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FLOW-INDUCED VIBRATIONS O F  A FLAT  PLATE 

SUSPENDED IN A NARROW CHANNEL 

By Franklin  T. Dodge and  Arthur F. Muller 
Southwest  Research  Institute 

SUMMARY 

Elastically  restrained  plates  in  narrow flow channels  can  vibrate 
excessively  when  the flow rate  past  them  reaches  some  critical  value. 
Because of the  importance of this  phenomenon  in  nuclear  reactor  design, 
an  analytical  study of such  vibrations  has  been  conducted.  The  theory 
i s  based  upon  the  one-dimensional,  hydraulic flow assumption  and  includes 
viscous  pressure  drops  and  energy  losses  at   channel  contractions  and 
expansions.  Since  the  vibrating  plate  influences  the  hydrodynamic  load- 
ing and  vice  versa,  the unknown  flow  velocity  and  plate  vibration  frequency 
are  coupled  and  must  be  determined  simultaneously.  The  results  of  the 
calculations  for  several  typical flow situations show that  the flow velocity 
necessary  to  induce  vibrations  decreases  as  the  channel  height-to-plate 
length  ratio  decreases;  this is in  substantial  agreement  with  previous 
potential flow calculations  although  not  with  experimental  data. 

INTRODUCTION 

Many  challenging  problems  have  been  encountered  during  the  hydraulic 
and  thermal  parts of the  design of nuclear  reactors.  For  example,  special 
"no-leak"  high  pressure  pumps  had  to be built  to  prevent  radioactive  con- 
tamination  through  leakage of the  coolant  flow. In other  cases,  new analyses 
or  concepts  had  to  be  developed.  For  example,  the  idea of a "hot channel 
factor"  has  been  devised to establish  the  maximum  permissible  heat  flux  in 
the  core.  Likewise,  magnetohydrodynamic  pumps  first  came  into  use  for 
pumping  the  liquid  metal  coolant  used  in  some  reactors. 

The  fluid  flowing by the  fuel  elements  and  control  rods is a source 
of much  design  concern.  Fuel  elements  and  control  rods  are  contained  in 
what are  essentially  narrow  channels,   and  the flow of fluid down these  nar-  
row  channels  must  be  sufficiently  high  to  keep  the  temperature  within  safe 
limits.  Small  changes  in  the flow rate  or  the  channel  clearances  result  in 
rather  large  changes  in  the  heat  released  so  both  the flow rate  and  the 
channel  dimensions  must  be  carefully  controlled.  In  order  to  keep  the  core 
small and  the  energy  release  high,  it is desirable  to  have large flow r a t e s ;  



but,  aeronautical  history  has  demonstrated  that  high-speed flow along  an 
elastic  structure  can  sometimes  lead  to  disastrous  self-excited  vibrations 
of the  structure.  Indeed, it has  also  been  observed  that  in  nuclear  reactors, 
the  control  rods  or  the  fuel  elements,  or  both,  can  vibrate  excessively  when 
the flow reaches  some  critical  value.  These  kinds of vibrations seem to 
have  been  the  cause of the  failure of the  core of the Kiwi  B-4A  nuclear 
rocket  engine  (ref. 1); flow induced  vibrations  also  were  evident  in  certain 
components of the  Rowe  Power  Plant of the  Yankee  Atomic  Electric  Com- 
pany  (ref. 2 ) .  

Even  though  the  problems  with  the Kiwi engine  and  other  reactors 
have  been  corrected by a se r i e s  of mechanical  "fixes, ' I  important  reasons 
still  exist  for  obtaining a better  understanding of the  physical  mechanisms 
causing  the  vibrations.  Narrow  channel  flow,  which  came  into  prominence 
in  pressurized  water  reactors,  is  becoming  more  common  in  high  density 
heat  exchangers, so the  ability  to  predict  flow-induced  vibrations  ahead of 
time  and  then  make  necessary  changes  in  the  design wi l l  be of considerable 
value.  For  this  reason,  some  previous  research  has  already  been  conducted. 
Burgreen,  et   al .   (ref.  3 )  made  an  experimental  study of several  typical 
heat-exchanger  tube  bundles  and  found,  apparently,  that  vibrations of the 
rods  could  be  excited  over a wide  range of flow velocities  past  them.  From 
these  studies,  they  concluded  that  the  vibrations  were  self-excited  and  not 
a result  of the  shedding of von  Karman  vortices.  Bland,  et al. ( re f .  4), of 
NASA-Langley  conducted a combined  experimental  and  theoretical  study 
of a rigid  plate  elastically  suspended  in a two-dimensional flow channel. 
Their  analysis  predicted  the  onset of vibrations  fairly  well  for  wide  channels 
but  did  not  agree  with  experimental  results  for  narrower  ones.  Miller  and 
Kennison  (ref. 2 )  of Knolls  Atomic  Power  Laboratory  made a hydraulic- 
flow  analysis of the  vibrations of a rigid  plate  in a narrow  channel.  Although 
their  results  did  not  agree  with  their  experimental  tests,  they  did  show  that 
there  were  some  positions of the  plate  in  the  channel  that  were  more  stable 
than  others . 

The  purpose of the  analysis  presented  in  this  report,  which w a s  
undertaken  in  conjunction  with  the  experimental  program  conducted by NASA 
mentioned  previously  (ref. 4), w a s  to  discover i f  a simplified  hydraulic 
flow  approximation  would  or  would  not  be  sufficient  to  explain  the  variation 
of the  cri t ical  flow velocity  with  channel  height  for  narrow  channels.  Thus, 
the  analysis is complementary  to  the  potential flow theory  given  in  ref.  4, 
which  applies  to  wide  channels. 

SYMBOLS 

a 

A 

thickness of plate 

b/H,  ratio of plate  length  to  channel  height 
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b length of plate 

c h  damping  coefficient for translational  plate  motions 

Ca damping  coefficent  for  pitching  plate  motions 

- 1  
f i =  HW + d W  - W.4 , hydraulic  diameter of channels 

F friction  factor  for  channels A o r  B when  plate is centered 
in  the  main  channel 

3= Fb/v, frictional  pressure  drop  factor 

h displacement of leading  edge of plate  from  centerline of 
channel 

he . a .  displacement  of  translation  spring  at  elastic  axis 

H height of main  channel 

mass   moment  of inertia  about  the  elastic  axis,  per  unit 
width of plate 

KD loss  coefficient  for  cross-flow  mixing  around  sides of plate 

Kh spring  constant of translation  spring 

KL  loss  coefficient  at  leading  edge of plate 

dKL 
KLh = , ra te  of change of KL with  translation of plate 

Ka  spring  constant of pitch  spring 

1 dKL K L ~  = "b - , r a t e  of change of KL with  pitching of plate 
2 d h  

m 

NRe 

V 

W 

W S  

total  translating  mass  per  unit  plate  width 

Reynolds  number 

flow  velocity  in  main  channel 

width of channel 

width of slot  between  plate  and  each  side  of  channel 
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x~ .e .  distance  from  elastic  axis  to  leading  edge of plate, mea- 
sured  in  plate  lengths 

Xa distance  from  elastic axis to  center of mass,   measured  in 
plate  lengths 

a pitching  angle of plate 

Sh = c h / [  2 m ( W  - 2Ws)onh],  damping  ratio  for  translational  motion 

5 ,  = ca/[ 21a(W - 2W )una],  damping  ratio  for  pitching  motion 

v kinematic  viscosity 

P fluid  density 

0 critical  frequency 

ordl 
= [ K h / m ( W  - 2Ws)]1'2,  natural  frequency  in  translation 

Una = [ Kh/I (W - 2WS)l1 / 2  , natural  frequency  in  pitching 

ANALYSIS 

Because of the  large  number of parameters  affecting  plate  vibra- 
tions  in  narrow  channels,  there  may be several  conceivable  mechanisms 
bywhich  the  vibrations  might  be  excited.  Theories  based on each of the 
mechanisms  presumably  can  predict a different  range of cri t ical  flow 
velocities  and  different  effects  when  some of the  parameters  are  varied.  

