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FLOW-INDUCED VIBRATIONS OF A FLAT PLATE
SUSPENDED IN A NARROW CHANNEL

By Franklin T. Dodge and Arthur F. Muller
Southwest Research Institute

SUMMARY

Elastically restrained plates in narrow flow channels can vibrate
excessively when the flow rate past them reaches some critical value,
Because of the importance of this phenomenon in nuclear reactor design,
an analytical study of such vibrations has been conducted. The theory
is based upon the one-dimensional, hydraulic flow assumption and includes
viscous pressure drops and energy losses at channel contractions and
expansions. Since the vibrating plate influences the hydrodynamic load-
ing and vice versa, the unknown flow velocity and plate vibration frequency
are coupled and must be determined simultanecusly. The results of the
calculations for several typical flow situations show that the flow velocity
necessary to induce vibrations decreases as the channel height-to-plate
length ratio decreases; this is in substantial agreement with previous
potential flow calculations although not with experimental data.

INTRODUCTION

Many challenging problems have been encountered during the hydraulic
and thermal parts of the design of nuclear reactors. For example, special
"no-leak'" high pressure pumps had to be built to prevent radioactive con-
tamination through leakage of the coolant flow. In other cases, new analyses
or concepts had to be developed. For example, the idea of a "hot channel
factor' has been devised to establish the maximum permissible heat flux in
the core. Likewise, magnetohydrodynamic pumps first came into use for
pumping the liquid metal coolant used in some reactors.

The fluid flowing by the fuel elements and control rods is a source
of much design concern. Fuel elements and control rods are contained in
what are essentially narrow channels, and the flow of fluid down these nar-
row channels must be sufficiently high to keep the temperature within safe
limits. Small changes in the flow rate or the channel clearances result in
rather large changes in the heat released so both the flow rate and the
channel dimensions must be carefully controlled. In order to keep the core
small and the energy release high, it is desirable to have large flow rates;




but, aeronautical history has demonstrated that high-speed flow along an
elastic structure can sometimes lead to disastrous self-excited vibrations
of the structure. Indeed, it has also been observed that in nuclear reactors,
the control rods or the fuel elements, or both, can vibrate excessively when
the flow reaches some critical value. These kinds of vibrations seem to
have been the cause of the failure of the core of the Kiwi B-4A nuclear
rocket engine (ref, 1); flow induced vibrations also were evident in certain
components of the Rowe Power Plant of the Yankee Atomic Electric Com-
pany (ref. 2).

Even though the problems with the Kiwi engine and other reactors
have been corrected by a series of mechanical '"'fixes, ' important reasons
still exist for obtaining a better understanding of the physical mechanisms
causing the vibrations. Narrow channel flow, which came into prominence
in pressurized water reactors, is becoming more commeon in high density
heat exchangers, so the ability to predict flow-induced vibrations ahead of
time and then make necessary changes in the design will be of considerable
value. For this reason, some previous research has already been conducted.
Burgreen, et al, (ref. 3) made an experimental study of several typical
heat-exchanger tube bundles and found, apparently, that vibrations of the
rods could be excited over a wide range of flow velocities past them. From
these studies, they concluded that the vibrations were self-excited and not
a result of the shedding of von Karman vortices. Bland, et al, (ref, 4), of
NASA-Langley conducted a combined experimental and theoretical study
of a rigid plate elastically suspended in a two-dimensional flow channel.
Their analysis predicted the onset of vibrations fairly well for wide channels
but did not agree with experimental results for narrower ones, Miller and
Kennison (ref. 2) of Knolls Atomic Power Laboratory made a hydraulic-
flow analysis of the vibrations of a rigid plate in a narrow channel. Although
their results did not agree with their experimental tests, they did show that
there were some positions of the plate in the channel that were more stable
than others.

The purpose of the analysis presented in this report, which was
undertaken in conjunction with the experimental program conducted by NASA
mentioned previously (ref. 4), was to discover if a simplified hydraulic
flow approximation would or would not be sufficient to explain the variation
of the critical flow velocity with channel height for narrow channels. Thus,
the analysis is complementary to the potential flow theory given in ref. 4,
which applies to wide channels.

SYMBOLS
a thickness of plate
A b/H, ratio of plate length to channel height



b
Ch

Ca
.0’=

F

F =

length of plate

damping coefficient for translational plate motions
damping coefficent for pitching plate motions
T -1
HW [7 + o(W - WS)] , hydraulic diameter of channels
friction factor for channels A or B when plate is centered

in the main channel

Fb/v, frictional pressure drop factor

h displacement of leading edge of plate from centerline of
channel
he.a. displacement of translation spring at elastic axis
H height of main channel
I, mass moment of inertia about the elastic axis, per unit
width of plate
Kp loss coefficient for cross-flow mixing around sides of plate
Kp spring constant of translation spring
K1, loss coefficient at leading edge of plate
dKq,
Kin-= T rate of change of Ky, with translation of plate
Kq spring constant of pitch spring
1, dKL el s
Kia = E—b -’ rate of change of Ky with pitching of plate
m total translating mass per unit plate width
NRe Reynolds number
v flow velocity in main channel
w width of channel
Ws width of slot between plate and each side of channel



X, distance from elastic axis to leading edge of plate, mea-
sured in plate lengths

Xa distance from elastic axis to center of mass, measured in
plate lengths

a pitching angle of plate

B=(W - Wg)/W

Ly = Cp/l2m(W - 2W)wph], damping ratio for translational motion

Lo = Co/[2I4(W - 2W )wpq], damping ratio for pitching motion
v kinematic viscosity
p fluid density

o =H/(H - a)
w critical frequency

= [Kh/m(W - ZWS)]I/Z, natural frequency in translation

wna = [Ky /I (W - ZWS)]I/2 , natural frequency in pitching

ANALYSIS

Because of the large number of parameters affecting plate vibra-
tions in narrow channels, there may be several conceivable mechanisms
by which the vibrations might be excited. Theories based on each of the
mechanisms presumably can predict a different range of critical flow
velocities and different effects when some of the parameters are varied.

In order to gain an understanding of the mechanisms involved in these
self- eccited vibrations, Bland, et al. (ref. 4), of NASA-Langley Research
Center conducted a series of tests with the apparatus similar to the one shown
schematically in Figure 1. In their idealized flow channel, the width of the
plate was nearly equal to the width of the channel, and, hence, the flow
was nearly two-dimensional, They found that the plate would begin to
vibrate only for airspeeds above some critical value, but, that once begun,
the vibrations would persist for airspeeds lower than the critical value
until at some even lower speed the vibrations would stop. These ''starting"
and "'stopping'' speeds were almost equal for small channel heights. The
critical speed decreased as the channel height decreased, but, below a
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FIGURE 1. -LANGLEY RESEARCH CENTER APPARATUS

small enough height, the speed increased substantially, which was tentatively
explained as due either to viscosity or the flow around the sides of the plate
in the gap between the plate and the channel walls. They also presented a
theory for inviscid, incompressible linearized flow in a channel which
involved an extension of the kernel function analysis of wall effects on a
two-dimensional oscillating wing in a wind tunnel {(ref, 5), For most of the
tests, it was concluded that the theory gave reasonable agreement down to
ratios of channel height to plate length of about 0.2. For ratios less than
0.2, the theory did not agree with the experimental tests,

- Miller and Kennison (ref. 2) conducted a series of tests of narrow
channel, flow-induced vibrations with an apparatus shown schematically in
Figure 2. Their analysis included viscous effects but not cross flow around
the sides of the plate. As mentioned earlier, their theoretical results did
not agree with their experimental tests, but they did show that less flow is
required to induce the vibrations as the depth of insertion of the blade into
the scabbard is reduced.
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FIGURE 2. —KNOLLS ATOMIC POWER LABORATORY APPARATUS




The plate vibrations in both of the setups shown in Figures 1 and
2 were of the self-excited type. For some other range of the parameters,
however, a high frequency vibration might be excited by vortex shedding in
which the trailing edge geometry of the plate plays a large part; but this
type of excitation should not be important for small channel height-to-plate
length ratios although it is important for flows across elastic structures
such as heat exchanger tube bundles (refs. 6,7). Also, in some cases,
turbulent fluctuations may cause a low level vibration. Consequently, the
purpose of the analysis presented here was to discover if a hydraulic flow
theory, neglecting vortex shedding and turbulence ''noise, " would be suf-
ficient to predict accurately the critical flow velocity for ratios of channel
height to plate-length less than about 0.2, for which potential flow theories
are known not to be applicable.

A one-dimensional theory allows viscosity, energy losses at abrupt
changes in the channel area, and plate thickness all to be taken into account;
but neither the hydrodynamic loads nor the flow split between the upper and
lower channels can be calculated as precisely as in the potential flow flutter
approximation. Nonetheless, both theories are similar inasmuch as they are
not response analyses but rather hydroelastic analyses in which the vibrating
plate influences the hydrodynamic loading, and vice versa.
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FIGURE 3, —SCHEMATIC OF FLOW CHANNEL

The general flow geometry is sketched in Figure 3, A plate of
length b and thicknessais elastically suspended by torsion and translation
springs inh a flow channel of height H. The width of the channel is W; there
is a gap of width W4 between the plate and each side of the channel so the
width of the plate itself is W - 2ZWg. The distance from the elastic axis of
the springs to the center of the translating mass is X,b, and the distance
to the leading edge of the plate is Xy o b. (In the Langley Research Center



apparatus, the test channel stands vertically and is connected to a vacuum
chamber downstream of the plate. Temperature controlled room air flows
through the channel to the vacuum chamber, with the flow rate being con-
trolled by a downstream valve. A bell mouth entrance to the channel and
a long entrance L are used to provide uniform flow at the plate location.) &

For the purposes of analysis, a number of flow stations are erected
in the channel, as shown in Figure 3. Downstream locations are measured
in an x-coordinate axis fixed at the centerline of the channel at the point
where the leading edge of the plate intersects it when the plate is centered
in the channel. The translation of the leading edge from the centerline of
the channel is denoted by h and the pitching angle by a. The method of
analysis is to determine the pressure, P, and velocity, V, at each of the
flow stations in terms of the unknowns h and a and then use thege pressures
and velocities in the equations of motion for the plate to determine h and a
as a function of time. In general, h and a will have nondecaying amplitudes
only if V is greater than some critical value.*

For a given total pressure drop, Pg - ?4, the average velocity v
in the main channel upstream of the plate may vary as the plate moves about
in the_chanr_1_§1; likewise, a constant V may cause a varying Pg - P4. Thus,
both V and Py, in general, may be time varying, and this fact should be
included in the analysis. (It should be noted that in classical flutter analyses
the flow approaching the plate is assumed to be constant.)

