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In addition to what’s in Anaconda, this lecture will need the following libraries:

I'pip install --upgrade quantecon

2 Overview

This lecture extends our investigations of how optimal policies for levying a flat-rate tax on
labor income and issuing government debt depend on whether there are complete markets for
debt.

A Ramsey allocation and Ramsey policy in the AMSS [1] model described in optimal taxation
without state-contingent debt generally differs from a Ramsey allocation and Ramsey policy
in the Lucas-Stokey [3] model described in optimal taxation with state-contingent debt.

This is because the implementability restriction that a competitive equilibrium with a distort-
ing tax imposes on allocations in the Lucas-Stokey model is just one among a set of imple-
mentability conditions imposed in the AMSS model.

These additional constraints require that time ¢ components of a Ramsey allocation for the
AMSS model be measurable with respect to time ¢ — 1 information.

The measurability constraints imposed by the AMSS model are inherited from the restriction
that only one-period risk-free bonds can be traded.

Differences between the Ramsey allocations in the two models indicate that at least some of
the implementability constraints of the AMSS model of optimal taxation without state-
contingent debt are violated at the Ramsey allocation of a corresponding [3] model with
state-contingent debt.
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Another way to say this is that differences between the Ramsey allocations of the two mod-
els indicate that some of the measurability constraints imposed by the AMSS model are
violated at the Ramsey allocation of the Lucas-Stokey model.

Nonzero Lagrange multipliers on those constraints make the Ramsey allocation for the AMSS
model differ from the Ramsey allocation for the Lucas-Stokey model.

This lecture studies a special AMSS model in which

o The exogenous state variable s, is governed by a finite-state Markov chain.

o With an arbitrary budget-feasible initial level of government debt, the measurability
constraints

— bind for many periods, but ....

— eventually, they stop binding evermore, so that ...

— in the tail of the Ramsey plan, the Lagrange multipliers 7,(s') on the AMSS imple-
mentability constraints (8) are zero.

o After the implementability constraints (8) no longer bind in the tail of the AMSS Ram-
sey plan

— history dependence of the AMSS state variable z, vanishes and z, becomes a time-
invariant function of the Markov state s,.

— the par value of government debt becomes constant over time so that b, ;(s") =
b for t > T for a sufficiently large T

— b < 0, so that the tail of the Ramsey plan instructs the government always to make
a constant par value of risk-free one-period loans to the private sector.

— the one-period gross interest rate R,(s") on risk-free debt converges to a time-
invariant function of the Markov state s,.

o For a particular b, < 0 (i.e., a positive level of initial government loans to the private
sector), the measurability constraints never bind.

e In this special case

— the par value b, (s,) = b of government debt at time ¢ and Markov state s, is
constant across time and states, but .

— the market value m of government debt at time ¢ varies as a time-invariant

function of the Markov state s,.

— fluctuations in the interest rate make gross earnings on government debt m
fully insure the gross-of-gross-interest-payments government budget against fluc-
tuations in government expenditures.

— the state variable x in a recursive representation of a Ramsey plan is a time-
invariant function of the Markov state for ¢ > 0.

e In this special case, the Ramsey allocation in the AMSS model agrees with that in a
Lucas-Stokey [3] complete markets model in which the same amount of state-contingent
debt falls due in all states tomorrow

— it is a situation in which the Ramsey planner loses nothing from not being able to
trade state-contingent debt and being restricted to exchange only risk-free debt
debt.

o This outcome emerges only when we initialize government debt at a particular b, < 0.

In a nutshell, the reason for this striking outcome is that at a particular level of risk-free gov-
ernment assets, fluctuations in the one-period risk-free interest rate provide the government
with complete insurance against stochastically varying government expenditures.

Let’s start with some imports:
In [2]: import matplotlib.pyplot as plt

%matplotlib inline
from scipy.optimize import fsolve, fmin
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3 Forces at Work

The forces driving asymptotic outcomes here are examples of dynamics present in a more gen-
eral class of incomplete markets models analyzed in [2] (BEGS).

BEGS provide conditions under which government debt under a Ramsey plan converges to an
invariant distribution.

BEGS construct approximations to that asymptotically invariant distribution of government
debt under a Ramsey plan.

BEGS also compute an approximation to a Ramsey plan’s rate of convergence to that limit-
ing invariant distribution.

We shall use the BEGS approximating limiting distribution and their approximating rate of
convergence to help interpret outcomes here.

For a long time, the Ramsey plan puts a nontrivial martingale-like component into the par
value of government debt as part of the way that the Ramsey plan imperfectly smooths dis-
tortions from the labor tax rate across time and Markov states.

But BEGS show that binding implementability constraints slowly push government debt in a
direction designed to let the government use fluctuations in equilibrium interest rates rather
than fluctuations in par values of debt to insure against shocks to government expenditures.

o This is a weak (but unrelenting) force that, starting from a positive initial debt level,
for a long time is dominated by the stochastic martingale-like component of debt dy-
namics that the Ramsey planner uses to facilitate imperfect tax-smoothing across time
and states.

o This weak force slowly drives the par value of government assets to a constant level
at which the government can completely insure against government expenditure shocks
while shutting down the stochastic component of debt dynamics.

e At that point, the tail of the par value of government debt becomes a trivial martingale:
it is constant over time.

4 Logical Flow of Lecture

We present ideas in the following order

o We describe a two-state AMSS economy and generate a long simulation starting from a
positive initial government debt.

o We observe that in a long simulation starting from positive government debt, the par
value of government debt eventually converges to a constant b.

o In fact, the par value of government debt converges to the same constant level b for al-
ternative realizations of the Markov government expenditure process and for alternative
settings of initial government debt b,.

o We reverse engineer a particular value of initial government debt b, (it turns out to be
negative) for which the continuation debt moves to b immediately.

o We note that for this particular initial debt b,, the Ramsey allocations for the AMSS
economy and the Lucas-Stokey model are identical

— we verify that the LS Ramsey planner chooses to purchase identical claims to
time ¢ + 1 consumption for all Markov states tomorrow for each Markov state to-
day.