In order  to  gain  an  understanding of the  mechanisms  involved  in  these 
self-  eccitedvibrations,  Bland,  et  al.  (ref. 4), of NASA-Langley  Research 
Center  conducted a s e r i e s  of t es t s  with  the  apparatus  similar  to  the  one  shown 
schematically  in  Figure  1. In their  idealized flow channel,  the  width of the 
plate  was  nearly  equal  to  the  width of the  channel,  and,  hence,  the flow 
was  nearly  two-dimensional.  They  found  that  the  plate  would  begin  to 
vibrate  only  for  airspeeds  above  some  cri t ical   value,   but,   that   once  begun, 
the  vibrations  would  persist  for  airspeeds  lower  than  the  critical  value 
until  at  some  even  lower  speed  the  vibrations  would  stop.  These  "starting" 
and  "stopping"  speeds  were  almost  equal  for small channel  heights.  The 
cr i t ical   speed  decreased as the  channel  height  decreased,  but,  below a 
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FIGURE 1.  -LANGLEY  RESEARCH  CENTER  APPARATUS 

small enough  height,  the  speed  increased  substantially,  which  was  tentatively 
explained as  due  either  to  viscosity  or  the flow around  the  sides of the  plate 
in  the  gap  between  the  platc  and  the  channel  walls.  They  also  presented a 
theory  for  inviscid,  incompressible  linearized flow  in a channel  which 
involved  an  extension of the  kernel  function  analysis of wall  effects  on a 
two-dimensional  oscillating wing in a wind tunnel  (ref. 5). For   mos t  of the 
t e s t s ,   i t  w a s  concluded  that  the  theory  gave  reasonable  agreement down to 
ratios of channel  height  to  plate  length of about 0 . 2 .  For   ra t ios   less   than 
0 .2 ,  the  theory  did  not  agree  with  the  experimental  tests. 

Miller  and  Kennison  (ref. 2 )  conducted a s e r i e s  of tes t s  of narrow 
channel, flow -induced  vibrations  with  an  apparatus  shown  schematically  in 
Figure 2 .  Their  analysis  included  viscous  effects but  not c r o s s  flow around 
the  sides of the  plate.  As  mentioned  earlier,  their  theoretical  results  did 
not  agree  with  their  experimental  tests,  but  they  did  show  that  less flow is 
required  to  induce  the  vibrations  as  the  depth of insertion of the  blade  into 
the  scabbard is reduced. 

A 

SUbLUrd 
/ l / l l l l / / / l l l l l l l l l l  

Flow - 
Iu A - A  

FIGURE 2 .  "KNOLLS ATOMIC POWER  LABORATORY  APPARATUS 
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The  plate  vibrations  in  both of the  setups  shown  in  Figures 1 and 
2 were of the  self-excited  type.  For  some  other  range of the  parameters ,  
however, a high  frequency  vibration  might  be  excited  by  vortex  shedding  in 
which.  the  trailing  edge  geometry of the  plate  plays a large  part;   but  this 
type of excitation  should  not  be  important  for  small  channel  height-to-plate 
length  ratios  although  it is important  for  f lows  across  elastic  structures 
such  as  heat  exchanger  tube  bundles  (refs. 6,7). Also,  in  some  cases, 
turbulent  fluctuations  may  cause a low level  vibration.  Consequently,  the 
purpose of the  analysis  presented  here  was  to  discover if  a hydraulic flow 
theory,  neglecting  vortex  shedding  and  turbulence  "noise, I t  would  be  suf- 
ficient  to  predict  accurately  the  critical flow velocity  for  ratios of channel 
height to plate,  length  less  than  about 0 .2 ,  for  which  potential flow theories  
a r e  known not  to  be  applicable. 

A one-dimensional  theory  allows  viscosity,  energy  losses  at  abrupt 
changes  in  the  channel  area,  and  plate  thickness  all  to be taken  into  account; 
but  neither  the  hydrodynamic  loads  nor  the flow split  between  the  upper  and 
lower  channels  can be calculated  as  precisely  as  in  the  potential flow flutter 
approximation.  Nonetheless,  both  theories  are  similar  inasmuch as they a r e  
not  response  analyses  but  rather  hydroelastic  analyses  in  which  the  vibrating 
plate  influences  the  hydrodynamic  loading,  and  vice  versa. 

P P 

FIGURE 3 .  "SCHEMATIC OF FLOW  CHANNEL 

The  general flow geometry  is  sketched  in  Figure 3 .  A plate of 
length b and  thickness a is  elastically  suspended by torsion  and  translation 
springs  in a flow  channel of height H. The  width of the  channel  is W ;  there  
is a gap  of  width Ws between  the  plate  and  each  side of the  channel so the 
width of the  plate  itself is W - 2Ws.  The  distance  from  the  elastic  axis of 
the  springs  to  the  center of the  translating  mass  is  X,b, and  the  distance 
to  the  leading  edge of the  plate is X1, e. b.  (In  the  Langley  Research  Center 
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apparatus,  the  test  channel  stands  vertically  and is connected  to a vacuum 
chamber  downstream of the  plate.  Temperature  controlled  room  air  flows 
through  the  channel  to  the  vacuum  chamber,  with  the flow rate being  con- 
trolled by a downstream  valve. A bell  mouth  entrance  to  the  channel  and 
a long entrance L are  used  to  provide  uniform flow a t  the  plate  location.) 

For  the  purposes of analysis, a number of flow stations  are  erected 
in  the  channel, a s  shown in  Figure 3. Downstream  locations  are  measured 
in  an  x-coordinate  axis  fixed  at  the  centerline of the  channel  at  the  point 
where  the  leading  edge of the  plate  intersects  it  when  the  plate is  centered 
in  the  channel.  The  translation of the  leading  edge  from  the  centerline of 
the  channel i s  denoted by h and  the  pitching  angle by a. The  method of 
analysis  is  to  determine  the  pressure, P, and  velocity, V, at  each of the 
flow stations  in  terms of the  unknowns h and a and  then  use  these  pressures 
and  velocities  in  the  equations of motion  for  the  plate  to  determine h and a 
a s  a function of time. In general, h and a wil l  have  nondecaying  amplitudes 
only if is greater  than  some  critical  value. * 

- - 

For  a given  total  pressure  drop, P o  - P4, the  average  velocity V 
- - 

in  the  main  channel  upstream of the  plate  may  vary  as the  plate  moves  about 
in  the  channel;  likewise, a constant V may  cause a varying P o  - P4. Thus, 
both V and Pq, in  general,  may be time  varying,  and  this  fact  should be 
included  in  the  analysis.  (It  should be noted  that  in  classical  flutter  analyses 
the flow approaching  the  plate is   assumed to  be constant.) 

