to access SSL communications with FlexNet
Operations. Should the certificate be needed, your code can install according to operating
system requirements.

Table 4-3 • FlexNet Embedded Client .NET Core XT Toolkit Directories

Directory Contents
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 49

Chapter 4 Toolkit Overview
Building and Running the Examples in the .NET XT Toolkit
can obtain a preview of available features on a license server without updating client trusted storage or changing the
license server state.

• The Trials example illustrates how license-enabled code processes binary trial data that it stores in trusted trials
storage. Once stored, the trial license rights can be acquired by the license-enabled code for a specified duration.

• The UsageCaptureClient example uses capability requests to send feature-usage data from a client to the FlexNet
Embedded local license server or a CLS (Cloud Licensing Service) license server in a metered license model. The
example supports scenarios for handling uncapped and capped feature usage.

• The View example illustrates how to use the diagnostic functionality in the FlexNet Embedded API to examine license
rights contained in a binary license file and in trusted storage.

Tip • The pre-built .NET Toolbox provides functionality equivalent to many of the example projects, which is useful for
exploring licensing processes and capabilities. For details, see .NET XT Toolbox. (The .NET Toolbox is available in the FlexNet
Embedded Client .NET XT toolkit only, not the .NET Core XT toolkit.)

Updates and Insights Examples
The Notification example, previously described in the Quick Start with the .NET XT Toolkit chapter, is a minimum-
dependency example that you can use to verify that a simple notification process functions as expected. The example
retrieves product messages and update notifications from the Updates and Insights notification server and then
downloads and executes an update on the client. You can find this example in the
install_dir\examples\uai_client_samples.

Building and Running the Examples in the .NET XT
Toolkit

The following sections describe the basics for building the examples projects included in the FlexNet Embedded Client
.NET XT toolkit:

• Obtaining Producer Identity Data

• Building the Examples

• Running the Examples

Obtaining Producer Identity Data
Each producer is identified by a unique producer name and producer keys. To enable your FlexNet Embedded Client C XT
toolkit, you must generate producer identity data to be used by your back-end tools and by your client code. For more
information about generating your identity information and distributing appropriately, see Creating the Producer Identity
in the Quick Start with the .NET XT Toolkit chapter.

You can also find instructions for creating producer identity data in the Publisher Identity Utility section of the Utility
Reference chapter.
50 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 4 Toolkit Overview
Building and Running the Examples in the .NET XT Toolkit
Note • The “demo” vendor keys expire after the evaluation period has elapsed. Contact Revenera sales if your evaluation keys
have expired.

Ensure that the client-identity information is installed in a location accessible by your application code during compilation.
(For building the toolkit examples, copy the IdentityClient.cs file to the install_dir\examples\identity directory.)
Then use the following procedures to build the example projects.

Building the Examples
To build the examples in a Windows version of the FlexNet Embedded Client .NET XT toolkit, repeat these steps for each
example:

1. Access the appropriate install_dir\examples\[uai_]client_samples\project directory, where project is the name
of the folder containing the example’s project (for example, the Notification folder contains the project for the
Notification example).

2. Open the project file (such as Notification.vcproj) in Visual Studio.

3. In Visual Studio, pull down the Build menu and select Build Solution (saving the solution file, such as
Notification.sln, when prompted).

When the build finishes, the executable will be available in the Debug subdirectory relative to the project file. See Quick
Start with the .NET XT Toolkit for additional build settings and troubleshooting information.

Running the Examples
The toolkit examples, which are console executables, are described in the following sections:

• Displaying Usage Help for an Example

• Running the FlexNet Embedded Examples

• Running the Updates and Insights Example

Displaying Usage Help for an Example
To display help information for any example, launch the executable with the -h or -help switch, as shown here for the client
executable:

Client.exe -help

A usage message similar the following displays:

USAGE:

Client binary_license_file
 Attempts to acquire various features from binary license file,
 trusted storage, and trial license sources.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 51

Chapter 4 Toolkit Overview
Building and Running the Examples in the .NET XT Toolkit
Running the FlexNet Embedded Examples
The FlexNet Embedded examples (the code for which is found in the client_samples directory) illustrate how to acquire
license rights from various sources and therefore run with their own specific command-line arguments. To demonstrate
running a basic FlexNet Embedded example, this section will execute one of the simplest examples, the Client example.

This section covers the following:

• Generating Example License Rights

• Running the Example “Client” Project

Generating Example License Rights
The various examples in the client_samples directory illustrate how to acquire license rights from various sources. One of
the simplest examples, the Client example, attempts to acquire license rights from a binary license file, trusted storage, or
trial storage, as available. To create a binary license file that can be used by the Client example, you can use the
licensefileutil utility to convert a text license into binary format.

The Client example attempts to acquire several features. To create an unsigned license file that can be acquired by the
Client example, create a text file called demo.lic with the following contents (or copy the provided example file
examples\licenses\demo.lic):

INCREMENT survey demo 1.0 31-dec-2020 uncounted HOSTID=ID_STRING=1234567890
INCREMENT highres demo 2.0 permanent uncounted HOSTID=ID_STRING=1234567890
INCREMENT download demo 2.0 permanent uncounted HOSTID=ID_STRING=1234567890
INCREMENT upload demo 2.0 permanent uncounted HOSTID=ANY START=1-jun-2009
INCREMENT special demo 1.0 permanent uncounted HOSTID=ID_STRING=1234567890 START=1-jun-2009
INCREMENT updates demo 1.0 permanent uncounted HOSTID=ID_STRING=1234567890 START=1-jun-2009
INCREMENT sdchannel demo 1.0 permanent 100 HOSTID=ID_STRING=1234567890 START=1-jun-2009 \

VENDOR_STRING="Standard Definition Channels" 20092016 \
VENDOR_STRING="High Definition Channels"

(This example license uses some optional fields such as VENDOR_STRING not specifically used by the Client example. See
Feature Definitions for an explanation of the text license format.)

To convert this file into binary format with digitally signed licenses, copy the file into the install_dir/tools/bin directory
and run the command:

licensefileutil -id IdentityBackOffice.bin demo.lic demo.bin

In the following section, you will build the Client example and acquire licenses from the binary file demo.bin. For other
samples, you can use other utilities for license conversion, such as trialfileutil for the Trials example. For more
information, see Utility Reference.

Running the Example “Client” Project
As demonstration on how to run the FlexNet Embedded examples, run the Client example, using these steps:

1. Copy the binary license file demo.bin that you created in the previous step into the same directory as the client
executable.

2. Ensure that the appropriate FlexNet Embedded client libraries for FlexNet Embedded have been properly installed.
For information about installing these libraries, see Install the FlexNet Embedded Client Libraries for FlexNet
Embedded.
52 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 4 Toolkit Overview
Building and Running the Examples in the .NET XT Toolkit
3. Launch the Client executable (from the examples\client_samples\Client\Debug directory), specifying the location
of demo.bin as a command-line argument:

Client demo.bin

When you run this command, the output similar to the following is displayed:

INFO: Reading data from demo.bin
INFO: Number of features loaded from demo.bin: 8
INFO: Number of features loaded from TrustedStorage: 0
INFO: Number of features loaded from Trials: 0
INFO: Acquired: name=survey, version=1.0, count=1, expiration=12/31/2020 11:59:59 PM
INFO: Acquired: name=highres, version=2.0, count=1, expiration=permanent
ERROR: FlxDotNetClient.FeatureNotFoundException encountered:
Acquiring lowres license : Requested feature was not found.: [1,5,5,0[7000000B,0,7022F]]
INFO: Acquired: name=download, version=2.0, count=1, expiration=permanent
 [...similar messages...]
INFO: Acquired: name=sdchannel, version=1.0, count=100, expiration=permanent
INFO: Acquired: name=hdchannel, version=1.0, count=10, expiration=permanent

The messages indicate whether a license for a given feature in the binary license file could be acquired. (In this case, an
expected exception is displayed because the license rights did not include a “lowres” feature license.)

The Using the FlexNet Embedded APIs chapter shows you how to experiment with different representations of license
rights and processes using the other examples and additional toolkit utilities.

Running the Updates and Insights Example
To run the Updates and Insights examples (the code for which is found in uai_client_samples), use these steps:

1. Ensure that a sample product package is defined and its update published in FlexNet Operations. For more
information, see Add a Product and Its Update to the Publisher Site in the Quick Start chapter for more information.

2. Ensure that the appropriate FlexNet Embedded client libraries for Updates and Insights have been properly installed
for the example. For information, see Install the FlexNet Embedded Client Libraries for Updates and Insights.

3. Launch the example executable from install_dir\examples\uai_client_samples\Notification\Debug, specifying
the required command-line arguments. Issue a command similar to this one:

notification -server https://siteID-ns-uat.flexnetoperations.com -register ACT01-PhotoPrint
-download -packageid PhotoPrintInstaller -productlang 1033

Note that the URL above points to a User Acceptance Test (UAT) environment indicated by the -uat following the
siteID. For production environments, the -uat is omitted.

For a description of the arguments used to run the Notification example and sample output, see Running “Notification” in
the Quick Start chapter.

 The Using the Updates and Insights APIs chapter walks you through the Notification example code that retrieves
notifications and, for update notifications, downloads and installs the update.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 53

Chapter 4 Toolkit Overview
Building and Running Examples in the .NET Core XT Toolkit
Building and Running Examples in the .NET Core XT
Toolkit

The following sections describe the basics for building and running the FlexNet Embedded examples included in the
FlexNet Embedded Client .NET XT toolkit:

• Obtaining Producer Identity Data

• Basic Process for Building and Running an Example in the .NET Core XT Toolkit

Obtaining Producer Identity Data
Each producer is identified by a unique producer name and producer keys. To enable your FlexNet Embedded Client .NET
Core XT toolkit, you must generate producer identity data to be used by your back-end tools and by your client code. For
more information about generating your identity information and distributing appropriately, see Creating the Producer
Identity in the Quick Start with the .NET Core XT Toolkit chapter.

You can also find instructions for creating producer identity data in the Publisher Identity Utility section of the Utility
Reference chapter.

Note • The “demo” vendor keys expire after the evaluation period has elapsed. Contact Revenera sales if your evaluation keys
have expired.

Ensure that the client-identity information is installed in a location accessible by your application code during compilation.
(For building the toolkit examples, copy the IdentityClient.cs file to the install_dir\examples\identity directory.)
Then use the following procedures to build the example projects.

Basic Process for Building and Running an Example in the
.NET Core XT Toolkit

The following describes the process for building and running a FlexNet Embedded example in the FlexNet Embedded Client
.NET Core XT toolkit. You must repeat this process for each example.

• Phase 1: Provide the Prerequisites

• Phase 2: Prepare to Build the Executable for an Example

• Phase 3: Build and Run the Example

• Displaying Usage Help for an Example

Phase 1: Provide the Prerequisites
Before building and running a FlexNet Embedded example, ensure that the prerequisites are in place:

• Client Identity File: Copied to Proper Location

• License Rights: Created and Copied to Proper Location
54 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 4 Toolkit Overview
Building and Running Examples in the .NET Core XT Toolkit
• .Net Core: Installed on the Target Machine

Client Identity File: Copied to Proper Location
Verify that the IdentityClient.cs file (built using steps in Creating the Producer Identity) resides in the
install_dir\examples\identity directory.

License Rights: Created and Copied to Proper Location
One way to store license rights on a client is in a digitally signed binary file, which you can create based on an unsigned text
representation of the license rights. Both the BasicClient and the Client examples use a binary license file. The following
procedure describes how to create the appropriate binary license file for each of these examples.

Task To create the binary license file for examples

1. Create the appropriate text file:

For the BasicClient example, create a text file called license.txt with the following contents:

INCREMENT survey demo 1.0 1-jan-2025 uncounted HOSTID=ID_STRING=1234567890
INCREMENT highres demo 1.0 1-jan-2025 uncounted HOSTID=ID_STRING=1234567890

For the Client example, use a copy of demo.lic, found in the install_dir\examples\licenses directory. The file
contains the following license rights:

INCREMENT survey demo 1.0 31-dec-2020 uncounted HOSTID=ID_STRING=1234567890
INCREMENT highres demo 2.0 permanent uncounted HOSTID=ID_STRING=1234567890
INCREMENT download demo 2.0 permanent uncounted HOSTID=ID_STRING=1234567890
INCREMENT upload demo 2.0 permanent uncounted HOSTID=ANY START=1-jun-2009
INCREMENT special demo 1.0 permanent uncounted HOSTID=ID_STRING=1234567890 START=1-jun-2009
INCREMENT updates demo 1.0 permanent uncounted HOSTID=ID_STRING=1234567890 START=1-jun-2009
INCREMENT sdchannel demo 1.0 permanent 100 HOSTID=ID_STRING=1234567890 START=1-jun-2009 \

VENDOR_STRING="Standard Definition Channels" 20092016 \
VENDOR_STRING="High Definition Channels"

2. Use the licensefileutil utility to digitally sign the license rights so that only your license-enabled code can acquire
the licenses. From the install_dir\bin\tools directory, run the following command in a console window (shown
here for demo.lic):

licensefileutil -id IdentityBackOffice.bin demo.lic demo.bin

The output (for example, demo.bin or license.bin) is a binary representation of your license rights that can be
acquired by license-enabled code at run time.

3. So that the binary license file resides in a place where the .NET code for the example can read it, copy the file to the
install_dir\examples\client_examples\exampleName directory, which contains project file for the given example
(identified by exampleName).
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 55

Chapter 4 Toolkit Overview
Building and Running Examples in the .NET Core XT Toolkit
.Net Core: Installed on the Target Machine
Microsoft .NET Core needs to be installed on the machine on which you are building and executing a FlexNet Embedded
examples. Refer to the current FlexNet Embedded Client Release Notes for the list of .NET Core framework versions that
FlexNet Embedded supports.

If you need to download and install .NET Core, you can use the following link:

https://www.microsoft.com/net/core#windowsvs2017

Phase 2: Prepare to Build the Executable for an Example
Use the following steps to prepare to build the executable for a given example:

• Step 1: Ensure Project File Points to Correct .NET Core Framework Version

• Step 2: Run “restore” to Obtain Latest Packages

• Step 3: Copy “FlxCore” to the Project Folder

Step 1: Ensure Project File Points to Correct .NET Core Framework Version
By default, the project file for a given example points to a specific .NET Core framework target to build and run the FlexNet
Embedded example. You need to review this file and make any necessary edits to ensure that it specifies the .NET Core
framework version installed on your machine, as described in .Net Core: Installed on the Target Machine.

Task To ensure that the project file points to the correct .NET Core version

1. Navigate to the install_dir\examples\client_samples\exampleName directory, and open the example’s project
(.csproj) file in a text editor.

2. If necessary, edit the contents to ensure that the project points to the correct .NET Core framework version installed
on your machine.

You have the option to point to multiple target frameworks. If you do so, all specified targets are compiled when you
build the project. However, you will need to designate the specific target under which to execute the assembly
(described later in Phase 3: Build and Run the Example).

Step 2: Run “restore” to Obtain Latest Packages
A “dotnet restore” process is necessary to ensure that your machine has the latest packages required to build and run the
FlexNet Embedded example. In addition to installing required .NET Core packages, this process also installs the required
FlexNet Embedded component flexera.flxlicensingclient.core if it is missing.

Task To run the “dotnet restore”

At a command prompt, navigate to the install_dir\examples\client_samples\exampleName directory (that is, the
location of the example’s project file), and run the following:

dotnet restore
56 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

https://www.microsoft.com/net/core#windowsvs2017

Chapter 4 Toolkit Overview
Building and Running Examples in the .NET Core XT Toolkit
This process installs the necessary packages on your machine. Typically, this is in the current user’s .nuget directory.

Step 3: Copy “FlxCore” to the Project Folder
FlexNet Embedded makes use of FlxCore native component for some of its licensing functionality. You must extract the
appropriate FlxCore component in your toolkit and copy it to a location accessible by the FlexNet Embedded example. The
FlxCore native components are stored under the FlxCore folder within the
Flexera.FlxLicensingClient.core.version.nupkg archive, which is located in the install_dir\lib directory.

Task To locate and copy the native FlxCore component

1. Within the Flexera.FlxLicensingClient.core.version.nupkg archive, navigate to the FlxCore directory to locate
the component appropriate for the operating system on which your building and executing the example. For the list of
available FlxCore native components, see .NET Core XT Toolkit Files to Distribute.

Important • Always use the version of the “FlxCore” library that matches the version of FlexNet Embedded used in your
implementation.

2. Extract the FlxCore component and copy it to the location of the project file for the example
(install_dir\examples\client_samples\exampleName directory.

Phase 3: Build and Run the Example
The following procedure describes how to build and run the FlexNet Embedded example.

Note • While the procedure described here uses a command line, you can also build the example using Microsoft Visual
Studio. See the current FlexNet Embedded Client Release Notes for the Visual Studio versions that support this process.

Task To build and run the example

At a command prompt, do one of the following, based on your .NET Core target specification in the project (see Step 1:
Ensure Project File Points to Correct .NET Core Framework Version):

• If you pointed to a single .NET Core framework target in the project, run the following command from the
install_dir\examples\client_samples\exampleName directory to compile and run the example run using that
framework version:

dotnet run

• If you specified multiple .NET Core framework targets, use the -f argument to specify the framework version under
which to execute the example. (Note that all framework targets that you specify in the project are compiled.) For
example, to run the example under the netcoreapp2.0 target (that is, .NET Core 2.0), you would enter the following:

dotnet run -f netcoreapp2.0

When the example runs, it provides output to inform you if the example succeeds.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 57

Chapter 4 Toolkit Overview
Toolkit Files to Distribute with Your Product
Displaying Usage Help for an Example
To display help information for any example, launch the executable with the -h or -help switch, as shown here for the
client executable:

Client.exe -help

A usage message similar the following displays:

USAGE:

Client binary_license_file
 Attempts to acquire various features from binary license file,
 trusted storage, and trial license sources.

Toolkit Files to Distribute with Your Product
The following sections list the files you must distribute with your product enabled with FlexNet Embedded or Updates and
Insights functionality (or both types of functionality).

• .NET XT Toolkit Files to Distribute

• .NET Core XT Toolkit Files to Distribute

.NET XT Toolkit Files to Distribute
When you distribute your product that has been leveraged with FlexNet Embedded licensing or Updates and Insights
functionality or both, you need to distribute certain FlexNet Embedded Client .NET XT toolkit files along with your product.
The table shown at the end of this section lists these files.

The toolkit files listed for Common in the table should always be shipped with your product, while the files listed for
FlexNet Embedded and Updates and Insights in the table are shipped only if you have included that functionality in your
product:

• If your product is enabled for FlexNet Embedded functionality, distribute the files listed for Common and FlexNet
Embedded.

• If your product is enabled for FlexNet Updates and Insights functionality, distribute the files listed for Common and
Updates and Insights.

• If you product is enabled for both FlexNet Embedded and Updates and Insights functionality, distribute the files listed
for Common, FlexNet Embedded, and Updates and Insights.

All files listed in this table are found in the lib folder of your toolkit installation.

Important • You have redistribution rights to the files listed in this table.
58 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 4 Toolkit Overview
Toolkit Files to Distribute with Your Product
.NET Core XT Toolkit Files to Distribute
When you distribute your product that has been leveraged with licensing functionality from the FlexNet Embedded Client
.NET Core XT toolkit, you need to distribute the following toolkit files along with your product:

• Flexera.FlxLicensingClient.core.version.nupkg

• The appropriate FlxCore native component, extracted from Flexera.FlxLicensingClient.core.2017.11.0.nupkg
and placed in a location where the product can access it. You can find this component in the appropriate “operating
system” folder for the client, located in the FlxCore directory within the .nupkg archive:

• libFlxCore.so.version (for i86 Linux)

• libFlxCore64.so.version (for x64 Linux)

• FlxCore.dll (for i86 Windows)

• FlxCore64.dll (for x64 Windows)

• libFlxCore.version.dylib (for OS X 10)

Updates and Insights functionality is not supported in the .NET Core XT toolkit.

Table 4-4 • Toolkit Deliverables to Customers

Client Functionality Files

Common • FlxClientCommon.dll

• FlxCore.dll (or FlxCore64.dll)

FlexNet Embedded FlxLicensingClient.dll

Updates and Insights FlxUAIClient.dll
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 59

Chapter 4 Toolkit Overview
Toolkit Files to Distribute with Your Product
60 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

5

Overview of the .NET XT APIs
This chapter provides an overview of the .NET functionality included in the FlexNet Embedded Client .NET XT toolkit. The
functionality is organized into the following interface groups. (Note that the FlexNet Embedded Client .NET Core XT toolkit
supports only FlexNet Embedded functionality.)

• FlexNet Embedded API Interfaces—Used to perform licensing-related operations.

• Updates and Insights API Interfaces—Used to receive and act on product notifications.

• FlexNet Common API Interfaces—Used by both FlexNet Embedded and Updates and Insights functionality to handle
errors and communications with servers.

See also the Conventions for Retrieving Exception Information for information on exception handling.

For more information about individual APIs in these groups, consult the API reference.

Note about References to Servers

In this chapter, note the following about references to servers:

• For FlexNet Embedded and Updates and Insights, “back-office server” refers to Revenera-hosted FlexNet Operations.

• References to “license server” apply to FlexNet Embedded only and refer to either the FlexNet Embedded local license
server or a Cloud Licensing Service (CLS) instance.

FlexNet Embedded API Interfaces
The following are the primary interfaces defined by the FlexNet Embedded API:

• ILicensing: The ILicensing interface is used to get the various objects that handle licensing operations.

• ILicenseManager: The ILicenseManager interface provides methods for handling the most significant licensing
operations: acquiring and releasing licenses, adding license sources, creating capability requests and processing
capability responses, enabling virtual-machine detection, and more.

• IPrivateDataSource: This interface manages small amounts of producer-defined private data, which can be used by
license-enabled code to assist with custom licensing scenarios.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 61

Chapter 5 Overview of the .NET XT APIs
Updates and Insights API Interfaces
• IAdministration: This interface enables code to perform administrative operations, such as deleting various types of
storage.

Furthermore, the following interfaces are used for license manipulation and identification:

• ILicense: Once a license is acquired, the corresponding ILicense object can be queried for license details, such as its
expiration date and optional license keywords (VENDOR_STRING, NOTICE, etc.).

• IFeature: This interface provides a way to examine the possible capabilities that can be acquired, by inspecting
feature details before acquisition.

• ICapabilityRequestOptions: This interface enables license-enabled code to generate a binary capability request that
can be communicated to a back-office server or a license server; the server then processes the request and generates
a capability response. Depending on the type of server that will receive the request, the request includes some
combination of data such as one or more rights IDs (for a back-office server) or sets of requested features (for a license
server), and custom key–value dictionary pairs. The request can also be configured to request a preview of available
features on the license server.

• ICapabilityResponse: This interface provides functionality for reading details of a capability response generated by a
back-office server (such as FlexNet Operations or similar utility such as capresponseutil) or a license server. The
server can send one or more response status (IResponseStatus) objects inside the response data to return additional
information.

• IInformationMessageOptions: This interface represents options for messages that license-enabled code sends to a
license server in certain failover or network-licensing scenarios to indicate license usage.

For more information about individual methods and interfaces in the FlexNet Embedded .NET XT API, consult the API
reference.

Updates and Insights API Interfaces
The following are the primary Updates and Insights API interfaces:

• IUAIClient: The interface used to access the Updates and Insights client object (UAIClient), the top-level object used
for all notification operations. This object maintains references to all product packages associated with it and
manages registration of the client device with FlexNet Operations. The object is created through the
UAIClientFactory.GetUAIClient method.

• IUAIClientOptions: An optional interface to store IUAIClient creation options.

• IProductPackage: The interface used to access the object for a given product package associated with the Updates
and Insights client object. Through the product package object, all notifications for the given product package are
retrieved from the notification server. (Only one notification collection per product package is allowed at any one
time.)

• INotification: APIs that parse items in the notification collection for a given product package and determine
notification item type (for example, an update or message).

• INotificationUpdate: APIs that download the payload for an update and install the update.
62 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 5 Overview of the .NET XT APIs
FlexNet Common API Interfaces
FlexNet Common API Interfaces
The following lists the groups of .NET XT APIs shared by both FlexNet Embedded and Updates and Insights functionality.
The APIs in these groups are used for both error handling and communications with license and back-office servers.

Note • For FlexNet Embedded, the reference to “back-office server” refers to FlexNet Operations. For Updates and Insights,
“back-office server” refers to the notification server, a component of the Revenera-hosted FlexNet Operations. References to
“license server” apply to FlexNet Embedded only.

• IComm: APIs that enable basic HTTP, HTTPS, SSL, and proxy-server communications between the FlexNet Embedded
client and the back-office server, notification server, or license server. Normally, the FlexNet Embedded client uses a
default communications object. However, should communication settings need to be customized, these APIs provide
the means to set up a new communication object with the desired settings.

• IStatusInformation: An interface that provides access to status information such status code, type, and description.

• IHostIDCollection and IHostInformation: An interface provides access to hostid management on the client.

Additionally, the Common Client Exceptions module provides the error codes shared by both FlexNet Embedded and
Updates and Insights functionality. These codes identify errors that might be generated when either type of functionality is
executed on the client, including communications with the back-office server, license server, or notification server.

Conventions for Retrieving Exception Information
The API methods in both .NET XT toolkits can throw exceptions derived from the FlxException class. For example, the
Acquire licensing method that attempts to acquire a feature can throw a FeatureNotFoundException, a
FeatureExpiredException, or a FeatureHostIdMismatchException, among others. Consult the API reference for further
information about specific methods and their possible exceptions.

To retrieve information about an exception, your code can access these conventional properties in FlxException:

• The Message property retrieves an error or warning string corresponding to a particular exception.

• The Code property retrieves the error code associated with an exception.

• The SystemCode property retrieves the operating-system code associated with an exception.

Additionally, your code can use the ToString method to return a string representation of the exception information.

The following implementation is an example of how to get a property (in this case, the SystemCode property) for an
exception:

public int SystemCode { get; set; }

catch (FlxException exc)
{

int systemCode = exc.SystemCode;
}

FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 63

Chapter 5 Overview of the .NET XT APIs
Conventions for Retrieving Exception Information
You can use the ToString method to obtain all information for an exception, as shown in this example implementation:

Console.Writeline (exc.ToString());
64 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

6

Using the FlexNet Embedded APIs
You create license-enabled code that runs on a client machine using the FlexNet Embedded APIs included in the FlexNet
Embedded Client .NET XT or the FlexNet Embedded Client .NET Core XT toolkit. These APIs are a family of .NET interfaces
and methods for processing license rights, acquiring licenses, querying license data, and processing communications with
the back-office server or a license server.

This chapter describes the general flow of FlexNet Embedded methods used when implementing various client scenarios,
by referring to the source code for the sample projects. The source code files discussed in this chapter are located in the
specific example project directory under install_dir\examples\client_samples.

Where appropriate, the walkthroughs illustrate usage of the corresponding toolkit utilities. For more information about the
utilities provided with these FlexNet Embedded Client toolkits, see the chapter Utility Reference.

The scenarios described here include the following:

• Buffer Licenses

• Licenses Obtained from the Back-Office Server

• Licenses Obtained from a License Server

• Limited-duration Trials

• Secure Re-hosting

• Capturing Feature Usage on the Client

• Examining License Rights in a License Source

• Advanced Topic: FlexNet Publisher Certificate Support

• Advanced Topic: Multiple-Source Regenerative Licensing
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 65

Chapter 6 Using the FlexNet Embedded APIs
Common Steps to Prepare for Licensing
Common Steps to Prepare for Licensing
The following describes steps to prepare your application code for any licensing scenario:

• Creating Your Producer Identity Files

• Creating Core Licensing Objects

• Detecting a Cloned Environment

• Detecting Clock Windback

• Identifying the Device User

• Retrieving Feature Expiration and Grace Period Information

• Including Vendor Dictionary Data

• Advanced Topic: Secure Anchoring

Creating Your Producer Identity Files
The following implementation walkthroughs assume you have already created your producer back-office identity, client–
server identity, and client-identity files—by default called IdentityBackOffice.bin, IdentityClientServer.bin, and
IdentityClient.bin—using a back-office server such as FlexNet Operations or the Publisher Identity utility pubidutil, as
previously described in Creating the Producer Identity.

In addition, the example projects assume you have compiler-readable (C# byte array) identity information available in the
files IdentityClient.cs, in install_dir\examples\identity. You use the printbin utility with the -cs switch to create
such header files from your binary client-identity file IdentityClient.bin.

Special Consideration

You can configure the client identity binary to include hostid filtering and caching parameters for use during hostid
detection on the client device. For more information, see Identity Update Utility in the Utility Reference chapter.

Creating Core Licensing Objects
In your license-enabled code, the first thing to do is to create your core ILicensing and ILicenseManager objects. The
ILicensing object must be initialized with your producer client identity created with pubidutil (for details, see Publisher
Identity Utility), along with your desired trusted storage implementation and optional hostid override. A sample
implementation is the following:

private static ILicensing licensing = null;

// Get user's personal Documents folder
string strPath =
 Environment.GetFolderPath(Environment.SpecialFolder.Personal) + Path.DirectorySeparatorChar;

// Initialize ILicensing interface with identity data using file-based trusted storage
// and hard-coded string hostid "1234567890"
using (licensing = LicensingFactory.GetLicensing(
 IdentityClient.IdentityData,
 strPath,
66 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Common Steps to Prepare for Licensing
 "1234567890"))
{

// Given the ILicensing object returned by GetLicensing, use LicenseManager property to
// get the ILicenseManager object that provides most licensing operations
licensing.LicenseManager.operationName(...);

}

(In the FlexNet Embedded functionality examples, most licensing operations are wrapped in a try-catch block. These
blocks have been omitted from many of the code excerpts presented in this chapter.)

You initialize the ILicensing object by calling LicensingFactory.GetLicensing. The first argument to GetLicensing is
your client-identity information used for validating licenses and capability response envelopes. The data for the binary
client identity—the IdentityClient.IdentityData expression passed as the first argument to
LicensingFactory.GetLicensing—used in this code sample can be found in IdentityClient.cs and was generated with
the settings you specified when running pubidutil. This client-identity data contains the public key information used to
authenticate licenses or capability response envelopes digitally signed by the back-office server, the license server,
licensefileutil, and so forth.

Important • For security reasons, your producer client identity should be stored as a buffer in the license-enabled code, and
not as an external file. The “printbin” toolkit utility can convert a binary producer identity file (on a development system) into a
format that can be used in .NET XT code.

Specifying the Trusted Storage Location
The second argument to GetLicensing is a location where trusted storage license rights should be stored on a target
system. To store trusted storage in files, specify in this argument a string that resolves to a writeable directory on the target
system. (Your installation program or instructions should adjust directory permissions, as appropriate.) Many examples
use Environment.GetFolderPath to get the location of the current user’s Documents (or My Documents) folder.

Passing null in this argument—as is done in the BasicClient example—causes FlexNet Embedded functionality to use an
in-memory implementation. This implementation does not use files for trusted storage, but instead stores license rights in
memory, which means the information will be lost when the code exits. This is useful in situations where licenses are
transient to a degree where writing to disk is unnecessary, such as using a license server with frequent renewals; or where
the application requests its licenses at startup and keeps them in memory. In-memory storage is inappropriate in such
cases as limited-duration trials, where license information should persist between application launches.

The trusted storage directory to use depends on your desired license models. In a multi-user environment, it may be
desirable to specify a common, per-machine directory, so that license rights are shared by all users. However, this may
require that your product installation procedure modify the trusted storage directory’s permissions. For per-user license
models, a per-user trusted storage location is generally appropriate.