The viscous forces or energy dissipation in the flow are calculated
by using friction factors and loss coefficients which depend on the Reynolds
number. Thus, at station 1, just ahead of the leading edge of the plate, the
average pressure across the channel is

52 = L dv
pV (Ko + —) - pL (1)

Py =PFg - 0, Ty

1
2
In Eq. (1), K; is the pressure-drop coefficient for the entrance from the
atmosphere (Ko > 1; it equals one only for a smoothly streamlined entrance),
and Eo is the friction factor for fully developed flow in the channel based on
the instantaneous Reynolds number, V.0, /v, where £ is the hydraulic diam-
eter, 2ZHW/(H + W). Furthermore, the average mass-flow velocity and the
average momentum -flow velocity are assumed to be approximately equal.
Unsteady velocity profiles arenot known accurately enough, anyway, to
enable the analysis to be made more exact. Likewise, a friction factor
based on a steady velocity equal to the instantaneous velocity is used because
of the lack of any convenient data on friction factors for unsteady flow.

%A bar over a syfnbol indicates that that quantity may vary with time.



At station 2A, the energy equation for the part of the flow entering
channel A is

— -_— l — — -_—
P,p = Py -Ep[(KLA+1)V%A—V2] (2)

where RLA is the loss coefficient for the channel contraction., The height of
channel A at the leading edge of the plate is approximately

(H-acosa)-h (3)

Conservation of flow at the leading edge gives one relation for determining
the flow -split between channels A and B; it is

VAEZA + VBEZB = VH (4)

Now, concentrating on an arbitrary point in the interior of channel A,
the integrated form of conservation of flow for the control volume spanning
channel A (Figure 4) is

i(ECV) = (mass flow)ij, - (mass flow)gut

dt

Evaluating thesec terms for the indicated infinitesimal control volume, and
letting the size of the control volume vary as dictated by the plate motion,
the differential form of conservation of flow in channel A is seen to be:

— 8V,
H
ATx

2QAB - dHa (5)
W - 2Wg dt

-\7Atana+

where aAB is the cross flow from channel A to chax_m_pel B through the slots,
per unit length of the plate, and the channel height, Hp, is approximately

-IjIA=%-(H-acosa)—h—xtano. (6)

1972

FIGURE 4. —CONTROL VOLUME FOR FLOW CONSERVATION



Calculating the cross-flow relationships between the pressure drop across
the channels and the flow through the channels is a difficult problem which
is still unsolved analytically. Thorpe (ref. 8) gives a good review of the
work that has been done and recommends computing the '"jet' velocity, Vapg
(Figure 5) by assuming it is equal to the velocity in channel A after being
accelerated through the pressure drop PA - PB’ or, in other words,

Vig =V4 +2(P, - Ppl/p (7)

Then BAB is given by VAB multiplied by the flow area normal to the velocity,
or

BAB = CDWSVAB tan a (8)

., not being equal to the slot width,

where Cp accounts for the jet width, WJ

We.

W,*IP

Channe! B
Channet A
w—a |-
Va
FIGURE 5. — CROSS FLOW FIGURE 6, — CONTROL VOLUME FOR
THROUGH SLOTS MOMENTUM CONSERVATION

The integrated form of the conservation of momentum for a control
volume spanning channel A (Figure 6) is

d — —
Z(forces)x = a(mchA) +{x - momentum flow) ., - (x - momentum flow);,

By letting the control volurme become infinitesimal and taking into account
the varying size of the control volume, the differential form of conservation
of momentum for channel A becomes

— ——— —2 — — — — ——
p

+V +—_ + =0 9
9% 25, A Bx Hp(W - 2W,) ot (%)



The viscous shear stresses are based on a friction factor, FA, through the
Darcy-Weisbach relation 'TA = pFAVA/B The hydraulic diameter, .O’A =
2HpAW /(Hp + W - W), is based on a flow area of HAW and an average wetted
perimeter of ZHA +W + (W - 2W,); the cross flow GAB is assumed to leave
the control volume with a velocity of Vpp in the x-direction.

The frictional pressure drop in the short trailing edge region near
station 3A isnotcalculated explicitly but is assumed to be given accurately
enough by the preceding equation. The pressure in channels A and B is
taken to be equal at the exit plane similarly to what is done in potential flow
around airfoils (the Kutta condition). Experiments have verified this to be
true even for viscous flows (ref. 8). Thus

P3a=P3p=P3 (10)

The trailing edge is sufficiently streamlined that exit energy losses can be
ignored. Then an energy balance on the two merging streams yields

=z T _1
P3-P4=EpV2— o2 = (11)

where the channel height ﬁ3A is
= 1
H3A=E(H-acos a) -h -btana (12)

Conservation of flow requires

It is the equating of the pressures §3A and f)?:B at the exit plane that
allows the flow-split around the leading edge of the plate to be determined.
In other words, without Eq. (10), there are twenty unknowns [assuming Py,
P4, h(t), and a(t) are known] and only nineteen equations (including the
similar equations for channel B).

The above equations and the two equations of motion for the plate
allow the critical velocity to be calculated, in principle, However, the con-
cern here is only with the onset of sustained vibrations, so by assuming the
amplitude of the vibrations are small the equations can be linearized,

This allows the critical velocity to be determined much more easily
since, after linearization, all the flow equations and the hydrodynamic
loads can be integrated analytically.

10



Linearization of Flow Equations

Now, 2ll the parameters with bars over them are assumed to be of
the form

E(x, t) = E(x) + e(x, t) (14)

where E(x) is the steady state value of E obtained when the plate is at rest
in the center of the channel and e(x,t) is a small fluctuation of the order of
magnitude of a(t) or h(t). Furthermore, it is assumed that Ie/E|<< 1.

The complete set of linearized equations is given in Appendix A, but
there are several points in the linearization that should be discussed. In
Eq. (1), K, is assumed to be determined by the inlet geometry of the main
channel so it is not a function of Reynolds number. Furthermore, Fg is
assumed to be given accurately enough by the following correlation equations
(ref. 9):

T = 64, n=1 for 0<Ng, <1829 (15a)
T

Fo = - T
(NRpe)

N

0.035, n=0 for 1829 < Ng, <6645 (15b)

I

T =0.316, n = for Ngpe 26645 (15c¢)

1
4
Equations (15a, c) are for laminar and turbulent flow, respectively, although
Eq. (15c) holds exactly only for N < 100,000 (ref. 9). Further, these

are for circular pipes, but, by using the equivalent hydraulic diameter,

they are adequate for noncircular cross sections, especially in the turbulent
regime, Equation (15b) approximates the transitional flow regime by a
constant friction factor of 0.035. Using these equations, the unsteady
friction factor f5 works out to be

fo = -nFg(v/V)

where F, is the constant friction factor for the steady velocity V. This
relation, as mentioned previously, is based on the assumption that Fg =
Fo + 15 is equal to a friction factor based on a steady flow equal to V =V + v,

In Eq. (2), the steady state loss coefficients in channels A and B are
equal, KLA =Kip = KL. The unsteady loss coefficient, ki, As is based on
a steady flow through a constant channel contraction equal to the instanta-
neous contraction determined by h and a, Even with this assumption, how-
ever, there seem to be no existing data which could be used to indicate
precisely how k ought to vary with a; that is, loss coefficients are usually
given only for parallel channels. Yet experiments with inclined plates in
steady flow show that the extra flow separation (Figure 7) in the diverging
channel leads to loss coefficients half again as large as might be expected
for the same area reduction in parallel channels (ref. 8). Furthermore,

11
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this part of the loss is nonsymmetrical as there is no corresponding loss in
the converging channel. Because of this fact and the lack of any real data,

it is assumed here that the angular variation of kg, in the diverging channel

is equal to half the variation caused by a parallel reduction equal to ba. Thus,

— 1 dKL

where dKj,/dh can be evaluated from existing tables of loss coefficients
(refs. 9, 10), U(a) is the unit step function defined as

U(a) =0 fora<o0
U{a) =1 fora>0

In Eq. (8), the cross flow 6AB after linearization is
Qap =0

and
9AB = KpWsVae

since vAB differs from V 5 only by terms of the order of a or h. Also,
because of the symmetry of flow when the plate is at rest in the center of the
channel, the steady flow velocities in channels A and B are equal, VA=VB =oV.
Hence, qpp, in this linearized form, merely represents the portion of the
undisturbed main flow crossing from one channel to the other because of

the inclination of the plate. This is probably a very crude approximation to

the actual cross flow, but it is likely to be the best that can be done using a
hydraulic theory.