- - 
- 

The viscous  forces  or  energv  dissipation  in  the flow are  calculated 
by using  friction  factors  and 
number.  Thus,  at  station 1, 
average  pressure  across the 

loss coefficienis  which  depend on the  Reynolds 
just  ahead of the  leading  edge of the  plate,  the 
channel i s  

- - 
P1 = Po - -  1 pv2(Ko +F -) L - p L d t  dV 

2 Os, 

In Eq. (l),  KO is the pressure-drop  coefficient  for  the  entrance  from  the 
atmosphere (KO > 1;  it  equals one  only for a smoothly  streamlined  entrance), 
and Fo is the  friction  factor  for  fully - developed flow in  the  channel  based  on 
the  instantaneous  Reynolds  number, V B o / v ,  w h e r e n o  is the  hydraulic  diam- 
eter ,  2HW/(H + W). Furthermore,  the  average  mass-flow  velocity  and  the 
average  momentum-flow  velocity  are  assumed  to be approximately  equal. 
Unsteady  velocity  profiles  are  not  hown  accurately enough,  anyway,  to 
enable  the  analysis  to be made  more  exact.  Likewise, a friction  factor 
based  on a steady  velocity  equal  to  the  instantaneous  velocity is used  because 
of the  lack of any  convenient  data on friction  factors  for  unsteady flow. 

-y=dicates that that quantity'  may  vary  with time.' 
. ~- . 
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At station 2A, the  energy  equation  for  the  part of the flow entering 
channel A is 

where KLA is the  loss  coefficient  for  the  channel  contraction.  The  height of 
channel A at  the  leading  edge of the  plate is approximately 

- 

- 1 
H ~ A  = z ( H  - a cos a) - h ( 3 )  

Conservation of flow a t  the  leading  edge  gives one relation  for  determining 
the  flow-split  between  channels A and  B; i t   i s  

" " 

Now, concentrating on an  arbi t rary point  in  the  interior of channel A, 
the  integrated  form of conservation of flow for  the  control  volume  spanning 
channel A (Figure 4) is 

Evaluating  these  terms  for the  indicated  infinitesimal  control  volume,  and 
letting  the  size of the  control  volume  vary  as  dictated by the  plate  motion, 
the  differential  form of conservation of flow in  channel A is   seen to be: 

where QAB is   the   cross  flow from  channel A to  channel B through t he  slots, 
per  unit  length of the  plate,  and  the  channel  height, HA, is approximately 

- 
- 

aV. 
VA + T A X  

1811 

"P 

FIGURE 4. -CONTROL VOLUME FOR FLOW CONSERVATION 
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Calculating  the cross-flow.relationships between  the  pressure  drop  across 
the channels  and  the flow through  the  channels is a difficult  problem  which 
is still unsolved  analytically.  Thorpe (ref. 8) gives a good  review of t h e  
work  that  has  been  done  and  recommends  computing the "jet"  velocity, VAB 
(Figure 5 )  by  assuming it is equal  to the velocity  in  channel A after  being 
accelerated  through  the  pressure  drop PA - PB, or,   in  other  words,  

- 

- 
Then QAB is  given  by  VABmultiplied  by  the  flow  area  normal  to  the  velocity, 
o r  

- 

where  CD  accounts  for  the  jet  width, Wj, not  being  equal  to  the  slot  width, 
ws. 

FIGURE 5. -CROSS FLOW 
THROUGH SLOTS 

AX 

- 
PA 

FIGURE 6 .  - CONTROL VOLUME FOR 
MOMENTUM  CONSERVATION 

The  integrated  form of the  conservation of momentum  for a control 
volume  spanning  channel A (Figure 6 )  is 

C( fo rces ) ,  = ;iE(mcvvA) +(x - momentum  flow)out - (x - momentum  flow)in 
d -  - 

By  letting  the  control  volume  become  infinitesimal  and  taking  into  account 
the  varying  size of the  control  volume,  the  differential  form of conservation 
of momentum  for  channel A becomes 

9 



The  viscous  shear stresses are based  on a friction  factor, FA, through the 
Darcy-Weisbach  relation TA = pFAVA/8. The  hydraulic  diameter, aA = 
~EAW/(ZA -k w - ws), is based  on a flow a r e a  of EAW and  an  average  wetted 
per imeter  of 2RA + w t (W - 2 ~ ~ ) ;  tke  cross  flow aAB is assumed  to  leave 
the  control  volume  with a velocity of VAB in  the  x-direction. 

- 
- - -2 

The  frictional  pressure  drop  in  the  short   trail ing  edge  region  near 
station 3A is not  calculated  explicitly  but is assumed  to  be  given  accurately 
enough  by  the  preceding  equation.  The  pressure  in  channels A and B is 
taken  to  be  equal  at  the  exit  plane  similarly  to  what is done  in  potential  flow 
around  airfoils  (the  Kutta  condition).  Experiments  have  verified  this  to be 
true  even  for  viscous  flows  (ref. 8) .  Thus 

The  trailing  edge is sufficiently  streamlined  that  exit  energy  losses  can  be 
ignored.  Then  an  energy  balance on the two merging  streams  yields 

where  the  channel  height H3A is 

Conservation of flow requires 

- - 
It i s  the  equating of the  pressures  P3* and P3B at  the  exit  plane  that 

allows  the  flow-split  around  the  leading  edge of the  plate  to  be  determined. 

Pq, h(t) ,   and  a( t )   are  known]  and  only  nineteen  equations  (including  the 
similar equations  for  channel B).  

- In  other  words,  without  Eq. ( l o ) ,  t h e r e a r e  twenty  unknowns  [assuming PO, 

The  above  equations  and  the  two  equations of motion  for  the  plate 
allow  the  critical  velocity  to  be  calculated,  in  principle.  However,  the  con- 
ce rn   he re  is only  with  the  onset of sustained  vibrations, so  by assuming  the 
amplitude of the  vibrations  are  small  the  equations  can be linearized, 
This  allows  the  critical  velocity  to be determined  much  more  easily 
since,   after  l inearization, all the flow equations  and  the  hydrodynamic 
loads can  be  integrated  analytically. 

10 



Linearization of Flow  Equations 

Now, all the  parameters  with  bars  over  them are assumed  to  be of 
the  form 

- 
E(x, t) = E(x) + e(x, t) (14) 

where E(x) is the  steady  state  value of E obtained  when  the  plate is  a t   r e s t  
in the  center of the  channel  and e(x, t) is a small fluctuation  of  the  order of 
magnitude  of  a(t)   or  h(t) .   Furthermore,   i t  is assumed  that  ie/El<<  1. 

The  complete  set of linearized  equations is given  in  Appendix  A,  but 
there  are  several  points  in  the  linearization  that  should  be  discussed. In 
Eq. ( l ) ,  KO is assumed  to be  determined  by  the  inlet  geometry of the  main 
channel so i t  is not a function of Reynolds  number.  Furthermore, Fo is 
assumed  to be  given  accurately  enough by the  following  correlation  equations 
( r e f .  9): 

- 

[ T = 64, 

Fo = - T = 0.035, n = 0 for 1829 <-NRe  56645  (15b) 
- 

T = 0.316, n = - for NRe 2 6645 1 
4 ( 15c) 

Equations  (15a,  c)  are  for  laminar  and  turbulent  flow,  respectively,  although 
Eq.  (15c)  holds  exactly  only  for N R ~  < 100,000 ( r e f .  9 ) .  Further,   these 
are  for  circular  pipes,   but,  by using  the  equivalent  hydraulic  diameter, 
they  are  adequate  for  noncircular  cross  sections,   especially  in  the  turbulent 
regime.  Equation  (15b)  approximates  the  transitional flow regime by a 
constant  friction  factor of 0.035.  Using  these  equations,  the  unsteady 
friction  factor fo works  out to  be 

fo = -nFo(v/V) 

where Fo is the  constant  friction  factor  for  the  steady  velocity V. This 
relation, as  mentioned  previously, is based  on  the  assumption  that Fo = 
Fo + fo is equal  to a friction  factor  based  on a steady flow equal  to V = V + v. 