After calling LicenseFactory.GetLicensing to initialize your ILicensing object, use its LicenseManager property to get
your ILicenseManager object. This interface provides the methods for performing most licensing operations, such as
acquiring and releasing licenses, creating and processing FlexNet Embedded messages, and so forth.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 67

Chapter 6 Using the FlexNet Embedded APIs
Common Steps to Prepare for Licensing
Specifying the Hostid Type to Use
An optional third argument to GetLicensing is a hostid override value. Normally, your code will specify a type of hostid
used by the license-enabled code for the sake of node locking and for other client-system identification related to
licensing. For testing, however, you can specify a string to use as a hard-coded hostid value. The example code in the
FlexNet Embedded Client .NET XT or .NET Core XT toolkit uses the hard-coded string hostid value "1234567890", which
corresponds to HOSTID=ID_STRING=1234567890 in license rights.

The following describes more information about specifying the hostid:

• Setting a Default Hostid

• Processing the Hostid

For information about the hostid value in the license syntax and hostid case-sensititivy, see Hostids.

Setting a Default Hostid

At run time, FlexNet Embedded functionality can use any available hostid for the sake of node locking and other system
identification. When not specifying a string hostid override, use the SetHostId method of the ILicenseManager interface.

The method signature is the following:

void SetHostId(HostIdEnum type, String id);

where:

• type is the hostid type to use. Supported types are:

• HostIdEnum.FLX_HOSTID_TYPE_ETHERNET for an Ethernet address

• HostIdEnum.FLX_HOSTID_TYPE_INTERNET for an IPv4 address

• HostIdEnum.FLX_HOSTID_TYPE_INTERNET6 for an IPv6 address

• HostIdEnum.FLX_HOSTID_TYPE_FLEXID9 for an Aladdin dongle

• HostIdEnum.FLX_HOSTID_TYPE_FLEXID10 for a Wibu-Systems dongle

• HostIdEnum.FLX_HOSTID_TYPE_VM_UUID for a supported virtual machine’s UUID value

• HostIdEnum.FLX_HOSTID_TYPE_CONTAINER_ID for a container ID of a supported containerization technology

• id is the string representation of the hostid value.

Note • Consult your back-office server documentation to see which hostid types it supports.

To find the hostid types and values available on a particular client system at run time, use the HostIds property of the
ILicenseManager interface. Its signature is:

Dictionary<HostIdEnum, List<String>> HostIds()

In practice, client code will typically read the available hostid types and values using the HostIds property, and then call
SetHostId with the desired type and value. (The SetHostId method throws an exception if the specified hostid is not
present on the system. Modifying the HostIds dictionary has no effect on the set of available hostid values.)

For example, the following code will specify to use the first Ethernet address returned:

// get all available hostids
68 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Common Steps to Prepare for Licensing
Dictionary<HostIdEnum, List<String>> hostIDs = licensing.LicenseManager.HostIds;

if (hostIDs.ContainsKey(HostIdEnum.FLX_HOSTID_TYPE_ETHERNET))
{
 // select only the Ethernet addresses
 List<String> ethernetIDs = hostIDs[HostIdEnum.FLX_HOSTID_TYPE_ETHERNET];
 // use the first Ethernet address (index 0) in the list
 licensing.LicenseManager.SetHostId(HostIdEnum.FLX_HOSTID_TYPE_ETHERNET, ethernetIDs[0]);
}

To use this code in the examples, modify the GetLicensing call not to use the string hostid override by removing the final
“1234567890” argument, and place this code in the using block under GetLicensing. If your code does not set a hostid or
use the string hostid override, by default the first Ethernet address is used.

Note that you can limit the hostid types retrieved on your system by injecting hostid-type filters in the client identity binary.
See Identity Update Utility in the Utility Reference chapter for details.

Processing the Hostid

Setting the hostid type and value changes the hostid sent in capability requests and information messages, but does not
affect whether licenses can be acquired. For example, consider a particular host that has Ethernet addresses E1, E2, and E3,
on which the code has set the hostid value to E2. Capability requests originating from this host will use hostid E2, but the
host can acquire (for example) features from a buffer license generated for E1, E2, or E3, or any other valid hostid of the
system. Also note that, if a system has already created trusted storage by successfully processing a capability response,
FlexNet Embedded will use the existing hostid from trusted storage in future capability requests.

Final “Get Licensing” Argument
The final argument to GetLicensing is an optional string name for the licensing object, used in situations where the
ILicensing object using in-memory trusted storage goes out of scope and GetLicensing is called multiple times. For more
information, consult the API reference.

Detecting a Containerized Environment
Containerization enables applications to run in an isolated environment. The API IsContainerized (part of the
iLicenseManager interface) detects whether the client application is running in a container (returning a boolean value).
Once this has been determined, your code can take appropriate action, such as to deny its operation.

If the application is running in a container, the client code can call the HostIds property to return and read the available
hostid types. In containerized environments, calling HostIds should return a hostid CONTAINER_ID, which can be used for
node-locking.

Note that the CONTAINER_ID hostid is not universally unique. However, due to it being short-lived (the CONTAINER_ID is
only available while the container is running), it can be considered to be sufficient for concurrent and metered (usage–
based) license models.

The view example included with the toolkit illustrates the use of container detection.

Output from view example:

• Client is contained in a docker host

• Client is not contained in a docker host
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 69

Chapter 6 Using the FlexNet Embedded APIs
Common Steps to Prepare for Licensing
Detecting a Cloned Environment
A FlexNet Embedded client can obtain its licenses through capability exchanges with the back-office server (FlexNet
Operations) or with a license server (FlexNet Embedded local license server or CLS license server), as described in Licenses
Obtained from the Back-Office Server and Licenses Obtained from a License Server. When these types of exchanges are
used, the server has a means to detect when a client might be running in a cloned environment and can provide this
information to the back office, where you can then generate reports listing these potential clones. Note that this clone-
detection feature simply reports plausible clones; it does not take any action on clone activity. Details about the feature are
found in the “Advanced License Server Features” chapter in the FlexNet Embedded License Server Producer Guide.

In addition to being sent to the back office, the “clone suspect” status is also returned in the capability response to the
client. As another means of gathering clone information, you can incorporate functionality in your code to get the
CloneSuspect status directly from the response and use it for your own purposes.

The following shows an example implementation of this method:

 ICapabilityResponse response = licensing.LicenseManager.GetResponseDetails(binCapResponse);
 if (response.CloneSuspect)
 {
 // provide message indicating clone suspect
 }

Detecting Clock Windback
Clock-windback detection is a security feature that detects an attempt to set the client machine’s system clock back in
order to extend expiring license rights. The implementation of clock-windback detection involves comparing the current
system time with a timestamp stored in anchor storage. A stored timestamp that is later than the current time—by a value
that is greater than a given tolerance—is interpreted as an attempt to set the system clock back. If clock-windback
detection is enabled, methods for acquiring a license or processing trial license rights will report a windback state if one is
detected, and an implementer can explicitly test for the windback state at any time. Clock-windback detection requires use
of trusted storage, but will work with buffer license sources (in addition to working with trial and trusted storage license
sources).

By default, clock-windback detection is disabled, and an implementer enables it using the method
EnableClockWindbackDetection of your ILicenseManager object. (You can disable clock-windback detection using
DisableClockWindbackDetection.) In the method signature—

EnableClockWindbackDetection(uint tolerance, uint frequency);

—the arguments are for the windback tolerance and frequency.

The windback tolerance setting limits the number of seconds’ difference allowed without triggering a clock-windback
state. The windback frequency setting is a number of seconds between updates to the stored timestamp. Normally, the
timestamp will be updated for any time-sensitive event (such as acquiring a license or processing trial rights or a new
capability response), but setting a larger interval may be desirable when working with systems on which frequent writes to
the trusted storage anchor are unacceptable or unnecessary. Setting the frequency to zero indicates that the anchor will be
updated every time clock-windback detection occurs, whether explicitly or implicitly.

For example, suppose an expiring license is written to a system’s trusted storage, at which time a timestamp is stored on
the client system. Whenever the license is used, the system clock is compared to the stored timestamp; if the system time is
equal to or later than the stored time, the time is considered valid and the stored timestamp is updated. When the license
has expired, the stored timestamp is updated to a time beyond the license’s expiration date. If the clock is subsequently
wound back to a point before the license expiration, the current system time is found to be earlier than the stored
70 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Common Steps to Prepare for Licensing
timestamp, and the system is found to be in a wound-back state. In such a case, the license-enabled code might indicate
that the clock should be set to the correct time, after which the client system is no longer found to be in the wound-back
state.

To explicitly detect if the client is in a clock-windback state, use the ClockWindbackDetected property. Calling the method
EnableClockWindbackDetection a second or later time updates the windback-detection parameters.

The View example included with the toolkit illustrates the use of clock-windback detection.

Identifying the Device User
The capability request can include a requestor ID value to associate a user with the FlexNet Embedded client device issuing
the request. This information is then used by FlexNet Operations to provide user association with the device. Depending on
the producer-specific policies configured in FlexNet Operations, a requestor ID can be a mandatory field in a capability
request. In such a case, when a capability request does not include valid requestor ID information, the capability response
from the back office can contain the error status FLX_MS_CODE_REQUESTOR_ID_INVALID.

Set the RequestorId property in the ICapabilityRequestOptions interface to identify the device user in the capability
request. Refer to the FlexNet Operations documentation for information about configuring support for, maintaining, and
enforcing this user information in the back office.

Retrieving Feature Expiration and Grace Period Information
Product features obtained from the back-office server or a license server can have an expiration date defined in the
entitlement in the back office. When features reach their entitlement expiration date, they can no longer be acquired by the
product code, causing possible disruption in the use of the product until the customer renews the features in the back
office. However, the entitlement can also define a grace period that goes into effect when the entitlement expiration date is
reached, enabling your customers to continue operating under their normal business workflow, but also allowing them
sufficient time to renew product licenses.

FlexNet Embedded provides .NET methods that retrieve feature expiration information from the capability response. You
can use these methods to implement logic that informs customers to renew soon-to-expire features.

Types of Expiration Information Available for Retrieval
This section describes the three types of expiration dates that can be retrieved through FlexNet Embedded .NET methods.
A simplistic way to understand these three dates is as follows:

(feature) expiration date <= entitlement expiration date <= final expiration date

The following explains the expiration dates in more detail:

• Expiration date—The date at which a feature is no longer available for acquisition on the FlexNet Embedded client.
(That is, the client checks this date to determine whether a specific feature in a license source can be used to satisfy
one of the license acquisition requests on the client.)

• If the feature is served by a license server, the expiration date is calculated by taking the borrow interval into
account. For more details, see How the Borrow Interval Is Determined.

• If the feature is obtained directly from back-office server, the expiration date is the same as the final expiration
date (see the next bullet).
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 71

Chapter 6 Using the FlexNet Embedded APIs
Common Steps to Prepare for Licensing
• Final expiration date—The final date, as defined in the back office, when a feature is no longer available for serving
by the license server or for acquisition from the back-office server (and consequently no longer available to satisfy
license acquisition requests on the client). This date reflects the entitlement expiration date plus the defined grace
period. If no grace period is defined, the final expiration date is the same as the entitlement expiration date (see the
next bullet).

• Entitlement expiration date—The original expiration date in the entitlement; no grace period is included in this date.
Subsequently, if a grace period is defined in the back office, the entitlement expiration date is earlier than the final
expiration date. If no grace period is defined, the entitlement expiration and final expiration dates are the same.

.NET Properties Used to Retrieve Expiration Information
The following .NET properties in FlexNet Embedded retrieve the expiration information:

• Expiration (in IExtendedLicensingAttributes interface)—For features obtained directly from the back-office server,
retrieves the final expiration date; for features served by a license server, retrieves the calculated borrow expiration
date (or the final expiration date if the borrow expiration is later than or equal to the final expiration).

• FinalExpiration (in IFeature interface)—Obtains the final expiration date for a feature.

• EntitlementExpiration (in IFeature interface)—Obtains the entitlement expiration date for a feature.

• IsInGracePeriod (in IFeature interface)—Determines whether a feature is currently in a grace period (that is, the
current date is after the entitlement expiration date but before the final expiration date).

Including Vendor Dictionary Data
The vendor dictionary provides an interface for an implementer to send custom data in a capability request (in addition to
the FlexNet Embedded–specific data) to the back office or license server and vice-versa. Basically, the vendor dictionary
provides a means to send information back and forth between the client and server for any producer-defined purposes, as
needed; FlexNet Embedded does not interpret this data.

Vendor dictionary data is stored as key–value pairs. The key name is always a string, while a value can be a string or a 32-bit
integer value. Keys are unique in a dictionary and hence allow direct access to the value associated with them. (Note that
the maximum size for a vendor dictionary sent to the license server is 7168 bytes in base64.)

In a client implementation, call AddVendorDictionaryItem to add a single string or integer vendor dictionary item to a
request. After the server’s response has been received, inspect the VendorDictionary property to retrieve vendor
dictionary items from the response.

For illustration, the CapabilityRequest.cs example sets two vendor-dictionary items—one a string, the other an integer:

// Optionally add capability request vendor dictionary items.
options.AddVendorDictionaryItem(dictionaryKey1, "Some string value");
options.AddVendorDictionaryItem(dictionaryKey2, 123);
72 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Buffer Licenses
Advanced Topic: Secure Anchoring
FlexNet Embedded offers advanced functionality called secure anchoring that provides a greater level of anchor security
than the standard FlexNet Embedded anchoring techniques normally used for trusted storage on machines that run your
license-enabled applications (see Trusted Storage). While default anchoring stores the anchoring information in the
anchor file whose location you specify in LicensingFactory.GetLicensing, secure anchoring uses additional techniques
to store anchor information on the target system.

Prerequisites
The operating systems supported by FlexNet Embedded generally provide all of the resources required to enable secure
anchoring. However, if you choose to enable secure anchoring, you should be aware that its methods might result in issues,
such as insufficient-rights issues, on some end-user systems. If a required resource is not available, FlexNet Embedded
seamlessly defaults to a reduced set of anchoring techniques for that system.

Enabling Secure Anchoring
Enabling secure anchoring functionality requires you to perform an extra step after generating client-identity information.
Specifically, after you have obtained the file containing the client-identity binary data (for example, IdentityClient.bin),
as described in Creating the Producer Identity, and before you run the Print Binary Utility to put the identity data into a
code-compatible format, you must run the Secure Profile Utility secureprofileutil. This utility uses a specified security
profile to embed secure-anchoring configuration information into the identity data. (Security profiles, which are pre-
defined by FlexNet Embedded, configure specific levels of anchor security. Currently, FlexNet Embedded offers only one
security profile, called xt-medium.) A typical command is:

secureprofileutil -profile xt-medium IdentityClient.bin IdentityClientSecure.bin

You would then use printbin to create your C#-compatible identity file, and recompile your license-enabled application
using this new identity data. (This process must be repeated if you ever update your identity data.)

When you enable secure anchoring, no code changes are necessary in your application, apart from updating the identity
data as previously described. However, you must specify a trusted storage location in LicensingFactory.GetLicensing,
as described in Specifying the Trusted Storage Location section. If no storage path is specified—thus indicating that in-
memory trusted storage is to be used—secure anchoring will not be enabled.

When you enable secure anchoring, the additional techniques will require changes to the testing process. For example,
when working with limited-duration trials, as described in Licenses Obtained from a License Server, to re-test a trial with a
particular trial ID, it will be necessary to specify a load-always trial using the -always switch to trialfileutil, as an
existing anchor typically prevents a trial from being re-processed. Before releasing the product, you would then specify a
load-once trial with the default -once switch to trialfileutil.

Note that anchors created with secure-anchoring functionality are independent of anchors using standard anchoring
functionality. This means, for example, that an existing product that uses standard anchors will not be affected by a newer
product version that uses secure-anchoring functionality.

Buffer Licenses
The following scenario describes how the FlexNet Embedded functionality can be used when the producer wants to
provide node-locked licenses on the client system.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 73

Chapter 6 Using the FlexNet Embedded APIs
Buffer Licenses
Setting Up the License File
Any scenario involving manually creating buffer license rights involves the following steps:

• Step 1: Create an Unsigned License File

• Step 2: Generate a Signed Binary License File

Step 1: Create an Unsigned License File
Begin by manually creating a license file in any plain-text editor (such as vi or Windows Notepad), entering one or more
feature definitions, as described in Feature Definitions, and saving the text file with the .lic file name extension, as in
license.lic.

INCREMENT survey demo 1.25 1-jan-2025 uncounted HOSTID=ID_STRING=1234567890
INCREMENT highres demo 1.25 1-jan-2025 uncounted HOSTID=ID_STRING=1234567890

The names survey and highres are feature names. At run time, the license-enabled code will attempt to acquire features
with these names. Feature names are case sensitive, whereas most hostid values specified in the HOSTID keyword are not
case sensitive. For more information, see Hostids.

The name that follows the feature name is your producer name; “demo” is the name used by the evaluation toolkit. For a
production toolkit, replace “demo” in the license rights with your producer name obtained from Revenera, which you used
in pubidutil to generate your producer identity files.

Step 2: Generate a Signed Binary License File
The text-based license file must be converted to binary form so that it can be used on the client system in the license-
enabled code. This conversion can be performed manually using the License Conversion Utility licensefileutil. In a full
production environment, this functionality would likely be integrated into the regular back-office server processing.

To generate the signed binary license file, run the following command from the install_dir/bin/tools directory:

licensefileutil -id IdentityBackOffice.bin license.lic license.bin

The command assumes your producer back-office identity file IdentityBackOffice.bin (created with pubidutil) is in the
same directory.

See the section on the License Conversion Utility for more details on how to run this utility.

Using the License on the Client
The following functionality should be added into the license-enabled code running on the client machine. The purpose of
this logic is to enable the license-enabled code to identify the licensed features for the client system. Refer to the source
code in the file BasicClient.cs, located in the examples\client_samples\BasicClient directory.

Running the BasicClient example with the -h or -help switch displays usage information.

Assuming you have already created the core objects as described in Creating Core Licensing Objects, perform the following
steps:

• Step 1: Create and Populate the License Sources

• Step 2: Acquire the License(s)
74 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Buffer Licenses
• Step 3: Read the License Details

Step 1: Create and Populate the License Sources
For this sample code, the license data is read directly from a specified input file into an input buffer (using the helper
method Util.ReadData), which is then loaded as a buffer license source.

Util.DisplayInfoMessage(string.Format("Reading data from {0}", inputFile));
byte[] buffer = Util.ReadData(inputFile);

if (buffer == null)
{
 // issue encountered accessing input file
 return;
}

// Add buffer license source
licensing.LicenseManager.AddBufferLicenseSource(buffer, "BasicClientLicenseSource");

The client source provided with the toolkit additionally adds trusted storage and trial license sources to the license source
collection.

Tip • See the API reference for the multiple signatures of methods that add licenses sources. For example,
“AddBufferLicenseSource” can accept an array of bytes, a string file path, or a collection of items.

Step 2: Acquire the License(s)
The license-enabled code can now attempt to acquire the license for a particular capability (in this case, a single license for
a feature called “survey”, version 1.0, as in the example signed license rights you created earlier) from the license source
collection.

try
{

// acquire the license
ILicense acquiredLicense = licensing.LicenseManager.Acquire("survey", "1.0");

try
{

string acqdFeature = acquiredLicense.Name;
string acqdVersion = acquiredLicense.version;

Util.DisplayInfoMessage(
string.Format("License acquisition for feature '{0}' version '{1}' successful",

acqdFeature, acqdVersion));

//// application logic here
}
finally
{

// return license. note: it is also possible to use a "using" statement to
// implicitly return the license

acquiredLicense.ReturnLicense();
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 75

Chapter 6 Using the FlexNet Embedded APIs
Licenses Obtained from the Back-Office Server
}

The attempt to acquire a license looks through the sources in the license source collection in order, accepting the first valid
license it encounters. Note that the feature version string specified in the acquisition attempt is the minimum acceptable
version: a request for version 1.0 will succeed if version 1.0, 1.25, or 2.0 (for example) is available, and will fail if only
version 0.5 is available. (Recall that feature names are case sensitive, and that feature versions are expected to be in a.b
format.) A request for version 0.0 of a feature indicates that any version of the feature is acceptable.

The acquire method returns an ILicense object, populated with information about the license, if the license was
successfully acquired. If acquisition failed, the exception returned contains information about the reason. For example,
FeatureHostIdMismatchException indicates that the HOSTID value in the license does not match the current client
machine’s hostid, and FeatureNotStartedException indicates a license start date (START keyword value) that occurs in
the future.

A license-acquisition attempt can request a specific count of licenses, which succeeds only if a sufficient count exists in the
target’s aggregate pool of licenses. The feature counts can be pooled from multiple license sources, if necessary. A feature
definition that uses the count value “uncounted” will satisfy a request for any number of copies. A client can call
AvailableAcquisitionCount to determine an available acquisition count for a feature in a given license source collection.

Tip • To help diagnose difficulties acquiring license rights, FlexNet Embedded provides a diagnostic API that verifies whether
buffer-based or trusted storage license rights are valid. For more information and an example, see Examining License Rights in
a License Source. In addition, the FlexNet Embedded API can be used to query license rights without attempting to acquire the
license rights. For example, “GetFeatureCollection” and related methods will list features in a license source without
validating signatures or expiration dates; and “ValidStatusForAcquisition” will indicate whether a feature could be acquired
without acquiring it. For more information, consult the API reference.

Step 3: Read the License Details
It is expected that the license-enabled code will sometimes require access to additional information specified within
optional license keywords such as VENDOR_STRING. This is performed by reading properties of the ILicense interface
obtained with the Acquire method:

Console.Out.WriteLine(
string.Format("License acquisition for feature '{0}' version '{1}' successful.",

license.Name, license.Version));

Licenses Obtained from the Back-Office Server
This scenario involves license-enabled code generating a capability request and sending it to the back-office server. The
server then processes the request and generates a capability response, which is then conveyed back to the client system.
Once the response has been processed, the license rights in the response are available for acquisition on the client system.
The CapabilityRequest example is used to demonstrate this process. The example is run against FlexNet Operations or, for
a simple test, against capserverutil, the toolkit’s test back-office server utility.

This section describes the following steps:

• Configuring the Back-office Server to Provide Access to Licenses

• Activation or Upgrade Steps
76 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Licenses Obtained from the Back-Office Server
FlexNet Operations as “Back-Office Server”
This book assumes that FlexNet Operations is the back-office server (or simply “back office”, as it is sometimes called in
this book) and that all back-office functionality described is that of FlexNet Operations.

Configuring the Back-office Server to Provide Access to
Licenses

To run the CapabilityRequest example, you need to configure FlexNet Operations with the proper entitlement
information—enabling the example either to activate a rights ID or to obtain all available rights mapped to the client
device. See your FlexNet Operations documentation for instructions to set up the entitlement. You might need to adjust
the example code accordingly to reflect the appropriate client hostid and rights ID.

Alternatively, for a simple test back-office server implementation, you can use the Capability Server utility, included in the
toolkit. This utility comes with some sample rights that work easily with the CapabilityRequest example to activate a
specific rights ID or to obtain all available rights mapped to the client hostid (“1234567890” in the example). For details, see
Capability Server Utility in the Utility Reference chapter.

The following steps assume that the back-office server—FlexNet Operations or the Capability Server utility—has been
configured appropriately and is running.

 Activation or Upgrade Steps
The following steps are to be performed in the license-enabled code to obtain a license with an updated set of capabilities
(a new client configuration, for example). These steps typically would be initiated by the user or automatically as a
scheduled task from code running on the client system. See the FlexNet Embedded source code in the file
install_dir\examples\client_samples\CapabilityRequest\CapabilityRequest.cs for an example implementation.

Running the CapabilityRequest executable with the -h or -help switch displays usage information. (Specific commands
are described later in this section.)

Perform the following steps:

• Step 1: Create the License Source

• Step 2: Create the Capability Request (with optional attributes described in Additional Capability-Request Options)

• Step 3: Send the Request to the Back-Office Server

• Step 4: Process the Capability Response

Step 1: Create the License Source
In license-enabled code that has created the core objects, this step is identical to the corresponding step in Buffer Licenses,
Step 1: Create and Populate the License Sources, except that a trusted storage license source must be created.

// Add trusted storage license source
licensing.LicenseManager.AddTrustedStorageLicenseSource();

Note that some operations, such as processing a capability response, automatically create a trusted storage license
source.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 77

Chapter 6 Using the FlexNet Embedded APIs
Licenses Obtained from the Back-Office Server
If trusted storage has been previously used to store a capability response, then the trusted storage license source will
contain license rights from this response, and these rights are immediately available for acquisition. If trusted storage has
not been previously used, the trusted storage license source will have no license rights. In both cases, to get the current set
of client-system capabilities from the back-office server, the license-enabled code must generate a capability request and
process the capability response as described below.

Step 2: Create the Capability Request
The next step is to generate the capability requests, providing the producer identity, requested license rights, and other
attributes.

ICapabilityRequestOptions options = licensing.LicenseManager.CreateCapabilityRequestOptions();

// Set capability request options here, such as rights IDs or desired features

// Generate the request
ICapabilityRequestData capabilityRequestData =

licensing.LicenseManager.CreateCapabilityRequest(options);

FlexNet Operations uses an activation ID to identify the license rights that the client is requesting. However, in the
capability request, this activation ID is sent as a rights ID. The AddRightsId method adds a rights ID and a count value (for
the number of rights ID copies) to the request. You can call AddRightsId multiple times to add multiple rights IDs.

For a description of other options you can include in the capability request, see the next section, Additional Capability-
Request Options.

Additional Capability-Request Options
The following options are available when requesting rights IDs from the back-office server:

• Attribute to Obtain All Available Copies for a Rights ID If Requested Count Cannot Be Satisfied

• Host Names (Aliases) and Types

• Option to Force a Capability Response

Attribute to Obtain All Available Copies for a Rights ID If Requested Count Cannot Be Satisfied
By default, the back-office server grants a given rights ID only if the number of copies requested for that ID is available in
the back office. As an alternative to this default behavior, the FlexNet Embedded client can mark a rights ID in a capability
request as “partial”, indicating that the back-office server should go ahead and send however many copies are available for
that rights ID should the available copy count in the back office fall short of the requested count.

The following describes more about rights IDs marked with the “partial” attribute:

• Marking a Rights ID as “partial”

• How the Request is Processed

• Considerations
78 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Licenses Obtained from the Back-Office Server
Marking a Rights ID as “partial”

To mark one or more rights IDs as “partial” in the capability request, provide this basic flow in the code:

1. Create an IRightsIdOptions object using the licensing.LicenseManager.CreateRightsIdOptions method, and set
the PartialFulfillment property to true.

2. For each rights ID you want to mark as “partial”, use the AddRightsId method overload, which takes a reference to the
IRightsIdOptions object.

Example Implementation

The following shows a sample implementation that requests two rights IDs—one marked as “partial” (li1) and one (li2)
not marked with this attribute:

 ICapabilityRequestOptions crOptions =
 licensing.LicenseManager.CreateCapabilityRequestOptions();
 IRightsIdOptions rightsOptions = licensing.LicenseManager.CreateRightsIdOptions();
 rightsOptions.PartialFulfillment = true;
 crOptions.AddRightsId(new RightsIdData("li1", 9, rightsOptions));
 // Old of adding rights ids without options is not impacted.
 crOptions.AddRightsId("li2", 2);

How the Request is Processed

When the back-office server processes a capability request that contains a rights ID marked as “partial”, the server
attempts to satisfy the number of copies requested for that ID. If the back office does not have a sufficient number of copies
to satisfy the requested number, it sends whatever remaining copies are available for that rights ID in the capability
response. The following examples demonstrate what happens when given rights IDs are marked and not marked as
“partial”.

Example 1

The FlexNet Embedded client sends a capability request for 5 copies of the rights ID li1 and 15 copies of li2. The license
server currently has 5 copies of li1 but only 10 copies of li2. The following happens:

• If neither rights ID is marked as “partial”, the back-office server sends the 5 copies of li1 only. No copies of the rights
ID li2 are included in the capability response because the back-office server cannot satisfy all 15 copies requested.

• If both rights IDs are marked as “partial”, the back-office server sends the 5 copies of li1 and the available 10 copies of
li2 in the capability response.

Example 2

The FlexNet Embedded client sends a capability request for 5 copies of the rights ID li1 and 15 copies of li2. The back-
office server currently has only 4 copies of li1 and 10 copies of li2. The following happens:

• If neither rights ID is marked as “partial”, the back-office server sends no rights IDs in the capability response since it
cannot satisfy the requested number of copies for either rights ID.

• If the rights ID li1 is marked as “partial” but li2 is not, the back-office server sends the remaining available 4 copies of
li1 in the capability response but includes no copies of li2.

• If both rights ID are marked as “partial”, the back-office server sends the remaining 4 copies of li1 and the remaining
10 copies of li2 in the capability response.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 79

Chapter 6 Using the FlexNet Embedded APIs
Licenses Obtained from the Back-Office Server
Considerations

The availability of rights IDs in a given entitlement on the back-office server depends on the collective activities of all
FlexNet Embedded clients in an organization that share that entitlement. Therefore, if a client resends a capability request
for a rights IDs marked as “partial”, the resulting capability response can include a copy count different from the number of
copies returned for that rights ID when the request was sent previously.

Host Names (Aliases) and Types
In addition, a capability request can include a host name—that is, a human-readable “alias”, in contrast to the hostid—and
a host type if the back office requires these attributes to determine the client’s license rights. Check with the FlexNet
Operations administrator to determine whether these attributes are required.

To set these values, an implementation uses the HostName and HostType properties in the ILicenseManager object.

Option to Force a Capability Response
The typical behavior of the back office is to send a capability response only if the client’s license rights have changed since
the last capability exchange. If no changes have occurred, a 0-size response is returned to the client.

However, you can use the ForceResponse method in the ICapabilityRequestOptions object to set a “force response” flag
in the capability request. When this flag is sent in the capability request, the back office will always return a capability
response even if the client’s license rights have not changed.

Use this flag with caution, mostly for exception cases such as these:

• To restore current license rights should client trusted storage be deleted due to corruption

• To process a capability response that previously failed

• To resolve synchronization timestamp issues

Step 3: Send the Request to the Back-Office Server
The CapabilityRequest example uses the SendCapabilityRequest helper method to send the request to the test back-
office server. The request is sent over HTTP POST, and the response is obtained as part of the corresponding HTTP POST
response.

Note • FlexNet Embedded provides support for HTTP, proxy-server, and SSL communications with a back-office server. See
the API reference for a description of the methods used for the different types of communications.

For the CapabilityRequest example, issue this command to send the capability request to FlexNet Operations and to
process the response. If necessary, adjust the default port (8888) to match your FlexNet Operations installation.

capabilityrequest -server http://hostname:8888/flexnet/deviceservices

If you are using the Capability Server utility (the test back-office server) to run the CapabilityRequest example, issue this
command:

capabilityrequest -server http://localhost:8080/request
80 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Licenses Obtained from the Back-Office Server
The example’s SendCapabilityRequest method uses the SendBinaryMessage method from the IComm class to send the
binary capability request and receive the response.

Note • Any errors encountered by “IComm” methods will throw exceptions derived from “CommException”. See the API
reference for additional configuration options and error details. If desired, for troubleshooting, you can enable network
tracing functionality for your .NET executable by providing an application configuration file. Consult the Microsoft .NET
documentation for details.

It is not a requirement to use the IComm methods to send messages to a back-office server or license server. An
implementation can use any transport mechanism available on the client machine that is used to generate requests and
receive responses. The producer supports a given implementation as part of a collection of “remote update/verification”
transactions.

FlexNet Embedded functionality also supports the use of intermediate files for the capability request-and-response
exchange instead of direct communications. The CapabilityRequest sample project supports offline transactions, and
Capability Request Utility and Capability Response Utility utilities can also be used for such purposes.

More About the Capability Response

In whatever manner the capability request is conveyed to the back-office server, the server generates a capability
response, which contains the new or updated license rights to be stored in trusted storage for acquisition. It is this
capability response that is processed in the next step.

