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Fluid Dynamics 

• Fluid dynamics refers to the physics of fluid motion 
• The Navier-Stokes equation describes the motion of fluids and can 

appear in many forms 
• Note that ‘fluid’ can mean both liquids and gasses, as both are 

described by the same equations 
• Computational fluid dynamics (CFD) refers to the large body of 

computational techniques involved in simulating fluid motion. CFD 
is used extensively in engineering for aerodynamic design and 
analysis of vehicles and other systems. Some of the techniques 
have been borrowed by the computer graphics community 

• In computer animation, we use fluid dynamics for visual effects 
such as smoke, fire, water, liquids, viscous fluids, and even semi-
solid materials 



Differential Vector Calculus 



Fields 

• A field is a function of position x and 
may vary over time t 

• A scalar field such as s(x,t) assigns a 
scalar value to every point in space.   
A good example of a scalar field would 
be the temperature in a room 

• A vector field such as v(x,t) assigns a 
vector to every point in space. An 
example of a vector field would be the 
velocity of the air 



Del Operator 

• The Del operator 𝛻 is useful for computing 
several types of derivatives of fields 

 

𝛻 =
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
 

 

• It looks and acts a lot like a vector itself, but 
technically, its an operator 



Gradient 

• The gradient is a generalization of the concept of a 
derivative 

𝛻𝑠 =
𝜕𝑠

𝜕𝑥

𝜕𝑠

𝜕𝑦

𝜕𝑠

𝜕𝑧
 

• When applied to a scalar field, 
the result is a vector pointing in 
the direction the field is 
increasing 

• In 1D, this reduces to the 
standard derivative (slope) 



Divergence 

• The divergence of a vector field is a measure of how 
much the vectors are expanding 
 

𝛻 ∙ 𝐯 =
𝜕𝑣𝑥
𝜕𝑥

+
𝜕𝑣𝑦

𝜕𝑦
+
𝜕𝑣𝑧
𝜕𝑧

 

 
• For example, when air is heated in a region, it will 

locally expand, causing a positive divergence in the 
area of expansion 

• The divergence operator works on a vector field and 
produces a scalar field as a result 



Curl 

• The curl operator produces a new vector field that 
measures the rotation of the original vector field 
 

𝛻 × 𝐯 =
𝜕𝑣𝑧
𝜕𝑦

−
𝜕𝑣𝑦

𝜕𝑧

𝜕𝑣𝑥
𝜕𝑧

−
𝜕𝑣𝑧
𝜕𝑥

𝜕𝑣𝑦

𝜕𝑥
−
𝜕𝑣𝑥
𝜕𝑦

 

 
• For example, if the air is circulating in a particular 

region, then the curl in that region will represent the 
axis of rotation 

• The magnitude of the curl is twice the angular velocity 
of the vector field 



Laplacian 

• The Laplacian operator is a measure of the second derivative of a scalar or 
vector field 
 

𝛻2 = 𝛻 ∙ 𝛻 =
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
 

 
• Just as in 1D where the second derivative relates to the curvature of a 

function, the Laplacian relates to the curvature of a field 
• The Laplacian of a scalar field is another scalar field: 

𝛻2𝑠 =
𝜕2𝑠

𝜕𝑥2
+
𝜕2𝑠

𝜕𝑦2
+
𝜕2𝑠

𝜕𝑧2
 

• And the Laplacian of a vector field is another vector field 

𝛻2𝐯 =
𝜕2𝐯

𝜕𝑥2
+
𝜕2𝐯

𝜕𝑦2
+
𝜕2𝐯

𝜕𝑧2
 

 



Del Operations 

• Del:  𝛻  =
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
 

 

• Gradient: 𝛻𝑠  =
𝜕𝑠

𝜕𝑥

𝜕𝑠

𝜕𝑦

𝜕𝑠

𝜕𝑧
 

 

• Divergence: 𝛻 ∙ 𝐯  =
𝜕𝑣𝑥

𝜕𝑥
+

𝜕𝑣𝑦

𝜕𝑦
+

𝜕𝑣𝑧

𝜕𝑧
 

 

• Curl:  𝛻 × 𝐯 =
𝜕𝑣𝑧

𝜕𝑦
−

𝜕𝑣𝑦

𝜕𝑧

𝜕𝑣𝑥

𝜕𝑧
−

𝜕𝑣𝑧

𝜕𝑥
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−
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• Laplacian: 𝛻2𝑠 =
𝜕2𝑠

𝜕𝑥2
+

𝜕2𝑠

𝜕𝑦2
+

𝜕2𝑠

𝜕𝑧2
 



Navier-Stokes Equation 



Frame of Reference 

• When describing fluid motion, it is important to be consistent with 
the frame of reference 

