Floating Wind Turbines

Paul D. Sclavounos Professor of Mechanical Engineering Massachusetts Institute of Technology

Laboratory for Ship and Platform Flows (LSPF) Department of Mechanical Engineering

Massachusetts Institute of Technology

World Wind Energy - Total Installed Capacity (MW) and Prediction 1997-2010

Advantages of Floating Offshore Wind Farms

- Wind a Rapidly Growing, Free, Inexhaustible, Environmentally Friendly, Utility Scale and Cost Effective Energy Source
- Vast Offshore Wind Resources with Higher and Steadier Wind Speeds
- Over 75% of Worldwide Power Demand From Coastal Areas
- Power Increases with Cube of Wind Speed ~ 50% Higher Offshore
- Lower Offshore Wind Turbulence Longer Farm Life ~ 25-30 Years
- Connection to Electric Grid by Sub Sea AC or HVDC Cables
- Experience of Oil Industry Essential for the Development of Safe and Cost Effective Spar, TLP and Hybrid Wind Turbine Floaters

Horns Rev Wind Farm (Denmark) - Rated Power 160 MW – Water Depth 10-15m

Fixed Bottom Substructure Technology

Proven Designs

Future

Expensive Installation Process for Seafloor Mounted Turbines

Installation must be low cost and weather tollerant.

Floating Wind Turbine Attributes

- Water depths of 30 1000 m
- 5-MW Wind Turbine: 1 GW Floating Wind Farm (200 Units)
- Flexible installation process:
 - Full Assembly at a Coastal Facility
 - Ballasted Mini TLPs, Spar Buoys and Hybrids
 - Floater Size Independent of Water Depth
 - Tow Stably Floating Units Offshore
 - Floating Wind Turbine Movable for Major Maintenance
 - Gravity Anchors for Tethers and Mooring Lines
 - Conventional and Synthetic Catenaries
- Attractive Economic and Financial Attributes

Coastal Zone of Visual Influence (ZVI)

- L Distance from Shore for Turbine to be Invisible
- H Max Height of Turbine Blade Tip (90 + 65=155 m)
- R Earth Radius (~ 6,370,000 m)

$$L = \sqrt{2 H R}$$

- L = 28 miles (45 Km) (H=155m Blade Tip)
- L = 21 miles (34 Km) (H=90m Hub)

Deep Water Offshore Platforms for Oil and Gas Exploration

Tension Leg Platform

Taut-Moored Spar

Catenary-Moored Semi-Submersible

Spar and TLP SML Simulation Models of MIT Laboratory for Ship and Platform Flows

5 MW Wind Turbine

Rotor Orientation	Upwind
Control	Variable Speed, Collective Pitch
Rotor Diameter/Hub Diameter	126 m/3 m
Hub Height	90 m
Max Rotor/Generator Speed	12.1 rpm/1,173.7 rpm
Maximum Tip Speed	80 m/s
Overhang/Shaft Tilt/Precone	5 m/ 5°/ -2.5°
Rotor Mass	110,000 kg _ Overall c.g. location:
Nacelle Mass	240,000 kg (x y z) = (- 2.0.64)m
Tower Mass	347,460 kg

Coupled Dynamic Analysis

TLP Water depth = 200 m; Seastate H=10m Pareto Fronts

Spar Buoy Optimization Pareto Fronts

Floating Wind Farm Financial Attributes

- Annual Revenues of 1 GW Farm (200 Units) @ 40% Capacity Factor and @10 cents/KWh: ~ \$400 Million
- Breakeven Cost vs CCGT ~ \$ 3 M/MW: Based on Natural Gas Price Projections \$9-15/MMBtu from 2010-2029
- Breakeven Cost per Floating Unit: \$15 M; 1GW Wind Farm: \$3 B
- O&M: Unit Ballasted & Towed to Shore On Site Routine Maintenance
- Interconnection Costs ~ 15-20% of Capital Costs
- AC Subsea Cables for up to 120 km. HVDC Technology No Distance Limits
- Coal Plant Emits ~ 1 ton CO2/MWh; Combined Cycle Gas Turbine Emits ~ 300 Kg CO2/MWh
- At \$50/ton of CO2 Emissions Credit ~ 5 cents/KWh

Conclusions

- Design of Hybrid TLP / Spar Buoy Floaters and Mooring System Optimized for Water Depth, Wave and Wind Environment
- Low Nacelle Accelerations Initial Use of Marinized Onshore Wind Turbines
- Longer Term Two Bladed Downwind Turbines with 10-20 MW Generators Designed for Smart Offshore Electric Grids
- Attractive Economic Fundamentals Scalable Investment
- Carbon Emissions Credits
- Non Recourse Project Finance for Utility Scale Offshore Wind Farms