However, FlexNet Embedded does not require that the back office produce a capability response if license rights have not
changed on the client system since the last capability request, unless the request has the “force response” flag set. For
more information, about this “force response” flag, see Option to Force a Capability Response.

Step 4: Process the Capability Response
In order to use license rights from a capability response, the license-enabled code processes it into a trusted storage
license source. When processing a capability response, the FlexNet Embedded libraries automatically validate the
response’s digital signature generated by the back-office server, the response hostid, and other information.

The ProcessCapabilityResponse helper method accepts the byte array containing the capability response, either
received directly from a server or read in from a binary file, and creates the trusted storage license source.

ICapabilityResponse response =
 licensing.LicenseManager.AddTrustedStorageLicenseSource(binCapResponse);

Retrieving Response Contents

If the response contains any vendor-dictionary items sent by the server, the code can inspect the VendorDictionary
property to get the dictionary.

A capability response can also contain one or more response status items. A response status item consists of a status code,
status item detail, and a status category, and a server can return multiple status items to indicate different statuses if (for
example) multiple rights IDs were included in a capability request sent to FlexNet Operations or multiple features were
requested from a license server. To get the status items contained in the response, examine the Status property; followed
by looping over the list of items, reading properties of IResponseStatus to get data from each individual status item.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 81

Chapter 6 Using the FlexNet Embedded APIs
Licenses Obtained from a License Server
Additionally, the capability response can include a flag indicating that the client needs to send a confirmation request back
to the back-office server. (The back office might need such a request to verify that the client has successfully processed a
license-return response. The request confirms that the client’s license count is indeed reduced by the returned amount.)
Client code can retrieve this flag using ConfirmationRequestNeeded in the ICapabilityResponse object. Note that the
client has the option to send the confirmation request or ignore it. However, in some cases, not sending a confirmation
request can have undesirable results. For example, if the back-office server is set up to require confirmation requests for
returned licenses, the customer is not credited for the returned licenses until the back office receives the confirmation
request.

Processing into Trusted Storage

When a capability response is processed into the trusted storage license source, it replaces any previously available license
rights in this license source. This can make some of the licenses that were previously acquired from this source invalid. For
this reason, it is strongly recommended to return licenses before processing a new response, and then to re-acquire the
licenses after the new response is processed.

When a capability response is successfully processed, the new data is automatically saved to the trusted storage location
and is available to the license-enabled code even after a client-system restart.

Once license rights are in trusted storage, license-enabled code can acquire the license rights and read the license details
using the code described in Using the License on the Client, as long as the license collection includes a trusted storage
license source.

Licenses Obtained from a License Server
You can use the CapabilityRequest example to demonstrate how the FlexNet Embedded client obtains licenses from a
license server instead of directly from the back-office server. The client uses mostly the same APIs to create and send
capability requests and process responses, whether it is obtaining licenses from the back-office server or a license server.
The most obvious difference is that the client requests licenses from the license server by specifying “desired features”, not
a rights IDs as it does when requesting licenses from the back office.

A license server can be one of these:

• A FlexNet Embedded local license server

• A Cloud Licensing Service (CLS) instance, also called the CLS license server

The following sections describe the modifications needed to run the example against a license server. The sections also
highlight options available specifically for capability requests sent to a license server and describe how the license server
grants the requested licenses.

• Provision the License Server with Licenses for the Demonstration

• Register the Client with the Cloud Licensing Service

• Provide the URL for the License Server in the Command

• Modify the Example Code to Request “desired features”

• Additional Capability-Request Options

• License Checkout from the License Server

• Capability Preview
82 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Licenses Obtained from a License Server
For all other instructions about preparing your licensing environment, setting up and sending a capability request in
general, and processing the capability response, see Configuring the Back-office Server to Provide Access to Licenses and
Activation or Upgrade Steps in Licenses Obtained from the Back-Office Server section.

Provision the License Server with Licenses for the
Demonstration

You must use FlexNet Operations as the back-office server needed to provision the license server with the licenses needed
for serving the FlexNet Embedded client in the CapabilityRequest example. See your FlexNet Operations documentation
for instructions about setting up an entitlement that allows you to provision the license server.

Alternatively, for a simple test back-office server implementation, you can use the Capability Server utility, included in the
toolkit, to provide licenses for the license server. While this utility allows you to create license rights, it comes with sample
license rights that easily mesh with the CapabilityRequest example. For details about configuring, starting, and using this
utility, see Capability Server Utility in the Utility Reference chapter.

The license server must be running and provisioned with licenses before executing the CapabilityRequest example. Refer
to the FlexNet Embedded License Server Administration Guide for instructions about starting the license sever and
requesting license activation.

Additionally, before running the CapabilityRequest example, you might need to modify the code to reflect the correct
client hostid and desired features (as described in the next section).

Register the Client with the Cloud Licensing Service
The configuration of a CLS license server can require that the FlexNet Embedded client device register with the Cloud
Licensing Service as an extra security measure before allowing the client to request features or report usage. However, by
default, this requirement is disabled. If using a CLS license server, consult the FlexNet Operations administrator to
determine whether registration is required. If it is, refer to Client Registration with the Cloud Licensing Service in the
Capturing Feature Usage on the Client section for information about setting up a separate capability request that initiates
this registration.

Provide the URL for the License Server in the Command
Specify the appropriate URL for the license server when running the CapabilityRequest example:

• For the FlexNet Embedded local license server, run the following, where hostname is the name of the machine running
the license server:

capabilityrequest -server http://hostname:7070/request

• For the CLS license server, run the following, where siteID is the producer’s specific site ID supplied by Revenera and
instId is the server’s instance ID in the Cloud Licensing Service:

capabilityrequest -server https://siteID-uat.compliance.flexnetoperations.com/instances/instId/
request

Note that the URL above points to a User Acceptance Test (UAT) environment indicated by the -uat part following the
siteID. For production environments, the -uat is omitted.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 83

Chapter 6 Using the FlexNet Embedded APIs
Licenses Obtained from a License Server
Modify the Example Code to Request “desired features”
Modify the example code to request desired features from the license server (instead of the rights ID used to obtain licenses
from the back office), and rebuild the code:

options.AddDesiredFeature(new FeatureData(“f1”, “1.0”, 1));
options.AddDesiredFeature(new FeatureData(“f2”, “1.0”, 1));

Additional Capability-Request Options
The following options are available when requesting desired features from a license server:

• Incremental Capability Requests

• Attribute to Check Out All Available Quantity for a Feature If Requested Count Cannot Be Satisfied

• Feature Selectors in a Capability Request

• Secondary Hostids

• Option to Force a Capability Response

• Borrow Interval and Granularity Overrides

Incremental Capability Requests
As described in Processing into Trusted Storage, each time the FlexNet Embedded client processes a capability response
containing its “desired” features from the license server, the client’s currently existing licenses are removed and the new
licenses added. If the client wants to maintain its existing licenses when it requests new features, two options are available.
Either the client can explicitly include the existing licenses as desired features in the capability request along with any new
desired features; or it can use the Incremental property in the ICapabilityRequestOptions interface to mark the request
as “incremental” (and avoid having to specify the existing features).

The following topics describe how incremental capability requests work:

• Marking a Request as “incremental”

• How the Request is Processed

• Incremental Request Examples

• Considerations and Limitations

Marking a Request as “incremental”

The following shows a sample implementation for marking a capability request as “incremental”:

 ICapabilityRequestOptions options =
 licensing.LicenseManager.CreateCapabilityRequestOptions();
 options.Incremental = true;
84 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Licenses Obtained from a License Server
How the Request is Processed

When the license server processes a capability request marked as “incremental”, it automatically attempts to renew all
licenses currently served to the client and include the renewed licenses in the capability response along with any new
features requested. If the license server determines that an existing feature on the client cannot be renewed (for example,
it has expired or is no longer available), that feature is not included in the response. Ultimately then, the capability
response includes all available non-expired existing features, along with all available desired features. If no desired
features are specified in the incremental request, the server sends only the available non-expired existing features.

The capability request can also explicitly include an existing feature as a desired feature with a positive or negative count
to add to or decrement the count renewed for that feature.

Incremental Request Examples

The next sections provide examples of the type of capability responses the FlexNet Embedded client can receive from
incremental capability requests.

Example 1: Renew Existing Features and Add New Features

If a client that has been previously served only one license—1 count of the survey feature—sends a capability request for 1
desired count of the highres feature, the following happens:

• If the capability request is not marked as “incremental”, the license server generates a capability response for the 1
desired count of the highres feature, if it is available. (If highres is not available, the response is sent with no feature
included, and the client ends up with no licenses.)

• If the request is marked as “incremental”, the response from the license server contains both 1 count of survey (if the
feature is renewable) and 1 desired count of highres (if it is available). If the 1 count of survey is not renewable but the
1 desired count of highres is available, the response contains the 1 desired count of highres only. Conversely, if the 1
count of survey is renewable but the 1 desired count of highres is unavailable, the response contains 1 count of
survey only.

Example 2: Renew Existing Features and Add Counts to Selected Renewed Features

A capability request marked as “incremental” allows the client to increment the count of an existing feature. For example,
if a client that has been previously served 1 count of survey sends a capability request for 2 desired counts of survey, the
following happens (assuming that the existing feature is renewable and the requested counts are available):

• If the capability request is not marked as “incremental”, the capability response includes simply the requested 2
counts of survey.

• If the request is marked as “incremental”, the response contains 3 counts of survey—1 count of the renewed survey
feature and the requested 2 new counts of survey.

Example 3: Renew Existing Features But Reduce Counts for Selected Renewed Features

Additionally, a capability request marked as “incremental” allows the client to renew all existing features but reduce the
count of (or not renew at all) selected existing features. The request must explicitly include each of these features as a
desired feature with a negative count.

For example, a client has previously been served 10 counts of the survey feature, 4 counts of the highres feature, and 1
count of the lowres feature. If the client sends a capability request for -3 desired counts of survey, -1 desired count of
lowres, and 2 desired counts of medres, the following happens (assuming that the existing features are renewable and the
requested counts for the new feature are available):
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 85

Chapter 6 Using the FlexNet Embedded APIs
Licenses Obtained from a License Server
• If the capability request is not marked as “incremental”, the license server responds with only what you ask for in the
request. Hence, the response includes the 2 counts of new feature medres (and indicates that the negative counts for
survey and lowres are invalid). Best practice is to avoid including negative counts for features when the capability
request is not marked as “incremental”.

• If the request is marked as “incremental”, the response includes 7 renewed counts of survey (the original 10 counts
decremented by 3), 4 renewed counts of highres, and 2 counts of the new feature medres. The original 1 count of
lowres was negated by the requested -1 count for this feature, and thus lowres was not renewed.

Considerations and Limitations

Note the following about incremental capability requests:

• An incremental capability request is compatible with only the “request” operation type and concurrent features.

• Incremental capability requests are compatible with license reservations on the license server. For more information
about license reservations, refer to the FlexNet Embedded License Server Producer Guide, specifically the “More About
Basic License Server Functionality” chapter and the “Effects of Special Request Options on the Use of Reservations”
appendix.

• If the borrow interval for an existing feature has expired, that feature must be explicitly included in the capability
request as a desired feature.

• The license server processes desired features in the order in which they are listed in the capability request. This order
can be important when an incremental capability request includes both negative and positive counts that decrement
and add to the existing counts of selected features being renewed.

• When an incremental capability request includes a negative count that is greater than the current count for the
specified version of an existing feature, the server first negates (that is, does not renew) all counts of the specified
feature version. It then attempts to complete the decrement from the counts of a greater version for that feature.

For example, a client might have 1 count of f1 version 1.0 and 2 counts of f1 version 2.0. If the incremental
request asks for -2 counts for f1 version 1.0, the server would negate the 1 count of f1 version 1.0 first and then
decrement 1 count of f1 version 2. The remaining 1 count of f1 version 2.0 would be renewed.

When no greater version of the specified feature exists, all counts of the specified feature version are negated, and a
status message is generated to state that the requested negative count was greater than the actual count for the
feature. For example, if the client has 1 count of f1 version 1.0 and the incremental request asks for -2 counts for f1
version 1.0, the server would negate the 1 count of f1 version 1.0 and provide the status message.

• When an incremental capability request includes a negative count for a concurrent feature for which the client
currently has a 0 count, the license server sends the error message The feature cannot be returned because it is
not reusable. (This specific error message is issued because the server perceives the feature as metered, not as
incremental since there is no count to increment on the client.)

Attribute to Check Out All Available Quantity for a Feature If Requested
Count Cannot Be Satisfied

By default, the license server grants a given “desired feature” only if the count requested for that feature is available on the
server. As an alternative to this default behavior, the FlexNet Embedded client can mark a feature in a capability request as
“partial”, indicating that the license server should go ahead and send whatever is available for that feature should the
available count for the feature on the server fall short of the requested count.
86 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Licenses Obtained from a License Server
The following describes more about desired features marked with the “partial” attribute, also called partial-checkout
features:

• Marking a Feature as “Partial”

• How the Request is Processed

• Considerations and Limitations

Marking a Feature as “Partial”

To mark one or more desired features as partial in the capability request, provide this basic flow in the code:

1. Create an IDesiredFeatureOptions object using the licensing.LicenseManager.CreateDesiredFeatureOptions
method, and set the PartialFulfillment property to true.

2. For each desired feature you want to mark as “partial”, use the AddDesiredFeature method overload, which takes a
reference to the IDesiredFeatureOptions object.

The following shows a sample implementation that requests three desired features—two marked as “partial” and one
(lowres) not marked with this attribute:

IDesiredFeatureOptions featureOptions = licensing.LicenseManager.CreateDesiredFeatureOptions();
featureOptions.PartialFulfillment = true;
options.AddDesiredFeature(new FeatureData("survey", "1.0", 15, featureOptions));
options.AddDesiredFeature(new FeatureData("highres", "1.0", 5, featureOptions));
options.AddDesiredFeature(new FeatureData("lowres", "2.0", 5));

How the Request is Processed

When the license server processes a capability request that contains a feature marked as “partial”, the server attempts to
satisfy the count requested for that feature. If the server does not have a sufficient count to satisfy the requested count, it
sends whatever remaining count is available for that feature in the capability response. The following examples
demonstrate what happens when given features are marked or not marked as “partial”.

Example 1

The FlexNet Embedded client sends a capability request for 5 counts of the highres feature and 15 counts of survey. The
license server currently has 5 counts of highres but only 10 counts of survey. The following happens:

• If neither feature is marked as “partial”, the license server sends the 5 counts of highres only. No survey licenses are
included in the capability response because the license server cannot satisfy all 15 counts requested.

• If both features are marked as “partial”, the license server sends the 5 counts of highres and the available 10 survey
licenses in the capability response.

Example 2

The FlexNet Embedded client sends a capability request for 5 counts of the highres feature and 15 counts of survey. The
license server currently has only 4 counts of highres and 10 counts of survey. The following happens:

• If neither feature is marked as “partial”, the license server sends no features in the capability response since it cannot
satisfy the requested count for either feature.

• If the highres feature is marked as “partial” but the survey feature is not, the license server sends the remaining
available 4 counts of highres in the capability response but includes no survey licenses.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 87

Chapter 6 Using the FlexNet Embedded APIs
Licenses Obtained from a License Server
• If both features are marked as “partial”, the license server sends the remaining 4 counts of highres and the remaining
10 counts of survey in the capability response.

Considerations and Limitations

Note the following about partial-checkout features:

• The availability of features on the license server depends on the collective activities of all FlexNet Embedded clients in
the enterprise. Therefore, if a client resends a capability request for partial-checkout features, the resulting capability
response can include counts different from those returned when the request was sent previously.

• Partial-checkout features can be metered or concurrent and are compatible with the use of license reservations on the
license server.

For more information about license reservations, refer to the FlexNet Embedded License Server Producer Guide,
specifically the “More About Basic License Server Functionality” chapter and the “Effects of Special Request Options
on the Use of Reservations” appendix.

• These features are compatible with incremental capability requests (see Incremental Capability Requests).

• They are compatible with the capability requests defined with the “request” operation type only.

Feature Selectors in a Capability Request
The license server always tries to satisfy a FlexNet Embedded client’s request for a desired feature by serving a feature that
matches three basic criteria—feature name, version, and count—as specified in the capability request. However, in some
cases, additional criteria might be needed to ensure proper feature distribution to clients. For example, if the cost or
availability of a feature varies by region and department, the client can include these attributes in the capability request.
The license server then uses these attributes to filter versions of the desired feature and serve the feature appropriate to
the client’s region and department.

To enable filtering on a feature by one or more attributes in addition to the basic criteria, the producer must set up each
additional attribute as a separate feature selector—a key-value structure included as part of the feature’s definition created
in the back office and stored with the feature on the license server. The client code can then use the
AddFeatureSelectorItem method in the ICapabilityRequestOptions interface to specify the feature selectors in the
capability request. The feature is served only if all its criteria, including the selectors, in the capability request match the
feature’s criteria on the license server.

 For information about specifying feature selectors in the capability request, see the following:

• Specifying Feature Selectors in the Capability Request

• Considerations and Limitations

For more information about the setup of feature selectors in the back office and their storage on the license server, refer to
the FlexNet Embedded License Server Producer Guide

Specifying Feature Selectors in the Capability Request

The following sample implementation shows how to specify feature selectors in the capability request—in this case, one
selector using the key “REGION” and value “EMEA” and the other using the key “DEPARTMENT” and value “Acct”. (Feature
selectors are defined as capability-request options.)

 ICapabilityRequestOptions options =
 licensing.LicenseManager.CreateCapabilityRequestOptions();
88 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Licenses Obtained from a License Server
 options.AddFeatureSelectorItem("REGION", "EMEA");
 options.AddFeatureSelectorItem("DEPARTMENT", "Acct");

Considerations and Limitations

Note the following about including feature selectors in the capability request:

• If feature selectors are included in the capability request, they must match all selectors stored for the feature on the
license server; otherwise, the feature is not served. No partial matching is performed.

• If no feature selectors are included in the capability request, no filtering takes place on the license server; features are
served based on their match to the basic criteria only—feature name, version, and count—defined in the request.

• The value element in the key-value pair specified in the FlcCapabilityRequestAddFeatureSelectorStringItem API
to identify a feature selector is case-insensitive and supports UTF-8 characters. Additionally, value must be a string,
not an integer.

• The order of the feature selectors in the capability request does not affect the matching process on the license server.

• The set of feature selectors in the capability request applies to all desired features listed in the request. Only those
features matching all the criteria are served.

• Best practice is to not include feature selectors in capability requests for clients that have reservations on the license
server. This practice helps to avoid possible waste of reserved licenses.

• Feature selectors are compatible with the capability-request operation types “request” and “preview”, but are not
compatible with “report” and “undo”.

Secondary Hostids
The client code can use the AddAuxiliaryHostId method in the ICapabilityRequestOptions interface to add a secondary
hostid to the capability request. A secondary hostid is called as such because it is “secondary” to the main hostid, typically
a unique client-device hostid, to which licenses are bound on the client. In short, the secondary hostid is simply a value
that provides information that you want to save in the client record on the license server (and thus synchronize to the back
office for reporting purposes).

Used to Implement User-Based License Reservations

One use for a secondary hostid in the capability request is to identify an entity, typically a user, for which the license server
can search for license reservations when satisfying the request. (Compare user-based reservations with device-based
reservations, which are identified by a unique client-device hostid. Features reserved for a user using the secondary hostid
can be requested from any machine, whereas features reserved for a device must be requested from that device only. The
license server administrator can set up a combination of both types of reservations on the license server.)

Note • Because user-based reservations can be shared across different client devices (hence, different device hostids) and
device-based reservations are bound to a single device hostid, capability requests should not attempt to specify the same
hostid as a main hostid in one request and a secondary hostid in another.

If multiple secondary hostids are included in the capability request, the license server uses the main hostid (to identify the
client device) and only the first secondary hostid listed (to identify the user) for which to search for reservations. However,
all secondary hostids included in the request are synchronized to the back office.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 89

Chapter 6 Using the FlexNet Embedded APIs
Licenses Obtained from a License Server
Secondary hostids can be of any hostid type (for example, ETHERNET, STRING, USER, or other). As producer, you must
inform the license server administrator which hostid types you allow for secondary hostids used for reservations.

For more information about license reservations, see the “More About Basic License Server Functionality” chapter in the
FlexNet Embedded License Server Producer Guide. For information about the license server administrator’s role in setting up
reservations, see the FlexNet Embedded License Server Administration Guide.

Including Secondary hostids in the Capability Request

The following sample implementation shows how to add a secondary hostid to the capability request:

 // create the capability request options object
 ICapabilityRequestOptions options =
 licensing.LicenseManager.CreateCapabilityRequestOptions();
 // add an auxiliary hostid
 options.AddAuxiliaryHostId(HostIdEnum.FLX_HOSTID_TYPE_USER, "ralph");

When multiple secondary hostids are added, the license server considers only the first secondary hostid (along with the
main hostid) in its search for license reservations to satisfy the request.

Option to Force a Capability Response
The capability request can include a “force response” flag, set with the ForceResponse method in the
ICapabilityRequestOptions object, to indicate that the FlexNet Embedded client always requires a capability response.
However, this option is mainly used in capability exchanges with the back office. The local license server and the CLS
license server ignore the “force response” flag and always send a capability response to the client.

Note however that, if a capability request is sent to a CLS license server and client registration is enabled in the back office,
the CLS license server makes an additional call to the back office to register the client before sending the initial capability
response to the client. Normally, this is a one-time registration call that is not repeated for subsequent capability requests.
However, if the “force response” flag is included in the capability request, a call to the back office is made (and back-office
response information generated) each time a capability request is sent to the CLS license server, resulting in increased
response time. Hence, using the flag in this situation is strongly discouraged and typically unnecessary.

Borrow Interval and Granularity Overrides
Features checked out from the license server operate under a “borrow interval”. The borrow interval is the maximum
amount of time that a client can borrow a feature from the license server. Once the borrow period expires, the feature is no
longer available for acquisition on the client. The license server checks for served expired features at regular intervals to
ensure that the counts for any expired features are added back into the server’s license pool. The client must send another
capability request to the license server to borrow the feature again.

The following sections provide more information about how the borrow interval is ultimately determined:

• How the Borrow Interval Is Determined

• Borrow Interval Overrides
90 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Licenses Obtained from a License Server
How the Borrow Interval Is Determined

The borrow interval can be set for a particular feature in FlexNet Operations, either through back-office configuration,
which sets a default value for the License Fulfillment Service, or through the license model. In addition, a borrow interval
can be set in a client request or using a configuration parameter. If the feature borrow interval has been set in the back
office, the actual borrow interval is the lowest of the following values:

• feature borrow interval (set in the back office)

• client borrow interval (set in a client capability request)

• admin borrow interval (set using the configuration parameter licensing.borrowIntervalMax); default value: 0 (not
configured)

However, if no borrow interval is set for a feature in the back office, then the borrow interval is the lowest of the following
values:

• server borrow interval (defined in producer-settings.xml by the property licensing.borrowInterval); default
value: 7 days

• client borrow interval (set in a client capability request)

• admin borrow interval (set using the configuration parameter licensing.borrowIntervalMax); default value: 0 (not
configured)

If requested features end up having different borrow intervals, then the lowest borrow interval assigned to a given feature
is applied to all the features served from that request.

Additionally, a borrow-interval granularity is applied to the borrow interval. The granularity is the time unit (day, hour,
minute, or second) by which the license server rounds up the borrow interval. By default, this is set on the license server,
and the default is second. For example, if the borrow interval is 1 minute, and the borrow granularity is day, then a license
issued at 5:05:01 PM expires at 11:59:59 PM—which is the borrow interval (5:06:01 PM) rounded to the end of the nearest
day.

A feature’s current borrow expiration can never exceed the final expiration time for that feature. Should the borrow
expiration be greater than the feature’s final expiration, the borrow period is shortened to the final expiration time.

Borrow Interval Overrides

The capability request can override the borrow interval at the request-message level for all the features being requested as
long as the override value in conjunction with the borrow interval granularity is less than the borrow interval defined for the
individual features in the back office. Set this override using the BorrowInterval method in the
ICapabilityRequestOptions object.

Additionally, the capability request can override the granularity defined on the license server for the borrow interval. This
override is set using the ExpirationValidationIntervalEnum method in the ICapabilityRequestOptions object.

For more information about these APIs, consult the API reference.

License Checkout from the License Server
If the license server has sufficient counts to satisfy the requested counts for the desired features specified in a capability
request, the server sends the licenses for the requested features in the capability response. However, by default, if the
license server has an insufficient count to satisfy a given desired feature, the license for that feature is not granted. Also, by
default, if no desired features are included in the capability request, no licenses are served to the client.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 91

Chapter 6 Using the FlexNet Embedded APIs
Licenses Obtained from a License Server
When a capability response is processed into the client’s trusted storage, it replaces any previously available licenses.

Exceptions to any of this behavior can occur when license reservations are used during the checkout process (see the
“More About Basic License Server Functionality” chapter in the FlexNet Embedded License Server Producer Guide) or when
certain options that affect license checkout are included in the request (see the previous section Additional Capability-
Request Options).

The FlexNet Embedded client can also request a preview of available licenses on the license server before sending a
capability request to check out features. See the later section, Capability Preview.

Capability Preview
The FlexNet Embedded client application can preview features currently available to it on the license server by sending a
capability request marked for “preview” purposes. In return, the license server sends a capability response specifying the
available features, but the features are for preview only. In a “preview” capability exchange, the licensing state of the
license server and the client does not change. That is, no feature, reservation, or client records are updated on the license
server; and no licenses are processed into the client’s trusted storage.

In setting up a capability request to preview licenses, the client application can request the availability of specific desired
features or can request a preview of all available features (with all versions and available counts). Additionally, feature
selectors can be included in the preview capability request to enable the license server to filter the available features.

The following sections describe the capability preview feature:

• Types of Preview Counts

• Creating a Preview Capability Request

• Processing the Preview Capability Response

• Creating a Regular Capability Request Based on Preview Features

• Other Considerations

Types of Preview Counts
The preview capability response returns two types of count for each feature available to the client:

• Count—The feature count, as determined by what the capability request has asked to preview:

• If it requested to preview a particular desired feature (with a specific version and count), the returned value is the
count that would be served had the client provided the license server with a regular (that is, non-preview)
capability request for the same desired feature.

• If it requested to preview all available features, the returned value for each feature shows the immediately
available count—that is, the count reserved for the client plus all shared counts that are not currently served to
other clients.

• Maximum count—The potentially available count that includes the count reserved to the client plus all shared
counts, whether currently served to other clients or not. (In other words, this count assumes that all shared counts are
available.)

See Other Considerations for factors that can affect the calculation of these two counts.
92 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Licenses Obtained from a License Server
Based on the preview results, your application can then generate a regular capability request to check out the available
features.

Creating a Preview Capability Request
The CapabilityRequest example includes sample code that sets up a preview capability request. The following sections
highlight the code used for this process:

• Set the Preview Operation

• Request to Preview Specific Features or All Features

• Specify Feature Selectors

Set the Preview Operation

To generate a capability request to preview features available to the client, set the “preview” operation in the
ICapabilityRequestOptions interface, as shown in the following sample implementation:

ICapabilityRequestOptions options = licensing.LicenseManager.CreateCapabilityRequestOptions();
options.Operation = CapabilityRequestOperation.Preview;

The “preview” operation is incompatible with the “incremental” attribute, features set as “partial”, and the correlation ID.
Hence, do not specify these properties when setting up the preview capability request:

• IDesiredFeatureOptions.PartialFulfillment set to true

• ICapabilityRequestOptions.CorrelationId

• ICapabilityRequestOptions.Incremental set to true

However, the “preview” operation is compatible with feature selectors. See Specify Feature Selectors.

Request to Preview Specific Features or All Features

The capability request can specify a preview of one or more desired features (with a specific version and count).
Alternatively, the request can specify a preview all available features. However, the request cannot specify a preview of
both specific desired features and all available features, as pointed out in the next sections.

Preview Availability of Specific Desired Features

To request a preview of a desired feature with a specific version and count, use the AddDesiredFeature method in the
ICapabilityRequestOptions interface, as shown in the following sample implementation:

ICapabilityRequestOptions options = licensing.LicenseManager.CreateCapabilityRequestOptions();
options.Operation = CapabilityRequestOperation.Preview;
options.AddDesiredFeature(new FeatureData("f1", "1.0", 5));

This is the same method used in regular capability requests to check out particular count of a desired feature; but, for the
“preview” operation, the capability response returns this feature count for viewing purposes only. (The preview count is
the same as the count returned in a regular capability response for the same desired feature.)

Do not use this method with the ICapablityRequestOptions.RequestAllFeatures property set to true. You can either
request all features or add desired features, not both.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 93

Chapter 6 Using the FlexNet Embedded APIs
Licenses Obtained from a License Server
Preview All Available Features

To request a preview of all available features (including all versions and total available counts), use the
RequestAllFeatures property (set to true) in the ICapablityRequestOptions interface, as shown in the following sample
implementation:

ICapabilityRequestOptions options = licensing.LicenseManager.CreateCapabilityRequestOptions();
options.Operation = CapabilityRequestOperation.Preview;
options.RequestAllFeatures = true;

Note the following restrictions when using the RequestAllFeatures property (set to true) in a preview capability request:

• Do not use this property with the ICapablityRequestOptions.AddDesiredFeature method in the same preview
capability request. You can either request all features or add desired features, not both.

• This property can be used only with the “preview” capability request operation (see Set the Preview Operation).

Specify Feature Selectors

The license server processes any feature selectors provided in the preview capability request as a means of filtering
features to include in the preview capability response. Feature selectors are applied to candidate features whether the
request calls the ICapablityRequestOptions.AddDesiredFeature method or uses the
ICapablityRequestOptions.RequestAllFeatures property.

 See Feature Selectors in a Capability Request for information about providing these selectors in the request.

Processing the Preview Capability Response
The following sections highlight code excerpts in the CapabilityRequest example to demonstrate how to set up the
preview output:

• Determine the Response Type

• Inspect the Preview Features

• Display the Preview Features

Determine the Response Type

When the capability response is received by the client, your code can access the IsPreview property in the
ICapabilityResponse interface to determine whether the response is marked as “preview”. If it is, the response cannot be
processed into trusted storage, but the feature details within the response can be inspected. The following sample code
shows an implementation of this functionality:

if (response.IsPreview)
{
 // Inspect returned preview response feature information
}

94 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Licenses Obtained from a License Server
Inspect the Preview Features

The CapabilityRequest example code uses the custom method ShowPreviewResponse to initiate an inspection of the
preview features. This method creates a feature collection from the preview capability response and then calls another
custom method, ShowCapabilityResponseFeatures, to format and display the preview feature details. This second
custom method iterates through the feature collection and extracts details for each preview feature, including its count
and maximum count. It then prints this information as the preview output.

Two important details to retrieve for each preview feature are the counts. The code can get these counts using the
following properties:

• The IFeature.Count property retrieves the count for the preview feature. (See Types of Preview Counts for a
description of this count. The Count property is also used in regular capability responses to retrieve the served count
for the feature.)

• The IFeature.MaxCount property retrieves the maximum count for the feature. (See Types of Preview Counts for a
description of the maximum count.)