_ In Eq. {9), the unsteady part of f‘A\—fi /ZD’A has contributions from all
of Fp, Vp, andd 5. All of these variations are taken into account, although
once again Fp = Fp + 5 is set equal to a friction factor based on a steady
flow of V) + vy and a constant hydraulic diameter ofﬂA = '{Z; +dy.

12



Correlation equations similar to those used for Fo are used to compute Fp
and f,; the pertinent Reynolds number here is Np = ch.GA/V.

Finally, the linearized analysis shows that the unsteady pressure, py,
is a linear function of the unsteady velocity v in the main channel plus a
function proportional to U{a) badCy,/dh, the loss coefficient for angular
variations in the channel height, Considering that this loss coefficient is
computed in a rather arbitrary way, it is neglected in calculating py. Thus,
p4 does not depend explicitly on either hor a, and no contradiction is implied
by setting both Py and v equal to zero. In other words, if the pressure drop
Py - P4 is constant (p4 =0), then the linearized analysis says that v = 0;
likewise, if v = 0 then p4 must be zero. Consequently, both py and v are
put equal to zero in what follows, although, for vibrations of finite amplitude,
either P4 or V must be allowed to vary.

Linearized Equations of Motion for Vibrating Plate
The linearized torsional equation of motion for the plate is

(W - 2Wg)lqa + Cqa + Kga + (W - 2Wg)mXgbhe a.

b b
= (W - ZWS ){f %a(TB - 'rA)dx +f [sz.e. +x]{pg - pA)dx} (16)
0 0

where T 5 is the linearized shearing stress on the side of the plate facing

channel A and likewise for Tg-

The linearized translational equation of motion is

(w - 2Vvs)rn[l:;e.a. +Xaba] + C:h]:"e.a. + Kphe 3,

b
=W - 2w) [ (pp - padx  (17)
0

where hg 5, =h - Xl_e.ba.

By substituting the relations for Ta' Tp' Par and Py given in Appen-
dix A into Egs. (16) and (17) and by assuming that'h = hg exp(iwt) and
a = a exp(iwt), the problem of determining V and w can be reduced to the

simultaneous solution of two algebraic, homogeneous equations. The equations

are of the form

ho
(Alo. + iBlO.)Q'O + (Alh + 1Blh)T =0 (18)

13



and
. . ho
(Ayy +iByglag + (A, + IBZh)T =0 (19)

Equation (18) is derived from Eq. (16), and Eq. (19) from Eq. (17). The A's
and B's are functions of the unknown velocity V and the unknown frequency
as shown in Appendix A, Thus, Egs. (18) and (19) can be solved numerically
for the values of V and w that allow ag and hg to take on nonzero values.
These, then, are the critical velocity and the flutter frequency.

RESULTS

In order to determine the range of validity of the theory, comparisons
between it and existing experimental data (ref, 4) were made for two distinct
flow situations: a plate 2 in. long contained in a channel of variable height,
and a plate 1 in., long contained in the same channel. In both cases, the
parameter varied was the channel height, H. The computer program used
in solving Eqs. (18) and (19) to obtain numerical results is described in
Appendix B,

Figure 8 shows results for the 2-in. long plate (Plate 2A of ref. 4)
having the mass distribution described in the figure. To facilitate direct
comparison with the experimental data, the velocity given in the figure is
that in the reduced channel between the plate and the walls; this velocity is
larger than the velocity V in the unobstructed channel by the multiplicative
factor o, Results from the potential flow theory mentioned earlier are also
shown to help illustrate the influence of viscosity and other flow losses.

The one-dimensional, hydraulic flow theory is in qualitative agree-
ment with the potential flow theory for the range of channel heights shown;
that is, both the critical velocity and critical frequency decrease as the
channel height spacing decreases. The hydraulic flow results do not, how-
ever, agree with experimental results for very small channel heights, for
which the critical velocity and frequency increase markedly., For larger
channel heights (but still for H/b < 0. 2), the present theory is in reasonable
agreement with experiment, especially with regard to the critical frequency.

In the hope of gaining further insight into the physical mechanisms
involved, the higher order roots of Eqs. (18) and (19) were also investigated,
In addition to the lowest velocity roots shown in Figure 8 by the solid curve,
the roots corresponding to the second lowest critical velocity and frequency
are also shown for H< 0,1. As can be seen, the velocity and frequency for
this '"'second mode'' increase as the channel height decreases in much the
same way as the experimental data do.

14
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FOR NASA PLATE 2A

Comparisons for a l-in. long plate (Plate 1B of ref. 4) are shown in
Figure 9. Again the results are in fair agreement with potential flow theory
for H/b < 0,2, but once more the theory does not predict the observed increase
in critical velocity and frequency for small channel heights. Results of cal-
culations for the second mode for this plate are also shown on the figure.
(Note that a channel height of 0.2 in. corresponds to H/b = 0,2 for Plate 1B
while a channel height of 0.4 in. corresponds to H/b = 0.2 for Plate 2A, Thus,
it can be seen that for H/b < 0.2 the present theory and the potential flow
theory are in good agreement but that for larger values of H/b the present
results greatly overestimate the critical velocity; this checks with the previous
remarksthatthe hydraulic flow assumption would be tenable only for smallH/b.)

For neither of the plates is there atrue nodal point for the flow-
induced vibration (since the plate does not vibrate in a natural mode), but, in
both cases, the phase angle between the pitch and translation motion is so
small, according to the theory, that the plate appears to rotate about a
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point ahead of the plate during most of any one cycle. This predicted 'trans-
lation'" mode agrees with the experiments., However, for plate 1B only, a
""pitch' mode (rotation point near plate mid-chord) was also observed experi-
mentally for large channel heights; at the '"'starting’’ velocity, the mode was
always translation, but, as the flow rate decreased, the apparent axis of
rotation would shift rearward, and, at the "'stopping'’ velocity, the plate oscil-
lated in a pitch mode; one such point is shown flagged in Figure 9. Neither
the hydraulic theory presented here nor the potential flow theory of ref, 4
predicts such a mode.

The validity of the approximate method of calculating the cross flow
could not be checked since the experimental tests were deliberately designed
to be very nearly two-dimensional; that is, neither of the two plates were
sufficiently narrow nor the slots between the sidewalls and the plate suf-
ficiently large to influence the flow appreciably., However, when the slots
are larger [actually, when the parameter 2CpW /(W - 2W) is comparable
to unity], the critical velocity, according to the theory, must increase if the
other plate parameters are held constant.

In order to determine how great a role the inertia of the fluid plays
in narrow channel oscillations, the fluid velocity and pressures were also
calculated by a quasi-steady method in which only the instantaneous position
of the plate (and not its velocity or acceleration) determined the flow. The
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governing equations can be derived by setting a=a=h=h=0in the fluid
dynamic theory given in the preceding sections. This quasi-steady theory
did not predict flow-induced vibrations for any of the cases tested. However,
for some cases, as for example when the elastic axis is behind the mid-
chord point of the plate, a divergence may be predicted.

CONCLUSIONS.

The results of the analysis presented here show that viscous effects
and energy losses, at least when calculated by the approximations implied in
a one-dimensional hydraulic flow -theory, are not sufficient to explain the
experimentally observed increase in the flow velocity required to induce
vibrations of a plate contained in a flow channel when the channel height is
made very small. In fact, the relatively good agreement of the hydraulic flow
theory and previous potential flow calculations for H/b < 0.2 indicates that
fluid inertia forces predominate in both theories. There are, however, slight
differences between the two theories since the hydraulic flow theory predicts
a slightly smaller critical velocity than does the potential flow theory for
small H/b ratios. This presumably is caused by viscous effects and other
energy losses although ordinarily it might be expected that an increase in
energy losses (or damping) should lead to an increase in the critical velocity;
the reason for the decrease, then, must be an even more significant change
in the relative phase angles between the various flow forces.

Because of the lack of correlation between theory and experiment, it
is still not clear what causes the rapid increase in the critical flow velocity
for very small H/b, However, the qualitative agreement between the theoret-
ical computations for the second mode of vibration for these cases and the
experimental observations may imply that possible large increases in non-
linear effects for such small channel heights add enough additional stability
to make vibrations in the lowest frequency mode so small as not to be observ-
able. On the other hand, these same nonlinearities, if they do exist, could
change the characteristics of the finite-amplitude vibrations of the lowest
order mode sufficiently to reconcile them with experiment. Finally, even
though the vibrations may be linear, the balance of viscous, inertia, and other
forces might be so subtle for small H/b that a much more exact viscous flow
theory is required here.

Further analytical and experimental research on narrow channel flow-
induced vibrations is clearly indicated. Closer correlation of theory and
experiment for all conditions will be realized only when more realistic flow
theories are used (e.g., unsteady boundary layer flow); furthermore, it may
also prove necessary to include nonlinear effects.

Southwest Research Institute
San Antonio, Texas
March 11, 1968
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APPENDIX A, LINEARIZED EQUATIONS

Steady-Flow Equations

Whena=a=4d=h=h=h=0, the '"steady-flow' pressure drops and
velocities are

- -1 42 L 2
o]

1 L, b
- 2 2 2 _
Po'P3a‘ZPV [KO+FO-——ﬂO+(KI+1)¢ -1l+o BFE]—PO'P3E
_ 1 2 L 2 2 b
Py -Py=5pV [KO+FO—O+0' KI+06F—}

and

Unsteady-Flow Equations

The unsteady flow pressures and velocities are derived on the assump-

tion that products of a, h, VA and vp may be neglected in comparison to
linear terms. The results are

/l 2 - _ 202(K 1VZA 2pc.. 2o Llieac 1-v
PoalZz PVT = - 20%(K + 1) = - 0%ACy, ¢ - 5 07AC (1 - Tla))a
1 .2 2 V2B 2 h 1 2
pZB/E-pV = - 20 (KL+I)T+G ACLhE-EO' ACrpU(a)a
where
aK;,
Kin = H—gp
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A similar equation holds for pg with a and h replaced by -a and -h and the
subscripts A replaced by B. The linearized shear stress on the plate is

1 2 VA 1 4 Zzﬂ(h+xa)
R FVE(2 - —_— = F =
TAT g OPFVA2 - n) 5ot g ot FVERT B TR

where

2KAW
20 f » 1 Z-) 2 D"s (xa)
= + —{ xh + = x%a)} + 20 1l « ——= =2 iskad
VA T V2A H( 2 W - 2w v

Similar equations hold for 7z and vg.