• In fluid dynamics, there are two main ways of addressing this 
• With the Eulerian frame of reference, we describe the motion of 

the fluid from some fixed point in space 
• With the Lagrangian frame of reference, we describe the motion of 

the fluid from the point of view moving with the fluid itself 
• Eulerian simulations typically use a fixed grid or similar structure 

and store velocities at every point in the grid 
• Lagrangian simulations typically use particles that move with the 

fluid itself. Velocities are stored on the particles that are irregularly 
spaced throughout the domain 

• We will stick with an Eulerian point of view today, but we will look 
at Lagrangian methods in the next lecture when we discuss particle 
based fluid simulation 



Velocity Field 

• We will describe the equations of motion for a basic incompressible fluid 
(such as air or water) 

• To keep it simple, we will assume uniform density and temperature 
• The main field that we are interested in therefore, is the velocity 𝐯 𝐱, 𝑡  
• We assume that our field is defined over some domain (such as a 

rectangle or box) and that we have some numerical representation of the 
field (such as a uniform grid of velocity vectors) 

• We will effectively be applying Newton’s second law by computing a force 
everywhere on the grid, and then converting it to an acceleration by 
𝐟 = 𝑚𝐚, however, as we are assuming uniform density (mass/volume), 
then the m term is always constant, and we can assume that it is just 1.0 

• Therefore, we are really just interested in computing the acceleration 
𝑑𝐯

𝑑𝑡
 at 

every point on the grid 



Transport Equations 

• Before looking at the full Navier-Stokes equation, 
we will look at some simpler examples of 
transport equations and related concepts 

– Advection 

– Convection 

– Diffusion 

– Viscosity 

– Pressure gradient 

– Incompressibility 



Advection 

• Let us assume that we have a velocity field v(x) and we 
have some scalar field s(x) that represents some scalar 
quantity that is being transported through the velocity field 

• For example, v might be the velocity of air in the room and 
s might represent temperature, or the concentration of 
some pigment or smoke, etc. 

• As the fluid moves around, it will transport the scalar field 
with it. We say that the scalar field is advected by the fluid 

• The rate of change of the scalar field at some location is: 
 

𝑑𝑠

𝑑𝑡
= −𝐯 ∙ 𝛻𝑠 

 



Convection 

• The velocity field v describes the movement of the fluid down to 
the molecular level 

• Therefore, all properties of the fluid at a particular point should be 
advected by the velocity field 

• This includes the property of velocity itself! 
• The advection of velocity through the velocity field is called 

convection 
 

𝑑𝐯

𝑑𝑡
= −𝐯 ∙ 𝛻𝐯 

 
• Remember that dv/dt is an acceleration, and since f=ma, we are 

really describing a force 



Diffusion 

• Lets say that we put a drop of red food coloring in a motionless 
water tank. Due to random molecular motion, the red color will 
gradually diffuse throughout the tank until it reaches equilibrium 

• This is known as a diffusion process and is described by the 
diffusion equation 
 

𝑑𝑠

𝑑𝑡
= 𝑘𝛻2𝑠 

 
• The constant k describes the rate of diffusion 
• Heat diffuses through solids and fluids through a similar process 

and is described by a diffusion equation 



Viscosity 

• Viscosity is essentially the diffusion of velocity in a fluid and is 
described by a diffusion equation as well: 
 

𝑑𝐯

𝑑𝑡
= 𝜇𝛻2𝐯 

 
• The constant 𝜇 is the coefficient of viscosity and describes how 

viscous the fluid is. Air and water have low values, whereas 
something like syrup would have a relatively higher value 

• Some materials like modeling clay or silly putty are extremely 
viscous fluids that can behave similar to solids 

• Like convection, viscosity is a force. It resists relative motion and 
tries to smooth out the velocity field 



Pressure Gradient 

• Fluids flow from high pressure regions to low 
pressure regions in the direction of the pressure 
gradient 

 
𝑑𝐯

𝑑𝑡
= −𝛻𝑝 

 

• The difference in pressure acts as a force in the 
direction from high to low (thus the minus sign) 

 



Transport Equations 

• Advection:  
𝑑𝑠

𝑑𝑡
= −𝐯 ∙ 𝛻𝑠 

 

• Convection: 
𝑑𝐯

𝑑𝑡
= −𝐯 ∙ 𝛻𝐯 

 

• Diffusion:  
𝑑𝑠

𝑑𝑡
= 𝑘𝛻2𝑠 

 

• Viscosity:  
𝑑𝐯

𝑑𝑡
= 𝜇𝛻2𝐯 

 

• Pressure:  
𝑑𝐯

𝑑𝑡
= −𝛻𝑝 



Navier-Stokes Equation 

• The complete Navier-Stokes equation describes the 
strict conservation of mass, energy, and momentum 
within a fluid 