This code excerpt from the custom ShowCapabilityResponseFeatures method in the CapabilityRequest example shows
a sample implementation for examining the preview capability response:

IFeatureCollection collection = response.FeatureCollection;
int index = 1;
foreach (IFeature feature in collection)
{
 StringBuilder builder = new StringBuilder();
 builder.Append(String.Format("{0}: {1} {2}", index, feature.Name, feature.Version));
 if (feature.IsPreview)
 {
 builder.Append(String.Format(" TYPE=preview COUNT={0} MAXCOUNT={1}", feature.IsUncounted
 ? "uncounted" : feature.Count.ToString(),
 feature.MaxCount == feature.UncountedValue ? "uncounted" :
 feature.MaxCount.ToString()));
 }

Display the Preview Features

The following shows sample output from the CapabilityRequest example when it is run with a “preview” capability
request:

INFO: Features loaded from trusted storage: 2
INFO: Creating the capability request
INFO: Sending the capability request to: http://localhost:7070/request
INFO: Response received
INFO: Examining preview capability response
INFO: Obtaining capability response details
INFO: Machine type: PHYSICAL
INFO: Capability response contains 0 vendor dictionary items
INFO: Capability response contains 0 status items
INFO: Confirmation request is not needed
INFO: ==
INFO: Features found in preview capability response:

INFO: 1: f1 1.0 TYPE=preview COUNT=5 MAXCOUNT=10 EXPIRATION=7/21/2025 2:14:23 PM
VENDOR_STRING="vendor defined" ISSUED=7/12/2016 12:00:00 AM START=7/11/2016 12:00:00 AM

The output includes the following “preview” information:
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 95

Chapter 6 Using the FlexNet Embedded APIs
Licenses Obtained from a License Server
• Statements indicating that the capability response is a preview response.

• A line for each preview feature if the feature is available (that is, it does not have a count of 0). The line includes the
feature’s name (f1), version (1.0), count (5), and maximum count (10). For a description of these counts, see Types of
Preview Counts. Additionally, for factors that affect these counts, see Other Considerations.

Creating a Regular Capability Request Based on Preview Features
The preview information can be used as a basis for setting up a regular (non-preview) capability request to obtain available
features. The following describes some methods for doing this:

• Set Up a Regular Request

• Determine Desired Features for the Regular Request

Set Up a Regular Request

To generate a regular capability request to check out features that you have previewed, your application code can create a
new ICapabilityRequestOptions object and build the desired features from scratch.

Alternatively, your code can modify the original ICapabilityRequestOptions object, adjusting the desired features as
needed and changing the operation type of the capability request to “request”. If the original ICapabilityRequestOptions
object used the RequestAllFeatures property, your code needs to change this property to “false” (and build the desired
features from scratch) when reusing the object:

ICapabilityRequestOptions options = licensing.LicenseManager.CreateCapabilityRequestOptions();
options.RequestAllFeatures = false;
options.Operation = CapabilityRequestOperation.Request;

Determine Desired Features for the Regular Request

The application can use information from the preview feature collection to build the desired features for the regular
capability request.

The application developer must be aware that the counts returned in the preview capability response represent a
“moment in time” on the license server. These counts can change anytime between the preview and a regular capability
exchange that attempts to check out features available in the preview. Feature availability on the license server can
fluctuate when events such as these occur:

• The license server receives an update from the back-office server.

• Other clients check out the available shared counts.

• The license server administrator changes reservations.

Best practice is to act on the preview information within a certain window of time instead of storing it for future use.

Other Considerations
Note the following about interpreting the capability preview:

• Because the “incremental” attribute is not supported for preview capability requests, the count and the maximum
count do not depend on the counts currently served to the client. (See Incremental Capability Requests for
information.)
96 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Limited-duration Trials
• Expired or non-started features are not included in the preview capability response.

• The count and maximum count are computed from both regular and overdraft counts.

• Only features with non-zero counts are included in the capability response. This behavior can limit the usefulness of
the maximum count in certain circumstances, such as when all counts of a feature are currently being served to other
clients or when multiple features with the same name are present on the license sever.

• For a metered feature, the immediate count is computed the same as it is for a concurrent feature. However, the
maximum count is based on the premise that “served counts” are considered permanently consumed. See the FlexNet
Embedded License Server Producer Guide for examples of how the license server handles counts for metered features
in a capability preview.

Limited-duration Trials
Trials allow producers to enable functionality on a client system for a specified duration, after which the functionality
becomes disabled. This is useful in situations where the producer may want to allow users to try out new features before
buying them. The following is an overview of the steps required by the implementer to enable trial functionality in license-
enabled code running on the client system.

Overview of the Trial Scenario

Trial Preparation

• Create the Binary Trial License Rights

Getting and Using the Trial on the Client System

• Step 1: Create and Populate the License Sources

• Step 2: Get Trial Data from the Binary Trial File

Trial Preparation

Create the Binary Trial License Rights
Analogous to creating a binary signed license file for scenarios involving binary buffer licenses, license rights to be stored in
a client system’s trial storage are stored in a binary file to be processed by license-enabled code. In addition to containing
feature definitions (INCREMENT lines), trial rights include a duration, a product ID, and a unique numeric trial ID.

(By default, trial license rights are defined as load-once, meaning that once the trial is processed and the trial duration
begins, the trial cannot be loaded again. Trials can also be defined as load-always, meaning that the trial can be loaded
multiple times to extend the trial duration, but this type of trial is rarely used.)

The FlexNet Embedded Client .NET XT or .NET Core XT toolkit provides a trialfileutil utility for creating signed binary
trial license rights, based on an unsigned text license file. Using trialfileutil, the process is the following:

First, create the unsigned license file, adding the following two feature definitions to a text file called test.lic:

INCREMENT survey demo 1.1 permanent uncounted
INCREMENT highres demo 1.1 permanent uncounted
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 97

Chapter 6 Using the FlexNet Embedded APIs
Limited-duration Trials
To create the binary trial file, run the following command to create a trial with a ten-day duration:

trialfileutil -id IdentityBackOffice.bin -product SampleProduct -duration 864000 -trial 1 test.lic
trialtest.bin

See Trial File Utility for more information about the trialfileutil command-line arguments.

The install_dir\examples\client_samples\Trials directory contains the source code for the Trials example.

Running the Trials executable with the -h or -help switch displays usage information.

Getting and Using the Trial on the Client System
The following steps are to be performed in the code that will be compiled to run on the client system, in order to get the
license rights defined in the trial source. It is assumed the code has initialized the main licensing objects as described in
Creating Core Licensing Objects.

Perform the following steps:

• Step 1: Create and Populate the License Sources

• Step 2: Get Trial Data from the Binary Trial File

Step 1: Create and Populate the License Sources
This step is identical to the corresponding step in Buffer Licenses, Step 1: Create and Populate the License Sources, except
that a trials license source must be created.

// Add trial license source
licensing.LicenseManager.AddTrialLicenseSource();

Note that some operations, such as processing a binary trial file, automatically create a trials license source.

If trials storage has been previously used to store trials, the trials license source will contain license rights from these trials,
and these rights are immediately available for acquisition (assuming the trial duration has not elapsed). If trials storage has
not been previously used, the trials license source will have no license rights. In either case, to use functionality specified in
the new (so far unused) trial, the license-enabled code must process the trial into the trial license source as described
below.

Step 2: Get Trial Data from the Binary Trial File
This step is similar to the corresponding steps in Using the License on the Client, except that the data read from the binary
file represents the trial data and the license source used to process the data is a trials license source.

For this sample code, the trial data is read directly from a specified input file into an input buffer. Trial information can
instead be embedded in the executable binary, by converting the binary trial file into a C#-compatible array (using the
printbin utility) and including the array in the application code, similar to how identity data is handled.

In order to use license rights from the trial, the license-enabled code processes it into a trials license source.

// determine if trial has been loaded
DateTime expirationDate;
if (licensing.LicenseManager.TrialIsLoaded(inputFile, out expirationDate))
{

98 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Secure Re-hosting
if (expirationDate.CompareTo(DateTime.Now) > 0)
{

Util.DisplayInfoMessage(
string.Format("Trial has already been loaded and will expire on {0}", expirationDate));

}
else
{

Util.DisplayInfoMessage("Trial has already been loaded and has expired");
}

}

// process trial into trials license source
try
{

licensing.LicenseManager.ProcessTrial(trialFile);
}
catch (PublicLicensingException licensingException)
{

switch (licensingException.ErrorCode)
{

case ErrorCode.FLXERR_TRIAL_ALREADY_LOADED:
case ErrorCode.FLXERR_TRIAL_EXPIRED:

HandleException(licensingException);
return false;

default:
throw licensingException;

}
}
Util.DisplayInfoMessage(

string.Format("Number of features loaded from trials: {0}", CheckNumberOfFeatures()));

(To combine the operations of adding a trial license source and processing the trial, some forms of the
AddTrialLicenseSource method accept the trial byte array, a stream, or a file path. Similarly, ProcessTrial will create the
license source if not already created.)

When a new trial is stored in the trial license source, it does not overwrite the previously processed trials in this license
source. If the particular trial has been already processed into the license source, no changes are made to the trial license
source. The license rights from the processed trial will reside in the trial license source, even after the license source is
deleted or the license-enabled executable code is terminated. (Note that calling AddTrialLicenseSource multiple times
for the same load-always trial—as opposed to the more typical load-once trial type—will result in multiple copies of the
trial’s features in trials storage.)

Once license rights have been processed into trials trusted storage, the rights are available to be acquired from license-
enabled code. The process is the same as the other scenarios (such as Step 2: Acquire the License(s) in Buffer Licenses).

See the Trial.cs source code in install_dir\examples\client_samples\Trials for more information.

Secure Re-hosting
Secure re-hosting enables producers to support moving functionality from one client system to another, with the option of
verifying that functionality has been removed from the source system.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 99

Chapter 6 Using the FlexNet Embedded APIs
Secure Re-hosting
In order to make re-hosting secure, the involvement of the back office is required; re-hosting is based on the capability
request/response functionality. See Licenses Obtained from the Back-Office Server for details on how to create license-
enabled code that supports capability request and response processing.

The following description provides an overview of the steps required by the producer to perform secure re-hosting of
capabilities from Host A to Host B.

Removing Capabilities from Host A:

• Step 1: Start License-Enabled Code on Host A

• Step 2: Submit Capability Request from Host A to the Back-Office Server

• Step 3: Back-Office Server Processes Request and Sends “Reduced” Response Back to Host A

• Step 4: Process “Reduced” Capability Response on Host A

• Step 5: Submit Another Capability Request from Host A to the Back-Office Server

• Step 6: Back-Office Server Processes Capability Request from Host A

Adding Capabilities to Host B:

• Step 7: Start License-Enabled Code on Host B

• Step 8: Submit Capability Request from Host B to the Back-Office Server

• Step 9: Back-Office Server Processes Request and Sends Response Back to Host B

Removing Capabilities from Host A
Use the following steps to remove capabilities from Host A.

Step 1: Start License-Enabled Code on Host A
Since the re-hosting scenario is based on capability request/response processing, the license-enabled code on Host A must
support a trusted storage license source. See Licenses Obtained from the Back-Office Server for details.

After the trusted storage license source is created, the license-enabled code can verify that functionality targeted for re-
host is available on Host A. This can be done by acquiring licenses and reading license details from the trusted storage
license source. See the corresponding steps in the previous examples for details. This part is optional.

(FlexNet Operations displays the state “License generated” for the add-on, when the host has the original license rights.)

Step 2: Submit Capability Request from Host A to the Back-Office Server
This step is similar to the corresponding step in the Licenses Obtained from the Back-Office Server walkthrough.

The following figure summarizes the initial activation steps between the host and FlexNet Operations.
100 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Secure Re-hosting
Step 3: Back-Office Server Processes Request and Sends “Reduced”
Response Back to Host A

This step is similar to the corresponding step in the Licenses Obtained from the Back-Office Server scenario, except that the
capability response that is sent back to the client system contains no license rights (or at least reduced license rights, in the
case of a partial re-host operation). This is done using logic implemented by the producer in the back-office server that
recognizes that capabilities residing on Host A are targeted to be moved to Host B. (In FlexNet Operations, this is handled
by removing the corresponding line item from Host A, which changes the line item state to “Marked for removal”. For a
partial re-host, lowering the number of copies changes the item state to “Copies Decreasing”.) The first step in this re-
hosting transaction is to take away capabilities from Host A, which is achieved with an “empty” or reduced capability
response.

(In FlexNet Operations, a scenario where only some license rights have been removed from a client system corresponds to
removing only some add-on line items from a client system. FlexNet Operations displays the add-on state “Removed from
license” after sending the capability response without the removed line item.)

Step 4: Process “Reduced” Capability Response on Host A
This step is similar to the corresponding step in Licenses Obtained from the Back-Office Server scenario. Because the
response is “empty” or contains reduced license rights, only the reduced licenses—along with those defined in local license
files or trials—are available on Host A after the capability response is processed. (A response with no license rights is
different from a zero-byte or missing response, which can signify that license rights have not changed since the last
response.)
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 101

Chapter 6 Using the FlexNet Embedded APIs
Secure Re-hosting
This can be verified by the attempt to acquire licenses previously available in the trusted storage license source. The
attempt should fail indicating that no matching license was found. See the corresponding steps in the previous examples
for details on license acquisition. This part is optional.

Step 5: Submit Another Capability Request from Host A to the Back-Office
Server

This step is similar to Step 2: Submit Capability Request from Host A to the Back-Office Server.

Step 6: Back-Office Server Processes Capability Request from Host A
This step is similar to the corresponding step in Licenses Obtained from the Back-Office Server scenario, except for
additional logic implemented by the producer in the back-office server. This logic is based on the fact that capability
request includes the reference to the last capability response processed on the client system generating the request. This is
important for the secure re-host of capabilities.

The last response processed on the Host A was “empty” or contained reduced license rights, and the new request
generated on Host A has a reference to this reduced response. The re-host logic in the back-office server recognizes this
reference and uses it as evidence that Host A has indeed processed the reduced response and contains only the license
rights from the reduced response. (FlexNet Operations completely removes the line item from Host A only after receiving
this confirmation, and the host’s history shows the action “Add-on Removal Confirmed”.)
102 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Secure Re-hosting
The following figure summarizes the communications between the host and FlexNet Operations to complete the transfer
of licenses from Host A.

At this point, the back-office server is ready to grant capabilities to Host B when requested.

Adding Capabilities to Host B
Use the following steps to add capabilities to Host B.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 103

Chapter 6 Using the FlexNet Embedded APIs
Capturing Feature Usage on the Client
Step 7: Start License-Enabled Code on Host B
This step is similar to Step 1: Start License-Enabled Code on Host A, except that after the trusted storage license source is
created, the code can verify that functionality targeted for re-host is not yet available on Host B. This can be done by an
attempt to acquire licenses targeted for re-host. The attempt should fail, indicating that no matching license was found.
See the corresponding steps in the previous examples for details on license acquisition. The license verification step is
optional.

Step 8: Submit Capability Request from Host B to the Back-Office Server
This step is similar to Step 2: Submit Capability Request from Host A to the Back-Office Server.

Step 9: Back-Office Server Processes Request and Sends Response Back to
Host B

This step is similar to the corresponding step in the Licenses Obtained from the Back-Office Server scenario.

Note that the back-office server can send license rights through a capability response to Host B, based on the previously
received evidence that corresponding capabilities were removed from Host A.

Capturing Feature Usage on the Client
To support various pay-for-use and pay-for-overage license models, FlexNet Embedded functionality—in conjunction with
FlexNet Usage Management—supports metered licenses. Usage information for these metered licenses can be captured
and sent to the back office (FlexNet Operations), after which reporting, reconciliation and billing operations can be
performed.

The UsageCaptureClient example demonstrates how a usage data is captured on the client and channeled through a
license server—either a CLS (Cloud Licensing Service) license server or the FlexNet Embedded local license server—to the
back office. The example simulates the expected deployment architecture, which is a client that has a persistent online
connection to the license server.

The two primary scenarios illustrated by the UsageCaptureClient example are:

• Uncapped Usage Capture: The software can report any amount of feature usage, with no upper limit on the amount of
usage allowed.

• Capped Usage Capture: The software can report feature usage up to a limit, possibly with some amount of overage
allowed. If the cap is exceeded, the license server responds to the client that the cap has been exceeded, and the
implementer can decide what to do in such an event. Note that capped usage is expected to be used in an
environment in which the client has a persistent connection with the license server.

More About the Example

The source code the UsageCaptureClient example described in this walkthrough can be found in the directory
install_dir\examples\client_samples\UsageCaptureClient, in the source file UsageCaptureClient.cs.

To display command-line usage for the example, run the example’s executable with the -h or -help switch.
Demonstrations of certain usage are presented later in this section.
104 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Capturing Feature Usage on the Client
Topics Covered in this Section

The following is the complete list of topics about usage capture covered in this section:

• Capability Requests and Usage Capture

• Preparation in FlexNet Operations

• License Source Creation

• Client Registration with the Cloud Licensing Service

• Uncapped Usage Capture

• Capped Usage Capture

• Post-Usage-Capture: Managing Usage Data

• Additional Metered License Attributes

Capability Requests and Usage Capture
The usage-capture client uses capability requests to communicate with the CLS license server or the FlexNet Embedded
local license server, similar to capability requests described in Licenses Obtained from a License Server. The primary
difference is that usage-capture clients use capability requests to transport usage information to the server.

The following sections describe capability request attributes used with usage capture:

• Operation Type

• Correlation ID

• Other Optional Identifiers

• Desired Features and Rights IDs

Operation Type
The capability request can indicate the type of operation it is meant to perform.

• Request: A “request” operation indicates that the client expects a response that contains license rights from the
license server. In a usage-capture scenario, the “Request” operation is used mainly for capped usage capture, where
the response informs the client whether the cap for feature usage has been exceeded. (In a non-usage-capture
scenario, the response enables license rights on the client so that client code can acquire and return features as
needed.)

If no explicit operation type is specified, it is assumed to be a “request” operation.

• Report: A “report” operation indicates that the client does not expect a response that contains license rights; the
capability request is simply reporting usage data. However, the license server might still send an error response with
any error information.

• Undo: An “undo” operation can recall an erroneous prior request containing usage data. (There is typically a limited
amount of time during which an “undo” operation can be used. The Undo Interval is defined by the producer as a
feature attribute, typically as part of a license model.) An “undo” operation requires a correlation ID, which is
described in the following section.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 105

Chapter 6 Using the FlexNet Embedded APIs
Capturing Feature Usage on the Client
An implementation calls CreateCapabilityRequest with the appropriate ICapabilityRequestOptions Operation
property to specify the operation type.

Limitation: No Mixing of Operation Types

When a given FlexNet Embedded client sends a mix of “request” and “report” capability requests, its trusted storage might
not reflect accurate feature counts. Therefore, capability requests from a given client should either all use the “request”
operation or all use “report”. (When both metered and non-metered features are available to a client, only “request”
capability requests should be used.)

The “undo” operation can always be used as needed to recall usage data sent in “request” capability requests. See Recall a
“Used” Metered Feature.

Correlation ID
The correlation ID is generated for any capability request that results in updates to client data on the license server—
whether the request is for metered features or concurrent features. However, only an “undo” operation, which recalls an
erroneous or canceled previous request containing usage data, actually uses this ID so that it can identify the request being
recalled.

The correlation ID—an arbitrary string, possibly a UUID value—is automatically generated for a capability request by the
license server. It is stored in the client record on the license server (and eventually synchronized to the back office) and is
sent back in the capability response, if a response is required. For more information about specifying the correlation ID
when requesting an “undo” operation, see Recall a “Used” Metered Feature.

Other Optional Identifiers
The following optional identifiers can be set in a capability request. These identifiers do not affect licensing behavior, but
can be used for reporting purposes. In the example UsageCaptureClient code, these identifiers are hard-coded for use in
the capability request.

• Acquisition ID: Identifies the resource that was acquired.

• Requestor ID: Identifies the user associated with the client device.

A third optional identifier can be used in the capability request with caution:

• Enterprise ID: Identifies the end-user account on behalf of the acquisition performed. If a producer sends the end
user an “enterprise ID” to use, the user can include it in the capability request for additional security. Otherwise, the
user should not set one; the capability request will be rejected if the enterprise ID included in the request is different
from the value expected by the license server.

Desired Features and Rights IDs
In usage-capture scenarios, the capability request specifies one or more desired features to indicate captured usage. (In
non-usage-capture scenarios, desired features are used with license servers to indicate what features are to be sent in a
response to a client request.)

To add desired-feature information to a capability request, the code uses
ICapabilityRequestOptions.DesiredFeatures.Add(new FeatureData(data)).
106 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Capturing Feature Usage on the Client
Usage-capture scenarios that use a CLS license server might also require an initial capability request that sends a rights ID
value to register the client with the server. To add the rights ID value to the capability request, the code uses
ICapabilityRequestOptions.AddRightsId(rightsId, copies). (The rights ID sent in the client request is equivalent to
an activation ID in FlexNet Operations and to an activation code in the older FlexNet Operations On-Demand.) See Client
Registration with the Cloud Licensing Service for more information.

Preparation in FlexNet Operations
FlexNet Operations, when coupled with FlexNet Usage Management, enables you to support usage-based licensing and
compliance models. Whether using a CLS license server or the FlexNet Embedded local license server to channel usage
information from the client to FlexNet Operations, you must prepare FlexNet Operations to work with the license server.
This preparation involves creating and associating several entities using the FlexNet Operations Producer Portal. For a
walkthrough on how to use the Producer Portal to prepare FlexNet Operations, see the section “Getting Started with Usage
Management” in the FlexNet Operations User Guide.

As described in the section “Getting Started with Usage Management” in the FlexNet Operations User Guide, create your
producer identity data in FlexNet Operations, and then download the client identity to a location where your FlexNet
Embedded Client .NET XT or .NET Core XT toolkit can access it. (For the UsageCaptureCient example, download the file
IdentityClient.cs to the directory install_dir\examples\identity.) You must build the example with this identity.

“Getting Started with Usage Management” shows how to add a feature (also called a capability) and define the license
model associated with the feature. To run the scenarios in the UsageCaptureClient example, customize the feature and
license-model setup as follows:

• Define a feature called “survey” with version 1.0.

• When defining the license model, set the Is this a Counted Model? attribute to Yes to establish a baseline count for
setting a cap or for determining overage. See Additional Metered License Attributes for information about the baseline
count.

• In the license model, set Is this a Metered Model? to Yes to identify the model as one used for usage capture and
management.

• To demonstrate uncapped usage, set the Overdraft attribute to Unlimited in the license model, meaning that no
limit exists to the number of licenses that can be used beyond the baseline count. See Additional Metered License
Attributes for details.

• To demonstrate capped usage, set the Overdraft attribute to (for example) Not Used in the license model. (The Not
Used value indicates that no overdraft is used—that is, no overage is allowed. For capped usage, this value can also be
a fixed number or a percentage of the entitled amount.) See Additional Metered License Attributes for details.

In addition, when a CLS license server is used, the FlexNet Embedded client device might be required to register with the
Cloud Licensing Service before it can request features or report usage. See the Client Registration with the Cloud Licensing
Service for more information.

License Source Creation
In license-enabled code that has created the core objects, this step is identical to the corresponding step in Licenses
Obtained from the Back-Office Server, Step 1: Create the License Source for creating a trusted-storage license source.

licensing.LicenseManager.AddTrustedStorageLicenseSource();
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 107

Chapter 6 Using the FlexNet Embedded APIs
Capturing Feature Usage on the Client
Note that some operations, such as processing a capability response, automatically create a trusted storage license
source.

Note • Best practice is to reset existing trusted storage before running the example. To do so, call the method
“ILicensing.Administration.Delete(TrustedStorage)”, which deletes the contents of existing trusted storage.

Client Registration with the Cloud Licensing Service
The configuration of a CLS license server can require that the FlexNet Embedded client device register with the Cloud
Licensing Service as an extra security measure before allowing the client to request features or report usage. However, by
default, this requirement is disabled. If using a CLS license server, consult the FlexNet Operations administrator to
determine whether registration is required. If it is, use the information in this section to set up a separate capability request
that initiates the registration.

Note • This registration step is not needed when the client application is sending captured usage data to the FlexNet
Embedded local license server.

To perform the registration, the client application sends an initial capability request to the server, specifying a rights ID for
an unmetered, uncounted license for the purpose of simply identifying the client device to the server. The rights ID used in
this request has been previously conveyed to the end user—typically through an email message from the producer. (The
rights ID sent in the client request is equivalent to an activation ID in FlexNet Operations and to an activation code in the
older FlexNet Operations On-Demand.)

The UsageCaptureClient example accepts a -rightsid switch for specifying the rights ID for registration. When the switch
is present, the example code uses the following implementation to call the method options.AddRightsId, which adds the
specified rights ID to the capability request:

if (operation != CapabilityRequestOperation.Report && !string.IsNullOrEmpty(rightsId))
{
 options.AddRightsId(rightsId, 1);
}

The capability request used to register the client device must specify the “request” operation, also shown in this code
implementation. (The UsageCaptureClient example accepts the -request switch to set the request operation type.)
Specifying a rights ID is not compatible with the “report” operation in a capability request—a restriction enforced by the
if-statement used in the sample code excerpt.

The command for the initial execution of UsageCaptureClient to register the client device is similar to the following:

UsageCaptureClient -request -rightsid ACT-ID-1 -server https://
siteID-uat.compliance.flexnetoperations.com/instances/instId/request

The URL will typically have been conveyed to the end user by email from the producer. It identifies the siteID, which is the
producer’s specific site ID supplied by Revenera, and the instId, which is the server’s instance ID on the Cloud Licensing
Service. Note that the URL above points to a User Acceptance Test (UAT) environment indicated by the -uat part following
the siteID. For production environments, the -uat is omitted.

Once this initial capability exchange to register the client device is complete, the end user can proceed to send capability
requests for features. Subsequent runs of the UsageCaptureClient example sends capability requests that capture
metered-license usage, as described next.
108 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Capturing Feature Usage on the Client
Uncapped Usage Capture
To implement uncapped-usage capture for a feature, your client code sends a capability request to the CLS license server
or the FlexNet Embedded local license server to report the feature’s usage, but the license server does not return license
rights in the response. (The response is processed only to determine any error conditions.) The UsageCaptureClient
example reports a hard-coded 1 unit of usage for the survey feature to the server each time the example is launched.

To indicate that no feature information needs to be returned, the code calls CreateCapabilityRequest with the
ICapabilityRequestOptions Operation property set to CapabilityRequestOperation.Report. (In capped-usage
scenarios, where a capability response is expected to return feature information to be processed into trusted storage, the
CapabilityRequestOperation.Request value is used instead.)

// Create the capability request options object
ICapabilityRequestOptions options=licensing.LicenseManager.CreateCapabilityRequestOptions();

// Set the capability request operation
options.Operation = CapabilityRequestOperation.Report;

// Specify usage data; to return a metered feature, set the count to a negative value
options.DesiredFeatures.Add(new FeatureData("survey", "1.0", 1));

// Generate the request
ICapabilityRequestData capabilityRequestData =

 licensing.LicenseManager.CreateCapabilityRequest(options);

// Send the capability request to the server and receive the server response
CommFactory.Create(url).SendBinaryMessage(capabilityRequestData.ToArray(), out binCapResponse);
Util.DisplayInfoMessage("Successfully sent capability request");
if (operation != CapabilityRequestOperation.Report ||

 (binCapResponse != null && binCapResponse.Length > 0))
{
 ProcessCapabilityResponse(binCapResponse);
}

The example’s SendCapabilityRequest method uses the SendBinaryMessage method from the IComm interface to send the
binary capability request and receive the response. This same process is used by CapabilityRequest example. See
Licenses Obtained from the Back-Office Server for more information about these communication methods.

To run an uncapped-usage capture using the UsageCaptureClient example, issue a command similar to one of the
following, specifying the -report switch.

When using the CLS license server, specify its URL as the value for the -server command-line argument, where siteID is the
producer’s specific site ID supplied by Revenera and instId is the server’s instance ID on the Cloud Licensing Service:

UsageCaptureClient -report -server https://siteID-uat.compliance.flexnetoperations.com/instances/
instId/request

Note that the URL above points to a User Acceptance Test (UAT) environment indicated by the -uat part following the
siteID. For production environments, the -uat is omitted.

When using the FlexNet Embedded local license server, specify the URL for the license server, as for example:

UsageCaptureClient -report -server http://localhost:7070/request
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 109

Chapter 6 Using the FlexNet Embedded APIs
Capturing Feature Usage on the Client
Capped Usage Capture
Implementing capped-usage capture is similar to uncapped-usage capture, except that the code expects feature
information in the capability response from the CLS license server or the FlexNet Embedded local license server. The
response is processed and queried to determine whether the usage quota has been exceeded. (Features are added to
trusted storage if usage is still under quota.)

Preparation of FlexNet Operations is similar to preparation for uncapped-usage capture, except that the license model
must specify a value other than Unlimited for the Overdraft setting. See Preparation in FlexNet Operations and Additional
Metered License Attributes for details.

To implement this type of usage capture, the code calls CreateCapabilityRequest with the ICapabilityRequestOptions
Operation property set to CapabilityRequestOperation.Request to request a response from the license server.

// Create the capability request options object
ICapabilityRequestOptions options=licensing.LicenseManager.CreateCapabilityRequestOptions();

// Set the capability request operation
options.Operation = CapabilityRequestOperation.Request;

As with the uncapped-usage capture scenario, the capped-usage capture scenario requests a hard-coded count of 1 copy
of the feature survey, specified as a desired feature in the capability request. The capability request is then created and
sent to the license server.

// Specify usage data; to return a metered feature, set the count to a negative value
options.DesiredFeatures.Add(new FeatureData("survey", "1.0", 1));

// Generate the request
ICapabilityRequestData capabilityRequestData =

 licensing.LicenseManager.CreateCapabilityRequest(options);

// Send the capability request to the server and receive the server response
CommFactory.Create(url).SendBinaryMessage(capabilityRequestData.ToArray(), out binCapResponse);
Util.DisplayInfoMessage("Successfully sent capability request");
if (operation != CapabilityRequestOperation.Report ||

 (binCapResponse != null && binCapResponse.Length > 0))
{
 ProcessCapabilityResponse(binCapResponse);
}

Util.DisplayInfoMessage("Processing capability response");

In this case, the feature information is returned in the response from the license server. The client processes the response,
and, if usage quota has not been exceeded, the desired features are loaded in trusted storage.

ICapabilityResponse response =
 licensing.LicenseManager.ProcessCapabilityResponse(binCapResponse);

Util.DisplayInfoMessage("Capability response processed");
ShowCapabilityResponseDetails(response);
ShowTSFeatures();
AcquireReturn(surveyFeature, version);

The example then attempts to acquire the survey feature to determine whether the usage quota has been exceeded.

To run a capped-usage capture using the UsageCaptureClient example, issue a command similar to one of the following.
The available -request switch, specifying a “request” operation, is the default option and therefore implicit in the
command.
110 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Capturing Feature Usage on the Client
When the CLS license server, specify its URL as the value for the -server command-line argument, where siteID is the
producer’s specific site ID supplied by Revenera and instId is the server’s instance ID on the Cloud Licensing Service:

UsageCaptureClient -server https://siteID-uat.compliance.flexnetoperations.com/instances/instId/
request

Note that the URL above points to a User Acceptance Test (UAT) environment indicated by the -uat part following the
siteID. For production environments, the -uat is omitted.

When using the FlexNet Embedded local license server, specify the URL for the license server, as for example:

UsageCaptureClient -server http://localhost:7070/request

Recall a “Used” Metered Feature
The client code can recall a “used” metered feature that was captured with a “request” operation and is associated with
the Undo Interval attribute in the license model. To recall the feature, the code generates a capability request that
specifies an “undo” operation by calling CreateCapabilityRequest with the CapabilityRequestOperation.Undo
property. (The Undo Interval attribute, which typically sets a limited amount of time during which this operation can be
used, is defined as part of the license model in FlexNet Operations.)

The “undo” operation also requires a correlation ID to indicate which capability request is being recalled (see Correlation
ID for details). The code uses options.CorrelationId = correlationId to identify the specific correlation ID (as
demonstrated by specifying an ID with the -correlation switch in the example). The response indicates whether the
operation was accepted or rejected. The operation can be rejected, for example, if the correlation ID from the prior
“request” operation is invalid, or the “undo interval” has elapsed.