Equating p3 5 to p3pg yields vpp = -vp 5 and the flow-split equation

vab

v2

v
to [KL s+ (2 - n)ﬁj‘]—%é= -[(1 + n)o B2 Al +

+ %- O'ZAKLh}% -[% (2 - n)o’ZBA3 + ZUZA] % - 0A bh _
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+203A <1 - )+%UZACLh a- %(z - n)olBAF +

2KpW . 2
+ (2 ___D__S_ U'ZA .b_a.__l_(rA—b a
W - 2W, 3702
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By letting v, 5 = voei“’t, a= aoei“’t, and h = hoei“’t, Egs. (16) and (17) of
the section, Analysis, reduce to

and

where

h,
(Ajq +iBjglag + (A +iB1y) 4= 0 (A1)
h,

) (P_bi> ( v )2 [(z - n)ovg, + (2 - n)CAK +

oo s (82) (G (5 o[-

1 1
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In these equations, the quantities not already defined are

2KpW,

K=l -%—Zw,
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By eliminating agy and hy/b, the two equations to be solved simultaneously

+1+K] (biw)

for V and w are:
""Real" Equation A) A,p +B); By - By Byy - AjpAy =0 (A3)

"Imaginary' Equation A),Byy + AppBilg - A1pBog - A2,B1pL =0 (A4)

25



The solutions of Eqs. (A3) and (A4) are the critical velocity V and the critical
frequency w. Using these values of V and w in Eq. (Al) allows the ratio
a,/{h,/b) to be calculated:

(ho/b)' '(A1a+iBlh) (A5)

The translational amplitude of the elastic axis, h,,, is related to hj and a4
by hgg = hg - bXp . ay. Thus,

(hoo/B) - (hg/b) (A6)
ey " Kt.e.

Equation (A6) gives the ratio of the pitching to translational amplitude and the
phase angle between them. This allows the mode of vibration to be deter-
mined (e.g., mostly pitch, mostly translation, or a combination).
There are two special cases that need to be treated separately:
(1) The torsion spring is '"locked" (either Ky or w,p is infinite).
For this case, the torsion equation need not be satisfied and

ao = 0. Thus, the equations to be solved are

A2h=0

Bon =

(2) The translation spring is ''locked' (either Ky or wph is infinite).
For this case, the translation equation need not be satisfied and
hg = Xy . ba,. Thus. the equations to be solved are

Alg + Xy e, AL =0
Bija*Xp,e.B1n=0

The two natural modes of free vibration can be obtained from Eq. (A3) by
setting By, = Bp4 = By = By = 0 (i.e., neglecting damping) and letting
V = 0, The results can be put in the form of

2 4 0 \2
1-13(_“’_) +E(_w_) (.E) - o (A7)
“na “na “nh
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which can be solved by the quadratic equation for the two w's identifying the
natural modes. In Eq. (A7), B and E are

2 4
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In B and E, the quantities involving '"'p'" are the virtual mass effects of the
fluid. When p = 0, the natural modes in a vacuum are obtained.
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APPENDIX B. COMPUTER DOCUMENTATION

Equations (18) and (19) of Section, Analysis are solved numerically
by a digital computer routine; in addition, certain other information is com-
puted and printed out. The program is written in the FORTRAN IV language,
and a complete listing is presented as part of this appendix.

All information to and from the program utilizes input and output
tape units, and, thus, the logical tape unit numbers must be defined by the
user for each particular computer installation. The definition is given in the
first two executable statements in the main program, where N is the logical
input unit number and M is the logical output unit number; for example, in
the CDC-3600 used by SwRI, N = 60 and M = 61,

Several optional kinds of input are available for the program. Unless
otherwise specified in the input by the method described below, the physical
properties of the flowing liquid are assumed to be those of standard air:
p=4.34X107°1b/in% and v = 2.34 X 10™% in%/sec. The inertia properties
of the plate are specified by giving as input any two of Ky, wph, and m for
the translation mode alone and any two of K,, w4 and I; for the pitch meode.
The damping properties are specified by giving as input {}, or Ch and {4 or
Cqa. Finally, if steady state pressure drops are to be calculated, both Kg
and L must be given as input,

Instructions for Input

A set of input data consists of three or four cards, depending on the
options used. The format for the first two data cards is eight "E'' fields of
ten columns each (8E10.3). The remaining card(s) have a format of one ''I"
field of two columns followed by an eight column ""E'" field; this pair of fields
is repeated eight times [8(I2, E8.0)].

The following parameters must be given as input in the units shown:
a (in.); b (in.); H (in.); W (in.); Wg (in.); Xq (no dimensions); Hy ¢, (no
dimensions); Viax (in/sec); AV (in/sec); test (no dimensions); XNO (no
dimensions); any two of K, (in-1b), I (lb-in), wpg(rad/sec); any two of Kp
(1b/in), m (1b/in), w,} (rad/sec); either Cy (lb-sec/in) or &} (no dimensions);
and either Cq (in-1b/sec) or L4 (no dimensions). The following parameters

may be given when desired: K, (no dimensions); L (in.); Kp (no dimensions);
p (Ib/in3); and v (in2/sec).

The input cards are to be punched as described in the following
instructions:
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1st Card

Card Columns Data
1-10 plate thickness, a
11-20 plate length, b
21-30 channel height, H
31-40 channel width, W
41-50 width of the slots, W
51-60 nondimensional center-of-mass
location, Xg
61-70 nondimensional location of plate
leading edge, Xy o
71-80 maximum velocity considered,
Vmax
2nd Card
1-10 velocity increment, AV
11-20 solution convergence interval, TEST
21-30 number of parameters, XNO, to

be entered on cards 3 and 4

3rd Card and 4th Card

Entered on these cards are the values of any of the following
parameters to be used, with their identifying number:

Ka
Ia

Wna

bt el et e

G W N =~ OO0 0~ OU i WN
T
a

Unless specified otherwise, the values of Kpy, p, and v are fixed as
0.6, 4.34 X 10-5 1b/in3, and 1.13 X 10-6 in%/sec, but they may be
redefined as a group to any values desired by entering them as input
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parameters. The use of Ko and L is also optional as a group but if
they are undefined as a group, the steady-state pressure drops
(Pg - Py and Py - P4) will not be computed.

The parameters and their identifying numbers may be entered in any
order; the format for each parameter with its identification is: two
column "I" field for the identifying number (right justified) followed
by an eight column "E'" field for the parameter. Up to eight param-
eters can be given on each card, but the total number given on both
cards must equal XNO, For example, if wpq = 68.01, wnn = 54.51,
I, =0.0362, m =0,117, £} = 0.0005, and {, = 0.0005 are the only
parameters of this group needed, then card 3 would be filled in as

Card Column Data

2 3

3-10 68.01
12 6
13-20 54, 51
22 2
23-30 0.0362
32 5
33-40 0.117
42 8
43-50 0.0005
51-52 10
53-60 0.0005

For this example, card columns 61 through 80 are blank, card
number 4 is not needed and XNO = 6 is entered on card number 2
in columns 21 through 30.

Instructions for V..., AV, and TEST

The control parameters V. ., AV, and TEST are set by the user.

ax i8 the maximum velocity to be considered in the search for a critical
velocity; it should be determined by the user's judgement. If no solution
is found for V < Vmax, the calculations stop and ''no solution'' is indicated
in the printoutT AYV is the increment used to stepup the trial values of

V; for example, if no solution has yet been found below, say, V = V,,

then the program will next check for a solution in the range V = V; to
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V=V, +AVaslongas V; +AV<V_ .. . TEST essentially sets the limit

on the accuracy with which the equations are solved for' V and w; it is the
width of the interval enclosing the ‘''true'' solution and the indicated numerical
solution for both V and w.

For faster computing times, AV should be pickedas large as possible,
However, difficulties may sometimes arise if such a large value of AV
is used that two or more solutions are enclosed within one AV. In this
case, the program may miss both solutions and continue to increment V,
The reason for this is that the method of solution is to find the value of w,
if any, which satisfies the "real' equation for the trial value of V and then
to determine the sign of the "imaginary' equation for this V and w. This
sign is then compared to the sign of the imaginary equation for V + AV
and the w satisfying the real equation for V + AV. Thus two changes in
sign in one AV interval will not be found by the computer routine. It is
recommended that, at the beginning of any new set of runs, the optimum
value of AV be found by trying a series of successively larger AV's,

Loss Coefficient, Kj,

The loss coefficient for the channel contraction at Station 2 is auto-
matically computed and no input is needed. The calculation has been accom-
plished by adapting the loss coefficients given in ref. 9 for contractions in
parallel circular pipes to the case of narrow channel flow, on the basis of
equal areas of contraction, Thus, KL for any reduction (any o) is inter-
polated from the following table, which is contained in the program as part
of its data:

s-1/2 Ky,

.00
.13
.28
.38
.45
. 50

O OO O O -
e e e s e

SN OO
OO O O OO

Also, since the derivative dKL/d.h equals —(I/Z)Ul/z(dKL/do"I/Z), the rate
of change of Ky, as the plate translates is computed by numerical differenti-
ation of the tabular values.
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Special Cases of Input

There are two special cases sometimes encountered. The first is
that of a rigid torsion spring (no pitching degree-of-freedom) in which either
Kq or wpg may be considered infinite. The second is that of a rigid trans-
lation degree-of-freedom) in which either K} or w,; may be considered
infinite. Either of these special cases can be treated merely by using input
values of Ka. or w,, greater than 109 for the no-pitch condition, or Ky or w,p
greater than 109 for the no-translation condition.