¢ We compute the BEGS approximations to check how accurately they describe the dy-
namics of the long-simulation.



4.1 Equations from Lucas-Stokey (1983) Model
Although we are studying an AMSS [1] economy, a Lucas-Stokey [3] economy plays an impor-
tant role in the reverse-engineering calculation to be described below.

For that reason, it is helpful to have key equations underlying a Ramsey plan for the Lucas-
Stokey economy readily available.

Recall first-order conditions for a Ramsey allocation for the Lucas-Stokey economy.

For t > 1, these take the form

(1+®)u.(c,1—c—g)+ P[cuc(c,1 —c—g) — (c+ gluglc,1 —c—g)]
= (14 @)uy(c,1 —c—g) + Pleuylc,1 —c—g) — (c+ glug(c,1 —c — g)]

(1)

There is one such equation for each value of the Markov state s,.

Given an initial Markov state, the time ¢ = 0 quantities ¢, and b, satisfy

(14 @)u.(c,1—c—g)+ Plcuy(c,1 —c—g) — (¢ + g)ug.(c,1 —c — g)]
= (1+®)uy(c,1 —c—g) + @leuy(c,1 —c—g) — (¢ + gugle,1 —c—g)] + (u,, éc),e)bo

In addition, the time ¢t = 0 budget constraint is satisfied at ¢, and initial government debt b,

b
bo + 9o = To(co + go) + R (3)
0

where R, is the gross interest rate for the Markov state s that is assumed to prevail at time
t =0 and 7, is the time ¢ = 0 tax rate.

In equation (3), it is understood that

U0

uc,O

U (8)

S
Ryl = BZH(3|30) »
s=1

c,0

It is useful to transform some of the above equations to forms that are more natural for ana-
lyzing the case of a CRRA utility specification that we shall use in our example economies.

4.2 Specification with CRRA Utility

As in lectures optimal taxation without state-contingent debt and optimal taxation with
state-contingent debt, we assume that the representative agent has utility function

lecr nl+’y

wen) =1, "1,

and set 0 = 2, v = 2, and the discount factor § = 0.9.

We eliminate leisure from the model and continue to assume that
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The analysis of Lucas and Stokey prevails once we make the following replacements

uy(c,l) ~ —u,(c,n)
u.(c,l) ~u.(c,n)
uM(c, l) ~u,,(c,n)
U (€, ) ~ g (¢, n)

uc’e(c, ) ~0

With these understandings, equations (1) and (2) simplify in the case of the CRRA utility
function.

They become

(14 ®)fuc(c) +upy(c + 9)] + Sleucc(c) + (¢ + gupn(c +9)] =0

and

(1 + (I))[u(:(CO) + Un(co + gO)] + (I)[COUCC(CO) + (CO + gO)unn<CO + 90)] - <I>ucc<CO)bO =0

In equation (4), it is understood that ¢ and g are each functions of the Markov state s.

The CRRA utility function is represented in the following class.

In [3]: import numpy as np

class CRRAutility:

def __init__ (se f

I

sel
B=0.

o=2,
=2,
1=0.5*np.ones((2, 2)),

G=np.array([0.1, 0.2]),
©=np.ones(2),

transfers=False):

self.p, self.oc, self.y =B, o, v
self.n, self.G, self.®, self.transfers = n, G, ©, transfers

# Utility function
def U(self, ¢, n):
c = self.o
if o == 1.:
U = np.log(c)
else:
U= (c*™(1 -0) - 1) / (1 - o)
return U - n**(1 + self.y) / (1 + self.y)



# Derivatives of utility function
def Uc(self, c, n):
return c**(-self.o)

def Ucc(self, c, n):
return -self.c * c¢c**(-self.c - 1)

def Un(self, c, n):
return -n**self.y

def Unn(self, ¢, n):
return -self.y * n**(self.y - 1)

5 Example Economy

We set the following parameter values.
The Markov state s, takes two values, namely, 0, 1.
The initial Markov state is 0.

The Markov transition matrix is .51 where I is a 2 x 2 identity matrix, so the s, process is
IID.

Government expenditures g(s) equal .1 in Markov state 0 and .2 in Markov state 1.

We set preference parameters as follows:

Here are several classes that do most of the work for us.

The code is mostly taken or adapted from the earlier lectures optimal taxation without state-
contingent debt and optimal taxation with state-contingent debt.

In [4]: import numpy as np
from scipy.optimize import root
from quantecon import MarkovChain

class SequentialAllocation:

rri

Class that takes CESutility or BGPutility object as input returns
planner's allocation as a function of the multiplier on the
implementability constraint pu.

rri

def __init__ (self, model):

# Initialize from model object attributes

self.B, self.n, self.G = model.p, model.n, model.G
self.mc, self.® = MarkovChain(self.rn), model.©
self.S = len(model.r) # Number of states
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self.model = model

# Find the first best allocation
self.find_first_best()

def find_first_best(self):

rr

Find the first best allocation

rr

model = self.model
S, O, G = self.S, self.O, self.G
Uc, Un = model.Uc, model.Un

def res(z):
c = z[:S]
n = z[S:]

return np.hstack([© * Uc(c, n) + Un(c, n), © * n - ¢ - G])
res = root(res, 0.5 * np.ones(2 * S))

if not res.success:
raise Exception('Could not find first best')

self.cFB
self.nFB

res.x[:S]
res.x[S:]

# Multiplier on the resource constraint
self.=ZFB Uc(self.cFB, self.nFB)
self.zFB np.hstack([self.cFB, self.nFB, self.Z=FB])

def timel_allocation(self, u):

rr

Computes optimal allocation for time t >= 1 for a given u
model = self.model

S, ©, G = self.S, self.O, self.G

Uc, Ucc, Un, Unn = model.Uc, model.Ucc, model.Un, model.Unn

def FOC(z):

z[:S]

z[S:2 * 8]

z[2 * S:]