- 
- 

In  Eq. ( 2 ) ,  the  steady  state  loss  coefficients  in  channels A and B a r e  
equal, KLA = KLB = KL. The  unsteady  loss  coefficient, kLA, is based  on 
a steady flow through a constant  channel  contraction  equal  to  the  instanta- 
neous  contraction  determined  by h and a. Even  with  this  assumption,  how- 
ever ,   there   seem  to  be  no  existing  data  which  could  be  used  to  indicate 
precisely how kLA ought  to vary  with a; that is, loss  coefficients  are  usually 
given  only  for  parallel  channels.  Yet  experiments  with  inclined  plates  in 
steady  flow  show  that  the  extra flow separation  (Figure 7) in  the  diverging 
channel  leads  to  loss  coefficients  half  again as large as  might  be  expected 
for  the  same area reduction  in  parallel  channels (ref. 8). Furthermore,  
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FIGURE 7 .  -FLOW  SEPARATION  IN DIVERGING CHANNEL 

this  part  of the   loss   i s   nonsymmetr ica l   as   there  is no  corresponding  loss  in 
the  converging  channel.  Because of this  fact  and  the  lack of any  real  data, 
i t   is   assumed  here  that   the  angular  variation of kL  in  the  diverging  channel 
is  equal  to  half  the  variation  caused  by a parallel  reduction  equal  to  ba.  Thus, 

where  dKL/dh  can  be  evaluated  from  existing  tables of loss  coefficients 
( r e f s .  9,  10). U(a)  is  the  unit  step  function  defined as 

U(a) = 0 for a < 0 

U(a) = 1 for a > 0 

In  Eq. (8), the   c ross  flow GAB af ter   l inear izat ion  is  

and 

since VAB differs  from VA only by t e r m s  of the  order  of a or h.  Also, 
because of the  symmetry of flow when  the  plate is at   res t   in   the  center  of the 
channel,  the  steady flow velocities  in  channels A and B are   equal ,  VA = V B  = crV. 
Hence,  qAB,  in  this  l inearized  form,  merely  represents  the  portion of the 
undisturbed  main flow crossing  f rom one  channel  to  the  other  because of 
the  inclination of the  plate.  This  is  probably a very  crude  approximation  to 
the actual  cross  f low, but i t  is likely  to be the  best  that  can  be  done  using a 
hydraulic  theory. 

- 

- In  Eq. ( 9 ) ,  the  unsteady  part of FAvi /aA has  contributions  from all 
of FA, VA,-andaA.  All of these  variations  are  taken  into  account,  although 
once  again  FA = FA + fA is set  equal  to a friction  factor  based  on a steady 
flow of VA + vA and a constant  hydraulic  diameter of BA = nA + dA. 

- 
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Correlation  equations similar to  those  used  for Fo are  used  to  compute FA 
and  fA;  the  pertinent  Reynolds  number  here is NRe = crVDA/v. 

- 

Finally,  the  linearized  analysis  shows  that  the  unsteady  pressure, p4, 
is a linear  function of the  unsteady  velocity v in  the  main  channel  plus a 
function  proportional  to U(a) badCL/dh,  the  loss  coefficient  for  angular 
variations  in  the  channel  height.  Considering  that  this loss coefficient is 
computed  in a r a the r   a rb i t r a ry  way,  it is neglected  in  calculating p4. Thus, 
p4  does  not  depend  explicitly  on  either h o r  a, and no contradiction is implied 
by setting  both  p4  and v equal  to  zero.  In  other  words, i f  the  pressure  drop 
Po - P4 is  constant  (p4 =O), then  the  linearized  analysis  says  that v = 0; 
likewise, i f  v = 0 then p4 must  be zero.  Consequently,  both p4 and v a r e  
put  equzl  to  zero  in  what  follows,  although,  for  vibrations of finite  amplitude, 
e i ther   P4   or  v must  be  allowed  to  vary. 

- 

Linearized  Equations of Motion for  Vibrating  Plate 

The  linearized  torsional  equation of motion  for  the  plate i s  

where  7A  is   . the  l inearized  shearing  stress on the  side of the  plate  facing 
channel A and  likewise  for T ~ .  

The  linearized  translational  equation of  motion is  

where   he , aa  = h - Xp . e.  ba. 

By substituting  the  relations  for 7*, ‘rB, pA,  and  pB  given  in  Appen- 
dix A into  Eqs.  (1  6)  and  (17)  and by assuming  that h = ho  exp(iwt)  and 
a = a exp(iwt),  the  problem of determining V and G, can be reduced  to  the 
simultaneous  solution of two algebraic,  homogeneous  equations.  The  equations 
a r e  of the  form 
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and 

Equation ( le )  is derived  from  Eq.  (16),  and  Eq.  (19)  from  Eq.  (17).  The  A's 
and B's are  functions of  the  unknown  velocity V and  the unknown frequency o 
as shown  in  Appendix  A.  Thus,  Eqs.  (18)  and  (19)  can  be  solved  numerically 
for  the  values  of V and o that  allow a. and  ho  to  take  on  nonzero  values. 
These,  then,  are  the  critical  velocity  and  the  flutter  frequency. 

RESULTS 

In o r d e r  to determine  the  range of validity of the  theory,  comparisons 
between  it  and  existing  experimental  data  (ref. 4) were  made  for two distinct 
flow situations: a plate 2 in'. long  contained  in a channel of variable  height, 
and a plate 1 in.  long  contained  in  the  same  channel. In both cases ,   the  
parameter   var ied w a s  the  channel  height, H. The  computer  program  used 
in  solving  Eqs.  (18)  and (19) to  obtain  numerical  results is described  in 
Appendix B . 

Figure 8 shows  results  for  the 2-in.  long  plate (Plate 2A  of ref.  4) 
having  the  mass  distribution  described  in  the  figure.  To  facilitate  direct 
comparison  with  the  experimental  data,  the  velocity  given  in  the  figure is 
that  in the reduced  channel  between  the  plate  and  the  walls;  this  velocity is 
larger  than  the  velocity V in  the  unobstructed  channel by  the  multiplicative 
factor T. Results  from  the  potential flow theory  mentioned  earlier  are  also 
shown  to  help  illustrate  the  influence of viscosity  and  other flow losses .  

The  one-dimensional,  hydraulic flow theory  is  in  qualitative  agree- 
ment  with  the  potential flow theory  for  the  range of channel  heights  shown; 
that is ,  both  the  critical  velocity  and  critical  frequency  decrease  as  the 
channel  height  spacing  decreases.  The  hydraulic flow resul ts  do not,  how- 
ever,   agree  with  experimental   results  for  very  small   channel  heights,   for 
which  the  critical  velocity  and  frequency  increase  markedly.  For  larger 
channel  heights  (but  still  for  H/b < 0.2),  the  present  theory is in  reasonable 
agreement  with  experiment,  especially  with  regard  to  the  critical  frequency. 