Program Accuracy and Limitations

The method of solution used in the program is one of searching for
a change of sign until the solution is enclosed within a AV interval and then
successively halving the interval until it is less than the value of TEST.
The limits of the searching for the critical velocity and frequency are

0< V< Vpyax (in/sec)
1 <w< 10w, (rad/sec)

Vmax® AV, and TEST are input and wg is the original estimate (equal to
the smaller of w,, or w,}) or the solution of w from the ''real' equation
for the preceding value of V. The step size used is AV for velocity and,
essentially, 1.2 times the preceding trial value for w,

For the calculations performed to obtain the results given in this
report, values of AV equal to 100 in/sec, Vynax €qual to 2500 in/sec, and
TEST equal to 0,001 were found to be adequate. During test runs, the
variation in the indicated solutions for V and w for any AV in the range from
2 to 100 in/sec was less than 0,4 percent, while even less variation was
found when TEST was changed for 0.001 to 0,000001, Running times were
about six sec per case.

No provisions are included for running more than one set of input at a
time; that, each change in any of the input parameters requires a separate
reloading.

Computer Symbol List

In order to facilitate program changes by the user, a correspondence
list of the symbols used in the program is given below. The quantities on
the left are the FORTRAN alphanumeric symbols used in the computer pro-
gram to denote the corresponding item on the right, used in the analysis or
to identify computer operations.
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A - a

AlA - Ala

A2A - Aoy

AlH - Aln

AZH - Ao

B -

Bl1A - Big

B2A - 2a

BlH - Bin

B2H - Bon

BETA - B

CA - Ca

CAPA - A

CAPF - F

CAPH - H

CAPK - Ko

CAPL - - L

CAPV - v

CD - Kp

CH - Ch

CL - Ky,

CLI(I) - Ky (the entries in the table of Ky, vs 0"1/2)

CLH - Kin

DELTAV - AV {the increment of V used in searching for roots of
Eq. (Al) and (A2)]

DP1 - Py -Py

DP2 - Py - P

M - Output Tape

N - Input Tape

oM - @

OMEG - Estimated w used as first guess

OMEGNA - W

OMEGNH - wnh

RENO - Npe

RHO - P

SCRIPD - o

SCRIPF - F

SIGMA - v

SIGMA(I) - (c-1/2);

VAI - Vai

VAR - Var

VHI - Vhi

VHR - Vhr

VMAX - Vmax (upper limit on V in searching for roots)

W -

WS - W

XALPHA - Xa
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XIA - Ia

XKH - Ky,

XLE - Xp.e.

XM - m

XN - n

XNU - v

X8 - B

X9 - E

VA - "Fluid Acceleration' switch
ZETAA - La

ZETAH - th

20, 21 - Residual of Real Equation
z2, Z3 - Residual of Imaginary Equation

Flow Charts, Computer Listing, and Sample Output

The following pages (35 through 46) give flow charts describing
the program logic and operations. A complete listing of each card inthe
deck (as run on the CDC-3600 used by SwRI) then follows on pages 47 through
55. Then on page 56 the form of the output for a typical run is given. The
first four lines of the output list the input parameters with their units. The
next two lines give the natural frequencies of the normal modes both with
virtual air mass considered and also not considered. The next line of out-
put lists the values of p, v, and KD used in the program. The next four
lines of output give the critical velocity (V) in the unobstructed main channel,
the flutter frequency (w), the nondimensional ratio of the pitch amplitude to
the translation amplitude (agb/hg,), and the phase angle between the pitch
and the acceleration. If no solution is found, itis so indicated. The next
four lines list the same four quantities for the quasi-steady case (a = a=h
= h = 0 in deriving flow velocities and pressures). The last two lines give
Po - P; and P| - P4 whenever K and L are given as input; in the sample
case shown, Ko and L are not given (which is indicated by their being equal
to zero in the input printout), so no pressure drops are given,
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PROGRAM FLUTTER

START

V=0
WITCH 1--0
WITCH 2-0

CD -6

P—434x10°
-2 Cp ~— VLUs
v—234x10 P

1 v =— VLU,

K= VLU,
L = VLU,
WITCH 2 —1

READ a,b,H, W, L
Ws, Xa . X2e., Vmax

J

AV, TEST, XNO

[ NO — XNO |
]

READ III ;, VALUE
j=1,NO
% ]
i—-IIIj
VLU= VALUE
j=1,NO
]
Kaq — VLU,
Ia - VLUz
wpa™ VLU3
Kp = VLU,
m ~—VLUg
whh= VLU
Eh — VLU,
Ca — VLUs
CQ - VLU|°

o
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j=0
RS
i—0
i—i +1
No
46
- > i>NO
Yes
" 1
Ka._Ia(A)na( w - ZWS )
j<?
__Ka _ 12
Lo~ (W 2W g
[ Ke ;
“na™ /T, (W-2Ws)
4 10
Ca
Kp—m{W-2W Juwhy -—
5 ;0 ZIC wna(W-ZWs)
m Kh 9
- 2
(W-2Ws ) wph Ca— 2L gung(W- 2Ws )8y
8 8
Kn £ Ch
“nh=—/m (W - 2W; ) N 2m wnp (W= 2Wg )
7
Ch— 2Mwpp (W-2W 1 &y
48
i>10 No
Yes
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et

50
Kiy+ w100 et WITCH 1 +1
No I
70
YeS ] WITCH 1—-1
No
72 ”
- o] OMEG = wp,
0
+
74
OWG“WnQ
75
.. _H
H-a
W
Q-T_H____
AT W W)
W'WS
B W
1
SIGMA 2~ 7=

®
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100
ERROR EXIT

i=—2

110

C =~ CL1;

C o (CLL{ = CLLi-;)(SIGMA 2- SIGMA 1)
- SIGMA 1j- SIGMA 1 -,

130§
-5,/ (CLEj-CLlj-4)

+CL1;

CLA™ "STGMA 1;- SIGMA; 4
i

WRITE
H,W.Ko, L
I,b,X‘_e_,Ws,Xa,
Ia N Ka,w na,Ca,

m,Kp.wph . &h

SAVER — P
p—0

6
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iy

w

CALCULATE B, E

“na

Ynh

x10-—32—4£(

j

_

150

100

ERROR EXIT

o
X 10—~/ X 10

2 B+X10

Wy - ———

Cor)
wph?
2 B-X10

T
( “’nh')

P — SAVER
Woy = Wy

Wop=— Wy
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WRITE
Wo) ,Wog , Wy , Wy

wo. —

Woz =—

Wy =

WRITE
Wo, Wog , W, , Wy

P,V,CD

z=1
195
V—V+2AV

w=— OMEG

196
SUBROUTINE
FREQ
22

100
ERROR EXIT
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V=0
w — OMEG

SUBROUTINE
FREQ
Z3

100
ERROR EXIT |

V=Y, @

50

@] v

100
ERROR EXIT

SUBROUTINE
FREQ
Z2
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m?

Vg V|
2

195

280

Vz"—v

w— %

SUBROUTINE
FREQ
22

55

Vz' V|
vV

|>TEST

2601 Yes

[+]

22(Z3)

+

V,=—V

3 =272

No

100

ERROR EXIT

(/1] - w
CYC =" 6. 28318

WRITE
V w, wc
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WITCH 1
310 o

1+

2 2
Xl‘-Alh + Blh

X2 —A1h Bya- A1aBlh
X3=—=X1{Xge)+A qA1h * B1aBln

X1

RPATA — ==
/X32 + X22

-X2
X3
8,—57.2958 6,

8, — Arctan

330

AR — .001295PV2 [(Cq + 116~ 1+ 0* 7]

AP,

EXIT 2Lz

i
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SUBROUTINE FREQ

Wemw,

o=l wWee—w +

SUBROUTINE
EQNS
20,22

SUBROUTINE
EQNS
20,22

SAVEK — w

SUBROUTINE
EQNS

245
SUBROUTINE
EQNS
20,22

$
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SUBRQUTINE EQNS

Intermediate
Calculations

5

S Calcuiate Ajq,B1q.A1n.81h.A2q. B2q: Azn ., B2h
ZERO 1~ A1qA2n * Blp B2~ Bia B2HALh A2a
ZERO 2 ~=A1gBon * A2h Bia~ Alh Bag - A2qB1h

Calculate

A2n . B2n
10 300
ZERO 1—App,
RETUR
@ ZERO 2B,y URN
0 g
Caiculate
Vhr. Vhi . Var. Vai
Aia.Bia.Alh.Bln
30
| ZERQO 1Ay 4+ X pAlg
ZERO 2 — Bla + Xl.e.B].h
Calculate Aza R BZQ
ZERO 1 == AyqA2h +B1h Baa~ B1aBon~AlhAza 300

ZERO 2~ ZERO 2 (—‘L,l)
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SUBROUTINE FRC FAC

| STARTY

150
n-—1
4 Nge < 1828.57
Nre
170
n—10
F - .035
n—.25
RETURN
f o 316
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11c0
1i1c