• Energy can be converted between potential, kinetic, 
and thermal states 

• The full equation accounts for fluid flow, convection, 
viscosity, sound waves, shock waves, thermal 
buoyancy, and more 

• However, simpler forms of the equation can be derived 
for specific purposes. Fluid simulation, for example, 
typically uses a limited form known as the 
incompressible flow equation 



Incompressibility 

• Real fluids have some degree of compressibility. Gasses are very 
compressible and even liquids can be compressed some 

• Sound waves in a fluid are caused by compression, as are 
supersonic shocks, but generally, we are not interested in modeling 
these fluid behaviors 

• We will therefore assume that the fluid is incompressible and we 
will enforce this as a constraint 

• Incompressibility requires that there is zero divergence of the 
velocity field everywhere 
 

𝛻 ∙ 𝐯 = 0 
 

• This is actually very reasonable, as compression has a negligible 
affect on fluids moving well below the speed of sound 



Navier-Stokes Equation 

• The incompressible Navier-Stokes equation 
describes the forces on a fluid as the sum of 
convection, viscosity, and pressure terms: 
 

 
𝑑𝐯

𝑑𝑡
= −𝐯 ∙ 𝛻𝐯 + 𝜇𝛻2𝐯 −𝛻𝑝 

 
• In addition, we also have the incompressibility 

constraint: 
 

 𝛻 ∙ 𝐯 = 0 



Computational Fluid Dynamics 



Computational Fluid Dynamics 

• Now that we’ve seen the equations of fluid 
dynamics, we turn to the issue of computer 
implementation 

• The Del operations and the transport 
equations are defined in terms of general 
calculus fields 

• We must address the issue of how we 
represent fields on the computer and how we 
perform calculus operations on them 



Numerical Representation of Fields 

• A scalar or vector field represents a continuously variable value 
across space that can have infinite detail 

• Obviously, on the computer, we can’t truly represent the value of 
the field everywhere to this level, so we must use some form of 
approximation 

• A standard approach to representing a continuous field is to sample 
it at some number of discrete points and use some form of 
interpolation to get the value between the points 

• There are several choices of how to arrange our samples: 
– Uniform grid 
– Hierarchical grid 
– Irregular mesh 
– Particle based 



Uniform Grids 

• Uniform grids are easy to deal with and tend to 
be computationally efficient due to their 
simplicity 

• It is very straightforward to compute derivatives 
on uniform grids 

• However, they require large amounts of memory 
to represent large domains 

• They don’t adapt well to varying levels of detail, 
as they represent the field to an even level of 
detail everywhere 



Uniform Grids 



Hierarchical Grids 

• Hierarchical grids attempt to benefit from the 
simplicity of uniform grids, but also have the 
additional benefit of scaling well to large 
problems and varying levels of detail 

• The grid resolution can locally increase to handle 
more detailed flows in regions that require it 

• This allows both memory and compute time to be 
used efficiently and adapt automatically to the 
problem complexity 



Hierarchical Grids 



Hierarchical Grids 



Irregular Meshes 

• Irregular meshes are built from triangles in 2D and 
tetrahedra in 3D 

• Irregular meshes are used extensively in engineering 
applications, but less so in computer animation 

• One of the main benefits of irregular meshes is their 
ability to adapt to complex domain geometry 

• They also adapt well to varying levels of detail 
• They can be quite complex to generate however and 

can have a lot of computational overhead in highly 
dynamic situations with moving objects 

• If the irregular mesh changes over time to adapt to the 
problem complexity, it is called an adaptive mesh 



Irregular Mesh 



Adaptive Meshes 



Particle-Based (Meshless) 

• Instead of using a mesh with well defined connectivity, 
particle methods sample the field on a set of irregularly 
distributed particles 

• Particles aren’t meant to be 0 dimensional points- they are 
assumed to represent a small ‘smear’ of the field, over 
some radius, and the value of the field at any point is 
determined by several nearby particles 

• Calculating derivatives can be tricky and there are several 
approaches 

• Particle methods are very well suited to water and liquid 
simulation for a variety of reasons and have been gaining a 
lot of popularity in the computer graphics industry recently 



Particle Based 



Uniform Grids & Finite Differencing 

• For today, we will just consider the case of 
uniform grid 

• A scalar field is represented as a 2D/3D array 
of floats and a vector field is a 2D/3D array of 
vectors 

• We will use a technique called finite 
differencing to compute derivatives of the 
fields 



Finite Differencing 

• Lets say we have a scalar field s(x,t) stored on 
a uniform grid and we want to compute a new 
vector field v(x,t) which is the gradient of s 

• For every grid cell, we will calculate the 
gradient (slope) by using the values of the 
neighboring cells 



Finite Difference First Derivatives 

• If we have a scalar field s(x,t) stored on a uniform grid, we 
can approximate the partial derivative along x at grid cell i 
as: 
 