In  the  hope of gaining  further  insight  into  the  physical  mechanisms 
involved,  the  higher  order  roots of Eqs. (18)  and (19) were  also  investigated. 
In  addition  to  the  lowest  velocity  roots  shown  in  Figure 8 by the  solid  curve, 
the  roots  corresponding  to  the  second  lowest  critical  velocity  and  frequency 
a re   a l so  shown  for H < 0.1.  As  can  be  seen,  the  velocity  and  frequency  for 
this  "second  mode"  increase  as  the  channel  height  decreases  in  much  the 
same  way as the  experimental  data  do. 
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Comparisons  for a I-in. long  plate  (Plate  1B of re f .  4) a r e  shown  in 
Figure 9. Again,the  results  are  in  fair   agreement  with  potential  flow theory 
for  H/b < 0 . 2 ,  but  once  more  the  theory  does not predict  the  observed  increase 
in  critical  velocity  and  frequency  for  small  channel  heights.  Results of ca l -  
culations  for  the  second  mode  for  this  plate  are also shown on the  figure. 
(Note  that a channel  height of 0 . 2  in.   corresponds  to  H/b = 0 . 2  for  Plate  1B 
while a channel  height of 0 . 4  in.  corresponds  to  H/b = 0 . 2  for  Plate ZA. Thus, 
i t   can be seen  that   for  H/b < 0 . 2  the  present  theory  and  the  potential flow 
theory  are  in  good  agreement  but  that   for  larger  values of H/b  the  present  
results  greatly  overestimate  the  cri t ical   velocity;   this  checks  with  the  previous 
remarksthat   the   hydraul ic  flow assumption  would  be  tenable  only  for  smallH/b. ) 

For   ne i ther  of the  plates is  there a true  nodal  point  for  the f low- 
induced  vibration  (since  the  plate  does  not  vibrate  in a natural  mode),  but,  in 
both  cases,  the  phase  angle  between  the  pitch  and  translation  motion i s  so  
small, according  to  the  theory,  that  the  plate  appears  to  rotate  about a 
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point  ahead of the  plate  during  most of any  one  cycle.  This  predicted  "trans- 
lation"  mode  agrees  with  the  experiments.  However,  for  plate 1B only, a . 
"pitch"  mode  (rotation  point  near  plate  mid-chord) w a s  also  observed  experi-  
mentally  for  large  channel  heights;  at  the  "starting"  velocity,  the  mode w a s  
always  translation,  but, as  the  flow rate  decreased,  the  apparent  axis of 
rotation  would  shift  rearward,  and,  at  the  "stopping"  velocity,  the  plate  oscil- 
lated  in a pitch  mode;  one  such  point is shown  flagged  in  Figure 9. Neither 
the  hydraulic  theory  presented  here  nor  the  potential flow theory of re f .  4 
predicts  such a mode. 

The  validity of the  approximate  method of calculating  the  cross flow 
could  not  be  checked  since  the  experimental  tests  were  deliberately  designed 
to  be  very  nearly  two-dimensional;  that is, neither of the two plates  were 
sufficiently  narrow  nor  the  slots  between  the  sidewalls  and  the  plate  suf- 
ficiently  large  to  influence  the flow appreciably.  However,  when  the  slots 
are   larger   [actual ly ,   when  the  parameter   2cDws/(w - 2w,) is comparable 
to  unity] ; the  critical  velocity,  according  to  the  theory,  must  increase i f  the 
other  plate  parameters  are  held  constant.  

In order   to   determine how great  a role  the  inertia of the  fluid  plays 
in  narrow  channel  oscil lations,   the  f luid  velocity  and  pressures  were  also 
calculated by a quasi-steady  method  in  which  only  the  instantaneous  position 
of the  plate  (and  not its velocity  or  acceleration)  determined  the  flow.  The 
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governing  equations  can  be  derived by setting k = = h = = 0 in  the  fluid 
dynamic  theory  given  in  the  preceding  sections.  This  quasi-steady  theory 
did  not  predict  flow-induced  vibrations  for  any of the  cases  tested.  However, 
for  some cases, as for  example  when  the  elastic axis is behind  the  mid- 
chord  point of the  plate, a divergence  may  be  predicted. 

CONCLUSIONS 

The  results of the  analysis  presented  here  show  that  viscous  effects 
and energy  losses,  at least when  calculated by the  approximations  implied  in 
a one-dimensional  hydraulic flow .theory,   are not  sufficient  to  explain  the 
experimentally  observed  increase  in  the flow velocity  required  to  induce 
vibrations of a plate  contained  in a flow  channel  when  the  channel  height is 
made  very small. In fact,  the  relatively  good  agreement of the  hydraulic flow 
theory  and  previous  potential flow calculations  for  H/b < 0 . 2  indicates  that 
fluid  inertia  forces  predominate  in both theories.  There  are,  however,  slight 
differences  between  the  two  theories  since  the  hydraulic flow theory  predicts 
a slightly  smaller  critical  velocity  than  does  the  potential flow theory  for 
small H/b  ratios.  This  presumably is  caused by viscous  effects  and  other 
energy  losses  although  ordinarily  it   might  be  expected  that  an  increase  in 
energy  losses (or damping)  should  lead  to  an  increase  in  the  critical  velocity; 
the  reason  for  the  decrease,  then,  must  be  an  even  more  significant  change 
in  the  relative  phase  angles  between  the  various flow forces.  

Because of the  lack of correlation  between  theory  and  experiment,  it 
i s  still not c l ea r  what  causes  the  rapid  increase  in  the  critical flow velocity 
for  very small H/b.  However,  the  qualitative  agreement  between  the  theoret- 
ical  computations  for  the  second  mode of vibration  for  these  cases  and  the 
experimental  observations  may  imply  that  possible  large  increases  in  non- 
linear  effects  for  such  small  channel  heights  add  enough  additional  stability 
to  make  vibrations  in  the  lowest  frequency  mode so small  as not  to be observ- 
able. On the  other  hand,  these  same  nonlinearities, i f  they do exist,  could 
change  the  characteristics of the  finite-amplitude  vibrations of the  lowest 
order  mode  sufficiently  to  reconcile  them  with  experiment.  Finally,  even 
though  the  vibrations  may be linear,  the  balance of viscous,  inertia,  and  other 
forces  might  be so subtle  for  small   H/b  that  a much  more  exact  viscous flow 
theory is required  here.  

Further  analytical   and  experimental   research on narrow  channel  flow- 
induced  vibrations is clearly  indicated.  Closer  correlation of theory  and 
experiment  for all conditions w i l l  be  realized  only  when  more  realistic flow 
theories  are  used  (e.g.,  unsteady  boundary  layer  flow);  furthermore,  it   may 
also  prove  necessary  to  include  nonlinear  effects. 

Southwest  Research  Institute 
San  Antonio,  Texas 
March  11, 1968 
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APPENDIX A. LINEARIZED EQUATIONS 

Steady-Flow  Equations 

. .. 
When a = h = B = h = h = h = 0, the  "steady-flow"  pressure  drops  and 

velocities are 

Po - P4 = - pV2 [ K O  t F - t cr2KL t u 2 p F  - L 
2 O B o  

and 

VA = VB = uv 

Unsteady-Flow  Equations 

The  unsteady flow pressures  and  velocities are derived  on  the  assump- 
tion  that  products of a,  h ,  vA, and v B  may be neglected  in  comparison  to 
l inear   t e rms .   The   resu l t s   a re  

pZA/; pV2 = - 2u2(KL t 1) - - v2 A h 1  
V u2ACLh i; - z u2ACLh(l - U(a))a 

where  
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t (1  t n)u4P2F 2KDWS 
w - 2ws 

2KDWs ).2 21" - c u  & 
H w - 2ws H V  3 v 2  

A similar equation holds for pB  with a and h replaced  by -a and  -h  and the 
subscripts A replaced  by B. The  l inearized  shear  stress  on  the  plate is 

where 

VA - V2A t - (xh t 1 t 2u2 (1 - - 2u  2KDWs ) (z) v 
H 2 w - 2ws 

Similar equations  hold  for rB and vB. 