25

30

35

a0

42

46

LAV

PROGRKAM FLUTTER

FORMAT(BELN ,3)

FORMAT(B8(]I2,t8,%))

DimkErS10ON STUEMAIC6),CLL(E)

DIimME>SIUN VALUE(L15),VLUC1S)»111(15)

COMMUCEN A,AlArAlr,B,B1A,81H,HBETA,CAPA,CAPF,CAPH,CL,CL,CLH,
OMEGNA, OMEGNH s RHO,SCRIPD,SCRIPF,SIGMA, TEST ,ws WITCH1, WS,
XALPHA , XTA, XLE,; XrMiaXNaXNU)Z,ZETAA,ZETANH

DATA((SIGMAl‘I))I'lOé)'lllnao|6l|450200|>

DATA(C(CLLI(1)»121,6)80.,4413,:28,.356,.45,.5)

nNEgl

M=gl

CAPVE(, O

wiTCH1=0,0

WITCHZ=0,0

CD=,6

RHO=4,34E=5

XNUsS2,34E=2

READIN,L100) A,B,CAPH,w, WS, XALPRA, XLE, VuAX,LELTAY, TEST, K00

NOsXNO

REAL(N,2210) (IIICJ)sVALUE(Y),JE1,00)

DO 25 J=1,NC

Is111¢J)

VLU(I)aVvaLUE(J)

XKAEVLUCL)

XIlAasvVLU(2)

OMEGNASVLU(S)

XKHEVLU(4)

XMavLL(D)

OMEGNHEVLU(S?

CHaVvLULU(7)

ZETARBVLU(B)

CasVLL(9)

ZETAARVLU(L0)

DO 40 [=1,NO

IF(l11t¢1)=-12240,30,35

CAPK=VLU(11)

CAPL=VLU(12)

WITCHZ21,0

GO TO 40

CDavLUt13)

RHO=sVLU(14)

XNUBVLU(15)

CONTINUE

DO 48 J=31,1C

JEJ

DO 46 [=1,NO

IFCIII(I)=J)46,48,40

CONTINUE

GO TO (1,2,3,4,5,6,7+8,9,10),u

XKAEX]AWDMEGINA*w2e (W52, ¥WS)

GO TC 48
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2 XIASXKA/Z((w=2,#uS)«CtEGYAWRZ)
GO TL 48
3 OMEGHMAZ(XKA/(XIAwW(W=2,%#sS)))ww 5
GO TL 48
4 XKHEXM®(Wa2,*WS)¥OMEGNH*»2
G0 TC a8
5 XMaXKH/((W=2swWS)*OMEGNH®**2)
GO TO 48
6 OMEGNHE(XKH/ (XMa{Wm2, *WS)))*¥,5
GO TO 48
7 CHs2,*XMwOMEGNHw (Wa2 *WS)wZETAH
GO TO 48
8 ZETAHSCH/(2,*XMwOMEGNM* (kw2 ,#wS))
GO TC 48
9 CAZ2 *X]A*CHEGNA*Y (W=2 ,waS)w/FTAA
GO TC 48
10 ZETAASCA/(2.,*X]AYOMEGNAR (wed,*ubd))
48 CONTINUE
IF(XKH+UMEGNF=1 ,EQYET,0U0,5(
50 wITCri=1,0
60 IF(XKA+OMEGNA®L EQ)72,72,70
70 WITCH1==1,0
72 IF(OMEGNKeGMEGNR)ITR, 74,74
73 OMEGeEOMEGNH
GO T¢ 7%
74 OMEG=CMEGNA
75 CAPA=B/CAPH
SIGMASCAPK/(CAPr=A)
SCRIPD=CAPH®. /(CLPH/Z ,*+SIGMAw{i:m::5))
BETA=(w=wWwS) /-
SIGMAZ=Ll,/S[virAwn,5
IF(SIGMAZ2e1,4)00,80,200
80 CL=CLi(1)

I=2
G0 TO 130

g0 DC 1¢0 1=1,¢
I=]

IF(SIGMAL(I)=SIGMAZ2) 120,110,100
100 CONTINUE
WRITE(M,1085)
GO TC 360
110 CL=CLi(l)
GO T 130
120 CL=(CLLCI)I~CLI(I=1))w(SIGMA=STMat(]))/7(STGMAL(])=SIGMAL(I=1))
1 «CLL(D)
150 CLH== ,5«SIGMAww Sw(CLIC(I)=CLI(I=1))/7(SIEMALC(])=-8IGMAL(]I=1))
WRITE(~,1005)
WRITE(%,1010)
WRITE(M,1012) CaPH,nsCARK,CAPL
WRITF(™m,1015)
WRITE(™,1020)
WRITE(M,)1022) A,B,YLE,wS,XALPH.
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whITH(v,31G25)
RRITE (v, 10273 Xit,XnA,DaBES A, LETAA
WhHITH(v,103C
WRITHE(N,1081) XmaXKpr,OMeGak,ZeTar
WRITF(~%,1032)
WRITE(»,1033)
IF(w1TCH1)194,135,190
135 SAVEKERHC
RHO‘LIG
140 XBzl,=2,wXMorbBwwzwXALFHARXLE/X]IA®RHMO*Brwa/XIAN(1,/6,*(XLE®*E/15,)
1 +1, /73, wXLEw(XLE+,D))*SIGrA*CLPA(NMFLLA/CNERNH)ww2 s
2 (1,41,/3,*SIGMARCAPAPRHO®RwwZ /XN )
X922 () ,aXMuBew2w XALPhA®XLE/X14+S[{GrHAYCAPAYREO»Bewad /X AW
1 (1,76, «(XLE+E,/154)))% (1441, /%, #SIGHAvCAPAwWRKH ORGP ®2/XM)
2 " (XALPHA=XLE®L, /6, *S|GMARCAPAWNRRG*Eww2 /XN )
3 (AMwoww2e XALPHA/XIA*1,/3,#SIuMAXCAPAYRHC®*wed/X] AN (XLE+,5))
X103X8ww2ed *XQOuw (OMEGNA/OMFGAH) w2
[F(X10Y100,1%G6,150
150 Xi0sX1i0Oww,5
OMSG1=(XB+¢XLu)/(2,#X9/0MEQNhw*?)
OMSDZE(X8=X1.)/(2,*XY/0ELmww))
IF(CMSNL1Y100,167,160
160 OM1sGMSQELIww,5
IF(OrSN2)100,170017¢C
170 Om2alprSQU2ww 5
IF(RFKC)190,180,190
180 RHO=ESAVER
oMOi=0Ml
DmpesCM2
GO TL 140
160 WRITE(M,1034) 0OrC1,0M0E,0v2,0%2
OMO01=(M01/6,€8316
OMp220MU2/76,¢8316
OMi=0M1/6,28518
OM2aCMm2/76,28%18
WRITE(M,1035) O~C1,0MC2,Cm1,0M2
WRITE(M,1037)
WRITE(M,104C)
NRITE(N11042) R!—G.X(\U.CL
WRITE(M,1045%)
WRITE(M,10502
2=1,(
195 CAPVYECAPV+2,*DELTAV
OM2QMES
IF(CAPV-VYMAX)196,1906,242
166 CALL FREQ(Z2,CAPV,0M)
IF(CM)Y100,195,197
197 IF(2e)198,30L,198
168 IF(Capve2,wDELTAVYIZ2U(,190,200
169 CAPVi=N,G
OM=0rMEG
GO TCO 202
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R

242

245

250

255
260
270

2580
3o

310

320
330

340
350

CAPYI=CAPV-LELTAV
Oms,¢xDm

? CALL FREG(ZS8)CAPVL,CM)

IF(0r)100,195,2(5
IF(Z2)22C,210,22C
CAPv=(CAPVL

GO TC 306
IF(Z2z%23)230.300,240
CAPVZzCAPY

QC TC 250

CAPV1=CAPY

23=1%

CAPVECAPV+DELTAY
IF(CAPV=VMAX) 245,245,242
WRITE(M,1090) VMAX

GO TC 360

OMs ,Gw (M

CALL FREQ(ZZ2,CAPYV,OM)
IF(OM)100,195,220
CAPV=CAPV1+(CAPV2=CAPV1)/2,i
OM=,9%0OM

CALL FREG(Z2,CAPV,0M)
IF(OF)100,19%,255
IF(ABS((CAPVEe=CAPYV1)/CAPV)-TEST)300,300,260
IF(Z2»23) 280,300,270
CAPV1ECAPY

3=22

GO TC 25¢

CAPVZ2=CAPY

GO TC 250
DMECYC=0OM/6,25318

WRITE(M,1055) CAPV,ON,0MECYC
IF(wITCH1)320,310,320

X1zAlHew2+B1lrww?