FoC of c

return np.hstack([Uc(c, n) - u * (Ucc(c, n) * ¢ + Uc(c, n)) - &,
un(c, n) - ¢ * (Unn(c, n) * n + Un(c, n)) \
+ ©® * &, # FOC of n
® *n-c - G])

H 11 5 O

# Find the root of the first-order condition
res = root(FOC, self.zFB)
if not res.success:
raise Exception('Could not find LS allocation.')
Z = res.x
c, n, £ =2z[:S], z[S:2 * S]], z[2 * S:]

# Compute x
I Uc(c, n) * ¢ + Un(c, n) * n
np.linalg.solve(np.eye(S) - self.p * self.rn, I)

X



return ¢, n, x, =

def time®_allocation(self, B_, s_0):
Finds the optimal allocation given initial government debt B_ and
State s_0
model, n, ©, G, B = self.model, self.x, self.O®, self.G, self.p
Uc, Ucc, Un, Unn = model.Uc, model.Ucc, model.Un, model.Unn

# First order conditions of planner's problem
def FOC(z):
u, ¢, n, =12
xprime = self.timel_allocation(p)[2]
return np.hstack([Uc(c, n) * (c - B_) + Un(c, n) * n+ B * n[s_0]
@ xprime,
Uc(c, n) - p * (Ucc(c, n)
* (c - B_) + Uc(c, n)) -
Un(c, n) - ¢ * (Unn(c, n) * n
+ Un(c, n)) + O[s_0] * E,
(6" n-c - G)[s_0]])

(1]

# Find root
res = root(FOC, np.array(
[0, self.cFB[s_0], self.nFB[s_0], self.=FB[s_0]]))
if not res.success:
raise Exception('Could not find time © LS allocation.')

return res.x

def timel_value(self, u):

rr

Find the value associated with multiplier pu

c, n, x, £ = self.timel_allocation(u)

U = self.model.U(c, n)

V = np.linalg.solve(np.eye(self.S) - self.f * self.n, U)
return ¢, n, x, V

def T(self, c, n):

rr

Computes T given c, n

rr

model = self.model
Uc, Un = model.Uc(c, n), model.Un(c, n)

return 1 + Un / (self.® * Uc)

def simulate(self, B_, s_0, T, sHist=None):

rr

Simulates planners policies for T periods

rr

model, wn, P = self.model, self.xn, self.p
Uc = model.Uc

if sHist is None:
sHist = self.mc.simulate(T, s_0)



CcHist, nHist, Bhist, THist, pHist = np.zeros((5, T))
RHist = np.zeros(T - 1)

# Time 0

@, CHist[O], nHist[0], _ = self.timeO_allocation(B_, s_0)
THist[0] = self.T(cHist[0], nHist[0])[s_0]

Bhist[0] = B_

pHist[0] = u

# Time 1 onward
for t in range(1, T):

c, n, x, E = self.timel_allocation(y)
T = self.T(c, n)

u_c = Uc(c, n)

S = sHist[t]

Eu_c = n[sHist[t - 1]] @ u_c
CHist[t], nHist[t], Bhist[t], THist[t] = c[s], n[s], Xx[s] /0
su_c[s], \
T[s]
RHist[t - 1] = Uc(cHist[t - 1], nHist[t - 1]) / (B * Eu_c)
pHist[t] = p

return np.array([cHist, nHist, Bhist, THist, sHist, pyHist, RHist])

/home/ubuntu/anaconda3/1ib/python3.7/site-packages/numba/np/ufunc/parallel.py:
-355:
NumbawWarning: The TBB threading layer requires TBB version 2019.5 or later i.e.,

TBB_INTERFACE_VERSION >= 11005. Found TBB_INTERFACE_VERSION = 11004. The TBB[
~threading

layer is disabled.
warnings.warn(problem)

In [5]: import numpy as np
from scipy.optimize import fmin_slsqp
from scipy.optimize import root
from quantecon import MarkovChain

class RecursiveAllocationAMSS:
def __init__ (self, model, pgrid, tol_diff=le-7, tol=le-7):

self.p, self.n, self.G = model.p, model.n, model.G

self.mc, self.S = MarkovChain(self.n), len(model.n) # Number ofll
~states

self.0, self.model, self.ugrid = model.©, model, ugrid

self.tol_diff, self.tol = tol _diff, tol

# Find the first best allocation
self.solve_timel_bellman()
self.T.time_@ = True # Bellman equation now solves time @ problem

def solve_timel_bellman(self):

rr



Solve the time 1 Bellman equation for calibration model and
initial grid pugrido

model, pgrid® = self.model, self.ugrid

n = model.rx

S = len(model.n)

# First get initial fit from Lucas Stokey solution.
# Need to change things to be ex ante

pp = SequentialAllocation(model)

interp = interpolator_factory(2, None)

def incomplete_allocation(y_, s_):
c, n, X, V= pp.timel_value(y_)
return ¢, n, n[s_] @ x, =[s_] @ V
cf, nf, xgrid, vf, xprimef = [], [1, [1, [1, []
for s_ in range(S):
c, n, X, V= zip(*map(lambda u: incomplete_allocation(y, s_),[
-ugridoe))

c, n np.vstack(c).T, np.vstack(n).T
X, V np.hstack(x), np.hstack(V)
xprimes = np.vstack([x] * S)
cf.append(interp(x, c))
nf.append(interp(x, n))
Vf.append(interp(x, V))
xgrid.append(x)
xprimef.append(interp(x, xprimes))
cf, nf, xprimef = fun_vstack(cf), fun_vstack(nf), fun_vstack(xprimef)
Vf = fun_hstack(Vf)
policies = [cf, nf, xprimef]

# Create xgrid

X = np.vstack(xgrid).T

xbar = [x.min(0).max(), x.max(0).min()]

xgrid = np.linspace(xbar[0], xbar[1], len(pgrido))
self.xgrid = xgrid

# Now iterate on Bellman equation
T = BellmanEquation(model, xgrid, policies, tol=self.tol)
diff = 1
while diff > self.tol_diff:
PF = T(Vf)