Equating P ~ A  to P ~ B  yields V2B = -V2A 

1 

V2 

-[ ( 2  - n)u2pA3 

and  the  flow-split  equation 

t 2 u  2 h  A I T - u A - "  bh 
VZ 

t - (1  t n)u4p2A2F t 1 
2 

" 

t Zu3A (i - 2KDWs 
w - 2ws  ) + u2AC~.,]a -1; (2 - n)u2pA3 4- 

2KDWs ) 1 u'A - - - UA - bh 1 b2% 
w - 2ws  v 3 v2 
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By letting v~~ = voeLt, a = a  eiwt,  and  h = hoeiwt, Eqs. (16) and (17) of 
the  section,  Analysis,  reduce to 

0 
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Bza = 2 (g) (&r ($) &AG{ u 2 ( K ~  + 1) KL + 1 + [ 

+ -  1 ( 2  - n)pJ] - z ~ ( K L  1 t 1 )  
2 

t (%)2 [-& ( 2  - n)P3  t 

In  these  equations,  the  quantities  not  already  defined are 

2KDWs K = l  - w - 2w, 
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and 

G = l/+ p)" bw [.. 1 + - ( 2  2 1 - 4') 

- ( 2  - n ) p d  [;(2 - n)upSK t - (1  t n)u p A F  t 
1 1 2 2  
2 2 

t ~ u K  t - 1 
8 

t 2uK t 1 Ku] (&f } 
By  eliminating a. and ho/b, the  two  equations  to  be  solved  simultaneously 
for  V and w are: 
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The  solutions of Eqs.  (A3)  and  (A4)  are  the  critical  velocity V and  the  critical 
frequency w. Using  these  values of V and w in  Eq.  (Al)  allows  the  ratio 
ao/(ho/b)   to  be  calculated: 

The  translational 
by he, = ho - bXp 

a0 

( A l a  A1h + iBlh iB1h) 

amplitude of the  elastic  axis, he,, is  related  to  ho  and a. 
. e .  ao.  Thus, 

1 

Equation  (A6)  gives  the  ratio of the  pitching  to  translational  amplitude  and  the 
phase  angle  between  them.  This  allows  the  mode of vibration  to be de te r -  
mined  (e. g. , mostly  pitch,  mostly  translation, o r  a combination). 

There   a re  two special  cases  that  need  to be treated  separately: 

(1)  The  torsion  spring  is  "locked"  (either Kh o r  Wnh is  infinite). 
For  this  case,  the  torsion  equation  need not be satisfied and 
a. = 0. Thus,  the  equations  to be solved a r e  

(2)  The  translation  spring  is  "locked"  (either Kh o r  wnh is  infinite). 
For  this  case,  the  translation  equation  need not  be satisfied and 
ho = X,. e. ba,. Thus.  the  equations  to  be  solved  are 

Bla  ' e .   B lh  = 

The  two natural   modes of free  vibration  can be obtained  from  Eq.  (A3) by 
setting B~~ = B~~ = B~~ = B2h = 0 (i. e . ,  neglecting  damping)  and  letting 
V = 0. The  results  can  be  put  in  the  form of 
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which  can be solved by the  quadratic  equation  for  the two w ' s  identifying  the 
natural modes. In Eq. (A7), B and E are 

In B and E ,  the quantities  involving " p t t  are the virtual  mass  effects of the 
fluid. When p = 0, the natural modes in a vacuum  are  obtained. 
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APPENDIX B. COMPUTER DOCUMENTATION 

Equations (18) and  (19) of Section,  Analysis  are  solved  numerically 
by a digital  computer  routine;  in  addition,  certain  other  information is com- 
puted  and  printed  out.  The  program is written  in  the  FORTRAN IV language, 
and a complete  listing is presented as  par t  of this  appendix. 

All  information  to  and  from  the  program  utilizes  input  and  output 
tape  units,  and,  thus,  the  logical  tape  unit  numbers  must  be  defined by the 
user  for  each  particular  computer  installation.  The  definition is given  in  the 
f i r s t  two executable  statements  in  the  main  program,  where N is  the  logical 
input  unit  number  and M is the  logical  output  unit  number;  for  example,  in 
the  CDC-3600  used by SwRI, N = 60 and M = 61.  

Several  optional  kinds of input are  available  for  the  program.  Unless 
otherwise  specified  in  the  input by the  method  described  below,  the  physical 
properties of the  flowing  liquid a re   assumed to be those of s tandard  a i r :  
p = 4 . 3 4  X lb/in3  and v = 2 . 3 4  X in / s ec .  The  inertia  properties 
of the  plate are  specified by giving a s  input  any two of Kh,  Wnh, and m for 
the  translation  mode  alone  and  any two of Ka, u n a  and I, for  the  pitch  mode. 
The  damping  properties  are  specified by giving a s  input  <h  or c h  and L.a o r  
C,. Finally, i f  s teady  state  pressure  drops  are to  be calculated, both  KO 
and L must be  given a s  input. 

2 

Instructions f D r  Input 

A se t  of input  data  consists of three  or  four  cards,  depending on the 
options  used.  The  format  for  the  first two data  cards  is  eight "E" fields of 
tencolumns  each ( 8 E 1 0 . 3 ) .  The  remaining  card(s)  have a format of one "I" 
field of two  columns  followed by an  eight  column "E" field;  this  pair of fields 
is repeated  eight  times [8(12, E8. O ) ]  . 

The  following  parameters  must be given a s  input  in  the  units  shown: 
a (in.);  b ( in . ) ;  H (in.);  W ( in . ) ;  W s  ( in . ) ;  X, (no  dimensions); Hp.,. (no 
dimensions); Vmax ( in / sec ) ;  A V  (in/sec);   test   (no  dimensions);  XNO (no 
dimensions);  any two of K, ( in-lb),  I, (lb-in),  w,,(rad/sec);  any two of  Kh 
(lb/in),  m ( lb/ in) ,   wnh(rad/sec) ;   e i ther   ch  ( lb-sec/ in)   or   ch  (no  dimensions) ;  
and  either C, ( in - lb /sec)   o r  Sa (no  dimensions).  The  following  parameters 
may be  given  when  desired: KO (no  dimensions); L ( in . ) ;  KD (no  dimensions); 
p (lb/in3);  and v ( in2/sec) .  

The  input   cards   are   to  be  punched as  described  in  the  following 
instructions : 
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1st   Card 

Card  Columns 

1-10 
11 -20 
2 1  -30 
3 1 -40 
41 - 50 
51 -60 

61 -70 

71 -80 

2nd Card 

1-10 
11  -20 
21 -30 

Data 

plate  thickness, a 
plate  length, b 
channel  height, H 
channel  width, W 
width of the  slots, Ws 
nondimensional  center  -of-mass 

nondimensional  location of plate 

maximum  velocity  considered, 

location, Xa 

leading  edge, XI, e. 

Vmax 

velocity  increment, AV 
solution  convergence  interval, TEST 
number of parameters ,  XNO, to 

be entered on cards  3 and 4 

3rd  Card  and  4th  Card 

Entered on  these  cards  are  the  values of any of the  following 
parameters   to  be used,  with  their  identifying  number: 

9 Ca  
10 5 ,  
11 KO 
12 L 
13 KD 
14 P 
15 v 

Unless  specified  otherwise,  the  values of KD, p, and v a r e  fixed a s  
0.6, 4.34 X 10-5 lb/in3,  and  1.13 x in2 /sec ,  but  they  may be 
redef ined-as  a group,  to  any  values  desired by entering  them as input 
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parameters.  The  use of KO and L is also  optional as a g roue  but if 
they a r e  undefined as a group,  the  steady-state  pressure  drops 
(PO - P1 and P1 - P4) wil l  not  be  computed. 