X2aAlkwBlAa=AlAxplH
X3aX1wXLE+ALlAwALI-+BLlA®ELH

RPATAEXL/ (XI* 224 X2aw2 ) (XTww2+eXuwd)ww,5
THETA=ATAN(=X2/X3)

THETAL=57,2958=THETA

WRITE(™,1060) RPATA

WRITE(M,1065) THETA,THETAD
IF(WITCH2)340U,34C,33C
DP1=.001295'RHOtCAPV*r2*((CL*l.)tSIGMAt*2-1.*SIbNA-t2-SCRIPF)
SCRIFLE2 ,#»CAPHwW/(CAPH®R)
RENGECAPV*SCRIPL/XNUL

CALL FRCFAC(CAPF,xN,KENQ)
DP2=.061295*RHO-CAPV**2*(CAPK*CAPF-CAPL/SCRIFD)
WRITE(M,1070) DFL

WRITE(M,1075) L[r2

1F(2)350,360,35¢C

WRITE(M,1080

2=0,¢(
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CaAPVE=L, U

GU Ti 195
360 STOP
10605 FCRMET(1H1,59X,16HCHANNEL GEOMETHY)
1010 FORMAT(L20HC HEIGWT WwidTH

1 ENTRANCE LO0OSS FACTOR LEWGTH LPSTREAM )
1012 FCRMAT(LOX,F7,3,3H IN,28X,F7,4,3H IN, 24X, F743,22X,F7 43,9k InN)
1015 FGRMAT(LHO,55X,16HPLATE PARAMETERS)

1020 FORMAT(120HU THICKHESS LENGTH
1 ND L.,E, DISTANCE SLOTwILTE Wi E,Ay DISTANCE)
1022 FCRMET(LIX,F7,4,30 [F,2eX,F7,35,% TN, 7%, F7.4,10%,F7,5,3n 1IN,
1 2ix,F7.4)
1025 FCORMAT (129D YOV, INTEXRTIA/ZLAIY wIDTH ALPHA SPRING CO
4ANST ALFRA AT kAl F&EEQR ALPWA DAMPING RATICQ
2 )

1027 FCRNMAT(LOX,F7,4,6R LE=0",19%,F7,2,6r InelLB,L1EX,F7,2,8n RAD/SEC,
119X, F&,5)

1030 FORFMAT(120mY FASS/un1T »10Tw H SPRING CONS
17 m NATURAL FRER h LAMPlAG RATIO )

1031 FCRMAT(LOX,F7,4,6 LE/IN,16X,F7,1,6F L&/IN,LFX,F7,2,8Rn nAD/SEC,
119Xk E;2)

1632 FCRMAT(1%0,59%,15rNATURAL FrEw EXCIES)

1033 FORMaAT(L20R0 NG VIRTOAL AlrvASS WO VIRTUAL AlRM
1.ASS VIRTUAL £1=4LSS VIRTUAL AIRMASS )

1034 FGRMAT(BX,F7.,2,8H RAL/SEC,1tX,F7,2,bF RALU/SEC,16X,F7,2,c~ RAL/SEC,
1 16X,F7,2,8= RAL/SED)

103235 FCRMAT(OX,F7+2,11A CYCLES/SEC,10X,F7,2,11~ CYCLES/SEC,14X,F7,2,
1 11 CYCLES/SECs13XaF742,110 CYCLES/SEC)

1037 FORMAT(1HO,52X,15HFLLy PARANETERS)

1640 FCRMA4T(120mU FLulu LENSITY <]V EMaTIC VISCOS
11TY CROSSFLLwW LLSS LOEF )

1642 FORMAT(6X,E1L,2,9r LE/Cu IV,13%,F10,2,10F SG I+/SEC,19XsF7.8)

1045 FORMAT(L7H" RES.LTS)

1050 FCRMAT(44HD FLLIL ACCELERATION CONSIDERED)

1055 FORMAT(1R0,15X,15HFLLTTER SPEEF =E11,4,7= IN/SFC//20X19rFLUTTER FR
1EQUENCY ®F7,2,10H RAL/SEC =F7,7,31- CYCLES/SEC)

1060 FORMAT(B8HID RATIGC CF PITCHING AMPLITUDE TG UImEN
1SI10MLESS TRArSLATION AMPLITLLE 2F9,4)

1065 FCORMAT(66KHD PRASE ANGLE BETwEEN PITCHING AMD TRA
LNSLATION =F§,44,6m RAL =F9,3,4r LEG)

1070 FCORMAT(73IHU PHESSURE LAQOP FROM JUST UPSTREAM TU
1JUST LOWNSTREAM =2F9,4,9~ LR/S4 1)

1675 FORMAT(65HY FRESSURE LROP FROM OLTSICE TO JuST U
1PSTREAM =F9,4,9m LR/SG IN)

1080 FCRMAT(48HKD FLull ACCELERATION ~0OT CO~SIDERED)

1085 FORMAT (1W1,10X,11HINFLT ERRUR)
1060 FCRMAT(1HO,19X,31KNC SOLUTION FLLNR BELGA SKEED =E11,4,7R IN/SEC)
END
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SUBKRULTINE FREQ(ZZ,CAPVY,XK) ]
COM=Tn A,A1A,AlN,B,B1A,814,EETA,)CARA, CAPF,CAFH,CU, 0L, CLM,
1 OMEGNA, O~“EGNHsRMI,SCRIPH,SCARIPF,SIGMA, TRST,»,W]ITCK1, WS,
2 XALPHA  XTA)XLE ) XMy Xy X102, ZETAALZETAR
IF(Ca®y)180,190,4180
150 REMUSCAPVRSCRIPO*SIGMA/Z AN
CALL FRCFAC(CAPF ,XN,REND)
SCRIPFsCAFPF»H/SCRIFD
190 CALL EBONS(Z20,22,XK,CAPY)
SAVEA=XK
IF(L0)200,30:3,202
200 XK1=1,0
CALL EQNS(Z1,22,XX1,CAPYV)
IF(Z1) 220,210,220
210 XK=xK]
B0 TC 300
220 IF(Z0%Z21)230,300,240
230 XK23XK
GO TQO 250
240 XK1EXK
212"
XKEXK+ 2% XK
IF(XxK=10,*SAVEK)245,245,29"
245 CALL EQNS(ZGs22,XK,CAPV)
GO TC 220
250 XK=XKle{XK2=XK1)/2,0
CALL EQNS(Z0,22,XK,CAPV)
IF(ABS{(XK2eXK1)/XK)=TEST)3ui,3U0,260
260 [F(20wz21) 284,300,270
270 XK1=XK
r4E YAL
GO TC 250
280 XK2sXK
GO T3 259
290 XK=0,{
300 RETURN
END
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SUBRGLTINE EGNS(ZERG1,2ZERUZ2,0M,CAPVY)
COMMGM A,ALA,ALH,B,B1A,81H,8ETA,CAPA,CAPF,CAFH,CD,CL,CLH,
GmMEGNA, OMEGNM,RMG, SCRIPL,SCRIPF,SIGMA, TEST,k, wITCRL,uS,
KALPHA , X1A XLE, XM XN XNL p 7, ZETAA, 2ZETAR
X1la(2,=Xu)*BETA*SCR]IPF
X228 (1, #XN)*SIGMAnw2wEETAw* 2w CAPAWCARF
X3zXLE+1,/3,
X4zaCL+1,+,5«X1
X13=1,/3,
X16=1,/6,
X2332,/3,
Xii2=1,/712,
X124=1,/24,
X815=z8,/15,
IF(CAPV)?7,5,7
S ALABL  ~(OM/OMEGNA)ww2w (Ll mXMwBuw2wXALPMA*YXLE/X]IA)
1 e X16wS IGMARCAPA®RMHO®BwN®q /X1 Aw(XLE+XBLS )R (OM/CMEGNA) W2
BiamZ , wZETAA*OM/OMEGNA
ALHE = (OM/OMEGNA ) ww 2w XrMwBww2w XAl FHA/X]A
1 *X13wSIGMA*CAPAYRHOwBw 4/ XTAw (XLE+ ,5)w(0OV/OMEGrA)ww2
BiH=(,0
A2Aae XL E=(OM/OMEGNH)*#2w ( XALPHA=XLE)
1 wX16%SIGMAYCAPAYRMOYBwwl/ XMw (OM/OMEGAH ) * w2
B2AB=2 , wZ2ETAP*OMeX E/QOMEGNK
AZHE]1 ,«(OM/OMEGNH ) wwZeX13¥S | GMA®CAPAWRMOWBW "2 /XM* (CM/OMEGNH) **2
BZ2We2,vZETARYOM/OMEGNK
ZERULI=ALA%AH+BINYREA=BLAWNBZH ALY AZA
ZERO2=ALA#B2F+AzHeR1A=AlHWBZA=A2AXB1H
G0 TC 3040
7 CLA®= ,5wCLH
C31,"2,%CD*nwdS/(w=2,%kS)}
Gel,/7(Z+(SIGMAYCAPV/(BW0M))ww2uXdwwl)
AZH31 ,w (OM/ONMEGAR)*#w2+R=C/XM® (CAPYV/OMEGNM) v * 2w (CAPYV/(BWwUNM) ) ww2
1 *SIGMARCAPASGH(Z , #S[GMAwRWIwXdw( Se(ClLed,)nx2=,125«X1*«CLH)
2 w2, wZ*S]GMAwW(BWOM/CAPY)*w 2w (SIGMARX4w (X2Iw(CLel,)+Xx122wX1)
K] *,25«CLH"  OwSIGFAW(CL*L,)W(2,*,5¢X1))eZwX13Iw({BwOM/CAPV)ww®g)
B2H=2,»ZETAR®OM/OMEGNR*2 , wRRO/XMw (CAPV/OMEGINR)w*2wCAPY/(R*0OM)
*#Z S GMA*w 2w CAPA*YLW (SIGMA®wew (CLvl, ) wX4w(X13%X1+1,)
*X128wSJUMAwR2 XL wnlwXam  SeSIGMAW(CL*L, ) v (X2¢ SwCLH)
*(B*OM/CAPV)ww2w (X112w%wxle ,5%(CL*1,)))
IF(WITCH1)1G,20,20
10 ZEROi=zAZ2H
2ERQ2=B2H
G0 TC 300
20 VHRE=SIGMAww 2w CAPAWGW(Zx(1,»CL)*SIGMAw(CAPV/ (BwOM))ww2
1 *X4w ( X2+ ,5#CLH))
VhIS=Z«SIGMA*CAPAwGYEwONM/CAPVW (1. *SIGMA**2uXdaw SwXiw
1 (CAPV/(B¥*(0M))ww2eSIGMA® (X2 ,S5«CLR)w(CAPV/ (EwDOM) )ww2)
VARBwSIGMA** 2w CAPAYGY (Zw (CeX23eX13wCL)aSIGMAR(CAPY/(B*0OM) I w%?2
1 *XQu( S*XI*SIGMA*CH ,SuXwl,*SIGMARCe ,25%CLA))
VAISwZwSIGMA*CAPAwG*E*0OM/CAPY X (X134SIGVAYR 2R Y 4u({XigwuXiel,+C)*
1 (CAPV/(B*OM))wn2eSIGMAw( , DeX1*SIGMAWCe ,SuX2+2 ,wSIGMARC