Vfnew, policies = self.fit_policy_function(PF)
diff = np.abs((Vf(xgrid) - Vfnew(xgrid)) / Vf(xgrid)).max()

print(diff)
Vf = Vfnew

# Store value function policies and Bellman Equations

self.vf = Vf
self.policies = policies
self. T =T

def fit_policy_function(self, PF):

rr

Fits the policy functions

rr

10



S, xgrid = len(self.n), self.xgrid

interp = interpolator_factory(3, 0)

cf, nf, xprimef, Tf, Vvf =[], [1, [1, [1, []

for s_ in range(S):
PFvec = np.vstack([PF(x, s_) for x in self.xgrid]).T
Vf.append(interp(xgrid, PFvec[0, :]))
cf.append(interp(xgrid, PFvec[1l:1 + S]))
nf.append(interp(xgrid, PFvec[l + S:1 + 2 * S]))
xprimef.append(interp(xgrid, PFvec[1l + 2 * S:1 + 3 * S]))
Tf.append(interp(xgrid, PFvec[1l + 3 * S:]))

policies = fun_vstack(cf), fun_vstack(
nf), fun_vstack(xprimef), fun_vstack(Tf)

Vf = fun_hstack(Vf)

return Vf, policies

def T(self, c, n):

rr

Computes T given c¢ and n
model = self.model
Uc, Un = model.Uc(c, n), model.Un(c, n)

return 1 + Un / (self.® * Uc)

def time0_allocation(self, B_, s0):

rri

Finds the optimal allocation given initial government debt B_ and
State s_0

PF self.T(self.Vf)

z0 = PF(B_, s0)

cO, nO, xprimed, TO = zO[1:]

return cO, nO, xprimed, TO

def simulate(self, B_, s_0O, T, sHist=None):

rri

Simulates planners policies for T periods
model, n = self.model, self.=x

Uc = model.Uc

cf, nf, xprimef, Tf = self.policies

if sHist is None:
sHist = simulate_markov(rn, s_0, T)

cHist, nHist, Bhist, xHist, THist, THist, pHist = np.zeros((7, T))
# Time 0O
CHist[0], nHist[0], xHist[0], THist[0] = self.time@_allocation(B_,T[

%S_O)
THist[0] = self.T(cHist[0], nHist[0])[s_0O]
Bhist[0] = B_
pHist[0] = self.Vf[s_0](xHist[0])

# Time 1 onward
for t in range(1, T):
S_, X, S = sHist[t - 1], xHist[t - 1], sHist[t]
c, n, xprime, T = cf[s_, :1(x), nf[s_, :](
x), xprimef[s_, :](x), Tf[s_, :]1(x)

11



T = self.T(c, n)[s]
u_c = Uc(c, n)
Eu_c = n[s_, :] @ u_c

uHist[t] = self.Vf[s](xprime[s])

cHist[t], nHist[t], Bhist[t], THist[t] = c[s], n[s], x / Eu_c, T
xHist[t], THist[t] = xprime[s], T[s]
return np.array([cHist, nHist, Bhist, THist, THist, pHist, sHist,l[
~XHist])

class BellmanEquation:

rri

Bellman equation for the continuation of the Lucas-Stokey Problem

rri

def __init__ (self, model, xgrid, policies®, tol, maxiter=1000):

self.B, self.n, self.G = model.p, model.n, model.G
self.S = len(model.r) # Number of states

self.®, self.model, self.tol = model.©®, model, tol
self.maxiter = maxiter

self.xbar = [min(xgrid), max(xgrid)]
self.time_0 = False
self.zo0 = {}

cf, nf, xprimef = policiesO

for s_ in range(self.S):
for x in xgrid:
self.z0[x, s_] = np.hstack([cf[s_, :](x),
nfls_, :1(x),
xprimef[s_, :]1(x),
np.zeros(self.S)])

self.find_first_best()

def find_first_best(self):

rr

Find the first best allocation
model = self.model
S, ©, Uc, Un, G = self.S, self.©, model.Uc, model.uUn, self.G

def res(z):
c = z[:S]
n = z[S:]
return np.hstack([® * Uc(c, n) + Un(c, n), © * n - ¢ - G])

res = root(res, 0.5 * np.ones(2 * S))
if not res.success:
raise Exception('Could not find first best')

self.cFB
self.nFB

res.x[:S]
res.x[S:]

12



IFB = Uc(self.cFB, self.nFB) * self.cFB + \
Un(self.cFB, self.nFB) * self.nFB

self.xFB

np.linalg.solve(np.eye(S) - self.p * self.n, IFB)

self.zFB = {}
for s in range(S):
self.zFB[s] = np.hstack(
[self.cFB[s], self.nFB[s], self.x[s] @ self.xFB, 0.])

def __call__ (self, Vf):
Given continuation value function next period return valuel
~function this
period return T(V) and optimal policies
if not self.time_0O:
def PF(x, s): return self.get_policies_timel(x, s, Vf)
else:
def PF(B_, sO): return self.get_policies_time@(B_, s0O, Vf)
return PF

def get_policies_timel(self, x, s_, Vf):

rr

Finds the optimal policies
model, B, ©, G, S, =n = self.model, self.p, self.®, self.G, self.S,I[
«self.n

U, Uc, Un = model.U, model.Uc, model.Un

def objf(z):
c, n, xprime = z[:S], z[S:2 * S], z[2 * S:3 * S]