Post-Usage-Capture: Managing Usage Data
After the client has captured usage data and sent it to the license server, the data is available for viewing and exporting to
other entities, such the producer’s billing system, from the Producer Portal in FlexNet Operations. (The data sent to the
FlexNet Embedded local license server is not available on the Producer Portal until the license server has performed a
synchronization to FlexNet Operations. Data sent to the CLS license server is almost instantly synchronized to FlexNet
Operations and is soon after made available on the Producer Portal.)

See the FlexNet Operations User Guide, in particular section “Getting Started with Usage Management”, for details about
viewing and exporting usage data in FlexNet Operations. For information about FlexNet Embedded local license server’s
synchronization process, see the FlexNet Embedded License Server Producer Guide.

Additional Metered License Attributes
The section “Getting Started with Usage Management” in the FlexNet Operations User Guide describes the license
attributes used with metered licenses. For example, the license model definition has the Is this a Metered Model?
attribute set to Yes for usage-capture scenarios.

Additional attributes of a license model include:

• Is this a Counted Model?: Whether to count the number of licenses available to customers. For usage-capture
scenarios, this value should be set to Yes. The “counted model” establishes the baseline count used as the cap for
capped usage and by the Overdraft property to determine overage. The baseline count is calculated as follows:

feature_count x product_count x entitlement_count
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 111

Chapter 6 Using the FlexNet Embedded APIs
Examining License Rights in a License Source
• Overdraft: Whether to grant additional licenses beyond the entitled amount, possibly to be charged at a different
rate. The value can be Unlimited, a fixed number, or a percentage of the baseline count. The Unused value indicates
that no overdraft is used.

• Undo Interval (Seconds): Amount of time, starting when the capability response is generated, that the user can
perform an “undo” operation to recall erroneous or canceled usage data previously sent in a “request” operation.

An additional attribute that can be set at the model level or for a given metered feature (capability) is Reusable. If set to
Yes, the feature can be returned after being acquired from trusted storage, and can also be “returned” to the license server
by adding a desired feature with a negative count. (The time between acquiring the feature and returning it counts as
usage.) If set to No, the feature cannot be returned after a local acquisition; the license must instead be released with
licensing.LicenseManager.ReturnAllLicenses.

The FlexNet Embedded functionality provides APIs for reading attributes related to metered licenses and features. For
example, the isMetered and isMeteredReusable properties in the ILicense interface respectively detect if an acquired
license is metered or has the reusable attribute. (Similar IFeature properties indicate if a feature in a feature collection
uses those attributes.) Related properties can give information about a license’s or feature’s “undo interval”. The View
example illustrates how to use these properties to determine attributes related to metered features. For more information,
consult the API reference.

Note • When using metered features, the license model’s borrow interval attribute is not taken into account.

Examining License Rights in a License Source
The following functionality can be used as license-enabled diagnostic code running on the client system, as well as a
license-enabled diagnostic tool used in the development process. The purpose of this logic is to examine license rights
existing on the client system and provide information regarding their availability for acquisition.

The difference between this type of license source and the non-diagnostic version is that a diagnostic source loads all
features, even those that fail validation. While the diagnostic functionality provides additional information, it can produce
overhead not acceptable in a production environment. For example, it will load all expired features into the license source,
which consumes memory resources and slows the search for valid licenses at the time of the acquisition request.

Running the View example with the -h or -help switch displays usage information.

The source code for the implementation described in this walkthrough can be found in the directory
install_dir\examples\client_samples\View, in the source file View.cs.

Assuming you have already created your core objects as described in Creating Core Licensing Objects, perform the
following steps:

• Step 1: Create and Populate a Diagnostic License Source

• Step 2: Examine Features in the Feature Collection
112 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Examining License Rights in a License Source
Step 1: Create and Populate a Diagnostic License Source
This step is similar to code in the Step 1: Create and Populate the License Sources step in Using the License on the Client,
except for the use of the diagnostic version of the GetFeatureCollection method, which you indicate by passing true to
the diagnostic argument. FlexNet Embedded supports the diagnostic functionality for buffer, trusted-storage, trial, and
certificate license sources.

IFeatureCollection bufferFeatureCollection = null;
if (licenseData != null)
{
 MessageTypeEnum licenseDataType = licensing.LicenseManager.MessageType(licenseData);
 if (licenseDataType != MessageTypeEnum.FLX_MESSAGE_TYPE_BUFFER_LICENSE &&
 licenseDataType != MessageTypeEnum.FLX_MESSAGE_TYPE_BUFFER_CAPABILITY_RESPONSE)
 {
 Console.WriteLine(invalidFile);
 }
 bufferFeatureCollection = licensing.LicenseManager.GetFeatureCollection(licenseData, true);
}
IFeatureCollection trustedStoreFeatureCollection =
 licensing.LicenseManager.GetFeatureCollection(LicenseSourceOption.TrustedStorage, true);
IFeatureCollection trialsFeatureCollection =
 licensing.LicenseManager.GetFeatureCollection(LicenseSourceOption.Trials, true);

// Print buffer feature information
StringBuilder builder = new StringBuilder();
builder.AppendLine(string.Empty);
builder.AppendLine("==");
if (bufferFeatureCollection != null)
{
 builder.AppendLine(string.Format("Features found in {0}:", inputFile));
 builder.AppendLine(string.Empty);
 GetFeatures(builder, bufferFeatureCollection);
 builder.AppendLine("==");
 builder.AppendLine(string.Empty);
 Util.DisplayInfoMessage(builder.ToString());
 builder = new StringBuilder();
 builder.AppendLine(string.Empty);
 builder.AppendLine("==");
}

// Print trusted storage feature information
builder.AppendLine("Features found in trusted storage:");
builder.AppendLine(string.Empty);
GetFeatures(builder, trustedStoreFeatureCollection);
builder.AppendLine("==");

// Print trial storage feature information
builder.AppendLine("Features found in trials storage:");
builder.AppendLine(string.Empty);
GetFeatures(builder, trialsFeatureCollection);
builder.AppendLine("==");
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 113

Chapter 6 Using the FlexNet Embedded APIs
Examining License Rights in a License Source
Step 2: Examine Features in the Feature Collection
This step defines helper methods that loop over the features in a collection and displays the attributes of each feature.

private static void GetFeatures(StringBuilder builder, IFeatureCollection featureCollection)
{
 int index = 0;
 // List all of the features for a given feature collection
 foreach (IFeature feature in featureCollection)
 {
 GetFeatureInfo(builder, index++, feature);
 }
}

private static void GetFeatureInfo(StringBuilder builder, int index, IFeature feature)
{
 FeatureAttributes featureAttributes = new FeatureAttributes();

 featureAttributes.Index = index;
 featureAttributes.Name = feature.Name;
 featureAttributes.Version = feature.Version;
 featureAttributes.StartDate = feature.StartDate;
 featureAttributes.ExpirationDate = feature.Expiration;
 featureAttributes.IsPerpetual = feature.IsPerpetual;
 featureAttributes.IsUncounted = feature.IsUncounted;
 featureAttributes.Count = feature.Count;
 featureAttributes.IsMetered = feature.IsMetered;
 featureAttributes.IsMeteredReusable = feature.IsMeteredReusable;
 featureAttributes.VendorString = feature.VendorString;
 featureAttributes.Issuer = feature.Issuer;
 featureAttributes.IssuedDate = feature.Issued;
 featureAttributes.Notice = feature.Notice;
 featureAttributes.SerialNumber = feature.SerialNumber;
 featureAttributes.AcquireStatus = feature.ValidStatusForAcquisition();
 featureAttributes.ServeStatus = feature.ValidStatusForServing();
 featureAttributes.IsMetered = feature.IsMetered;
 featureAttributes.IsMeteredReusable = feature.IsMeteredReusable;
 featureAttributes.MeteredUndoInterval = feature.MeteredUndoInterval;
 featureAttributes.MeteredAvailableCount = featureAttributes.IsMetered ?

 feature.AvailableAcquisitionCount : 0;
 featureAttributes.HostIds = feature.HostIds;

 // Check clock windback
 if (licensing.LicenseManager.ClockWindbackDetected)
 {
 throw new ApplicationException("Clock windback detected. Restore the clock to run the
 application.");
 }
 PrintFeatureAttributes(builder, ref featureAttributes);
}

private static void PrintFeatureAttributes(StringBuilder builder,
 ref FeatureAttributes featureAttributes)
{
 builder.Append(featureAttributes.Index + 1);
 builder.Append(string.Format(": {0} ", featureAttributes.Name));
114 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Examining License Rights in a License Source
 builder.Append(featureAttributes.Version);
 if (featureAttributes.ExpirationDate.HasValue)
 {
 if (featureAttributes.IsPerpetual)
 {
 builder.Append(" permanent");
 }
 else
 {
 builder.Append(" ");
 builder.Append(featureAttributes.ExpirationDate.Value.ToString("dd-MMM-yyyy"));
 }
 }
 builder.Append(" ");
 builder.Append(featureAttributes.IsUncounted ? "uncounted" :

 featureAttributes.Count.ToString());
 if (featureAttributes.IsMetered)
 {
 builder.Append(string.Format(" MODEL=metered{0}",
 featureAttributes.IsMeteredReusable ? " REUSABLE" : string.Empty));
 if (featureAttributes.MeteredUndoInterval.HasValue
 && featureAttributes.MeteredUndoInterval.Value.Ticks > 0)
 {
 builder.Append(string.Format(" UNDO_INTERVAL={0}",
 featureAttributes.MeteredUndoInterval.Value.TotalSeconds));
 }
 }
 if (!string.IsNullOrEmpty(featureAttributes.VendorString))
 {
 builder.Append(string.Format(" VENDOR_STRING={0}", featureAttributes.VendorString));
 }
 if (!string.IsNullOrEmpty(featureAttributes.Issuer))
 {
 builder.Append(string.Format(" ISSUER={0}", featureAttributes.Issuer));
 }
 if (featureAttributes.IssuedDate.HasValue)
 {
 builder.Append(string.Format(" ISSUED={0}",
 featureAttributes.IssuedDate.Value.ToString("dd-MMM-yyyy")));
 }
 if (!string.IsNullOrEmpty(featureAttributes.Notice))
 {
 builder.Append(string.Format(" NOTICE={0}", featureAttributes.Notice));
 }
 if (!string.IsNullOrEmpty(featureAttributes.SerialNumber))
 {
 builder.Append(string.Format(" SN={0}", featureAttributes.SerialNumber));
 }
 if (featureAttributes.StartDate.HasValue)
 {
 builder.Append(string.Format(" START={0}",
 featureAttributes.StartDate.Value.ToString("dd-MMM-yyyy")));
 }

 // Hostid(s)
 if (featureAttributes.HostIds.Keys.Count > 0)
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 115

Chapter 6 Using the FlexNet Embedded APIs
Examining License Rights in a License Source
 {
 string hostIdString = string.Empty;
 string decorateLeft = featureAttributes.HostIds.Count > 1 ? " Hostids=[" : " Hostid=";
 string decorateRight = featureAttributes.HostIds.Count > 1 ? "]" : string.Empty;
 foreach (KeyValuePair<HostIdEnum, List<string>> HostId in featureAttributes.HostIds)
 {
 string lparen = HostId.Value.Count > 1 ? "(" : string.Empty;
 string rparen = HostId.Value.Count > 1 ? ") " : " ";
 if (HostId.Key != HostIdEnum.FLX_HOSTID_TYPE_ANY)
 {
 hostIdString += HostId.Key.ToString().Remove(0, 16) + "=";
 }
 string value = "";
 foreach (string str in HostId.Value)
 {
 value += (string.IsNullOrEmpty(value) ? string.Empty : ",") + str;
 }
 hostIdString += lparen + value + rparen;
 }
 builder.Append(decorateLeft + hostIdString.TrimEnd() + decorateRight);
 }
 builder.AppendLine(string.Empty);
 if (featureAttributes.AcquireStatus == 0)
 {
 if (featureAttributes.IsMetered && featureAttributes.MeteredAvailableCount == 0)
 {
 builder.AppendLine(" Entire count consumed");
 }
 else if (featureAttributes.IsMetered && featureAttributes.MeteredAvailableCount > 0)
 {
 builder.AppendLine(string.Format(" Available for acquisition: {0}",
 featureAttributes.MeteredAvailableCount));
 }
 else
 {
 builder.AppendLine(" Valid for acquisition");
 }
 }
 else
 {
 builder.AppendLine(string.Format(" Not valid for acquisition: {0}",
 licensing.GetErrorDescription(featureAttributes.AcquireStatus)));
 }
}

The View example project accepts the name of a binary license file as a command-line argument, and prints the name,
version, expiration, and any optional keyword values for each feature in the license. If a feature is invalid, the executable
displays the reason: the start date is in the future, the feature has expired, the feature was issued by a different producer,
the entire license count has been consumed, and so forth.

In addition, the View example displays a feature’s hostids by calling getHostIds and displays any vendor-dictionary items
in trusted storage by calling getVendorString. Moreover, if a feature uses a metered license model, the View example
displays attributes related to metering. (For more information about metering, see Capturing Feature Usage on the Client.)
Note that the View example also enables clock-windback detection.
116 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Advanced Topic: FlexNet Publisher Certificate Support
Advanced Topic: FlexNet Publisher Certificate
Support

To assist producers who are beginning a transition from FlexNet Publisher to FlexNet Embedded, FlexNet Embedded
functionality provides partial support for a FlexNet Publisher certificate as a license source. In particular, FlexNet
Embedded supports unserved, uncounted certificates, with a restricted set of keywords and hostid types.

The following sections describe this support for certificate licensing:

• Preparing Your Identity Data for Certificate Support

• Using the Lmflex Example

• Differences in Certificate Licensing Behavior

Preparing Your Identity Data for Certificate Support
Your client identity data must be specially prepared to include some FlexNet Publisher information in order to validate
FlexNet Publisher certificate signatures.

1. First, obtain the file lmpubkey.h from your FlexNet Publisher toolkit. This file is generated by running the command
lmnewgen -pubkey. (If your FlexNet Publisher certificates use the older license-key signature type, obtain the
lmseeds.h file from your FlexNet Publisher toolkit.)

2. Next, create or process your identity data using the FlexNet Embedded Client toolkit utility pubidutil, passing
appropriate values for the certificate-related settings. The certificate-related switches are:

• -certificate certificate-file: Enables FlexNet Publisher certificate support by including the public keys
specified in your lmpubkey.h (or lmseeds.h) file in your identity data.

• -certificateSigType sig-type: Specifies your FlexNet Publisher signature type, one of “sign”, “sign2”, or
“lk”.

• -certificateSigStrength strength: Specifies your FlexNet Publisher signature strength. The value is 0 for LK
signatures; for TRL signatures, the value is 0 for the lowest (113-bit) strength, 1 for medium (163-bit) strength, and
2 for the highest (239-bit) strength.

For example, if you have already generated your unprocessed IdentityClient.bin file, the following command will
process it:

pubidutil -console -certificate lmpubkey.h -certificateSigType sign -certificateSigStrength 1

You can then use printbin with the -cs switch to generate the IdentityClient.cs file that you will compile into your
FlexNet Embedded code. (An IdentityClient.cs header file based on an IdentityClient.bin file that has been correctly
prepared will contain a CertificatePublicKey entry in the initial comment.)

If you have not previously created your binary identity files, you can additionally supply the -identityName, -name, -keys,
and other switches to pubidutil.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 117

Chapter 6 Using the FlexNet Embedded APIs
Advanced Topic: FlexNet Publisher Certificate Support
Using the Lmflex Example
To illustrate the use of a FlexNet Publisher certificate as a license source, the FlexNet Embedded Client .NET XT or .NET
Core XT toolkit includes the Lmflex example. This example accepts the path to a signed FlexNet Publisher certificate file,
and attempts to acquire features called f1 and f2. The FlexNet Publisher certificate is expected to have been signed using
lmcrypt or back-office server such as FlexNet Operations. A typical FlexNet Publisher certificate is a text file with contents
similar to the following:

 INCREMENT f1 demo 1.0 1-jan-2025 uncounted HOSTID=USER=SampleUser SIGN="..."
 INCREMENT f2 demo 1.0 1-jan-2025 uncounted HOSTID=USER=SampleUser SIGN="..."

Open and build the Visual Studio project file examples\client_samples\Lmflex\Lmflex.csproj. For implementation
details, refer to the source code in the install_dir\examples\client_samples\Lmflex directory, in the source file
Lmflex.cs. The identity data (IdentityClient.cs) compiled into the example must have been prepared to include the
FlexNet Publisher public keys, as described in the previous section.

Running the Lmflex executable with the -help switch displays usage information.

Assuming you have already created your producer and identity objects as described in Creating Core Licensing Objects, the
implementation is similar to other examples described in this chapter. In particular, the implementation must:

• Create the Certificate License Source

• Acquire Features from the Certificate License Source

Create the Certificate License Source
The Lmflex implementation reads the signed FlexNet Publisher certificate specified as a command-line argument, and
creates the certificate license source with that file using AddCertificateLicenseSource.

 // add legacy certificate license source
 licensing.LicenseManager.AddCertificateLicenseSource(legacyCertificateFile, "CertificateFile");

If the certificate contains an unsupported or unknown keyword, AddCertificateLicenseSource throws an exception,
skipping lines in the certificate that contains the keyword. See Differences in Certificate Licensing Behavior for information
about FlexNet Embedded support for license certificates.

Acquire Features from the Certificate License Source
You acquire a feature from a certificate license source the same as with any other type of license source, using the
licensing.LicenseManager.Acquire method.

To run the example, supply a signed FlexNet Publisher certificate with a command similar to the following:

 Lmflex legacy.lic

If license acquisition is successful, the Lmflex output should appear similar to this:

 INFO: License acquisition for feature f1 version 1.0 successful.
INFO: License for feature f1 version 1.0 successfully returned.
INFO: License acquisition for feature f2 version 1.0 successful.
INFO: License for feature f2 version 1.0 successfully returned.

Exceptions thrown by the Acquire method are the same as those thrown when acquiring licenses from other types of
license sources.
118 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Advanced Topic: Multiple-Source Regenerative Licensing
Differences in Certificate Licensing Behavior
As described in Feature Definitions, FlexNet Embedded functionality supports a subset of the feature keywords supported
by FlexNet Publisher. Any feature definition supporting an unknown or unsupported keyword will be skipped. This section
describes additional differences between FlexNet Embedded and FlexNet Publisher with respect to license certificates.

Only unserved, uncounted certificates are supported. FlexNet Publisher certificates containing a SERVER line or VENDOR line
are not supported.

FlexNet Embedded treats feature names as case sensitive, whereas most hostid values are not case sensitive. For more
information, see Hostids. In your FlexNet Embedded code, verify that the feature name passed to the Acquire method uses
the same capitalization as used in the certificate. (When preparing identity data to include certificate support, pubidutil
supports a -certificateCaseSensitive switch, but this applies only to feature signatures, and not to feature names or
hostid values.)

Composite hostids and vendor-defined hostids are not supported.

FlexNet Embedded version comparisons are performed field by field, unlike FlexNet Publisher which treats the version
number as a single real number. Thus FlexNet Embedded treats version 1.1 as less than 1.10, while FlexNet Publisher treats
them as equal. (When generating FlexNet Embedded buffer licenses or capability responses with the testing tools
licensefileutil and capresponseutil, you can force the FlexNet Publisher behavior by passing the
-legacyFeatureVersioning switch.)

As an optimization, FlexNet Embedded normally does not load certain invalid features into a license source when the
license source is created. For example, by default an expired feature will not be added to a license source, and therefore an
attempt to acquire the expired feature will return a “feature not found” error code instead of a “feature has expired” error
code. To modify the behavior so that expired and other invalid features are included, create a diagnostic license source, as
illustrated in the View example.

FlexNet Embedded treats FEATURE lines and INCREMENT lines identically, as opposed to ignoring all but one FEATURE line.

Advanced Topic: Multiple-Source Regenerative
Licensing

Traditionally, trusted storage for a FlexNet Embedded client is provisioned with licenses from a single source. The source
can be either a back office, as described in Licenses Obtained from the Back-Office Server, or a single license server—either
a FlexNet Embedded local license server, which is a local license server, or a CLS (Cloud Licensing Service) license server—
as described in Licenses Obtained from a License Server. Based on the regenerative nature of trusted storage, each time a
new capability response from the server is processed, the current licenses in trusted storage are replaced with those sent in
the response.

However, due to evolving requirements in customer enterprises, trusted storage has been enhanced with the capability to
store licenses from multiple servers—FlexNet Embedded local license servers, CLS license servers, and the back office
(FlexNet Operations only)—in separate locations within trusted storage. When the client receives a capability response
from a one of the server sources, it stores the response in the source’s dedicated location in trusted storage, regenerating
licenses in that location only (and refreshing the server’s in-memory license source).

The following sections describe more about multiple-source regenerative licensing and how to support it in the client
code:

• Use Cases for Multiple-Source Regenerative Licensing
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 119

Chapter 6 Using the FlexNet Embedded APIs
Advanced Topic: Multiple-Source Regenerative Licensing
• Providing Support for Multiple-Source Regenerative Licensing in the Client Code

• Considerations

Use Cases for Multiple-Source Regenerative Licensing
The ability of the client to obtain licenses from multiple servers—each with its dedicated location in trusted storage for
storing and regenerating licenses—provides options for managing how a client is provisioned with licenses.

For example, when multiple-source regenerative licensing is used, an enterprise client can borrow additional licenses from
a second license server (in another department, for example), while maintaining its current set of licenses obtained from
the main license server. In another scenario, enterprise clients can be provisioned with node-locked licenses from the back
office for basic product functionality and then with enterprise-shared licenses from one or more license servers for high-
value product functionality. Multiple-source regenerative licensing might also help a service engineer who, in attempting
to repair a customer’s machine, can install temporary licenses for trouble-shooting purposes without wiping out the
customer’s purchased licenses.

Providing Support for Multiple-Source Regenerative
Licensing in the Client Code

In general, to implement support for multiple-source regenerative licensing in your client code requires planning. For
example, you need to determine how many (and which) servers to use as sources for provisioning clients in the enterprise
and how licenses are to be distributed across the different servers. Additionally, you need to decide which server instance
ID to assign each given source in order to create its license source and dedicated location in trusted storage.

Then, to create your FlexNet Embedded client code, use the information in Licenses Obtained from the Back-Office Server
and Licenses Obtained from a License Server as your guide; but refer to the following sections for specific information
about incorporating the functionality needed to support multiple-source regenerative licensing:

• Creating the License Source for a Server Instance

• Identifying the Server Instance in the Capability Request

• Processing the Response from a Server Instance

The example code implementations shown in the following sections are constructed using the context of the
CapabilityRequest example.

Creating the License Source for a Server Instance
To set up trusted storage to store licenses from multiple servers, you need a license source for each server, identified by the
specific server instance ID you assign the given server. This same ID in turn identifies the specific trusted-storage location
where licenses for this server will be stored.

Processing the capability response for a given server instance ID will automatically create the corresponding trusted-
storage license source and add it to the license source collection, if the source is not already present (see Processing the
Response from a Server Instance).

However, if your implementation requires that a license source be created and added to the collection explicitly, use the
following method, providing the server instance ID for which the license source is being created. (No two license sources
can have the same server instance ID.)
120 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 6 Using the FlexNet Embedded APIs
Advanced Topic: Multiple-Source Regenerative Licensing
licensing.LicenseManager.AddTrustedStorageLicenseSource(LicenseServerInstance.serverInstanceID)

Optionally, you can omit the server instance ID in this method to create a “default” license source—that is, a source created
for the traditional trusted-storage location not specified by a server instance ID—as one of the multiple sources. However,
when you do not specify a server instance ID to create for one of the license sources, the remaining trusted-storage license
sources must each be created with the instance ID specified.

The following example implementation adds two trusted-storage license sources to the license source collection—a
default license source and a license source for Server5 (server instance 5):

 // Add trusted storage license sources
 // AddTrustedStorageLicenseSource() is equivalent to
 // AddTrustedStorageLicenseSource(LicenseServerInstance.Default)
 licensing.LicenseManager.AddTrustedStorageLicenseSource();
 licensing.LicenseManager.AddTrustedStorageLicenseSource
 (LicenseServerInstance.Server5);

Identifying the Server Instance in the Capability Request
Each server in this multiple-source model is assigned a specific server instance ID to identify the trusted-storage location in
which licenses from this server are to be stored (as described in the previous section Creating the License Source for a
Server Instance). Your implementation must ensure that, when the capability response from a specific server is processed,
the licenses contained in the response are stored in the correct location for that server.

One method that FlexNet Embedded uses to help you verify the proper storage of licenses is to compare the server instance
ID in the capability response with the instance ID used to process the response. If the IDs do not match, an error is raised.
(For more information about processing the capability response for a specific server instance ID, see the next section
Processing the Response from a Server Instance)

To enable FlexNet Embedded to perform this check, you must initially include the instance ID in the capability request so
that it can be returned in the capability response. However, the back office and pre-2016 license servers are not capable of
returning the instance ID in the response. A best practice might then be always to include the instance ID in the request so
that FlexNet Embedded performs a comparison check whenever the ID is available in the response.

To specify the instance ID for the target server in the capability request, create the ICapabilityRequestOptions object
using the factory method overload, which takes a server instance ID value:

licensing.LicenseManager.CreateCapabilityRequestOptions(LicenseServerInstance.serverInstanceID)

The following shows a sample implementation of this functionality (in this case, to specify server instance 5):

 // create a capability request options object for the intended server
 // instance value
 ICapabilityRequestOptions options =
 licensing.LicenseManager.CreateCapabilityRequestOptions(LicenseServerInstance.Server5);

Processing the Response from a Server Instance
Use the following method to process the capability response from a given server—identified by the server instance ID
specified in the method—into the trusted-storage location and license source with that same ID:

licensing.LicenseManager.ProcessCapabilityResponse(binCapResponse,
 LicenseServerInstance.serverInstanceID)
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 121

Chapter 6 Using the FlexNet Embedded APIs
Advanced Topic: Multiple-Source Regenerative Licensing
If the license source for the server does not exist, this process additionally creates the source and adds it to the license-
source collection.

The following shows a sample implementation of this functionality (which processes the capability response into the
trusted-storage location and license source for server instance 5):

 // Process the binary capability response into the trusted storage license source
 // correstponding to server instance 5.
 ICapabilityResponse response =

 licensing.LicenseManager.ProcessCapabilityResponse(binCapResponse,
 LicenseServerInstance.Server5);

Validations

To help ensure that the licenses in the capability response are installed in the correct location in trusted storage, FlexNet
Embedded generates an error when certain conditions exist, such as:

• The server hostid included in the capability response already exists for another server-instance location.

• The server instance ID, when available in the capability response, does not match the one specified for
licensing.LicenseManager.ProcessCapabilityResponse.

Considerations
Consider the following when you implement support for multiple-source regenerative licensing in your FlexNet Embedded
client code:

• Maximum license sources—To determine the maximum number of license sources allowed, refer to the API reference
for the current enumerator values available for use as server instance IDs.

• Metered licenses—Metered licenses are supported in multiple-source regenerative licensing.

• Back office as a source—Multiple-source regenerative licensing allows only one source that is a back office.
Additionally, the only back office supported as a source is FlexNet Operations.

• License acquisition—When a client attempts to acquire licenses, FlexNet Embedded aggregates license counts across
all license sources in the client’s license-source collection—in the order in which the sources were added to the
collection. License sources in a collection can include the one or more trusted-storage sources and any non-trusted
sources, such as those for trial and buffer licenses. (The licenses are aggregated according to FlexNet Embedded
internal rules.)

• Upgrade from a pre-2016 version—If you have upgraded your FlexNet Embedded .NET XT toolkit from a version
previous to the 2016 release and have rebuilt your client product with this toolkit, the legacy APIs continue to support
the client’s traditional single-source regenerative licensing. However, with the 2016 or later toolkit, you have the
option to add support for multiple-source regenerative licensing in your existing code, should you decide to do so.
122 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

7

Using the Updates and Insights APIs
The Updates and Insights component included in the .NET XT SDK comprises a set of .NET functions that you can integrate
in product code to retrieve notifications—product messages or updates—from the Updates and Insights notification server
(located in Revenera-hosted FlexNet Operations). For product-update notifications, you can use Updates and Insights
functionality to download and install the updates.

Note • Currently, FlexNet Operations supports only product-update notifications and leverages the “manifest file” update-
type format to provide information about the file or files involved in a given update (see About the Manifest File for An Update
Notification).

The following sections describe the general flow of Updates and Insights API calls used when implementing a scenario that
retrieves all update notifications for a given product package, downloads the file (currently just a manifest file) required for
installing a given update, and then installs the update. The sections walk you through the functionality used in this
scenario, referring to the source code for the example Notification project. (The source code is found in
install_dir\examples\uai_client_samples.)

This chapter includes the following implementation descriptions:

• Common Preparation Steps

• About the Manifest File for An Update Notification

• Creating Core Notification Objects and Registering the Client

• Obtaining Notifications and Downloading and Installing the Updates

• One-time Event: Client Device Registration with FlexNet Operations

• About Client Communications for the Updates and Insights

The information in this chapter applies only to the FlexNet Embedded Client .NET XT toolkit, which supports both FlexNet
Embedded and Updates and Insights functionality. (The FlexNet Embedded Client .NET Core XT toolkit supports FlexNet
Embedded functionality only.)
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 123

Chapter 7 Using the Updates and Insights APIs
Common Preparation Steps
Common Preparation Steps
The following steps need to performed to ensure that the Updates and Insights client code has access to the information it
needs to perform notification operations successfully:

• Obtaining Your Producer Identity Files

• Adding a Product and Its Update to Your Producer Site

Obtaining Your Producer Identity Files
The Notification example assumes that you have your producer identity files in place. That is, either you have generated
these files in FlexNet Operations and have downloaded the IdentityClient.h file (or comparable file) to the
install_dir\examples\identity directory (or a directory accessible by the Notification project); or you have used toolkit
utilities to perform the following tasks to create and distribute your producer identity data:

• Run the pubidutil utility to create the producer identity binary files for FlexNet Operations and the Updates and
Insights client (by default called IdentityBackOffice.bin and IdentityClient.bin).

• Uploaded the back-office identity binary file to Revenera-hosted FlexNet Operations.

• Run the printbin utility on the client-identity binary file to generate a header file (for example, IdentityClient.h)
containing compiler-readable (C byte array) identity information and have copied this file to install_dir/examples/
identity (or a directory accessible by the Notification project).

The process of using pubidutil to generate identity information and then distributing this information is described in the
section Creating the Producer Identity in the Quick Start chapter.

Adding a Product and Its Update to Your Producer Site
Before you can successfully run the Notification example, a sample product package must be defined and its update
published in FlexNet Operations for access by the notification server. For instructions, refer to the FlexNet Operations User
Guide that is available in the Producer Portal.

Tip • For best results, follow the exercises in the sections “Getting Started with Entitlement Management” and “Getting
Started with Updates and Insights” in the FlexNet Operations User Guide. There you can create a product, an entitlement,
download packages, and an update that you can use to test the Updates and Insights API implementations.

Then, before executing the Notification example, you can access the Package Products and Updates pages in FlexNet
Operations to obtain the following information for the product package and update:

• The package ID for the product for which you will request update notifications. This information is required for
running the example.

• The Microsoft Language Locale Identifier (LCID) for the language of the product package if the default value (1033)
used by Notification example is not applicable. See Running “Notification” in the Quick Start chapter for details.
124 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 7 Using the Updates and Insights APIs
About the Manifest File for An Update Notification
About the Manifest File for An Update Notification
Currently, the notification server generates a manifest file as the only content type for a product update. A manifest file
contains a list of the one or more files (along with other relevant information such as file locations) that, in turn, need to be
downloaded and possibly executed to install the update successfully. For an explanation of an example a manifest file, see
the appendix Manifest File Contents for a Product Update.