The  parameters  and  their  identifying  numbers  may be entered  in  any 
order;  the  format far each  parameter  with its identification is: two 
column "1" field  for  the  identifying  number  (right  justified)  followed 
by an  eight  column "E" field  for  the  parameter. U p  to  eight  param- 
eters  can be  given  on  each  card,  but  the  total  number  given on  both 
cards  must  equal XNO. For  example, i f  a n a  = 68.01, a& = 54.51, 
1, = 0.0362, m = 0.117, gh = 0.0005, and 5 ,  = 0.0005 a r e  the  only 
parameters of this  group  needed,  then  card 3 would  be filled  in a s  

Card  Column Data 

2 
3-10 
12 
13 -20 
22 
23 -30 
32 
33 -40 
42 
43 - 50 
51 - 52 
53 -60 

3 

6 
68.01 

54.51 
2 
0,0362 
5 
0.117 
8 
0.0005 
10 
0.0005 

For  this  example,  card  columns 61 through 80 a r e  blank,  card 
number 4 is not  needed  and XNO = 6 is   entered on card  number 2 
in  columns 21 through 30. 

Instructions  for Vmax, QV, and TEST 

The  control  parameters Vmax, QV, and TEST are   se t  by the  user. 
VmaX is the  maximum  velocity  to  be  considered  in  the  search  for  a  critical 
velocity;  it  should  be  determined by the  user's  judgement. If no solution 
is found for  V < Vmax, the  calculations  stop  and "no solution" is indicated 
in the  printout, AV is the  increment  used  to  stepup  the  trial  values of 
V; for  example, i f  no solution  has  yet  been found below,  say, V = VI, 
then  the  program  will  next  check  for  a  solution in the  range V = V1 to 
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V = V1 + AV as long as VI + AV 5 Vma,. TEST essentially  sets  the limit 
on  the  accuracy  with  which  the  equations  are  solved  for. V and w; i t  is the 
width of the  interval  enclosing  the  "true"  solution  and  the  indicated  numerical 
solution  for  both V and w. 

For  faster  computing  times, AV should  be  pickedas  large as possible. 
However,   difficult ies  may  sometimes  arise i f  such a large  value of  AV 
is used  that two or  more  solutions  are  enclosed  within  one AV. In  this 
case,  the  program  may miss both  solutions  and  continue  to  increment V. 
The  reason  for  this is that  the  method of solution is to  find  the  value of w, 
i f  any,  which  satisfies  the  "real"  equation  for  the  trial  value of V and  then 
to  determine  the  sign of the  "imaginary"  equation  for  this V and w. This 
sign is then  compared  to  the  sign of the  imaginary  equation  for V + AV 
and  the w satisfying  the  real  equation  for V t AV. Thus  two  changes  in 
sign  in  one AV interval wi l l  not  be  found by the  computer  routine.  It is 
recommended  that,  at  the  beginning of any  new se t  of runs,  the  optimum 
value of  AV be  found  by  trying a se r i e s  of successively  larger  AV's.  

Loss  Coefficient, KL 

The  loss  coefficient  for  the  channel  contraction  at  Station 2 is auto- 
matically  computed  and  no  input is  needed.  The  calculation  has  been  accom- 
plished by adapting  the loss coefficients  given  in  ref. 9 for  contractions  in 
parallel   circular  pipes  to  the  case of narrow  channel  flow,  on  the  basis of 
equal   areas  of contraction.  Thus, KL for  any  reduction  (any u) is inter-  
polated  from  the  following  table,  which is contained  in  the  program as  par t  
of its data: 

1.0 
0 .8  
0.6 
0 . 4  
0 . 2  
0 . 0  

0 .00  
0.13 
0.28 
0.38 
0 . 4 5  
0.  50 

Also, since  the  derivative  dKL/dh  equals - ( 1 / 2 ) ~ ~ / ' ( d K ~ / d u - ~ / ~ ) ,  the  rate 
of change of KL as the  plate  translates is  computed by numerical  differenti- 
ation of the  tabular  values. 
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Specia l   Cases  of Input 

The re   a r e   two   spec ia l   ca ses   some t imes   encoun te red .   The  first is  
that  of a r igid  tors ion  spr ing  (no  pi tching  degree-of-freedom)  in   which  e i ther  
Ka o r  Una  may  be  considered  infinite.   The  second is that  of a r i g i d   t r a n s -  
la t ion  degree-of-freedom)  in   which  e i ther  Kh o r  wnh may  be   cons idered  
inf ini te .   Ei ther  of these   spec ia l   cases   can   be   t rea ted   mere ly  by using  input 
va lues  of Ka o r  on, g rea t e r   t han  109 for   the  no-pi tch  condi t ion,   or   Kh or Onh 
g rea t e r   t han  IO9 for   the  no-translat ion  condi t ion.  

Program  Accuracy   and   Limi ta t ions  

The  method of solution  us.ed  in  the  program is one of search ing   for  
a change  of  sign  until  the  solution is enclosed  within a AV in te rva l   and   then  
successively  halving  the  interval   unt i l   i t  is less   than  the  value of TEST. 
The limits of the  searching  for   the  cr i t ical   veloci ty   and  f requency  are  

o < v < v m a x  " ( i n / s e c )  

1 " < o <  l o o o  ( r a d / s e c )  

Vmax, AV,  and  TEST are input  and oo is the  or iginal   es t imate   (equal   to  
t he   sma l l e r  of una   o r   Onh)   o r   the   so lu t ion  of o f rom  the  "real"   equat ion 
for   the  preceding  value of V.  The   s tep   s ize   used  is AV for  velocity  and, 
essent ia l ly ,  1 . 2  t imes   the   p receding   t r ia l   va lue   for  w. 

For   the   ca lcu la t ions   per formed  to   ob ta in   the   resu l t s   g iven   in   th i s  
r epor t ,   va lues  of AV equal   to   100  in/sec,  V-ax equal   to  2500 in / sec ,   and  
TEST equal  to  0.001  were  found  to be adequate .   Dur ing   tes t   runs ,   the  
var ia t ion  in   the  indicated  solut ions  for  V and w fo r  any AV in  the  range  f rom 
2 to 100 i n / s e c   w a s   l e s s   t h a n  0 . 4  percent ,   whi le   even  less   var ia t ion  was 
found  when  TEST  was  changed  for 0 .00 1 to 0.00000 1. Running  t imes  were 
about six s e c   p e r   c a s e .  

No provis ions  are included  for  running  more  than  one  set  of input  at  a 
t ime;   that ,   each  change  in   any of the   input   parameters   requi res  a s epa ra t e  
re loading.  

Computer   Symbol  List 

In o rde r   t o   f ac i l i t a t e   p rog ram  changes  by  the  user,  a cor respondence  
list of the   symbols   used   in   the   p rogram is given  below.  The  quantit ies  on 
the  lef t  are the  FORTRAN  alphanumeric  symbols  used  in  the  computer  pro- 
gram  to   denote   the   cor responding   i t em  on   the   r igh t ,   used   in   the   ana lys i s   o r  
to   ident i fy   computer   operat ions.  
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A 
AIA 
A2A 
AIH 
A2H 
B 
BlA 
BZA 
BIH 
B2H 
BETA 
CA 
CAPA 
CAPF 
CAPH 
CAPK 
CAPL 
CAPV 
CD 
CH 
C L  

CLH 
DELTAV 

CLI(1) 

D P l  
DP2 
M 
N 
OM 
OMEG 
OMEGNA 
OMEGNH 
RENO 
RHO 
SCRIPD 
SCRIPF 
SIGMA 
SIGMA( I) 
VAI 
VAR 
VHl 
VHR 
VMAX 
W 
ws 

a 
A1 a 
A2a 
Alh 
A2h 
b 

B l a  
Bza 
Blh  

2h 
P 
ca 
A 
F 
H 
KO 
L 
V 
KD 
c h  
K L  
' K L ~  (the  entfies  in  the  table of KL vs  cr-l / 2 )  