Vprime = np.empty(S)
for s in range(S):
Vprime[s] = Vf[s](xprime[s])

return -x[s_] @ (U(c, n) + B * Vprime)
def objf_prime(x):

epsilon = 1le-7

X0 = np.asfarray(x)

fO = np.atleast_1d(objf(x0))

jac = np.zeros([len(x0), len(f0)])

dx = np.zeros(len(x0))

for i in range(len(x0)):
dx[1i] = epsilon
jac[i] = (objf(x0+dx) - fO)/epsilon
dx[i] = 0.0

return jac.transpose()

def cons(z):
c, n, xprime, T = z[:S], z[S:2 * S], z[2 * S:3 * S], z[3 * S:]
u_c = Uc(c, n)
Eu_c = n[s_] @ u_c
return np.hstack([
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X *u.c/ Euc-uc?®* (c-T) -Un(c, n) *n - B * xprime,
® *n-c - G])

if model.transfers:
bounds = [(0., 100)] * S + [(0., 100)] * S + \
[self.xbar] * S + [(0., 100.)] * S
else:
bounds = [(0., 100)] * S + [(0., 100)] * S + \
[self.xbar] * S + [(0., 0.)] * S
out, fx, _, imode, smode = fmin_slsqp(objf, self.zO[x, s_],
f_eqcons=cons, bounds=bounds,
fprime=objf_prime,l
~full_output=True,
iprint=0, acc=self.tol,l[
witer=self.maxiter)

if imode > 0:
raise Exception(smode)

self.z0[x, s_] = out
return np.hstack([-fx, out])

def get_policies_time0(self, B_, s0O, Vf):

rr

Finds the optimal policies
model, f, ©, G = self.model, self.p, self.O, self.G
U, Uc, Un = model.U, model.Uc, model.Un

def objf(z):
c, n, xprime = z[:-1]

return -(U(c, n) + B * VF[sO](xprime))

def cons(z):
c, n, xprime, T = z
return np.hstack([
-Uc(c, n) * (¢ - B_ - T) - Un(c, n) * n - B * xprime,
(6 " n-c - G)[se]])

if model.transfers:

bounds = [(0., 100), (0., 100), self.xbar, (0., 100.)]
else:

bounds = [(0., 100), (0., 100), self.xbar, (0., 0.)]
out, fx, _, imode, smode = fmin_slsqp(objf, self.zFB[s0],l

~f_eqcons=cons,
bounds=bounds, full_output=True,
iprint=0)

if imode > 0:
raise Exception(smode)

return np.hstack([-fx, out])

In [6]: import numpy as np
from scipy.interpolate import UnivariateSpline
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class interpolate_wrapper:

def _ init_ (self, F):
self.F = F

def __getitem__(self, index):
return interpolate_wrapper(np.asarray(self.F[index]))

def reshape(self, *args):
self.F = self.F.reshape(*args)
return self

def transpose(self):
self.F = self.F.transpose()

def _ _len_ (self):
return len(self.F)

def __call__ (self, xvec):

X = np.atleast_1d(xvec)

shape = self.F.shape

if len(x) == 1:
fhat = np.hstack([f(x) for f in self.F.flatten()])
return fhat.reshape(shape)

else:
fhat = np.vstack([f(x) for f in self.F.flatten()])
return fhat.reshape(np.hstack((shape, len(x))))

class interpolator_factory:

def _ _init_ (self, k, s):
self.k, self.s = k, s

def __call_ (self, xgrid, Fs):
shape, m = Fs.shape[:-1], Fs.shape[-1]
Fs = Fs.reshape((-1, m))
F =11
xgrid = np.sort(xgrid) # Sort xgrid
for Fhat in Fs:
F.append(UnivariateSpline(xgrid, Fhat, k=self.k, s=self.s))
return interpolate_wrapper(np.array(F).reshape(shape))

def fun_vstack(fun_list):

Fs = [IW.F for IW in fun_list]

return interpolate_wrapper(np.vstack(Fs))
def fun_hstack(fun_list):

Fs = [IW.F for IW in fun_list]

return interpolate_wrapper(np.hstack(Fs))

def simulate_markov(w, s_0, T):
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sHist = np.empty(T, dtype=int)
sHist[0] = s_0
S = len(n)
for t in range(1, T):
SHist[t] = np.random.choice(np.arange(S), p=rn[sHist[t - 1]])

return sHist

6 Reverse Engineering Strategy

We can reverse engineer a value b, of initial debt due that renders the AMSS measurability
constraints not binding from time ¢ = 0 onward.

We accomplish this by recognizing that if the AMSS measurability constraints never bind,
then the AMSS allocation and Ramsey plan is equivalent with that for a Lucas-Stokey econ-
omy in which for each period t > 0, the government promises to pay the same state-
contingent amount b in each state tomorrow.

This insight tells us to find a b, and other fundamentals for the Lucas-Stokey [3] model that
make the Ramsey planner want to borrow the same value b next period for all states and all
dates.

We accomplish this by using various equations for the Lucas-Stokey [3] model presented in
optimal taxation with state-contingent debt.

We use the following steps.
Step 1: Pick an initial ®.

Step 2: Given that @, jointly solve two versions of equation (4) for ¢(s),s = 1,2 associated
with the two values for g(s),s =1, 2.

Step 3: Solve the following equation for Z

& = (I — pI) i, (7 — g) — ;7] (6)
Step 4: After solving for Z, we can find b(s,|s'1) in Markov state s, = s from b(s) = 5((35)) or
the matrix equation
- X
uC

Step 5: Compute J(®) = (b(1) — b(2))%.
Step 6: Put steps 2 through 6 in a function minimizer and find a ® that minimizes J(®).

Step 7: At the value of ® and the value of b that emerged from step 6, solve equations (5)
and (3) jointly for cg, by.