𝜕𝑠𝑖
𝜕𝑥

≈
𝑠𝑖+1 − 𝑠𝑖−1
𝑥𝑖+1 − 𝑥𝑖−1

=
𝑠𝑖+1 − 𝑠𝑖−1

2∆𝑥
 

 
• Where cell i+1 is the cell in the +x direction and cell i-1 is in 

the –x direction 
• Also ∆x is the cell size in the x direction 
• All of the partial derivatives in the gradient, divergence, 

and curl can be computed in this way 



Finite Difference Second Derivative 

• The second derivative can be computed in a similar 
way: 
 

𝜕2𝑠𝑖
𝜕𝑥2

≈
𝑠𝑖+1 − 2𝑠𝑖 + 𝑠𝑖−1

∆𝑥2
 

 
• This can be used in the computation of the Laplacian 
• Remember, these are based on the assumption of a 

uniform grid. To calculate the derivatives on irregular 
meshes or with particle methods, the formulas get 
more complex 



Boundary Conditions 

• Finite differencing requires examining values in neighboring cells to 
compute derivatives 

• However, for cells on the boundary of the domain, they may not 
have any neighbors 

• Therefore, we need to assign some sort of boundary conditions to 
sort out how they are treated 

• In fluid dynamics, we might want to treat a boundary as a wall, or 
as being open to the outside environment. If a wall, it might have 
friction or be smooth, or have other relevant properties. If open, it 
might act as a source or sink, or neither 

• There are a lot of options on how to deal with boundaries, so we 
will not worry about the details for today 

• Just understand that they define some sort of case-specific 
modification to how the derivatives are computed along the 
boundaries 



Solving the Navier-Stokes Equation 

• Now that we know how to represent a field and compute derivatives, lets 
proceed to solving the Navier-Stokes equation 
 

𝑑𝐯

𝑑𝑡
= −𝐯 ∙ 𝛻𝐯 + 𝜇𝛻2𝐯 −𝛻𝑝 

 
• We will use a two-step method called a projection method 
• In the first step, we advance the velocity field according to the convection 

and viscosity terms, generating a new velocity field that will probably 
violate the incompressibility constraint 

• In the second step, we calculate a pressure field that corrects the 
divergence caused in the first step, and the gradient of the pressure field is 
added to the velocity, thus maintaining incompressibility 

• The pressure field essentially projects the velocity field onto the space of 
divergence-free vector fields, and so is known as a projection method 



Pressure Projection 

• Step 1: Advance velocity according to convection & viscosity terms 
 

𝐯∗ = 𝐯0 + ∆𝑡 𝜇𝛻2𝐯0 − 𝐯0 ∙ 𝛻𝐯0  
 
• Step 2: Solve for unknown pressure field p 

 

𝛻2𝑝 =
1

∆𝑡
𝛻 ∙ 𝐯∗ 

 
• Step 2.5: Add pressure gradient term to get new velocity 
 

𝐯1 = 𝐯∗ − ∆𝑡 𝛻𝑝  
 



Step 1: Convection and Viscosity 

• In the first step, we compute a new candidate 
velocity field 𝐯∗ according to the convection 
and viscosity forces 

 
𝐯∗ = 𝐯0 + ∆𝑡 𝜇𝛻2𝐯0 − 𝐯0 ∙ 𝛻𝐯0  

 

• We use the finite differencing formulas to 
compute the gradient and Laplacian of the 
original velocity field 𝐯0 at every cell 



Step 2: Solve Pressure 

• After step 1, the candidate velocity field 𝐯∗ will not be divergence free 
 

𝛻 ∙ 𝐯∗ ≠ 0 
 
• We assume that a pressure field exists that will counteract the divergence, 

such that when its effects are added, the new field will be divergence free 
 

𝛻 ∙ 𝐯∗ − ∆𝑡 𝛻𝑝 = 0 
 

• Rearranging this, we get: 
 

𝛻2𝑝 =
1

∆𝑡
𝛻 ∙ 𝐯∗ 

 
• Which is known as a Poisson equation 



Step 2: Solve Pressure 

𝛻2𝑝 =
1

∆𝑡
𝛻 ∙ 𝐯∗ 

 
• Finite differencing the Poisson equation creates a large number of 

simultaneous algebraic equations that must be solved 
• Several options exist for solving these systems 

– Direct solution 
– Iterative relaxation scheme 
– Conjugate gradient solver 
– Multi-grid solver 

• Solving the Poisson equation is really the key computational step in 
fluid dynamics… however… we won’t get into the details today 



Advanced Topics 

• Multi-phase flows 
• Fluid interfaces 
• Surface tension 
• Fluid-solid interaction 
• Phase transitions 
• Thermal buoyancy 
• Compressible flow 
• Supersonic shocks 
• Turbulence & mixing 