Creating Core Notification Objects and Registering
the Client

Before your Updates and Insights client code can retrieve notifications, it must create the core objects required for
notification operations. Additionally, the client code must register the client device with FlexNet Operations if the device
has not been previously registered. The following sections look at sample code implementations that accomplish these
preliminary tasks:

• Setting Up the Updates and Insights Client Object

• Registering the Client Device with FlexNet Operations

• Setting Up the Product Package Object

Setting Up the Updates and Insights Client Object
 Notification-enabled code should first create the core Updates and Insights client object, also called the IUAIClient object.
This object maintains a reference to each product package for which notifications are retrieved and is used to register the
client device with the back office. This object must be initialized with your producer client identity, as created in the
previous section, Common Preparation Steps.

The following excerpt from Notification.cs shows a sample code implementation of the IUAIClient object creation:

Note • The Notification examples wraps most Updates and Insights operations in a “try-catch” block. These blocks have been
omitted from many of the code excerpts presented in this chapter to focus on the pertinent code.

Table 7-1 • Excerpt from Notification.cs: Creating the IUAIClient Object

 using (uaiClient = UAIClientFactory.GetUAIClient(
 IdentityClient.IdentityData, null, null))...
 ...
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 125

Chapter 7 Using the Updates and Insights APIs
Creating Core Notification Objects and Registering the Client
The UAI client object is initialized by calling UAIClientFactory.GetUAIClient. The following describes the arguments
used in this method.

• The first argument to GetUAIClient is your client-identity information used for verifying notifications from the
notification server. The implementation uses the IdentityClient.IdentityData expression to pass the binary client
identity (found in IdentityClient.cs) as the argument to GetUAIClient. The IdentityClient.cs file was created by
running the printbin utility against the IdentityClient.bin file (created in FlexNet Operations or by using
pubidutil). Note that the client identity data contains the public key information used to authenticate the
notification messages digitally signed by the notification server.

Note • For security reasons, it is strongly recommended that your producer client identity be stored as a buffer in the
updates-enabled code, and not as an external file. The “printbin” toolkit utility can convert a binary producer identity file
(on a development system) into a format that can be used in Updates and Insights code.

• The second argument is currently ignored (and passed as null).

• The third argument is used to specify a custom hostid, should the user want to use one, to identify the Updates and
Insights client device to the notification server. However, if the client code also uses the IUAClient.SetHostid
(type, value) method to set the default hostid for the client, the default hostid takes precedent over the custom
hostid specified for this argument.

Note that a request for notifications or client registration (see the next section) sent to the notification server always
contains a hostid, chosen by Updates and Insights functionality in this order:

• The default hostid set for the implementation using IUAClient.SetHostid (type, value)

• The custom string hostid

• The first ethernet hostid detected on the client

Registering the Client Device with FlexNet Operations
If the hostid for the Updates and Insights client device has not been previously registered with Revenera-hosted FlexNet
Operations, either through Updates and Insights or FlexNet Embedded client functionality, the client code must perform
this process before it can obtain notifications. See One-time Event: Client Device Registration with FlexNet Operations for
details.

Before you can register the client device or determine whether it has been previously registered, the IUAIClient object
must already exist. See Setting Up the Updates and Insights Client Object.

Setting Up the Product Package Object
The second core object required to retrieve notifications is the product package object. Your code must create a separate
object for each product package for which the client will retrieve notifications. This object identifies the specific product
package to the IUAIClient object. Although a product package object is associated with a single IUAIClient object, a
IUAIClient object can have multiple product-package objects associated with it.
126 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 7 Using the Updates and Insights APIs
Obtaining Notifications and Downloading and Installing the Updates
The following excerpt from Notification.cs shows a sample implementation that creates a product-package object:

The GetProductPackage method in the IUAIClient interface either locates an existing product package or creates a new
product package object and associates it to the IUAIClient object through the product’s package ID.

The myProductPackageId parameter identifies the download ID for the product package currently installed in the local
environment. You can find this download ID on the Package Products page and the Updates page in FlexNet Operations.
The myLanguage and myPlatform parameters define additional product attributes required for the object to determine the
appropriate notifications to retrieve for the current product package. However, if these parameters are omitted, defaults
are used, as described for the Notification example in Running “Notification” in the Quick Start chapter.)

Obtaining Notifications and Downloading and
Installing the Updates

The following scenario describes how you might use the Updates and Insights .NET XT functionality in your client code to
retrieve available product notifications and then download and execute those notifications that are updates. The scenario
is based on the Notification example and refers to the source code in the file Notification.cs, located in the
examples\uai_client_samples\Notification directory.

Additionally, running the Notification.exe executable with the -h or -help switch displays usage information for the
example.

This walkthrough assumes that your source code has already set up the core objects and registered the client with the back
office (if it was not already registered), as described Creating Core Notification Objects and Registering the Client. The
walkthrough is discussed in these phases:

• Obtaining Notifications

• Downloading and Installing an Update

Table 7-2 • Excerpt from Notification.cs: Creating the Product Package Object

 using (uaiClient = UAIClientFactory.GetUAIClient(
 IdentityClient.IdentityData, null, null))
 {

 if (registerClient)
 {
 RegisterClient();
 }

 using (productPackage = uaiClient.GetProductPackage(myProductPackageId, myLanguage,
 myPlatform))
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 127

Chapter 7 Using the Updates and Insights APIs
Obtaining Notifications and Downloading and Installing the Updates
Obtaining Notifications
The sample code retrieves the notifications for a product (that is, a specific product package ID) from the notification server
by sending a notification request for a notification collection. The notification server, in turn, responds with the notification
collection for the product. Only one notification collection can exist for a product package ID at any one time. The following
sections describe the process of obtaining notifications:

• Step 1: Send the Notification Request

• Step 2: Inspect the Collection

Step 1: Send the Notification Request
Communications between the Updates and Insights client and the notification server are asynchronous and handled
internally by FlexNet Embedded client functionality (see About Client Communications for the Updates and Insights). This
excerpt from the example calls the following methods (from the IProductPackage interface) required to retrieve a
notification collection from the server:

• The RequestNotifications method that sends the request to the notification server (referenced by nsServerURL) to
obtain all available notifications for the product package.

• The NotificationsReady method that polls the notification server (at an implementation-defined interval) until the
client receives a response message from the server containing the notification collection data or until an error occurs.
Once the client receives the response message, the NotificationsReady method processes the response so that
notification collection can be accessed. Additionally, a status message is internally generated and sent to the
notification server, indicating that the notification collection has been delivered to the Updates and Insights client.

Note that the example code leverages the .NET BackgroundWorker class to spawn a new thread for the asynchronous
communications with the notification server to retrieve notifications. This implementation is for demonstration only.
Should you want the client to spawn a separate communications thread for notification retrieval process, you can use any
method appropriate for your application.

Table 7-3 • Excerpt from Notification.cs: Requesting Notifications

 {
 BackgroundWorker notificationsThread = sender as BackgroundWorker;
 bool notificationsReady = false;
 int ii = 0;
 e.Result = -1;
 try
 {
 productPackage.RequestNotifications(nsServerUrl);
 do
 {
 Thread.Sleep(1000);
 notificationsThread.ReportProgress(++ii < 100 ? ii : 100);
 notificationsReady = productPackage.NotificationsReady;
 } while (!notificationsReady);
 e.Result = 0;
128 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 7 Using the Updates and Insights APIs
Obtaining Notifications and Downloading and Installing the Updates
Step 2: Inspect the Collection
The following excerpt from Notification.cs shows sample code that inspects the notification collection and displays the
properties for each notification item on the console. If the code determines that a specific item is an “update”, it uses the
INotificationUpdate interface to access that item. (The other interface INotificatioMessage is used to access
“message”-type notifications, which are currently not supported by the notification server.)

Note that the code first determines the collection size. A notification collection size of 0 (zero) means that no notifications
for this product were available.

 }
 catch (Exception exc)
 {
 threadException = exc;
 }
 }

Table 7-4 • Excerpt from Notification.cs: Parsing the Notification Collection

 List<INotification> notifications = productPackage.NotificationCollection;
 uint i = 1;
 int ii = notifications.Count;
 Util.DisplayMessage(String.Format("{0} notification items returned for requested product package
 id.", ii == 0 ? "No" : ii.ToString()), ii == 0 ? "INFO" : null);
 foreach (INotification notification in notifications)
 {
 StringBuilder builder = new StringBuilder();
 builder.AppendLine("");
 builder.AppendLine(String.Format("Notification item {0} of {1} attributes:", i, ii));
 if (notification is INotificationUpdate)
 {
 INotificationUpdate update = notification as INotificationUpdate;
 builder.AppendLine(" Type: Update");
 List<String> updateProperties = new List<String>
 {update.ID, update.ProductPackageId, update.ToProductPackageId, update.Name,
 update.Title,
 update.ProductName, update.ContentType.ToString(), update.Description,
 update.Details,
 update.DetailsURL, update.DownloadType.ToString(), update.DownloadURL,
 update.DownloadSize.ToString(),
 update.AvailabilityDate, update.ExpirationDate, update.LanguageCode,
 update.ElevationRequired.ToString(),
 update.CommandLine, update.TargetDirectory, update.SecurityType,
 update.SecuritySignature};
 for (int j = 0; j < updateProperties.Count; j++)
 {
 if (!String.IsNullOrEmpty(updateProperties[j]))
 {
 builder.AppendFormat(updatePropertyDescriptions[j], updateProperties[j]);
 }
 }
 }

Table 7-3 • Excerpt from Notification.cs: Requesting Notifications (cont.)
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 129

Chapter 7 Using the Updates and Insights APIs
Obtaining Notifications and Downloading and Installing the Updates
Downloading and Installing an Update
The code reviewed in this part of the scenario extracts those notification items that are of the “update” type, downloads
the payload associated with a given item, and installs the update, as described in these sections:

• Download Payload and Install the Update

• (Optional) Use a Callback Function to Track the Update Progress

Note that, currently, the only notification type supported by the notification server is the “update” type, and the only
content type that the notification server supports for a payload is a manifest file (see Manifest File Contents for a Product
Update). When the payload is a manifest file, the manifest file and each item in the file must be downloaded before the
installation begins, as described in more detail the next section.

Download Payload and Install the Update
The next excerpt shows a sample implementation for the DownloadAndExecute method (in the INotificationUpdate
interface) used to download the “update” payload associated with a notification item and then install the update. For a
“manifest file” payload, this method first downloads the manifest file and then, to install the update, downloads all files
associated with the manifest items and finally executes all downloaded files marked for execution. Note the following
about the DownloadAndExecute method:

• The downloadLocation and downloadFilename parameters in the DownloadandExecute method point to the target
location to which to download the payload (in this case, a manifest file) on the client. Note that these parameters do
not have to be specified. By default, the payload is downloaded to the user’s Downloads folder; the default file name is
determined by the URL or the HTTP headers.

• This method can point to an IComm object that your code creates to define custom settings for notification-item
downloads (see About Client Communications for the Updates and Insights). In the excerpt, the method points to such
an object called dlComm.

• The method can supply a producer-defined callback (in the excerpt, MyStatusDelegate), which allows the end-user to
keep track of the progress of the download and execution process. This callback is discussed in more detail in the next
section (Optional) Use a Callback Function to Track the Update Progress.

Finally, during the download and installation phases for an update, status messages are internally generated and sent to
the notification server to indicate the start and completion of these phases. For a manifest file, the download phase starts
with the download of the manifest file itself and ends when all files associated with the manifest items have been
downloaded. The installation phase begins with the execution of the first downloaded file marked for execution and
completes when all files marked for execution have been executed.

Table 7-5 • Excerpt from Notification.cs: Downloading and Installing an Update

 private static void DownloadUpdates(IComm dlComm)
 {
 string downloadLocation = null;
 string downloadFilename = null;
 List<INotification> notifications = productPackage.NotificationCollection;
 for (int i = 0; i < notifications.Count; i++)
130 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 7 Using the Updates and Insights APIs
Obtaining Notifications and Downloading and Installing the Updates
(Optional) Use a Callback Function to Track the Update Progress
The sample code takes advantage of the ability to supply a producer-defined download callback delegate method, called
MyStatusDelegate in this excerpt. (This delegate method is of the type UpdateStatusDelegate, which returns a
NotificationUpdateStatus enumerator.) The callback receives the information about the download and execution
operations and their progress and, in this example, provides a visual display of the download progress. The callback also
enables the opportunity to pause or cancel the download.

 {
 if (notifications[i] is INotificationUpdate)
 {
 INotificationUpdate updateNotification = notifications[i] as INotificationUpdate;
 try
 {
 updateNotification.UserData = new ProgessUserData();
 Util.DisplayMessage(String.Format("Downloading notification #{0}", i + 1));
 updateNotification.DownloadAndExecute(downloadLocation, downloadFilename,
 MyStatusDelegate, dlComm);

 if (updateNotification.DownloadPaused)
 {
 Util.DisplayMessage("The download was successfully paused. Automatically
 resuming...", "Download paused");
 try
 {
 updateNotification.ResumeDownload(MyStatusDelegate, dlComm);
 }

 catch (Exception exc)
 {
 Util.DisplayErrorMessage(String.Format("{0}Unable to resume download or execute
 notification item #{1}", Environment.NewLine, i + 1));
 HandleException(exc);
 }
 }
 if (!String.IsNullOrEmpty(updateNotification.DataLocation))
 {
 Util.DisplayMessage(String.Format("Download successful to: {0}",
 updateNotification.DataLocation));
 }
 }
 catch (Exception exc)
 {
 Util.DisplayErrorMessage(String.Format("{0}Unable to download or execute notification item
 #{1}", Environment.NewLine, i + 1));
 HandleException(exc);
 }
 finally
 {
 updateNotification.UserData = null;
 }
 }
 }

Table 7-5 • Excerpt from Notification.cs: Downloading and Installing an Update (cont.)
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 131

Chapter 7 Using the Updates and Insights APIs
Obtaining Notifications and Downloading and Installing the Updates
Note that the example uses a ProgressUserData object to carry implementation-contextual data to the delegate callback.
However, your implementation can use any appropriate custom object to provide access to application-specific
information.

The percentage of progress at certain points in the download process is calculated using the example ReportPercent
method. The last lines in this code excerpt show how to set a pause at a certain percentage point in the download process
(userDefinedPauseAtPercentage = 0;) and save what has been completed up to this point. Note that the returned status
NotificationUpdateStatus.PAUSE will cause a current download to be paused. The
NotificationUpdateStatus.CONTINUE instructs the download to continue processing downloaded data, while a returned
status NotificationUpdateStatus.CANCEL will cause the current download or execution to be canceled without the
option of resuming.

Note • This user callback is an example only. Your own callback function can perform whatever actions you require.

Table 7-6 • Excerpt from Notification.cs: Example Callback Function

 private static NotificationUpdateStatus MyStatusDelegate(NotificationUpdateStage stage, long currentSize,
 long totalSize, INotificationUpdate update, Exception exc)
 {
 if (((ProgessUserData)update.UserData).lastUpdateStage != stage)
 {
 switch (stage)
 {
 case NotificationUpdateStage.DOWNLOAD_START:
 Util.DisplayMessage("Download started"); break;
 case NotificationUpdateStage.DOWNLOADING:
 if (totalSize > 0)
 {
 return ReportPercent(currentSize, totalSize, update);
 }
 break;
 case NotificationUpdateStage.DOWNLOAD_END:
 Util.DisplayMessage("Download ended"); break;
 case NotificationUpdateStage.DOWNLOAD_FAIL:
 Util.DisplayMessage(((ProgessUserData)update.UserData).executionStarted ? "Execution
 failed" : "Download failed"); break;
 case NotificationUpdateStage.EXECUTION_START:
 Util.DisplayMessage("Execution started");
 ((ProgessUserData)update.UserData).executionStarted = true;
 break;
 case NotificationUpdateStage.EXECUTION_END:
 Util.DisplayMessage("Execution ended"); break;
 }
 ((ProgessUserData)update.UserData).lastUpdateStage = stage;
 }
 return NotificationUpdateStatus.CONTINUE;
 }
132 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 7 Using the Updates and Insights APIs
One-time Event: Client Device Registration with FlexNet Operations
One-time Event: Client Device Registration with
FlexNet Operations

If the hostid for the Updates and Insights client device has not been previously registered with Revenera-hosted FlexNet
Operations, either through Updates and Insights or FlexNet Embedded client functionality, the client code must perform
this process as pre-requisite to obtaining notifications.

Registration with FlexNet Operations is a one-time event for a client device. It involves sending a message that contains a
valid rights ID for the customer’s account to the back office. The back office is then able to associate the device hostid
sending the message with the customer account. Once the client device has been registered with the back office, it does
not need to be re-registered.

Note • In FlexNet Embedded, a client device is automatically registered when the client requests licenses directly from the
Revenera-hosted FlexNet Operations. To register when using a Cloud Licensing Service instance to obtain licenses, the client
device must send a valid rights ID to the back office, as described in Register the Client with the Cloud Licensing Service. Either
way, if the device has already been registered through FlexNet Embedded, it does not have to be re-registered through
Updates and Insights and vice-versa.

 private static NotificationUpdateStatus ReportPercent(long currentSize, long totalSize,
 INotificationUpdate update)
 {
 uint completionPercent = (uint)((currentSize * 100)/totalSize);
 // Display notable progress
 if (completionPercent > ((ProgessUserData)update.UserData).lastPercentComplete)
 {
 string progress = "[";
 uint progressBarPos = (uint)((progressBarWidth * currentSize) / totalSize);
 for (uint i = 0; i < progressBarWidth; ++i)
 {
 progress += (i < progressBarPos ? "=" : (i == progressBarPos ? ">" : " "));
 }
 progress = String.Format("{0}] {1} percent complete{2}", progress, completionPercent,
 completionPercent >= 100 ? Environment.NewLine : "\r");
 Console.Write(progress);
 // Update percent complete value in the user data.
 ((ProgessUserData)update.UserData).lastPercentComplete = completionPercent;
 if (userDefinedPauseAtPercentage > 0 && completionPercent >= userDefinedPauseAtPercentage)
 {
 userDefinedPauseAtPercentage = 0;
 return NotificationUpdateStatus.PAUSE;
 }

 }
 return NotificationUpdateStatus.CONTINUE;
 }

Table 7-6 • Excerpt from Notification.cs: Example Callback Function (cont.)
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 133

Chapter 7 Using the Updates and Insights APIs
One-time Event: Client Device Registration with FlexNet Operations
The following sections describe the registration process initiated by the Updates and Insights client:

• The Registration Process

• Requesting the Client Registration

The Registration Process
If an end user knows or cannot confirm that the device has not been registered, the Updates and Insights client code can
initiate the registration by sending a registration request to the notification server, which in turns checks with FlexNet
Operations to obtain the registration status. If the device has been previously registered (for example, through FlexNet
Embedded), the notification server sends a response back to the client with a message stating as such. If the device has not
been registered, the registration process proceeds in FlexNet Operations. Once the registration completes or fails, the
notification server sends a response to the client with a message indicating the status.

However, if the end user knows that the client device has already been registered, best practice is not to initiate the a
registration process as matter of course. This process consumes resources as the client continues to poll the notification
server until the server sends a response with the registration status.

Requesting the Client Registration
This excerpt from the example calls the following functions (from the IUAIClient interface) required to retrieve a
notification collection from the server:

• The Register function that sends the registration request to the notification server (referenced by nsServerURL) to
obtain all available notifications for the product package. The rights ID (labeled with the ActivationId pointer) must
be a valid rights ID associated an entitlement in FlexNet Operations that is mapped to the customer account under
which the device is being registered. The entitlement itself must contain an unmetered, uncounted license for the
purpose of simply identifying the client device.

In a production environment, the producer should provide the customer with the appropriate rights ID with which to
register the device. This information is typically conveyed through an email message.

• The RegistrationComplete function that polls the notification server (at an implementation-defined interval) until
the client receives a response message from the server containing the registration status or until an error occurs.

Note that the example code leverages the .NET BackgroundWorker class to spawn a new thread for asynchronous
communications with the notification server to register the client. This implementation is for demonstration only. Should
you want the client to spawn a separate communications thread for the registration process, you can use any method
appropriate for your application.
134 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 7 Using the Updates and Insights APIs
About Client Communications for the Updates and Insights

 About Client Communications for the Updates and
Insights

Updates and Insights client communications are handled internally by FlexNet Embedded client functionality. However, in
some environments, the default communications settings might need to be adjusted. In this case, best practice is to create
a communications (IComm) object and specify the customized settings—such as proxy settings, transfer rates, user
credentials, and others. You can create a customized IComm object to tailor communications settings for the following:

• To pass in with the IUAIClient.Register method

• To associate with a product package object

• To pass in with the Download, DownloadAndExecute, or ResumeDownload method in the INotificationUpdate
interface

Table 7-7 • Excerpt from Notification.cs: Requesting Client Registration

 private static void registrationThread_DoWork(object sender, DoWorkEventArgs e)
 {
 BackgroundWorker registrationThread = sender as BackgroundWorker;
 bool registrationComplete = false;
 int ii = 0;
 e.Result = -1;
 try
 {
 BackOfficeErrorCode serverStatus;
 uaiClient.Register(nsServerUrl, activationId, null);
 do
 {
 Thread.Sleep(1000);
 registrationThread.ReportProgress(++ii < 100 ? ii : 100);
 registrationComplete = uaiClient.RegistrationComplete(activationId, null, out serverStatus);
 } while (!registrationComplete);
 if (serverStatus == BackOfficeErrorCode.FLX_BOS_ERR_SERVER_CLIENT_ALREADY_REGISTERED)
 {
 Util.DisplayMessage("Client is already registered with the back office.");
 }
 e.Result = 0;
 }
 catch (Exception exc)
 {
 threadException = exc;
 }
 }
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 135

Chapter 7 Using the Updates and Insights APIs
About Client Communications for the Updates and Insights
For example, this excerpt shows how to create an IComm object and associate it with a product. Additional properties are
used to associate various settings to the communications object. (For more information, see the API reference.)

This excerpt show how to create an IComm object for the download of payloads for “update” notification items and pass it in
with a method (in this example, DownloadAndExecute):

Table 7-8 • Excerpt from Notification.cs: Creating a Custom Communications Object for a Product Package

 using (productPackage = uaiClient.GetProductPackage(myProductPackageId, myLanguage,
 myPlatform))
 {
 if (createProductPackageComm)
 {
 using (IComm comm = CommFactory.Create())
 {
 productPackage.Comm = comm;
 // Set notification server communications options such as
 // proxy server or client credentials here.
 GetNotifications();
 }
 }

Table 7-9 • Excerpt from Notification.cs: Creating a Custom Communications Object for Downloads

 if (downloadUpdates)
 {
 if (createDownloadComm)
 {
 using (IComm dlComm = CommFactory.Create())
 {
 // Set content delivery server communications options such as
 // proxy server or client credentials here.
 dlComm.MaxTransferRate = maxRate;
 DownloadUpdates(dlComm);
 }
 }...
...updateNotification.DownloadAndExecute(downloadLocation, downloadFilename, MyStatusDelegate, dlComm);
136 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

8

Utility Reference
Both the FlexNet Embedded Client .NET XT and FlexNet Embedded Client .NET Core XT toolkits include a set of test and
configuration utilities, located in the install_dir/bin/tools directory, to help you test and prepare your toolkit for
production use, as described in this chapter.

Note • Only the utilities specific to FlexNet Embedded are applicable to the FlexNet Embedded Client .NET Core XT toolkit
since this toolkit supports FlexNet Embedded, but not Updates and Insights.

These toolkit utilities require Java 1.8 or later to be available on your development or test system. Java is not a
requirement for a host running license-enabled or updates-enabled code.

Tools shared by FlexNet Embedded and Updates and Insights:

• Publisher Identity Utility

• Print Binary Utility

Tools specific to FlexNet Embedded:

• Identity Update Utility

• License Conversion Utility

• Trial File Utility

• Capability Server Utility

• Capability Request Utility

• Capability Response Utility

• Secure Profile Utility

• .NET XT Toolbox
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 137

Chapter 8 Utility Reference
Tools Shared by FlexNet Embedded and Updates and Insights
Tools Shared by FlexNet Embedded and Updates
and Insights

The following tools are available to assist you with either FlexNet Embedded or Updates and Insights functionality:

• Publisher Identity Utility

• Print Binary Utility

Publisher Identity Utility
The Publisher Identity utility pubidutil enables you to create producer-specific identification data in binary format. The
back-office identity data is used by your back-office tools for digitally signing license rights and notification messages, the
client–server identity is used for served licenses, and the client identity data is used by your FlexNet Embedded or Updates
and Insights code to validate your license rights or notification messages, respectively, and to perform other validation
operations.

Purpose
The Publisher Identity utility pubidutil enables producers to create API-compatible producer-specific identification data
in binary format. This binary data will be passed as a buffer to the appropriate methods that create the core Licensing and
Updates and Insights objects. The identity is also used to sign and validate binary messages sent between the FlexNet
Embedded client and FlexNet Operations, the license server, or the Updates and Insights notification server.

The Publisher Identity utility is provided to enable each producer to create unique identity files that are used to digitally
sign the following:

• FlexNet Embedded license files, trial rights, and capability responses

• Product notifications sent from the notification server

Three files are generated:

• The producer’s back office identity, containing all public and private key information (by default called
IdentityBackOffice.bin)

• The license server identity (by default called IdentityClientServer.bin)

• The client identity (used by the client code), containing only the public key used to validate signatures (by default
called IdentityClient.bin)

Important • It is essential that your back-office identity file (like “IdentityBackOffice.bin”), which contains your private-key
information, and the license-server identity file (like “IdentityClientServer.bin”) be kept secure.
138 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 8 Utility Reference
Tools Shared by FlexNet Embedded and Updates and Insights
Usage
The Publisher Identity utility can be run in a command-line shell or in an user interface. The command takes optional
arguments that specify where the identity files will be written and whether it runs in console mode (no GUI).

pubidutil [-backOffice backofficeidfile.bin] [-clientServer clientserveridfile.bin]
[-client clientidfile.bin] [-console] [-listRsaTypes]

The default value for the -backOffice option is IdentityBackOffice.bin, the default for -clientServer is
IdentityClientServer.bin, and the default for the -client option is IdentityClient.bin.

To generate your binary identity files, run the pubidutil script in the bin\tools subdirectory of the toolkit:

pubidutil

With no arguments, it will bring up a user-interface form that can be used to generate the identity files.

Figure 8-1: Pubidutil in GUI Mode

To avoid the use of the user interface, use the -console switch:

pubidutil -console
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 139

Chapter 8 Utility Reference
Tools Shared by FlexNet Embedded and Updates and Insights
You will prompted for all of the required information at the command line. (You can run pubidutil -? to obtain additional
usage information.)

If you specify existing identity files, you can modify the previous settings and then regenerate the identity files. Naturally, if
you update your producer identity files, it will likely be necessary to update the client-identity buffer data in your license-
enabled or notification-enabled code to correspond with the back-office identity data used in your back-office server to
sign licenses.

Caution • In a production environment, best practice is to generate the identity information in FlexNet Operations and then
export the client, client–server, and back-office identity files for use with the FlexNet Embedded Client .NET XT or .NET Core XT
toolkit. The identity files you use throughout an environment must all be generated at the same time; mixing identity data
generated at different times or with different tools—for example, using client-identity data generated with “pubidutil” with
back-office identity data generated with FlexNet Operations—will result in a run-time error.

Entering Your Identity Data
The utility prompts you to enter the following producer-specific data:

• Identity Name: Enter a unique name for this collection of identity settings (the name can be used by your back-office
server to distinguish among different collections representing different types of clients, for example).

• Publisher Name: Enter the producer name provided by Revenera, or demo for the evaluation toolkit.

• Publisher Keys: Enter the producer keys (five hexadecimal numbers) provided by Revenera.

• Signature Type: Choose RSA, TRL, or License Key (the demo toolkit uses RSA signatures on most architectures). The
digital signature algorithm and signature strength you select are used for digitally signing licenses, capability
response envelopes, and product notification messages.

• Signature and digest strength—For signature types that have multiple encryption strength options, choose the
signature strength you prefer. Keep in mind that the higher the strength, the more computational overhead is incurred
by the signature.

For RSA, SHA-1 and SHA-2 hash algorithms are available. For a list of all RSA signature strengths and digests, use
pubidutil -listRsaTypes.

When you have entered all of the required data, pubidutil creates the output binary files you specified, or uses the default
names if none were specified. (The utility reports an error if the producer keys are invalid or evaluation keys have expired.)
The back-office identity file is used when signing licenses and notification messages, the client–server identity is used with
served licenses, and the client identity file is used in license-enabled and updates-enabled code.

Further Tasks and Considerations
Once you have generated the identity data, notes the following:

• You can configure the client identity binary to include hostid filtering and caching parameters for use during hostid
detection on the client device. For more information, see Identity Update Utility. (This configuration is available for
identities generated for FlexNet Embedded C XT, .NET XT, .NET Core XT, and Java XT client applications only.)

• The printbin utility, described below, converts the binary client-identity data into C# code that can be copied into
license-enabled code.
140 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 8 Utility Reference
Tools Shared by FlexNet Embedded and Updates and Insights
• For security reasons, the identity data in IdentityClient.bin or IdentityClientServer.bin should generally not be
read from an external binary file into a buffer at run time, unless the file containing the identity data is in a locked-
down part of the client storage.

• If you are using the Capability Server Utility (which is the test back-office server, capserverutil) for FlexNet
Embedded licensing, you need to specify the back-office identity data when starting the server.

Print Binary Utility
The print-binary utility printbin displays human-readable contents of binary files such as the following:

• FlexNet Embedded binary license file, capability request, capability response, or trial file created with
licensefileutil, caprequestutil, capresponseutil, or trialfileutil, respectively

• Request and response messages sent between the Updates and Insights client and the notification server

The print-binary utility also displays the contents of a binary identity file created with pubidutil, and optionally converts it
to C-compatible format for use in your compiled license-enabled and notification-enabled code.

Viewing Contents
To view the binary’s contents (mainly keys and their values), use the command:

printbin binaryFile.bin

To display all the contents of the binary file, use the -full switch.

Caution • When using the “-full” switch, be aware that some information displayed might be used internally by Revenera for
troubleshooting purposes and is subject to change between releases. Do not rely on this information for your own
troubleshooting or coding purposes.

Viewing Contents and Validating Signatures
To view contents of a binary file (including a FlexNet Embedded license file or Updates and Insights message file) and
validate any signatures contained in the file, use the command:

printbin -id IdentityBackOffice.bin binaryFile.bin

where IdentityBackOffice.bin is the producer identity file that you previously created with the Publisher Identity Utility
and used to sign and convert the binary file.

Displaying Binary-File Contents in Compiler-Readable Format
To display contents of a binary identity file, license file, or trial file in a format that can be used in C# code (typically as a
hard-coded array to be passed to FlexNet Embedded or Updates and Insights functions that require the binary data), use
the -cs switch (and optionally the -package switch, for the name of a .NET namespace):

printbin -cs IdentityClient.bin
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 141

Chapter 8 Utility Reference
Tools Shared by FlexNet Embedded and Updates and Insights
The resulting array will be directed to the console, or you can add the -o outputFile switch to save the output in a file. The
output for a client-identity file should look similar to the following:

/*
 PublisherIdentityVersion=0
 IdentityName=demo-med-rsa
 PublisherName=...
 ...
 SignatureType=RSA
 SignatureStrength=1
*/
static const unsigned char identity_data[] = {
 0x00, 0x00, 0x0f, 0x68, 0x00, 0x00, 0xa9, 0x2f, 0xff, 0xff,
 0xff, 0xff, 0x00, 0x00, 0x00, 0x0b, 0x00, 0x72, 0x00, 0x00,
 ...
 0xaa, 0x87, 0x8f, 0xc3, 0xf1, 0xf5, 0x3c, 0x63, 0x2f, 0x29,
 0x10, 0x4b, 0x0e, 0x60
};

You can then compile the client identity data in your FlexNet Embedded or Updates and Insights code.