7 Code for Reverse Engineering

Here is code to do the calculations for us.
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https://python-advanced.quantecon.org/opt_tax_recur.html

In [7]: u = CRRAutility()
def min_&(®):

g1, g2 = u.G # Government spending in s=0 and s=1

# Solve &(c)

def equations(unknowns, ®):
cl, c2 = unknowns
# First argument of .Uc and second argument of .Un are redundant
# Set up simultaneous equations
eq = lambhda ¢, g: (1 + ®) * (u.Uc(c, 1) - -u.Un(1, c + g)) + \

® * ((¢c +g) *u.Unn(1, ¢ + g) + ¢ * u.Ucc(c, 1))

# Return equation evaluated at s=1 and s=2
return np.array([eq(cl, g1), eq(c2, g2)]).flatten()

global c1i # Update c1 globally
global c2 # Update c2 globally

cl, c2 = fsolve(equations, np.ones(2), args=(®))

uc = u.Uc(np.array([c1, c2]), 1) # uc(n - g)
# ul(n) = -un(c + g)

ul = -u.Un(1, np.array([cl + g1, c2 + g2])) * [c1 + g1, c2 + @g2]

# Solve for x

x = np.linalg.solve(np.eye((2)) - u.p * u.x, uc * [c1, c2] - ul)
global b # Update b globally

b =x/ uc

loss = (b[0] - b[1])**2

return loss

$_star = fmin(min_&®, .1, ftol=le-14)

Optimization terminated successfully.
Current function value: 0.000000
Iterations: 24
Function evaluations: 48

To recover and print out b

In [8]: b_bar = b[0]
b_bar

Out[8]: -1.0757576567504166

To complete the reverse engineering exercise by jointly determining c, by, we set up a func-
tion that returns two simultaneous equations

In [9]: def solve_cb(unknowns, ®, b_bar, s=1):
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cO, b0 = unknowns

g0 = u.G[s-1]

RO =u.p * u.n[s] @ [u.Uc(c1, 1) / u.Uc(cO®, 1), u.Uc(c2, 1) / u.Uc(co,l
<1)]

RO=1/R0

70 =1+ u.Un(1, cO + gO) / u.Uc(co, 1)

eql
eq2

70 * (cO + go0) + b_bar / RO - b0 - g0o

(1 + @) * (u.Uc(cO, 1) + u.Un(1, cO + go)) \

+ ® * (cO@ * u.Ucc(cO, 1) + (cO + gO@) * u.Unn(1, cO + go0)) \
- ® * u.Ucc(co, 1) * bO

return np.array([eql, eq2], dtype='float64')

To solve the equations for ¢, by, we use SciPy’s fsolve function

In [10]: cO, b® = fsolve(solve_cb, np.array([1., -1.], dtype='float64'),
args=(®_star, b[0], 1), xtol=1.0e-12)
cO, bo

Out[10]: (0.9344994030900681, -1.0386984075517638)

Thus, we have reverse engineered an initial b0 = —1.038698407551764 that ought to render
the AMSS measurability constraints slack.

8 Short Simulation for Reverse-engineered: Initial Debt

The following graph shows simulations of outcomes for both a Lucas-Stokey economy and for
an AMSS economy starting from initial government debt equal to b, = —1.038698407551764.

These graphs report outcomes for both the Lucas-Stokey economy with complete markets and
the AMSS economy with one-period risk-free debt only.

In [11]: p_grid = np.linspace(-0.09, 0.1, 100)
log_example = CRRAutility()

log_example.transfers = True # Government can usel
~transfers
log_sequential = SequentialAllocation(log_example) # Solve sequentialll
sproblem
log_bellman = RecursiveAllocationAMSS(log_example, p_grid,
tol diff=1e-10, tol=1e-10)

T = 20

sHist = np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
0, 6, 6, 1, 1, 1, 1, 1, 1, 0])

4 4

sim_seq = log_sequential.simulate(-1.03869841, 0, T, sHist)
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sim_bel = log_bellman.simulate(-1.03869841, 0, T, sHist)

titles = ['Consumption', 'Labor Supply', 'Government Debt',
'Tax Rate', 'Government Spending', 'Output']

# Government spending paths
sim_seq[4] = log_example.G[sHist]
sim_bel[4] = log_example.G[sHist]

# Output paths
sim_seq[5] = log_example.O[sHist] * sim_seq[1]
sim_bel[5] = log_example.©[sHist] * sim_bel[1]

fig, axes = plt.subplots(3, 2, figsize=(14, 10))

for ax, title, seq, bel in zip(axes.flatten(), titles, sim_seq, sim_bel):
ax.plot(seq, '-ok', bel, '-Ab')
ax.set(title=title)
ax.grid()

axes[0, 0].legend(('Complete Markets', 'Incomplete Markets'))
plt.tight_layout()
plt.show()

/home/ubuntu/anaconda3/1ib/python3.7/site-packages/ipykernel_launcher.py:24:
RuntimeWarning: divide by zero encountered in reciprocal
/home/ubuntu/anaconda3/1ib/python3.7/site-packages/ipykernel_launcher.py:29:
RuntimeWarning: divide by zero encountered in power
/home/ubuntu/anaconda3/1ib/python3.7/site-packages/ipykernel_launcher.py:249:
RuntimewWarning: invalid value encountered in true_divide
/home/ubuntu/anaconda3/1ib/python3.7/site-packages/ipykernel_launcher.py:249:
RuntimewWarning: invalid value encountered in multiply

0.04094445433233349
.0016732111461332116
.001484674847941
.0013137721366331043
.0011814037130040284
.0010559653360017447
.0009446661650755715
.000846380731628398
.0007560453790063078
.00067560010343466
.0006041528462857525
.0005396004515459193
.0004820716905347933
.0004308273211086521
.00038481851378044445
.0003438352176738895
.0003072436934733089
.00027450091465793127
.00024531773294974706
.0002192332430240099
.00019593539314200368
.0001751430347918003
.00015655939852722542
.00013996737079027295
.00012514457794920812
.00011190070819375152

[cNcoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNMo]
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.00010007020011301444
.94972853302982e-05
.004975324147347e-05
.160585226330105e-05
.405840600053609¢e-05
.731160550371448e-05
.1279701154854075e-05
.5886517457366006€e-05
.1063904846585554e-05
.675096993929666€e-05
.289357328114443e-05
.944332266803128e-05
.6356778356648567¢e-05
.359547684463056e-05
.112486761464294e-05
.891429243202663e-05
.6935989642385405e-05
.5165570537627252e-05
.3581075125069435€e-05
.2162765973890376€e-05
.0893227628548794e-05
.756678023766783e-06
.739234293861053e-06
.828320692928978e-06
.012602850337454e-06
.282198732787138e-06
.628118881061573e-06
.042427624912607e-06
.517800319241584e-06
.048011465994329¢e-06
.627182051840163e-06
.250228060793855€e-06
.912555261494936€e-06
.610063271524622e-06
.339096440867862e-06
.0963001170891376€e-06
.8787856578596273e-06
.6838896608221645e-06
.5092762929338156e-06
.352790480459603e-06
.212586978716101e-06
.0869367377498523e-06
.74329327423575e-07
.734258346617685e-07
.829793804242991e-07
.019280130255423e-07
.292786464255896e-07
.641636192416832e-07
.058007979896173e-07
.534842618505505e-07
.0659061286626196e-07
.6455313678260827e-07
.2687001570379387e-07
.9308819949355066e-07
.6280345248910004e-07
.3565293841809765e-07
.1131168485864436e-07
.8948851406702883e-07
.6992245317097197e-07
.5237965028807156e-07
.3665054185762274e-07
.2254728941233475e-07
.0990157585069218e-07
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.85625174249574e-08
.839490105586063e-08
.927750926028107e-08
.110169770805235e-08
.377012147386367e-08
.719543386709333e-08
.129944021536304e-08
.6011930812783534e-08
.127024941982672e-08
.7017900542013434e-08
.320421049749887e-08
.978383419404908e-08
.6716182749875635€e-08
.3964822319250456¢e-08
.1497107790770152e-08
.9283758070737936€e-08
.729852767976951e-08
.551787226411719e-08
.3920697555410214e-08
.2488067996502076e-08
.1203018634961256e-08
.0050329638255684¢e-08
.016351225761823e-09
.088846855071936e-09
.256839885231707e-09
.510489273125116e-09
.840966660606102e-09
.240355714591733e-09
.7015565088111045e-09
.218202075137356e-09
.7845815612558025e-09
.395571907042164e-09
.0465804735790387e-09
.733486281344324e-09
.4525939395611508e-09
.2005875755384236€e-09
.9744955428085335e-09
.771649218301515e-09
.5896548383910459e-09
.4263891526182913e-09
.279859299241416e-09
.1484693198893273e-09
.030523465286588e-09
.247520966280898e-10
.298195114442591e-10
.446575650027425e-10
.682368814847576e-10
.996652540458408e-10
.381363585687993e-10
.829229734494842e-10
.333792396702729e-10
.8891927704299075e-10
.490241382775913e-10
.132226852966556e-10
.8109576167664684e-10
.5226523999171857e-10
.2639297870395177e-10
.031759543162564e-10
.8234069811843256e-10
.6364294848399104e-10
.4686295687459096e-10
.3180531398848157e-10
.1829182184116467e-10
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1.0616375383750133e-10
9.528098551331463e-11
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The Ramsey allocations and Ramsey outcomes are identical for the Lucas-Stokey and AMSS
economies.

This outcome confirms the success of our reverse-engineering exercises.
Notice how for t > 1, the tax rate is a constant - so is the par value of government debt.

However, output and labor supply are both nontrivial time-invariant functions of the Markov
state.

9 Long Simulation

The following graph shows the par value of government debt and the flat-rate tax on labor
income for a long simulation for our sample economy.

For the same realization of a government expenditure path, the graph reports outcomes for
two economies

o the gray lines are for the Lucas-Stokey economy with complete markets
e the blue lines are for the AMSS economy with risk-free one-period debt only

For both economies, initial government debt due at time 0 is by = .5.
For the Lucas-Stokey complete markets economy, the government debt plotted is b, (s, ).

e Notice that this is a time-invariant function of the Markov state from the beginning.
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For the AMSS incomplete markets economy, the government debt plotted is b, (s").

o Notice that this is a martingale-like random process that eventually seems to converge
to a constant b ~ —1.07.

« Notice that the limiting value b < 0 so that asymptotically the government makes a
constant level of risk-free loans to the public.

e In the simulation displayed as well as other simulations we have run, the par value of
government debt converges to about 1.07 after between 1400 to 2000 periods.

For the AMSS incomplete markets economy, the marginal tax rate on labor income 7, con-

verges to a constant

e labor supply and output each converge to time-invariant functions of the Markov state

In [12]: T = 2000 # Set T to 200 periods

sim_seq_long = log_sequential.simulate(0.5, 0, T)
sHist_long = sim_seqg_long[-3]
sim_bel long = log_bellman.simulate(©.5, 0, T, sHist_long)

titles = ['Government Debt', 'Tax Rate']

fig, axes = plt.subplots(2, 1, figsize=(14, 10))

for ax, title, id in zip(axes.flatten(), titles, [2, 3]):
ax.plot(sim_seq_long[id], '-k', sim_bel_long[id], '-.b', alpha=0.5)
ax.set(title=title)
ax.grid()

axes[0].legend(('Complete Markets', 'Incomplete Markets'))

plt.tight_layout()
plt.show()
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9.1 Remarks about Long Simulation

As remarked above, after b, ;(s") has converged to a constant, the measurability constraints
in the AMSS model cease to bind

e the associated Lagrange multipliers on those implementability constraints converge to
Zero

This leads us to seek an initial value of government debt b, that renders the measurability
constraints slack from time ¢ = 0 onward

« a tell-tale sign of this situation is that the Ramsey planner in a corresponding Lucas-
Stokey economy would instruct the government to issue a constant level of government
debt b, (s,,,) across the two Markov states

We now describe how to find such an initial level of government debt.

10 BEGS Approximations of Limiting Debt and Convergence
Rate

It is useful to link the outcome of our reverse engineering exercise to limiting approximations
constructed by BEGS [2].

BEGS [2] used a slightly different notation to represent a generalization of the AMSS model.

We’ll introduce a version of their notation so that readers can quickly relate notation that
appears in their key formulas to the notation that we have used.