N) 2

(7 I I
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», 22wCLAI Y (CAPV/ (BwOM) ) w2

ALAST e (UM/U EGRN A R R 2w (L qm XV *BwwSaXALPRAYXLE/X]TA)

1120 BETAwCAPFwhwRkMHL*S /AT A« (CAPV/U+EGNA)swRe ((Z,=XN)aSIGEFAYYAR
(o= X\N) Sl GMARREwCARPAR LSS UMAr Wb X *wBETiwCArPA»SCHRIPL/CAPH)
*hud/XTAN (CAPY/CFEC A ) woZw(UAPY/OM) w2 eSS [ GUavAPARGY

(2, #SIGrameIaXdu( (CLL, ) *(XITwXi*SICmACLRX3e,25%«CL AW(XLE®,S)
*X1SeX2% (XLE* B7E)+51GMASCHXT) e Sexiw (L7 eXinS[Gawle{XLE+,D)
*X)122X2% X3k 37oWCLA*(XLE+E, /9, ) ) e w7t ]RiaAn(gelh/CAPY ) ww2

* (L, OSIG AN (SL*l ) *XIw (X 2H0wX 149 #dCY*X1T1ev X1 wSInmnelw{XLE+,B)
*XLL2eXx (XL FEr.S) D0 vk 25w ( QL+t ) (XL bE®,6)eX126nX1*
(rLE*XBEL12) )+ (Z72wCLAN(XLE*e /Y, ))@2Z%n15»{ Y| E*XR1E ) »
(belv/CAFY)wea)

S1a8r ,wlETARARLY /OvECN A% (1abwrneTawlaFFalxrniwt /y]lawlCary/LmBEGENA) PR

“ (2w (2% )eSIRrPeVa]eylInle, =X\ )wS vhwrDw(prFan/wbw a/CAPY
wr WM e X T AR (CAPV/OYEE  a)Yww2wlowCart wS [l mpwe2sapan./0M

w (SliomAnvZendw (CLel (In( 128X e (X Fe d)rid3e(1,*C)wiALk+,375))
+ Baxl eSS v ienlwd 4w (X124 X 1w { X E*XRIDI*X 6+ (7 ,+C)w (AL E*,5))
“ SeSICr A (CL*L, ) XdEn( SV ws]lrvAeCe , Sa)ee? , vS[ Al , 25«0 4)
(RN /CaPY ) we2o (XL 4wy le (Y FeXBiS)eX 1wl  Y%X3
*X16%(1,+C)s(XLE*,5)))

ALHZw (OM/0NBGNA ) w2 WXy w2 W XA Fmh/X]aw, 2257 ETAwCAFFwAvRnU®b/X] 4

w(CAPV/U'ER A)ewZw ( (2, arx  )wlSIGNAR wmeD *C ] iwwdwxt wrETA
*CAPA®SCr P /CAFFP)*RRU/XTAR(CARPYV/(vEL N A)ewd e (CiFVv /O )ww2s
SIGMAwCAFAwRGw (2, wSTuMavedwyow( Bw(miel,)neX2ex8u, 125 2X2IwCLH*LS)
=2 w2 xS uMAr(BeCM/CaPy ) ve e (S]IGMARXaw(XeIN (L, ) e (XLE*,875)
#XL120X2w (X Ee,5))* 250l LneX3e EwSr0maw ([ i, )wXdw(,Cnxie2,))
e/ wX13e(=wQr/CAFVIPrdn (X e ,5))

RimWg 120 BETaxCuPFwarimunS /X1 Ae (CAPV/(vEGNL)wwDy

{Ze (2 =X ") *SIEMAw R +Zw(2,eX ) aS]IGvavedwl aPawEw(v/CaPY)

+z #RHORL /X ]AR(CAPV/OVELNAY®w 2w CARPVWZ wS [ EMawwZelaPAYC/OMw
(STOMA*®Zw (CLel ) Xae (XLTuxliw(XLE+, K 375)*)X3)

#0124« SIGHAwR2uXlww 2 (XLE+ D) wX4o SeSICHoe(CLeL,)®XS

w(X2% SeC L H)»(RuLm/CAPV ) wn2w(X112eY 1l (XLFe B)e ,Bw(CLel )*X3))

TIF(WITCH1) 30,40,30
I0 ZERU1sALA+XLEwALN

ZERUZz=R1lA+XLEwR1H
GC T¢ 300

40 AZABRS X[ EB~(CM/CMEGNM)YwZe (XALFHAmY[ E)SREL/XVO® (CAPV/NHEGAM) w2

Lo SV I RNV I,V E Sl

1
2
3
4

*(CAPV/ (w0 ) )wwzxSIGvieCAPAnGEw (2 wSIGMATRINX4»

((CL*1, )% (X13wX1®SIGMARC+X1SwX2+S]GrAwC*,25%CL4)

* SwXiw(r112aX1wS G AwleXx1l12wX24,3759CA))

wZ #2xSTCMAR(BeCl /JCAPVIWwR2a(SINMAnYcw( 2Ex((La1,)eXL24%K])
©,375%CLAn ,SeSIGMAY(CL*L, )w(X187X1el , +C)eX1iZwxlwS]u’ANC
wX112%XZ2) =2« X1A®(Ew{“/CAFY)®Ywh)

R2AEwZ wZETAM® OV X | E/CHEGN-*Z , ehHO/XMe (CAPV/ MEGN ) w w29 APV/ (BRPUYNM)

wZwSIGMA*®2wCAPA** (SIGMARezw (CL*1,)*X4n
(,125%X1eX23%(1,+C) )+, S5xS]aravelde X oX4u(xinawXxieXinn(i,+())
» SeSIGMAR(CL*L ) OaX1oSTONMARCH Se X242, vS]LML¥C~,25%C[A)
«(FeOM/CLpYy)we2e (X1Z4nxleX1ew(CLr1,)+X16%(4,+C)))

ZERQ2=241AwWA2~+RiHWRzLuBLARER el nwa2A
ZERUecEALA»B2r+AZ2HRRIAwA F*RcA=22A®BlH
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ang

1690
170

ia¢

1990

ZERUFPSZERU2w=wCaPV/CH
RETUFK}
EnC

SUBK: UTINE FRCFAC(CARF X 4,3z )
IF(RENC=1828457) 15400150, Ln0
xl\"lo L

CAPF=64,/REI:

GC Tir 192

IF(REND=6644,7) 170,180,133
XNy,

CAPF=,0$5

GO TO 190

XNz,25

CAPF=,316/REDwwXy

RETURN

END
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CHANNEL GEOMETARY

WETGHT wipth ENTRANCE LOSS FACTOR LENGTH UPSTREAM
9,104 IV 4.062% 1N a.a00 0.880 1N
PLATE PARAMETERS
THICANESS LENGTR WD L,E, OISTANCE  SLOTWIDTH
0.0625 (N 2,000 1IN -0,0629 0.0312% IN 0,1238
MOM. INTEHTIA/ZUNIT WIDTH TALPFA SPRING CONST ALPNA NATURAL FREQ ALPHA DAMPING RATID
0,1362 L3=1N ? - —  __  &8.p3 RAD/SEC 0.000%8
MASS/UNIT =lDTH M _BPRING CONST W NATURAL FREQ H LA
0.1170 L6/ N 1390.6 LR/IN $4,51 RAD/SEC 0.0005%0
: T T NaTyRaL FREQUENCIES
NG YIRTUAL AIRMASS - NO VIRTUAL AIRMASS VIRTUAL ALRMASS VIRTUAL ALIRMASS
89.76 HAD/$Q 44,0F RAD/SEC 0 A8.40 RAW/SEC 43,08 ®AD/SEC
14.29 CYCLES/SEC 7.33 CYCLBS/SEC 14,07 CYCLES/SEC 7.18 CYCLES/SEC

" TFLOW PARAMETERS

YLUlo LENSTTY T 77 kINEMAT(C viscokity CROSSrLON LUSS CORr
o 4,34-705% (w/Cu IN 2,34.092 SQ IN/3fC 0,600
i RESULTS e e
¥
 ___FLUIU AGCELERATION CONSIDEREL e
oA R
[=<] ! FLUTTER SPEED ® 3,62430001 IN/SEC
— FLUTTER FHEQUENCY = 87,85 WAL/SEC » 10 A0 CYCLES/SeC ... ___
RATI) OF PITCHING AMPLITUDE TQ DIMENSIONCESS TRANSLAT|OM AMPLITuuk & __0,7344 ———
PrASe ANGLE JETWCEM PITCHING ANE TRANSLATIOMN ® +1,27199 RAD =  =4y,894 DtG
FLui) aCC~LERATION MOT CONSILERED [
NO 3ULUTION FOUND WELOW SPERY = 2,5000e003 JN/SEC i
"
"
. T T T T
.
: [,
’
.

SAMPLE PRINTOUT
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