You can use this technique if your version of FlexNet Operations does not directly export C#-compatible identity data. First,
download your binary client-identity data IdentityClient.bin, and then run printbin -cs IdentityClient.bin -o
IdentityClient.cs.

Converting License Data to Base 64 Format in FlexNet Embedded
For FlexNet Embedded functionality, the printbin utility can convert binary licensing data into a base-64 encoding, which
is useful in cases where a binary file cannot be conveyed to the end user of a client system, but where an encoded text
representation can be used. To display a binary license file in Base 64 format, for example, use the switch -base64:

printbin -base64 license.bin -o license64.txt

In order to query or acquire a Base 64 license, the license-enabled code must decode the base-64 data before passing it to
the FlexNet Embedded functionality.

Note • FlexNet Embedded uses the base-64 encoding used by MIME. The encoded data supports the letters A–Z and a–z,
numerals 0–9, and “+” and “/” characters. It also uses “=” as padding character, encodes lines with a maximum of 76
characters, and uses CRLF as line separator.

Additional printbin Switches
Additional switches to printbin include:

• -ident identifier: An array variable identifier other than IdentityData when using the -cs switch.

• -compact: Option that displays file contents in a compact format, which can be useful for large license files, for
example.

• -long: Option that displays contents in an expanded, multi-line format.

• -raw: Option that displays contents using internal property names instead of “friendly” names (-raw and -compact
cannot both be used).
142 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 8 Utility Reference
Tools Specific to FlexNet Embedded
Tools Specific to FlexNet Embedded
The following tools are available specifically to help you use FlexNet Embedded functionality:

• Identity Update Utility

• License Conversion Utility

• Trial File Utility

• Capability Server Utility

• Capability Request Utility

• Capability Response Utility

• Secure Profile Utility

• .NET XT Toolbox

Identity Update Utility
The FlexNet Embedded Identity Update utility sets up filtering and caching parameters for use during hostid detection on a
FlexNet Embedded client device. This configuration is injected into the binary containing the identity data for your FlexNet
Embedded client applications and is retrieved whenever a FlexNet Embedded client function, such as the getHostid API or
method, is called to detect available hostids on the client device. The configuration helps to reduce hostid retrieval time by
limiting the detection process to specific hostid types and (optionally) by caching retrieved hostids for future hostid-
detection calls.

This utility supports the configuration of client identities for applications that you create with the FlexNet Embedded C XT,
.NET XT, .NET Core XT, or Java XT SDK. It does not support the configuration of client identities for applications created
with the FlexNet Embedded C SDK; nor does it support the configuration of a FlexNet Embedded license server identity.

The following describes the Identity Update utility:

• Usage

• Device Hostid Types Used to Restrict Hostid Detection

• Example Identity Update

For more information about generating the identity binary for a FlexNet Embedded client application, see Publisher
Identity Utility.

Usage
Usage for the Identity Update utility is as follows:

identityupdateutil -help |
 [-restrict-device-id-detection type]
 [-enable-device-id-caching type]
 [-caching-duration seconds]
 input-identity-file output-identity-file
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 143

Chapter 8 Utility Reference
Tools Specific to FlexNet Embedded
The following is a description of the utility arguments:

• -restrict-device-id-detection type: The hostid type to which to restrict hostid detection on the client device.
Repeat this argument for each additional hostid type to which you want to restrict detection. See Device Hostid Types
Used to Restrict Hostid Detection for information about the hostid types you can specify.

• -enable-device-id-caching type: (Optional) The hostid type for those detected hostids that you want to cache for
future detection on the client device. (The hostid type must be specified for a -restrict-device-id-detection
argument in the current command.) Repeat this argument for each hostid type you want to specify for caching. See
Device Hostid Types Used to Restrict Hostid Detection for more information.

Note the following:

• To cache all detected hostids, use the all value.

• When caching any removable hostid such as a dongle or a removable Ethernet adapter, Revenera recommends
that you also specify a cache duration to avoid license leakage.

• If the -enable-device-id-caching argument is not included in the command, hostid caching is disabled.

• -caching-duration seconds: (Optional) The duration in seconds for which detected hostids are held in cache, after
which cache is reset. Specify this argument only if caching is enabled (that is, one or more -enable-device-id-
caching-type arguments are specified). Note the following:

• The duration value is applied to all cached hostids.

• The maximum value is 232 seconds (specified in decimal format only).

• If caching is enabled and this argument is set to 0 or omitted, the detected hostids remain cached until the
current process is exited.

• input-identity-file: The relative path and name of the binary file containing the client identity you are updating.

• output-identity-file: The relative path and name of the binary file to which you are outputting the updated client
identity. (The utility creates or overwrites this file as needed.)

Device Hostid Types Used to Restrict Hostid Detection
The -restrict-device-id-detection argument restricts the type the hostids that you want to retrieve during hostid
detection on the client device. The following table provides a brief description of the hostid-type values you can specify for
this restriction and discusses any special considerations for a given value. You can specify more than one hostid-type value
to enlarge the range of detected hostids.

Table 8-1 • Values for Hostid Types Used to Restrict Hostid Detection

Value for Hostid Type Restriction Detects...

mac Certain types of MAC (Ethernet) hostids. Hostid detection using this value is
generally faster than the detection process using mac_ecmc, which also detects
MAC hostids (as described next). However, the mac value might not detect certain
MAC hostids and therefore is not so reliable in ensuring MAC hostid retrieval.

If hostid detection fails with the mac value, use mac_ecmc instead. Alternatively, to
detect the greatest number of MAC hostid types, use mac and mac_ecmc in parallel.
144 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 8 Utility Reference
Tools Specific to FlexNet Embedded
Example Identity Update
The following is an example command for the Update Identity utility:

identityupdateutil -restrict-device-id-detection mac -restrict-device-id-detection ipv4 -enable-
device-id-caching mac -caching-duration 500 IdentityClient.bin IdentityClient_out.bin

The command will configure the FlexNet Embedded client to limit device hostid detection to MAC and IPv4 hostids only
and will cache all detected MAC hostids for 500 seconds. The utility is run against the client identity data in
IdentityClient.bin and the updated identity is output to IdentityClient_out.bin.

The following shows the contents of IdentityClient_out.bin when you run printbin (see Print Binary Utility). The client-
identity configuration information, represented as a 32-bit unsigned, encoded integer, is displayed for the
XtConfiguration property.

IdentityName=demo-med-rsa
PublisherName=demo
PublisherKey=9ddcd080
PublisherKey=99aa8309
PublisherKey=33995896
PublisherKey=86971320
PublisherKey=b165dcb

mac_ecmc Almost any type of MAC hostid. Hostid detection with this value might be slower
than a detection process that uses mac, but it is more reliable in ensuring the
retrieval of MAC hostids on the client machine.

If the detection process for this hostid type seems slow, consider caching the
detected hostids (that is, include the argument -enable-device-id-caching
mac_ecmc).

vmuuid The UUID of the virtual machine on which the client application is running.

If the virtual-machine detection is disabled on the client device (through the
appropriate FlexNet Embedded API or method available in your SDK), specifying
vmuuid for -restrict-device-id-detection will not retrieve a hostid.

flexid9
OR flexid10

The hostid of the Aladdin dongle or the Wibu-Systems dongle, respectively, on the
client device.

If restricting hostid detection with either of these hostid types, you are strongly
recommended not to enable the hostid type for caching.

ip4, ip6, OR ip_all The IP version 4, IP version 6, or all IP addresses, respectively, on the client device.

user User hostids (user IDs used to log on to the client device).

container_id The ID of the container in which the client application is running.

all Hostids for all hostid types valid for retrieval.

Table 8-1 • Values for Hostid Types Used to Restrict Hostid Detection

Value for Hostid Type Restriction Detects...
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 145

Chapter 8 Utility Reference
Tools Specific to FlexNet Embedded
SignatureType=RSA
SignatureStrength=1
XtConfiguration=0002000501010002f403

License Conversion Utility
The FlexNet Embedded license conversion utility licensefileutil converts a human-readable, text-based, unsigned
license file into the FlexNet Embedded binary format. This binary format is commonly used when pre-loading license rights
on a client.

Before converting any license files, you must create a producer back-office identity file that specifies how the converted
license file will be signed, using the Publisher Identity Utility.

The tool syntax is:

licensefileutil -id id-file text-license binary-license

The arguments include:

• -id id-file: Name of the file containing your producer back-office identity, required to digitally sign license

• text-license: Name of the unsigned license text file containing one or more feature definitions

• binary-license: Name of the signed binary license file to create

For example, create a text license file (called unsignedInput.lic, for example) using the feature-definition syntax
described in Feature Definitions.

INCREMENT survey demo 1.0 permanent uncounted HOSTID=ID_STRING=1234567890
INCREMENT lowres demo 1.0 1-jan-2025 uncounted HOSTID=ID_STRING=1234567890

Next, run licensefileutil to generate a binary version of the license file:

licensefileutil -id IdentityBackOffice.bin unsignedInput.lic signedLicenseOutput.bin

Copy the binary output file—signedLicenseOutput.bin, in this example—to the client system. Now you can run license-
enabled code that acquires the license rights, such as the Client example program. The diagnostic View example also
prints a summary of feature information contained in a binary license file.

You can also use licensefileutil to sign a license file to be served by a license server; that is, a license file containing a
SERVER line along with one or more INCREMENT lines containing count values.

Trial File Utility
The FlexNet Embedded trial file utility trialfileutil enables you to generate signed binary trial license rights, which can
then be processed by license-enabled code such as the Trials example. Such trial license rights can be loaded on a client to
enable a customer to test product functionality for a limited duration. Trial license rights can also be loaded to act as an
emergency license.

Its usage is:

trialfileutil -id id-file -product product-id [-expiration date] [-duration seconds]
 [-trial trial-id] [-once | -always] lic-file binary-file
146 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 8 Utility Reference
Tools Specific to FlexNet Embedded
The arguments include:

• -id id-file: Name of the file containing your producer back-office identity, required to digitally sign the trial rights

• -product product-id: Product ID for the trial

• -expiration date: Optional expiration date for the trial, in dd-mmm-yyyy format (e.g., 1-jan-2020), or “permanent”
(the default)

• -duration seconds: Trial duration in seconds, rounded up to the nearest day (default is 1 day; each day is 86,400
seconds)

• -trial trial-id: Unique numeric trial ID for the trial (defaults to 1; valid values are integers from 1 through 65535)

• -once: Option indicating that the trial can be loaded only once on a client system; default unless -always is specified

• -always: Option indicating that the trial can always be loaded on a client system (rarely used)

• lic-file: The text-formatted license file listing features included in trial

• binary-file: Name of the binary trial file to create

For example, create a text license file—naming it unsignedInput.lic, for example—using the feature-definition syntax
described in Feature Definitions.

INCREMENT survey demo 1.0 permanent uncounted
INCREMENT highres demo 1.0 permanent uncounted

For a trial, the feature need not include a HOSTID value. Similarly, the trial’s expiration, whether based on duration or
explicit expiration date, overrides the expiration date of all features in the unsigned text license; and the trial’s activation
date overrides any start date (START keyword value) specified for a feature.

Next, run trialfileutil to generate a binary version of the trial:

trialfileutil -id IdentityBackOffice.bin -product SampleApp -trial 1 -duration 86400
unsignedInput.lic signedTrialOutput.bin

Copy the binary output file—signedTrialOutput.bin, in this example—to the client system. You can now run license-
enabled code that processes and acquires the trial license rights, such as the Trials example program. The example
command uses the default trial duration of one day from the time the trial rights are processed.

Capability Server Utility
The Capability Server utility is used to test and debug the online capability exchange functionality of a FlexNet Embedded
client application. The utility functions as a simple back-office server that receives HTTP POST capability requests from
clients—FlexNet Embedded license-enabled code or local license servers—and then generates and returns capability
responses. The utility also accepts synchronization messages from license servers (but generates no client records).

Caution • The Capability Server utility is provided for testing purposes only; it is not intended for use in a production
environment.

Refer to the following for more information about using the Capability Server utility:

• Considerations for Using the Utility

• Usage
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 147

Chapter 8 Utility Reference
Tools Specific to FlexNet Embedded
• Starting and Stopping the Capability Server Utility

• About License Templates

• Endpoint for Sending Capability Requests to the Utility

Considerations for Using the Utility
The Capability Server utility operates as a simple back-office server. Before using this utility, consider the following:

• No license accounting—The utility performs no accounting of license rights. That is, it does not limit the number of
licenses issued. If a client requests 100 copies of particular license right (that is, license template), the utility activates
100 copies. If another client requests 100 copies of the same license right, the utility activates another 100 copies. It
never responds with an “insufficient count” message.

• No CLS support—The utility supports the FlexNet Embedded client application and the FlexNet Embedded local
license server, but not the Cloud Licensing Service (CLS) license server, as clients.

• No client records generated—The utility does not create or manage client records during synchronization from a
license server.

• Console mode only—The utility runs only in console mode, not as a daemon or service.

• Other limitations—It does not support HTTPS, synchronization recovery, or license-server failover.

• Response lifetime—The lifetime of a capability response generated by the Capability Server utility is 1 minute.

Usage
The following shows the usage for the Capability Server utility:

 capserverutil -help | -id id-file -template template-dir [-port port] [-v]

Arguments include the following:

• -id id-file: The binary file containing the back-office identity, required to digitally sign the capability response.

• -template template-dir: The directory containing license templates that the utility uses to store and manage
license rights. A sample templates directory is provided in the bin\tools directory where the utility resides, but you
can specify your own location (making sure that you include the appropriate path). See About License Templates for
more information.

• -port port: The port on which the utility listens. If no port is specified, 8080 is used.

• -v: The flag to provide more detail in the utility output.

Starting and Stopping the Capability Server Utility
To start the Capability Server utility, enter the capserverutil command similar to this (which, in this case, assumes the
default port 8080 and specifies the detailed format for output):

capserverutil -id IdentityBackOffice.bin -template templates -v

To stop the utility, press Enter.
148 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 8 Utility Reference
Tools Specific to FlexNet Embedded
About License Templates
The utility uses license templates as means of organizing license rights to simulate a real back-office server system. Each
template, identified by either a client device hostid (device_hostid.lic) or a rights ID (rightsID.lic), stores a set of
licenses. You can create your own license templates or use the sample license templates found in the
bin\tools\templates directory. These two sample templates, 1234567890.lic and li1.lic, work easily with the example
applications and test tools (included in the SDK) that use a back-office server, but you can use the samples for your own
tests.

The following sections provide more information about how the Capability Server utility uses the templates to activate
license rights:

• Use of License Templates to Generate Responses

• Examples

• Creating a License Template

Use of License Templates to Generate Responses
When license-enabled client code sends a capability request to the Capability Server utility, the utility follows this general
process to generate a capability response.

It first searches for a license template with a name that matches the hostid of the device sending the request. If a match
exists, the utility returns a capability response with the licenses found in that license template, but ignores any rights ID
sent in the request.

However, if no license template matches the device hostid sending the capability request, the utility then searches for a
license template with a name that matches a rights ID sent in the request. If a match exists, the utility returns a capability
response with the licenses found in the license template.

Examples
The examples described next use the sample license templates, located in the bin\tools\templates directory, to illustrate
how the Capability Server utility activates license rights. Consider the contents of these sample license templates:

• The 1234567890.lic template contains the following licenses:

INCREMENT survey 1.0 permanent 1
INCREMENT highres 1.0 permanent 1

• The li1.lic template contains these licenses:

INCREMENT f1 1.0 permanent 5
INCREMENT f2 1.0 permanent 10

Keep in mind that the client in the following examples can be either FlexNet Embedded license-enabled code or a FlexNet
Embedded license server.

Example 1: Activate all rights mapped to a client device

Suppose the client on device hostid “1234567890” sends a capability request without a rights ID. To simulate the search for
all license rights mapped to the device hostid, the Capability Server utility looks for a license template with a name
matching the hostid. When it locates license template 1234567890.lic, it sends a capability response containing a copy of
the rights in that template (that is, 1 count of survey and 1 count of highres).
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 149

Chapter 8 Utility Reference
Tools Specific to FlexNet Embedded
A rights ID sent in the same capability request would be ignored in this case.

Example 2: Activate a a specific rights ID

Suppose the client on device hostid “1111” sends a capability request for 2 copies of the rights ID li1. To simulate the
search for a specified rights ID, the utility first looks for a license template with a name matching the device hostid (“1111”).
Finding no matching template, it locates the license template (li1.lic) matching the rights ID and sends a capability
response containing 2 copies of all rights in that template—that is, 10 counts of f1 (2 times the initial 5 counts) and 20
counts of f2 (2 times the initial 10 counts).

Creating a License Template
To create a license template, you can use one of the sample license templates as a basis. In a text editor, set up an
INCREMENT line for each feature, providing the feature’s name, version, expiration, and count, and defining any additional
attributes as needed (see Feature Attributes to Consider Adding). The following shows sample contents for a license
template. The same content format is used whether you are defining license rights for a FlexNet Embedded client or a
license server.

INCREMENT f1 1.0 permanent 6
INCREMENT f2 1.0 permanent 10 VENDOR_STRING=“global”
INCREMENT f3 1.0 1-jan-2025 5
INCREMENT m4 1.0 permanent 15 METERED UNDO_INTERVAL=120

Save the file, using a device hostid or a rights ID for the file name and adding the .lic extension. The utility does not
discern the hostid type; it simply processes it as a string.

Keep in mind that, when a license template containing both non-metered and metered features is used to satisfy a
capability request from a license server, both the metered and the non-metered features are activated on the server. If the
same template is used to satisfy a request from a FlexNet Embedded client application, only the non-metered features are
activated on the client (since the client can obtain metered features only through a license server).

Feature Attributes to Consider Adding

The following lists some feature attributes you might want to add for a given feature. (This is not an exhaustive list, just a
list of suggestions. For more information about attributes, see Feature Definitions in the Toolkit Overview chapter.)

• START (if not explicitly identified, the start date is set by the Capability Server utility to one day prior to the date of
issue)

• ISSUED

• VENDOR_STRING

• SN

• ISSUER

• METERED (metered feature only)

• REUSABLE (metered feature only)

• UNDO_INTERVAL (metered feature only, incompatible with REUSABLE)

To keep the license template generic for testing purposes, best practice is to not add the vendor (producer) name, such as
demo, as feature attribute.
150 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 8 Utility Reference
Tools Specific to FlexNet Embedded
Endpoint for Sending Capability Requests to the Utility
Use the following endpoint when sending a capability request to the Capability Server utility:

http://capserverutil_IP_address:capserverutil_port/request

The endpoint includes the following components:

• capserverutil_IP_address—The IP address on which the Capability Server utility is running; or, if it is running on your
local machine, the value localhost.

• caperservertutil_port—The port on which the utility listens (by default, 8080).

The following is an example endpoint:

http://localhost:8080/request

Capability Request Utility
The FlexNet Embedded capability request utility caprequestutil enables you to manually generate a capability request
and save it as a file or send it to a back-office server. Its common usage is as follows:

caprequestutil [-idtype idtype] -host host_id
[-id pubidfile | -publisher name identity identity-name] [-name machine-name]
[-type host-type] [-server | -client] [-serverInstance instance-number]
[-attr key1 val1 ...] [-machine machine-type] [-vmname name]
[-vmattr key value] [-selector key value] [-force] [-incremental]
[-timestamp seconds | -response file | storage file | storageDir dir]
[-activation activation-id [copies]...] [-feature name version [count]...]
[-requestor requestor-id] [-acquisition acquisition-id] [-enterprise enterprise-id]
[-correlation correlation-id] [-bindingBreakType binding-break-type]
[-bindingGracePeriodEnd binding-grace-period-end] [-operation op-type] binary_file|server_url
[response_file]

This utility is intended for quick testing involving capability requests. It is implemented using Java, and therefore does not
make use of the callouts or other information used in “native” FlexNet Embedded code, but instead uses a text file as a
substitute for trusted storage.

The following are commonly used arguments and switches. (For a complete list of arguments to the capability request
utility, run caprequestutil with the -help switch. Some switches are used only for infrequently encountered scenarios.)

• [-id pubidfile | -publisher name identity identity-name]: The binary producer client identity file (normally
called IdentityClient.bin), created using pubidutil; or the producer and identity name used to create the identity.

• -host host_id: The client hostid or transaction ID to use.

To specify one or more secondary hostids, repeat this argument for each additional hostid. The first hostid used with
this option will be considered the main hostid. Each subsequent hostid is considered secondary. When license
reservations are used, only the main hostid and the first secondary hostid are used in the reservation search. (For
more information, see in the Secondary Hostids section of the Using FlexNet Embedded APIs chapter.)

• -idtype type: The hostid type, one of any, ethernet, flexid9, flexid10, internet (for IPv4), internet6 (for IPv6),
string (the default), vmuuid, or container_id. (Some of these types are supported by certain license server versions
only.) When specifying multiple hostids (see the previous -host description), you can repeat this argument to specify a
different hostid type for a given hostid.

• -server | -client: Flag to identify the request as coming from a license server or client (for testing).
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 151

Chapter 8 Utility Reference
Tools Specific to FlexNet Embedded
• -serverInstance instance-number: (For use in a multiple-source regenerative licensing environment) The number
identifying the target license-server instance (for example, 5 for server instance 5) to which the capability request is
being sent. This ID is optional in the capability request. When echoed back in the capability response, it is used to
verify the location in client trusted storage where the requested licenses are to be stored. For more information, see
Advanced Topic: Multiple-Source Regenerative Licensing in the Using the FlexNet Embedded APIs chapter.

• -name name and -type type: Optional host name (alias) and type, used in some logging and back-office-server
scenarios.

• -machine: One of physical, virtual, or unknown (the default). If set to virtual, the -vmname and -vmattr switches
populate the virtual-machine name and dictionary attributes.

• -timestamp seconds: Time stamp of the message; if unset, uses system time in seconds since midnight (UTC),
1 January 1970.

• -storage file: A text-formatted .properties file—used in place of trusted storage—containing the time stamp to
use in the message (value 1 is used if the file does not contain a time stamp or does not exist); the contents of the file
are updated with a new time stamp if a valid response is received.

• -storageDir dir: The directory where .properties files are placed. The directory is created if it does not already
exist. The names generated for the .properties files are based on the producer name, hostid and hostid type, and
whether the host sending the request is a server or a client.

• -response file: An existing capability response file containing the timestamp to be used in the message.

• -activate activation_id [copies] [partial]...: One or more activation IDs (also called rights IDs) to add to the
request meant for a back-office server such as FlexNet Operations; each activation ID can specify an optional “number
of copies” count (count is 1 if omitted).

The optional partial attribute tells the back-office server to send however many copies are available for that
activation ID should the available copy count in the back office fall short of the requested count. (Without the “partial”
attribute, the back-office server does not include the features for the activation ID in the capability response if it
cannot satisfy the requested copy count for that ID.) See Attribute to Obtain All Available Copies for a Rights ID If
Requested Count Cannot Be Satisfied in the Using the FlexNet Embedded APIs chapter for details.

• -feature name version [count] [partial]...: One or more desired features to add to the request (meant for a
local FlexNet Embedded server); count is 1 if omitted.

The optional partial attribute tells the license server to send whatever count is available for that feature should the
available count for the feature on the server fall short of the requested count. (Without the “partial” attribute, the
server does not include the requested feature in the capability response if it cannot satisfy the requested count for the
feature.) See Attribute to Check Out All Available Quantity for a Feature If Requested Count Cannot Be Satisfied in the
Using the FlexNet Embedded APIs chapter for details.

• -attr key1 val1 ...: One or more key–value pairs for the request vendor dictionary.

• -selector key value: A key-value pair (called a “feature selector”) sent in the request to filter the requested features
on the license server. You can specify this option multiple times, one for each “feature selector”. The value must be a
string, not an integer. See Feature Selectors in a Capability Request in the Using the FlexNet Embedded APIs chapter
for details.

• -force: The “force response” flag, which indicates that a server response is required even if license rights on the client
have not changed since the last response was processed.
152 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 8 Utility Reference
Tools Specific to FlexNet Embedded
• -incremental: Flag to mark the request as “incremental” so that available non-expired licenses currently served to
the client are automatically sent in the response along with the available desired features from the license server. See
Incremental Capability Requests in the Using the FlexNet Embedded APIs chapter for details.

• -requestor requestor-id, -acquisition acquisition-id, -enterprise enterprise-id,
-correlation correlation-id: Optional IDs in the capability request:

• The requestor ID is used to associate the client device with a “device user”.

• The acquisition ID identifies the resource that was acquired.

• The enterprise ID identifies the end-user account on behalf of the acquisition performed.

• The correlation ID, generated and sent in the response by the license server for a client “request” operation, is
used in “undo” operations in a usage-capture scenarios to specify which “request” operation to recall.

 For more details about these IDs, refer to the Using the FlexNet Embedded APIs chapter.

• -bindingBreakType binding-break-type: The type of binding break (SOFT or HARD) that is currently in effect for the
license server.

• A soft break indicates that a binding break is detected on the license server, but the server can continue to serve
licenses. (If the -bindingGracePeriodEnd option is included in the request, the soft break changes to a hard
break when the grace period expires.)

• A hard break indicates that a binding break is detected, and the server can no longer serve licenses.

This information is sent in capability requests from the license server to the back office. The back office can then
choose to send a “reset binding flag” in the capability response to repair the break (see Capability Response Utility).
For more information about the binding-break detection (with a grace period) feature, see the “Advanced License
Server Features” chapter in the FlexNet Embedded License Server Producer Guide.

• -bindingGracePeriodEnd binding-grace-period-end: The timestamp indicating when the grace period for a
binding break on the license server expires. When this option is included, the SOFT status changes to a HARD status
when the grace period expires. For more information about the binding-break detection (with a grace period) feature,
see the “Advanced License Server Features” chapter in the FlexNet Embedded License Server Producer Guide.

• -operation op-type: The operation of a capability request. The back-office server supports only the “request”
operation (and for only concurrent features). The FlexNet Embedded license server supports all operations.

• request—Request that concurrent features be included in the response or that usage for capped metered
features be sent. (This is the default if no operation is specified.)

• report—Report usage of metered features.

• undo—Undo usage previously sent for the given correlation ID

• preview—View available feature counts without deprecating counts on the license server or processing features
into client trusted storage. Use this operation with either the -feature or -requestAll option (but not both) to
specify features to preview. The operation is not compatible with the -incremental, -feature...partial, and -
correlation options. For more information, see Capability Preview in the Using the FlexNet Embedded APIs
chapter.

• binary_file: File name for the binary request output.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 153

Chapter 8 Utility Reference
Tools Specific to FlexNet Embedded
• server_url: URL of the back-office server or FlexNet Embedded license server. The request will be sent directly to this
URL using HTTP POST—as opposed to using an intermediate file—and caprequestutil will parse and print the
response received.

• For FlexNet Operations, a typical value is http://hostname:8888/flexnet/deviceservices (with modifications
to match your FlexNet Operations installation).

• For the Capability Server Utility (the test back-office server capserverutil), provide the value http://
localhost:8080/request.

• For a local license server, a typical value is http://hostname:7070/request.

• For a CLS license server, a typical value is the following:
https://siteID-uat.compliance.flexnetoperations.com/instances/instId/request.

• response_file: Name of file in which to save the binary response received.

Capability Response Utility
The FlexNet Embedded capability response utility capresponseutil enables you to manually generate a capability
response without using a back-office server. Its common usage is as follows:

capresponseutil -id pubidfile -host host_id [-idtype type] [-timestamp seconds]
[-timestamp-milliseconds milliseconds] [-lifetime seconds] [-attr key1 val1...]
[-status code detail] [-machine machine-type] [-vmname name] [-vmattr key value]
[-clone] [-server server-id] [-serverIdType type] [-resetBinding]
[-feature name version [count] [maxCount]...] [-serverInstance instance-number]
[-preview] text_license binary_response

The following describes commonly used arguments and switches. (For a complete list of arguments to the capability
response utility, run capresponseutil with the -help switch. Some switches are used only for infrequently encountered
scenarios.)

• -id pubidfile: Name of the producer’s back-office identity binary file, created using pubidutil.

• -host host_id: Client host ID to be used.

• -idtype type: The hostid type, one of any, ethernet, internet (for IPv4), internet6 (for IPv6), flexid9, flexid10,
string (the default), vmuuid, publisher_defined (for a producer-defined hostid), or container_id. If using a
producer-defined hostid, include PUBLISHER_DEFINED=hostid_value in the text license file specified in the command.

Note • Some of these types are supported only by the specific version of the license server.

• -timestamp seconds: The timestamp (with second granularity) to use in the capability response. The current system
time is used if this option is omitted. To provide a timestamp other than the current system time, do one of the
following:

• For a timestamp without a clock time, enter a value in the format m/d/y, such as 02/22/2017. (The system
generates the clock time as 12:00:00 AM.)

• For a timestamp that includes a clock time, provide the total number seconds from Unix epoch (00:00:00 January
1, 1970 UTC). For example, the value 1485820908 represents January 31, 2017 00:01:48 GMT.
154 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 8 Utility Reference
Tools Specific to FlexNet Embedded
A given FlexNet Embedded client application uses the timestamp to determine whether the capability response is in
proper sequence—that is, has a timestamp later than the previous response’s timestamp stored in client trusted
storage. A response with a timestamp earlier than or equal to the timestamp in trusted storage is rejected as stale.
However, you can use this -timestamp option in conjunction with the -timestamp-milliseconds option (described
next) to avoid stale responses that occur when timestamps sent to the given client application are rounded off to the
same second.

• -timestamp-milliseconds milliseconds: A millisecond value between (and including) 0 and 999 that adds a
millisecond precision to the timestamp indicated by the -timestamp value. This precision allows multiple capability
exchanges to occur within a second between the local license server and a given FlexNet Embedded client application.
If the -timestamp-milliseconds option is used without the -timestamp option, the response uses the system time
including the milliseconds. (If you omit the -timestamp-milliseconds value when a
-timestamp value exists, the response time is rounded to whole seconds.)

If either the local license server or the client application does not support the millisecond-precision feature, the client
application continues to use only the -timestamp value (or system time) to process responses.

• -lifetime seconds: Lifetime of the response, in seconds (defaults to one day), after which the response is considered
“stale” and cannot be processed by the client; a lifetime value of zero indicates a response that will never expire.

• -attr key1 val1 ...: One or more key–value pairs for vendor dictionary.

• -status code detail: A status code and its associated value or detail to include in the capability response. You can
repeat this option multiple times.

An example use of this option is to alert a FlexNet Embedded client of a binding break on the license server. You would
supply one of these arguments:

• -status SERVER_BINDING_BREAK_DETECTED soft (soft break)

• -status SERVER_BINDING_BREAK_DETECTED hard (hard break)

• -status SERVER_BINDING_BREAK_DETECTED interval (break with grace period in effect, specified by interval
shown in s, w, or d units, as in 1d for 1 day)

• -status SERVER_BINDING_GRACE_PERIOD_EXPIRED 0 (grace period expired)

For more information about the binding-break detection (with a grace period) feature, see the “Advanced License
Server Features” chapter in the FlexNet Embedded License Server Producer Guide.

• -machine: One of physical, virtual, or unknown (the default), indicating the type of machine intended to process the
response. If set to virtual, the -vmname and -vmattr switches populate the virtual-machine name and dictionary
attributes.

• -clone: Designation that the client is a clone suspect.

• -server server-id: The hostid of the license server serving the licenses. If not specified, the response is generated as
if it is from the back office.

• -serverIdType: The hostid type for the license server if it is other than “string” (which is the default.)

• -resetBinding: The flag sent in a capability response from the back office to the license server, enabling the license
server to repair its broken binding so that it can continue to serve licenses. For more information about the binding-
break detection (with a grace period) feature, see the “Advanced License Server Features” chapter in the FlexNet
Embedded License Server Producer Guide.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 155

Chapter 8 Utility Reference
Tools Specific to FlexNet Embedded
• -preview: The flag sent in a capability response from the license server (identified by the -server and -serveridtype
options) indicating that the response is in “preview” mode and therefore is not be processed into trusted storage on
the client. Use the text_license file (and the -feature option if needed) to specify features to preview. For more
information about the capability preview feature, see Capability Preview in the Using the FlexNet Embedded APIs
chapter.