KLh 
AV [the  increment of V used  in  searching  for  roots  of 
Eq. ( A I )  and  (AZ)] 

Pl - ?4 
P o  - p 1  
Output  Tape 
Input  Tape 
w 
Estimated w used as f i rs t   guess  

na 
w n h  
NRe 
P 

A- 
3 
0- 

(a-1 / q i  
V a i  

V a  r 
Vhi 
Vhr v,,, (upper limit  on V in  searching  for  roots) 
W 
ws 

XALPHA - x, 
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XIA 
XKH 
XLE 
XM 
XN 
XNU 
X8 
x9 
Z 
ZETAA 
ZETAH 
zo, z1 
z2, 23 

- 1, 
Kh 
XI . e .  
m 
n 

- B 
- E 
- "Fluid  Accelerat ion"  switch 

- 
- 
- 
- 
- V 

- Ga 
- gh 
- Residual  of Real   Equat ion 
- Residual  of Imaginary  Equat ion 

Flow  Charts ,   Computer   Lis t ing,   and  Sample  Output  

The  following  pages (35 through 46) give  f low  charts  describing 
the  program  logic   and  operat ions.  A complete   l is t ing of each   card   in   the  
deck  (as run  on the  CDC-3600  used  by  SwRI)  then  follows  on  pages 47 through 
55. Then  on  page 56 the  form of the  output  for a typical   run is given.  The 
first four   l ines  of the  output list the  input   parameters   with  their   uni ts .   The 
next two l ines   give  the  natural   f requencies  of the  normal   modes  both  with 
v i r tua l  air mass   cons idered   and   a l so   no t   cons idered .   The   next   l ine  of out-  
put lists the  values  of p ,  v ,  and KD used   in   the   p rogram.   The   next   four  
l i nes  of output   give  the  cr i t ical   veloci ty  (V) in  the  unobstructed  main  channel,  
the f lut ter   f requency (a), the   nondimensional   ra t io  of the  pitch  amplitude  to 
the  t ranslat ion  ampli tude  (aob/he,) ,   and  the  phase  angle   between  the  pi tch 
and   the   acce le ra t ion .  If no  solution  is  found, it is so indicated.   Tee  next  . 
f o z r   l i n e s  list the   same  four   quant i t ies   for   the   quas i - s teady   case  (a = = h 
= h = 0 in   der iv ing   f low  ve loc i t ies   and   pressures) .   The   las t   two  l ines   g ive  
Po - P1 and P1 - P4 whenever  KO and L are   g iven   as   input ;   in   the   sample  
case shown, KO and L are   not   given  (which is indicated by their   being  equal  
to   zero  in   the  input   pr intout) ,  so  n o   p r e s s u r e   d r o p s   a r e   g i v e n .  
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PROGRAM  FLUllER 

START 

WITCH 1-0 
WITCH 2-0 
Co "6  
P-4.34 x 10- 
v-2.34 x lo-* 

I I 

t 
READ a , b , H ,  W , 
Ws Xa 1 V,X 
A V  , TEST, XNO 

I I NO - - N O  1 
t / READ 111 j , VALUE j 

j - l , N O  

&, 

6 
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.. 0 

No 
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w - w, 
W 

I SIGMA 2”- 1 
6 
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Q 
80 i ~. 

CL" C l l  100 
0 

i - 2  ERROR EXIT . 

& i -  i + 1  

190 2 

SAVER - P 
P - 0  

I 
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f=- CALCULATE B , E 

x 1 0 - 4 -  

I 1 

100 

ERROR EXIT 

150 
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190 P 

I 
"0 I "" - 6.28318 

w02 - " 0 s  
6.28318 

"I 

6.28318 
"2 

6.28318 

c 

195 I 
[ z = l  1 

V - V + 2 A V  

4 1  



VI- 0 
w -0MEG 

Vl-V-AV 
u -.9w 

I (T) SUBROUTINE 

v, "v 
23 + 22 

v - v  + A V  

360 
EXIT 1 

100 

I 
SUBROUTINE 

22 
L F REQ 

I 
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(") SUBROUTINE 

100 
ERROR E X I T  

V,-V 
23 " 2 2  

* 

I 
1 

wcyc - 
6.28318 

w 

# 

43 



, 310 +* WITCH 1 

I - x 2  @,-Arctan 

I $-57.2958 e,  

R PATA 

330 
t 

A e  - .001295PVz [(C2 + 1 ) d -  1 + d 4 
WRITE 
fl p, 

SUBROUTINE 
FRC FAC 

360 
EXIT 
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SUBROUTINE FREQ 

%e- Y 

FRC  FAC 

SAVE K - w 

w, - 1  

I 1 

SUBROUTINE 

Q 
250 I 

I 

w- W( + - WE- WI 

2 
I 

RETURN 

0 
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SUBROUTINE EQNS 

START 

c , 
I I 

7 I .- , ‘1’ 
Calculate I A2h8 B2h I 

I ZERO 2 -ZERO 2 (+) 
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SUBROUTINE FRC FAC 

I""" 
Is0 
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SAMPLE PRINTOUT 



1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

REFERJ3NCES 

Spence, R. W.; and  Durham, I?. P.: The Los Alamos  Nuclear 
Rocket  Program.  Astronautics  and  Aeronautics, Vol. 6,  
June  1965, pp. 42-46. 

Miller,  D. R.; and  Kennison, R. G.: Theoretical  Analysis of 
Flow-Induced  Vibration of a Plate  Suspended  in a Flow  Channel. 
Paper  No. 66-WA/NE-l, AS- Winter  Annual  Meeting,  1966. 

Burgreen, D. ; byrnes ,  J.  J.; and  Benforado, D. M.: Vibration of 
Rods  Induced  by  Water  in Parallel Flow.  Trans. ASME, Vol. 80,  
1958, pp. 991-1001. 

Bland, S. R. ; Rhyne,  R. H. ; and P ie rce ,  H. B.:  Study of Flow- 
Induced  Vibrations of a Plate in  Narrow  Channels.  Trans. ASME, 
J. Engineering  for  Industry,  Vol.  89,  Series B, Nov. 1967, 
pp. 824-830. 

Woolston, D. S. ; and  Runyan, H. L.: Some  Considerations  on  the 
Air   Forces  on a Wing Oscillating  Between Two Walls for  Subsonic 
Compressible  Flow. J. Aeronautical  Sciences, Vol. 22,  Jan.  1965, 
pp. 41-50. 

Toebes, G. H.; and  Eagleson, P. S.: Hydroelastic  Vibrations of 
Flat   Plates  Related to  Trailing  Edge  Geometries.  Trans. ASME, 
J. Basic  Engineering, Vol. 81,  Dec.  1961, pp. 671-678. 

M a r r i s ,  A. W.: A Review  on  Vortex  Sheets,  Periodic  Wakes,  and 
Induced  Vibration  Phenomena.  Trans. ASME, J. Basic  Engineering, 
Vol.  86,  June  1964, pp. 185-196. 

Thorpe, J. F.: A Parallel Duct  Flow  Problem.  Ph. D. Thesis,  
Univ. of Pittsburgh,  Pittsburgh,  Pennsylvania, 1960. 

Rouse, H. ; and  Howe, J. W.: Basic  Mechanics of Fluids.  John 
Wiley & Sons,  1953. 

Kays, W. M.: Loss  Coefficients  for  Abrupt  Changes  in  Flow  Cross 
Section  with Low Reynolds  Number  Flow  in  Single  and  Multiple  Tube 
Systems.  Trans. ASME,  Vol. 72, 1950, pp. 1067-1074. 

NASA-Langley, 1968 - 12 59 