BEGS work with objects B;, B,, R,, X, that are related to our notation by

U U
.’R _ c,t R = c,t
’ Ue t—1 -t 5Et—1uc,t
B — bt+1(5t>
¢ Ry(st)

bi(s" ") =R, 1By 4
By = uc,tBt = (ﬂEtuc,tH)th(St)
Xy = uc,t[gt — TyMy)

In terms of their notation, equation (44) of [2] expresses the time ¢ state s government budget
constraint as

B(S) = ‘%7(8787)37 +IT(S)(8) (8)
where the dependence on 7 is to remind us that these objects depend on the tax rate and s_
is last period’s Markov state.

BEGS interpret random variations in the right side of (8) as a measure of fiscal risk com-
posed of

e interest-rate-driven fluctuations in time ¢ effective payments due on the government
portfolio, namely, R_(s,s_)B_, and
o fluctuations in the effective government deficit X,
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10.1 Asymptotic Mean

BEGS give conditions under which the ergodic mean of 3, is

_cov™ (R, X)

B = var>(R) ©)

where the superscript oo denotes a moment taken with respect to an ergodic distribution.
Formula (9) presents B* as a regression coefficient of X', on R, in the ergodic distribution.

This regression coefficient emerges as the minimizer for a variance-minimization problem:

B* = argmin gvar(RB + X) (10)
The minimand in criterion (10) is the measure of fiscal risk associated with a given tax-debt
policy that appears on the right side of equation (8).
Expressing formula (9) in terms of our notation tells us that b should approximately equal

B*

o2
ﬁEtuc,tH

(11)

10.2 Rate of Convergence

BEGS also derive the following approximation to the rate of convergence to B* from an arbi-
trary initial condition.

E(Bn—5) 1
(B, — B%) 1+ B2var(R)

(12)
(See the equation above equation (47) in [2])

10.3 Formulas and Code Details

For our example, we describe some code that we use to compute the steady state mean and
the rate of convergence to it.

The values of 7(s) are 0.5, 0.5.

We can then construct X(s), R(s),u.(s) for our two states using the definitions above.

We can then construct BE, ju, = B u.(s)n(s), cov(R(s), X (s)) and var(K(s)) to be
plugged into formula (11).

We also want to compute var(X).
To compute the variances and covariance, we use the following standard formulas.
Temporarily let z(s),s = 1,2 be an arbitrary random variables.

Then we define
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1y =3 a(s)m(s)

S

srte) = (ot ) -

cov(z,y) = (Z w(S)@/(S)W(S)) — Hatly

S

After we compute these moments, we compute the BEGS approximation to the asymptotic
mean b in formula (11).

After that, we move on to compute B* in formula (9).

We'll also evaluate the BEGS criterion (8) at the limiting value B*

J(B*) = var(R) (B*)° + 2B*cov(R, X) + var(X) (13)

Here are some functions that we’ll use to compute key objects that we want

In [13]: def mean(x):

In [14]:

"'"'"Returns mean for x given initial state'''
X = np.array(x)
return x @ u.n[s]

def variance(x):
X = np.array(x)
return x**2 @ u.n[s] - mean(x)**2

def covariance(x, y):

X, Y = np.array(x), np.array(y)
return x * y @ u.x[s] - mean(x) * mean(y)

Now let’s form the two random variables &, X" appearing in the BEGS approximating formu-
las

u = CRRAutility()

s =0

c = [0.940580824225584, 0.8943592757759343] # Vector for c
g = u.G # Vector for g

n=c+g # Total population

vt = lambda s: 1 + u.Un(1, n[s]) / u.Uc(c[s], 1)

R_s = lambda s: u.Uc(c[s], n[s]) / (u.p * (u.Uc(c[O], n[@]) * u.n[O, O] \

+ u.Uc(c[1], n[1]) * u.x[1, ©]))
X_s = lambda s: u.Uc(c[s], n[s]) * (g[s] - =(s) * n[s])

[R_s(0), R_s(1)]
[X_s(0), X_s(1)]

R
X
print(f"R, X = {R}, {X}")

R, X = [1.055169547122964, 1.1670526750992583], [0.06357685646224803,
0.19251010100512958]
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Now let’s compute the ingredient of the approximating limit and the approximating rate of
convergence
In [15]: bstar = -covariance(R, X) / variance(R)
div = u.p * (u.Uc(c[0], n[O]) * u.x[s, @] + u.Uc(c[1], n[1]) * u.=x[s, 1])
bhat = bstar / div
bhat

Out[15]: -1.0757585378303758

Print out b and b

In [16]: bhat, b_bar

Out[16]: (-1.0757585378303758, -1.0757576567504166)
So we have

In [17]: bhat - b_bar

Out[17]: -8.810799592140484e-07

These outcomes show that b does a remarkably good job of approximating b.
Next, let’s compute the BEGS fiscal criterion that b is minimizing

In [18]: Jmin = variance(R) * bstar**2 + 2 * bstar * covariance(R, X) + variance(X)
Jmin

Out[18]: -9.020562075079397e-17

This is machine zero, a verification that b succeeds in minimizing the nonnegative fiscal cost
criterion J(3B*) defined in BEGS and in equation (13) above.

Let’s push our luck and compute the mean reversion speed in the formula above equation

(47) in [2].

In [19]: den2 = 1 + (u.f**2) * variance(R)
speedrever = 1/den2
print(f'Mean reversion speed = {speedrever}')

Mean reversion speed = 0.9974715478249827

Now let’s compute the implied meantime to get to within 0.01 of the limit

In [20]: ttime = np.log(.01) / np.log(speedrever)
print(f"Time to get within .01 of limit = {ttime}")

Time to get within .01 of limit = 1819.0360880098472

The slow rate of convergence and the implied time of getting within one percent of the limit-
ing value do a good job of approximating our long simulation above.

In a subsequent lecture we shall study an extension of the model in which the force high-
lighted in this lecture causes government debt to converge to a nontrivial distribution instead
of the single debt level discovered here.
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