• -feature name version [count] [maxCount]...: A feature listed in the text_license file that you want to include
explicitly in the capability response (instead of using all features in the text_license file). You can repeat this option
for multiple features; only features listed with this option are included in the capability response. You can override the
current counts for a feature specified with this option. If counts are omitted, count defaults to 1, and maxCount
defaults to 0. This option is used only when a license server (identified by the -server and -serveridtype options) is
serving the features.

• -serverInstance instance-number: (For use in a multiple-source regenerative licensing environment) The number of
the target license-server instance being echoed back from the capability request (see the previous section Capability
Request Utility). This ID is used to verify the location in client trusted storage where the requested licenses are to be
stored. For more information, see Advanced Topic: Multiple-Source Regenerative Licensing in the Using the FlexNet
Embedded APIs chapter.

• text_license: Name of the unsigned-license text file used as input. If you want the capability response to include only
specific features defined in this file (instead of using all features in the file), also use the -feature option to identify
these features.

• binary_response: Name of signed binary response file to create as output.

After generating a capability response, the binary capability response file created with capresponseutil should be
conveyed to the client system and then processed using code similar to that in the CapabilityRequest example included
with the FlexNet Embedded functionality. Once the response has been processed, the license rights described in the
response are written to trusted storage or a buffer and are available for acquisition.

Secure Profile Utility
The FlexNet Embedded profile utility secureprofileutil configures existing client-identity binary data to enable a greater
level of anchor security than what is normally provided for trusted storage on machines running your license-enabled
applications. (See Advanced Topic: Secure Anchoring for more information.) Before using this utility, you must obtain the
file containing your producer client-identity binary data (for example, identityClient.bin) from FlexNet Operations or by
running the Publisher Identity Utility.

Viewing Available Security Profiles
The secureprofileutil utility embeds a secure-anchoring configuration into the identity data, enabling a certain level of
anchor security. The configuration is defined by a security profile, which you specify when you run the utility. (Currently,
FlexNet Embedded has only one security profile available, called xt-medium, which implements medium-level secure
anchoring.)

To display the list of available security profiles, use the following command:

secureprofileutil -profilelist
156 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 8 Utility Reference
Tools Specific to FlexNet Embedded
Enabling Secure Anchoring
Once you have determined which security profile to use, run secureprofileutil against your producer client-identity data
with a specific security profile designated. The following shows the command syntax:

secureprofileutil -profile profilename input_clientidentityfile.bin output_clientidentityfile.bin

The arguments include:

• -profile profilename: Name of the security profile used to implement secure anchoring. (Currently, only the xt-
medium security profile is available.)

• input_clientIdentityFile.bin: Name of the file containing the client-identity binary data obtained from FlexNet
Operations or generated using pubidutil.

• output_clientIdentityFile.bin: Name you want to give the output file containing client-identity binary data
configured for secure anchoring.

Once you have configured the client-identity binary file for secure anchoring, run the Print Binary Utility on the data to
format it for compatibility with your license-enabled code. (To ensure that secure anchoring is enabled, check the
printbin output; it will include an AnchorConfiguration element if secure anchoring is enabled.)

.NET XT Toolbox
The .NET XT Toolbox is a pre-built executable with which you can explore various licensing processes and scenarios. To run
the .NET Toolbox, launch bin\demo\toolbox\DotNetDemo.exe.

Preparing the .NET XT Toolbox
Before testing any licensing scenarios, you must prepare the .NET XT Toolbox by providing client-identity data and
specifying the hostid to use for license acquisition. After launching the executable, click the browse button next to the
Identity File field and browse for your IdentityClient.bin file. You might have created this file with the Publisher
Identity Utility, or used FlexNet Operations On Demand, FlexNet Operations, or another back-office server.

You can also specify a location where the .NET XT Toolbox’s trusted storage files will be written. The default behavior is to
use the same directory as the .NET XT Toolbox executable. (This enables multiple instances of the .NET XT Toolbox on the
same system to keep their settings and license rights separate. To run the .NET XT Toolbox from a different directory, copy
DotNetDemo.exe, FlxDotNetClient.dll, and FlxCore.dll to the new directory.)

When finished, click Set.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 157

Chapter 8 Utility Reference
Tools Specific to FlexNet Embedded
Figure 8-2: Specifying Client-Identity Data

Note • As previously described, for security reasons an application intended for use in a customer environment should not
read the identity data in “IdentityClient.bin” at run time, but should instead compile the identity data from “IdentityClient.cs”.

Next, specify the hostid that the .NET XT Toolbox should use for identifying itself in server communications and during
license acquisition. The default is to use the string hostid 1234567890, as used in the other toolkit examples, but you can
change this to a different type if desired. If VM Detection Enabled is selected (default), the environment (virtual or
physical) in which the client is running in is taken into account for applicable licensing operations. When finished, click Set.
158 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 8 Utility Reference
Tools Specific to FlexNet Embedded
Figure 8-3: Specifying the Client Hostid Type and Value

If desired, you can also change the Host Type and Host Name values, which are included in server communications. To
continue, you can click the Continue button at the bottom of the window, or select one of the tabs labeled License Source
Collection, Server Requests, or Acquire/Return.

To avoid having to re-enter these settings on a subsequent launch of the .NET XT Toolbox, you can save a collection of
settings into an XML file by clicking the Save As button at the top of the window and entering the file name and a name for
the collection of settings. You can later open this configuration using the Open button.

Working with License Sources
The License Source Collection tab is where you define the types of license sources the .NET XT Toolbox will work with—
any combination of buffer licenses, trusted storage, and trials—and displays the features found in the collection of sources.

For example, if you click the browse button next to the File field at the bottom of the window, browse for a binary
capability response, and click Load File, the License Source Collection tab will appear similar to the following.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 159

Chapter 8 Utility Reference
Tools Specific to FlexNet Embedded
Figure 8-4: Contents of a License Source Collection

The All Features tab shows the features found in all the license sources, and the tab for each individual source shows
features specific to that source. Browsing for and loading a binary trial file will add a tab for the trials license source, and
add the trial’s features to the All Features tab.

The information shown for a given feature on any of these tabs includes the feature’s version, count, and expiration date
and any vendor string defined. The Type column identifies the feature as either concurrent (C), metered (M), metered
reusable (MR), or metered undoable (MU). (Metered features are found in trusted-storage license sources only.)

Move your mouse over a feature to display a tooltip containing this same information, along with other information
defined for the feature, such as the feature’s issued and start dates or its “undo interval”. To view a complete list of details
for the feature, double-click its entry to open the Feature Properties window. Additional details in the window might
include (depending on the feature’s type and definition) the current number of available licenses, the amount of “undo
interval” time remaining, and other helpful information.

You can reset individual license sources by clicking the appropriate Reset button, or reset all of them by clicking Clear
Collection.
160 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 8 Utility Reference
Tools Specific to FlexNet Embedded
Server Communications
The Server Requests tab enables you to perform direct or offline communication with a back-office server (either FlexNet
Operations or a test back-office server, the latter being used in combination with the Capability Server Utility) or a license
server.

In the Server Information section, enter the location of the server host. Changing the server type in the Type list changes
the URL and HTTPS fields to typical default values for the selected server type, and you can override a setting—such as a
custom port number—by typing in the appropriate value. Click Advanced if you want to configure a proxy server and
provide custom HTTP headers.

Figure 8-5: Preparing Communications with a Server

In the middle of the Server Requests tab, you can specify settings for various flags and behavior related to the capability
request that the .NET XT Toolbox sends to the server, such as whether to set the force-response flag or process the
response sent from the server.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 161

Chapter 8 Utility Reference
Tools Specific to FlexNet Embedded
Information in the bottom section of the Server Requests tab is enabled depending on the server type. For a back-office
server (as pictured), you can optionally specify various IDs, including one or more rights ID values, to send in the request,
along with any vendor dictionary items to include. For a license server (not pictured), you can specify “desired features”
(but no rights IDs) and other options in the request.

When you have the desired settings, click Send at the bottom of the window to communicate directly with the specified
server, or click Save to save the capability request message as a file.

If the communication is successful, the response details are available in the Response tab. (You can use the Response File
field to save the response for later processing or examination.) The Response Details button in the Response tab displays
further information about the server’s response.

Figure 8-6: Viewing Features Contained in a Server Response

If you specified to process the server’s response, the valid features loaded by the response will also be displayed on the
License Source Collection tab (if Add Trusted Storage is selected).
162 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter 8 Utility Reference
Tools Specific to FlexNet Embedded
License Acquisition
In the Acquire/Return tab, you can attempt to acquire licenses from the license source collection. The Feature list
contains an entry that you can select for each feature in the license source collection, or you can enter a different name.
You also specify the version and count of the feature you want to acquire.

When you have entered the characteristics of the feature you want to acquire, click Acquire. If the acquisition attempt
succeeds, feature information is displayed in the Acquired Licenses table.

Figure 8-7: Acquiring a License from the License Source Collection

Click Return Selected or Return All (not pictured) to return licenses that you have acquired.

If an attempt to acquire a license fails, an icon is displayed next to the Acquire button, with a tooltip explaining the reason
for the failure. The error message is also displayed in the status area at the bottom of the Acquire/Return window.

Figure 8-8: Error Message for a Failed Acquisition Attempt
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 163

Chapter 8 Utility Reference
Tools Specific to FlexNet Embedded
164 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

A

Manifest File Contents for a Product

Update
The Updates and Insights notification server generates a manifest file as a means to download the one or more files needed
to install a single product update successfully. The manifest file contains the list of files (along with other relevant
information such as file locations) that are downloaded and, if necessary, executed to complete the update installation.

The Update and Insights client differentiates a manifest file from other types of notification items by its content type value
of 11.

The following describes a manifest file:

• Manifest File Format

• Manifest File Setup Rules

• Manifest File Processing Rules

Manifest File Format
A manifest file is a text file consisting of a header, followed by set of lines, each line an entry describing a file to download.
The file can also include comment lines that are denoted a semicolon (;) or a # as the first character in the line. The text file
is saved with a .mfdl extension.

The following shows the contents of a sample manifest file:

1.0
#Example of executable file where md5 hash is verified
https://download-uat.flexnetoperations.com/439215/ci_1000/947/7016947/
InstallThis.exe;10752;md5;b15120271715c4e97ca6b7f7f64fd94c;yes
#Example of non-executable file where md5 hash is verified
https://download-uat.flexnetoperations.com/439215/ci_1000/407/7016407/
success.jpg;49578;md5;70f92964866f86002f35a1956134d904;no
#Example of executable file where no hash is verified
https://download-uat.flexnetoperations.com/439215/ci_1000/407/7016427/
RunConfigUtil.exe;8192;;;yes;run_all
#Example of non-executable file where no hash is verified
https://download-uat.flexnetoperations.com/439215/ci_1000/407/7016400/config.txt;8192;;;;
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 165

Chapter A Manifest File Contents for a Product Update
Manifest File Format
Header Line
The first line in the manifest file must be the header line, which lists the format version of the manifest file. (Contact
Revenera for the available manifest-file format versions.) This line is required and must be the first line in the file, separate
from the other lines. For example, the following is the header line for the 1.0 format version:

1.0

File Entries
The header line is followed by one or more lines, or manifest entries. Each entry consists of a set of fields that describe a
single file to be downloaded. The following shows the general format of an entry:

Filename;FileSize;HashCryptoType;HashValue;Execute;ExecuteCmdLine

The fields used in an entry are described in the following table. Only the Filename and FileSize are required fields.

Table A-1 • Fields for Each Entry in the Manifest File

Field Description

URL from which to
download file

The URL for the file to be downloaded. This value must be either:

• The explicit URL for the file. Supported URL types include http://, https://, ftp://,
and ftps://.

• The file and its path relative to a location determined by the producer or Revenera.

FileSize File size in bytes.

HashCryptoType (Optional) Cryptographic hash type. This value is either sha1 or md5. If no value is provided,
the default value md5 is used. See the following HashValue description for more
information.

HashValue (Required if a HashCryptoType value is provided) The MD5 or SHA1 hash in hexadecimal
notation.

This value is used to verify the file’s integrity. The Updates and Insights client uses the
general FlxCrypto library (located in install_dir\lib) with which your application is
built to run a hash algorithm on the file downloaded for this entry. The resulting hash value
is compared to the value specified here to verify the file’s integrity.

Execute (Optional) The yes value to indicate that the file is to be executed. By default, the file is not
executed, so entering the value no is not necessary.

ExecuteCmdLine (Optional) Execution command line options for this manifest entry. These take effect only if
the execution field is set to yes.
166 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Chapter A Manifest File Contents for a Product Update
Manifest File Setup Rules
Manifest File Setup Rules
The Updates and Insights notification server follows these rules when creating the manifest file:

• Lists files in the order in which the Updates and Insights client must process them.

• Ensures that the specified files are downloadable.

• Uses a semicolon (;) or # at the beginning of comment lines only. Lines that begin with these characters are ignored
during processing.

• Saves the manifest file as a text file with the .mfdl extension.

Manifest File Processing Rules
The Updates and Insights client uses the following rules to process the manifest file:

• Ignores lines that start with a space or tab.

• Treats trailing semicolons on manifest file entries as optional.

• Processes entries in the manifest file in sequential order.

• Encodes manifest files in UTF-8.

• If the Execute field is set to yes and command-line options (ExexcuteCmdLine) are set in the entry, uses the command
line options to execute the specified file.

• If the Execute field is set to yes and no command-line options (ExexcuteCmdLine) are set in the entry, but the
notification item for the manifest file defines command-line options, uses the options in the notification item to
execute the file.

• If the Execute field is not set (or set explicitly to no), ignores any command-line options (either in the manifest item or
the notification item) when executing the file.

• Interprets a line in the manifest file that begins with a semicolon (;) or # as a comment line, and ignores the line.

• Generates an error if an entry does not point to a downloadable file. For example, an entry with a blank directory
results in an error.

• Generates an error if an entry that contains incorrectly formatted file names. For example, embedded tabs in a file
name entry cause an error.

• Downloads a file of a special type, such as a compressed file, as is. For example, if a manifest entry points to a .zip file,
the file is downloaded as a .zip file in its entirety.
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 167

Chapter A Manifest File Contents for a Product Update
Manifest File Processing Rules
168 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Index
A
acquisition ID, in capability request to send feature-usage data

106
anchoring in trusted storage 44
APIs in FlexNet Embedded .NET XT

overview 65
primary interfaces 61
reference guide 62

APIs in FlexNet Embedded Client .NET XT
error handling 63
primary groups 63

APIs in Updates and Insights
groups 62
implementation walkthroughs 123

B
back-office identity

using pubidutil or back-office server to generate 16, 138
back-office servers

description 43, 76
Base 64 license format 142
basic_client example

building 20, 33
BasicClient example

API walkthrough 73
overview 49
running 22

binary signed license file, generating 74
binary-file contents

validation with printbin 141
viewing 141

buffer licenses implementation, see Client example

C
callback function (example) to monitor update download and

execution progress 130
capability request

creating 78
example 76
generating with .NET XT Toolbox 161
generating with caprequestutil 151
operation types 105
processing response 81
sending to back-office server 80
used for usage capture 105

capability response
APIs used to process 81
generating with capresponseutil 154
processing with .NET XT Toolbox 162

CapabilityRequest example
API walkthrough 76
overview 49

capabilityrequest example
running 80

caprequestutil, using to generate capability request 151
capresponseutil, using to create capability response 154
certificate-based licensing, implementing functionality for

about the signed certificate 117, 118
acquiring features 118
comparison with FlexNet Publisher certificate-licensing 119
creating the license source 118
overview 117
preparing identity data 117

Client example
overview 49

client identity data
in usage-capture scenarios 107
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 169

Index
using FlexNet Operations to generate 16, 107
using printbin to convert into C# code 18, 32, 66, 140
using pubidutil or back-office server to generate 16, 138

client-server identity, using pubidutil or back-office server to
generate 16

client-server identity, using pubidutil to generate 138
clock-windback detection

APIs called 70
description 70

Cloud Licensing Service, used to monitor feature usage for
metered licenses 108

collection (notification) object, creating 128
containerized environment, detecting 69
core Updates and Insights objects, creating

client object (IUAIClient) 125
product package object 126

correlation ID
assigning 106
used to undo a feature-usage capture 106, 111

D
device alias 80
diagnostic API 76

See also View example

E
examples

instrumentation 51, 53, 54
notification 23, 25, 50, 127
profile 51, 53, 54
register 51, 53, 54

expiration date in feature definition 42

F
feature definition syntax 41
feature-usage capture, implementing functionality for

about capability requests 105
about correlation IDs 106
capture data for capped usage 110
capture data for uncapped usage 109
creating trusted-storage license source 107
overview 104
preparing FlexNet Operations 107
using rights ID to register client on Cloud Licensing Service

108
FlexNet Embedded .NET XT API reference 62
FlexNet Embedded Client .NET XT toolkit

contents 46
overview 46

FlexNet Operations

configured to receive usage data for metered licenses 107
used to generate producer identity data 16
used to generate publisher identity data 140
used to generate publisher identity information 107
used to re-host licenses 101

frequency, clock windback 70

H
HOSTID keyword in feature definition 42
hostids, description 40

I
identity data

creating 16, 30
distributing 18, 32
updating 19, 32

identity files 138
IdentityBackOffice.bin 124, 138

using pubidutil or back-office server to generate 66
IdentityClient.bin 66, 124, 138
IdentityClientServer.bin 66, 138
INCREMENT syntax 41
instrumentation example

building 51, 54
running 53

IUAIClient (client object), creating 125

L
license conversion utility, see licensefileutil, using to generate

license binary file
license source collection, creating and populating 75, 77
license-file contents

signature validation with printbin 141
viewing 141

licensefileutil, using to generate license binary file 74, 146
license-rights examination

creating diagnostic license source 113
overview 112
viewing details in feature collection 114

licenses
acquiring (implementing APIs) 75
acquiring (using .NET XT Toolbox) 163
generating binary signed 74
manually creating license file (text) 74
obtained from back-office server 76
providing access to 77
reading details 76
using on the device 74

Lmflex example
API walkthrough 117
170 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

Index
running 118

M
manifest file

contents 165
downloading 130

metered licenses
capturing capped usage 110
capturing uncapped usage 109
license attributes 111
See also feature-usage capture, implementing functionality

for

N
notification collection object, creating 128
notification example

overview 23, 50
running 25
walkthrough 127

notification items
definition 46

notifications items
obtaining (example code). See also notification example 128

O
Overdraft attribute for metered licenses 112

P
prerequisites for FlexNet Embedded Client .NET XT 13
print binary utility, see printbin, using to convert and display

contents of binary data
printbin 141
printbin, using to convert and display contents of binary data

client identity data 18, 32, 66, 67, 140
license-file conversion to Base 64 142

producer identity data
using pubidutil or back-office server to generate 16

product package, associating to Updates and Insights client
(IUAIClient) 126

product updates, downloading and executing (example code).
See also notification example 130

profile example
building 51, 54
running 53

pubidutil, using to generate producer identity binary data
command and arguments 138
graphical UI 138

publisher identity data
using pubidutil or back-office server to generate 138

Publisher Identity utility
generating identity files 16, 30

Publisher Identity utility, see pubidutil, using to generate
producer identity data

R
recalling metered features 111
register example

building 51, 54
running 53

rehosting licenses 99
request, see capability request
requestor ID, in capability request to send feature-usage data

106
response status items 81
rights ID 152

in capability request (.NET XT Toolbox) 162
in capability response 81
in usage-capture scenarios 107

runtime acquisition 82

S
secure re-hosting 99
secureprofileutil, using to enable secure anchoring 156
server, back-office vs. local 43
signatures, validation with printbin 141
START keyword in feature definition 43

T
test back-office server, see Test back-office server
tolerance, clock windback 70
trialfileutil, using to generate signed trial rights 146
Trials example

API walkthrough 97
overview 50

trials, implementing functionality for
acquiring license rights 99
creating license source 98
creating trial license-rights file 97
processing trial data into license source 98

trusted storage
anchoring 44
description 44
specifying location for 67
used to handle metered licenses 104
used to store licenses from back-office server or license

server 76
FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide FNE-UAI-2020R3-NXTSDK-UG00 Company Confidential 171

Index
U
uncounted features 76
Undo Interval attribute for metered licenses 112
undoing feature-usage capture 111
unsigned license file, creating 74, 77
updates (product), downloading and executing (example code).

See also notification example 130
Updates and Insights

API implementation walkthroughs 123
running example projects 53

Updates and Insights client, definition 45
Updates and Insights notification server

creating identity file for (IdentityBackOffice.bin) 16, 30
sending identity to 18, 32

Updates and Insights objects, creating
client object (IUAIClient) 125
notification collection 128
product package object 126

UsageCaptureClient example
API walkthrough 104
overview 50
running 108, 109, 110

utilities included in FlexNet Embedded Client .NET XT toolkit 137

V
vendor dictionary 72
VENDOR_STRING keyword in feature definition 43
View example

API walkthrough 112
overview 50
172 Company Confidential FNE-UAI-2020R3-NXTSDK-UG00 FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide

	FlexNet Embedded Client 2020 R3 .NET XT SDK User Guide
	Legal Information
	Contents

	About the FlexNet Embedded Client .NET XT Toolkit and this Guide
	Toolkits Described in This Book
	FlexNet Embedded Client .NET XT Toolkit
	FlexNet Embedded Client .NET Core XT Toolkit

	User Guide Overview
	Product Support Resources
	Contact Us

	Quick Start with the .NET XT Toolkit
	Toolkit Requirements
	Downloading the Toolkit
	Creating the Producer Identity
	Creating the Identity Binary Files
	Generating .NET-compatible Identity Data
	Distributing Identity Data
	Updating Identity Data

	Building and Running the “BasicClient” Licensing Example
	Building the “BasicClient” Example
	Troubleshooting Compilation Errors for the “BasicClient” Example

	Preparing to Run “BasicClient”
	Generate License Rights
	Install the FlexNet Embedded Client Libraries for FlexNet Embedded

	Running “BasicClient”
	Troubleshooting Build Errors for the “BasicClient” Example

	Building and Running the “Notification” Example
	Building the “Notification” Example
	Troubleshooting Compilation Errors for the “Notification” Example

	Preparing to Run “Notification”
	Install the FlexNet Embedded Client Libraries for Updates and Insights
	Add a Product and Its Update to the Publisher Site

	Running “Notification”
	Confirmation Output
	Troubleshooting Build Errors for the “Notification” Example

	Next Steps

	Quick Start with the .NET Core XT Toolkit
	Toolkit Requirements
	Downloading the Toolkit
	Creating the Producer Identity
	Create the Identity Binary Files
	Generate .NET-compatible Identity Data
	Distribute Identity Data
	Update Identity Data

	Building and Running the “BasicClient” Licensing Example
	Phase 1: Provide the Prerequisites for “BasicClient”
	Client Identity File: Copied to Proper Location
	License Rights: Created and Copied to Proper Location
	.Net Core: Installed on the Target Machine

	Phase 2: Prepare to Build “BasicClient” Executable
	Step 1: Ensure Project File Points to Correct .NET Core Framework Version
	Step 2: Run “restore” to Obtain Latest Packages
	Step 3: Copy “FlxCore” to the Project Folder

	Phase 3: Build and Run the “BasicClient” Example
	Troubleshooting Compilation or Execution Errors for the BasicClient Example

	Next Steps

	Toolkit Overview
	Concepts: Licensing and Updates Functionality
	FlexNet Embedded Concepts
	Hostids
	Feature Definitions
	Back-office Servers and License Servers
	Trusted Storage
	Capability Requests and Responses

	Concepts of Updates and Insights
	Updates and Insights Client
	Notifications
	Producer Site and Portal
	Notification Server

	Toolkit Requirements
	FlexNet Embedded Client .NET XT Toolkit Contents
	FlexNet Embedded Client .NET Core XT Toolkit Contents
	About the Example Projects
	FlexNet Embedded Examples
	Updates and Insights Examples

	Building and Running the Examples in the .NET XT Toolkit
	Obtaining Producer Identity Data
	Building the Examples
	Running the Examples
	Displaying Usage Help for an Example
	Running the FlexNet Embedded Examples
	Generating Example License Rights
	Running the Example “Client” Project

	Running the Updates and Insights Example

	Building and Running Examples in the .NET Core XT Toolkit
	Obtaining Producer Identity Data
	Basic Process for Building and Running an Example in the .NET Core XT Toolkit
	Phase 1: Provide the Prerequisites
	Client Identity File: Copied to Proper Location
	License Rights: Created and Copied to Proper Location
	.Net Core: Installed on the Target Machine

	Phase 2: Prepare to Build the Executable for an Example
	Step 1: Ensure Project File Points to Correct .NET Core Framework Version
	Step 2: Run “restore” to Obtain Latest Packages
	Step 3: Copy “FlxCore” to the Project Folder

	Phase 3: Build and Run the Example
	Displaying Usage Help for an Example

	Toolkit Files to Distribute with Your Product
	.NET XT Toolkit Files to Distribute
	.NET Core XT Toolkit Files to Distribute

	Overview of the .NET XT APIs
	FlexNet Embedded API Interfaces
	Updates and Insights API Interfaces
	FlexNet Common API Interfaces
	Conventions for Retrieving Exception Information

	Using the FlexNet Embedded APIs
	Common Steps to Prepare for Licensing
	Creating Your Producer Identity Files
	Creating Core Licensing Objects
	Specifying the Trusted Storage Location
	Specifying the Hostid Type to Use
	Final “Get Licensing” Argument

	Detecting a Containerized Environment
	Detecting a Cloned Environment
	Detecting Clock Windback
	Identifying the Device User
	Retrieving Feature Expiration and Grace Period Information
	Types of Expiration Information Available for Retrieval
	.NET Properties Used to Retrieve Expiration Information

	Including Vendor Dictionary Data
	Advanced Topic: Secure Anchoring
	Prerequisites
	Enabling Secure Anchoring

	Buffer Licenses
	Setting Up the License File
	Step 1: Create an Unsigned License File
	Step 2: Generate a Signed Binary License File

	Using the License on the Client
	Step 1: Create and Populate the License Sources
	Step 2: Acquire the License(s)
	Step 3: Read the License Details

	Licenses Obtained from the Back-Office Server
	FlexNet Operations as “Back-Office Server”
	Configuring the Back-office Server to Provide Access to Licenses
	Activation or Upgrade Steps
	Step 1: Create the License Source
	Step 2: Create the Capability Request
	Additional Capability-Request Options
	Attribute to Obtain All Available Copies for a Rights ID If Requested Count Cannot Be Satisfied
	Host Names (Aliases) and Types
	Option to Force a Capability Response

	Step 3: Send the Request to the Back-Office Server
	Step 4: Process the Capability Response

	Licenses Obtained from a License Server
	Provision the License Server with Licenses for the Demonstration
	Register the Client with the Cloud Licensing Service
	Provide the URL for the License Server in the Command
	Modify the Example Code to Request “desired features”
	Additional Capability-Request Options
	Incremental Capability Requests
	Attribute to Check Out All Available Quantity for a Feature If Requested Count Cannot Be Satisfied
	Feature Selectors in a Capability Request
	Secondary Hostids
	Option to Force a Capability Response
	Borrow Interval and Granularity Overrides

	License Checkout from the License Server
	Capability Preview
	Types of Preview Counts
	Creating a Preview Capability Request
	Processing the Preview Capability Response
	Creating a Regular Capability Request Based on Preview Features
	Other Considerations

	Limited-duration Trials
	Trial Preparation
	Create the Binary Trial License Rights

	Getting and Using the Trial on the Client System
	Step 1: Create and Populate the License Sources
	Step 2: Get Trial Data from the Binary Trial File

	Secure Re-hosting
	Removing Capabilities from Host A
	Step 1: Start License-Enabled Code on Host A
	Step 2: Submit Capability Request from Host A to the Back-Office Server
	Step 3: Back-Office Server Processes Request and Sends “Reduced” Response Back to Host A
	Step 4: Process “Reduced” Capability Response on Host A
	Step 5: Submit Another Capability Request from Host A to the Back-Office Server
	Step 6: Back-Office Server Processes Capability Request from Host A

	Adding Capabilities to Host B
	Step 7: Start License-Enabled Code on Host B
	Step 8: Submit Capability Request from Host B to the Back-Office Server
	Step 9: Back-Office Server Processes Request and Sends Response Back to Host B

	Capturing Feature Usage on the Client
	Capability Requests and Usage Capture
	Operation Type
	Correlation ID
	Other Optional Identifiers
	Desired Features and Rights IDs

	Preparation in FlexNet Operations
	License Source Creation
	Client Registration with the Cloud Licensing Service
	Uncapped Usage Capture
	Capped Usage Capture
	Recall a “Used” Metered Feature

	Post-Usage-Capture: Managing Usage Data
	Additional Metered License Attributes

	Examining License Rights in a License Source
	Step 1: Create and Populate a Diagnostic License Source
	Step 2: Examine Features in the Feature Collection

	Advanced Topic: FlexNet Publisher Certificate Support
	Preparing Your Identity Data for Certificate Support
	Using the Lmflex Example
	Create the Certificate License Source
	Acquire Features from the Certificate License Source

	Differences in Certificate Licensing Behavior

	Advanced Topic: Multiple-Source Regenerative Licensing
	Use Cases for Multiple-Source Regenerative Licensing
	Providing Support for Multiple-Source Regenerative Licensing in the Client Code
	Creating the License Source for a Server Instance
	Identifying the Server Instance in the Capability Request
	Processing the Response from a Server Instance

	Considerations

	Using the Updates and Insights APIs
	Common Preparation Steps
	Obtaining Your Producer Identity Files
	Adding a Product and Its Update to Your Producer Site

	About the Manifest File for An Update Notification
	Creating Core Notification Objects and Registering the Client
	Setting Up the Updates and Insights Client Object
	Registering the Client Device with FlexNet Operations
	Setting Up the Product Package Object

	Obtaining Notifications and Downloading and Installing the Updates
	Obtaining Notifications
	Step 1: Send the Notification Request
	Step 2: Inspect the Collection

	Downloading and Installing an Update
	Download Payload and Install the Update
	(Optional) Use a Callback Function to Track the Update Progress

	One-time Event: Client Device Registration with FlexNet Operations
	The Registration Process
	Requesting the Client Registration

	About Client Communications for the Updates and Insights

	Utility Reference
	Tools Shared by FlexNet Embedded and Updates and Insights
	Publisher Identity Utility
	Purpose
	Usage
	Entering Your Identity Data
	Further Tasks and Considerations

	Print Binary Utility
	Viewing Contents
	Viewing Contents and Validating Signatures
	Displaying Binary-File Contents in Compiler-Readable Format
	Converting License Data to Base 64 Format in FlexNet Embedded
	Additional printbin Switches

	Tools Specific to FlexNet Embedded
	Identity Update Utility
	Usage
	Device Hostid Types Used to Restrict Hostid Detection
	Example Identity Update

	License Conversion Utility
	Trial File Utility
	Capability Server Utility
	Considerations for Using the Utility
	Usage
	Starting and Stopping the Capability Server Utility
	About License Templates
	Use of License Templates to Generate Responses
	Examples
	Creating a License Template

	Endpoint for Sending Capability Requests to the Utility

	Capability Request Utility
	Capability Response Utility
	Secure Profile Utility
	Viewing Available Security Profiles
	Enabling Secure Anchoring

	.NET XT Toolbox
	Preparing the .NET XT Toolbox
	Working with License Sources
	Server Communications
	License Acquisition

	Manifest File Contents for a Product Update
	Manifest File Format
	Header Line
	File Entries

	Manifest File Setup Rules
	Manifest File Processing Rules

	Index

