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Preface. This case-study concerns the flow of gas in a so-called Scroll Compressor. In
this device a number of chambers of gas at different temperatures and pressures are
separated by narrow channels through which leakage can occur. Using compressible
lubrication theory, an estimate for the leakage rate is found in terms of the material
properties of the gas and the geometry of the compressor. Thus a simple functional
is obtained which allows the efficiency of different compressor designs to be compared.
Next we derive a set of ordinary differential equations for the temperature and pressure
in each chamber; the coupling between them arises from the leakage. The numerical
solution of these equations allows a realistic simulation of a working compressor, and
suggests some interesting possibilities for future designs.

This problem arose at the 32" European Study Group with Industry held in September
1998 at the Technical University of Denmark — the first ever to be held outside the
United Kingdom. It was presented by Stig Helmer Jgrgensen from DANFOSS, which
is Denmark’s largest industrial group and specialises in controls for refrigeration and
heating. The Danish Study Group was a great success and is expected to be repeated
annually henceforth. The feedback from DANFOSS has also been encouraging and
hopefully this represents the start of a long-term collaboration.

1 Introduction

The scroll compressor is an ingenious machine used for compressing air or refrigerant, which
was originally invented in 1905 by Creux [1]. Unfortunately, technology was insufficiently
advanced at the time for workable models to be manufactured and it wasn’t until the 1970’s
that commercial interest in the idea was revived — see e.g. [3]. The device consists of two
nested identical scrolls, one of which is rotated through 180° with respect to the other. In the
classical design, both scrolls are circle involutes as shown in figure 1. Now, while the darker
scroll is held fixed the other is moved through a clockwise circular motion such that the two
always remain in contact, going successively through the positions shown in diagrams A, B,
C, and D of figure 1. Each scroll is fitted to a backplate so that a side view looks something
like figure 2: the top diagram is for a section in which the scrolls are in contact and the
bottom one for any other section. Notice the gaps at the sides where gas can be ingested and
the outlet gap in the middle.
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Figure 1: Schematic diagram of a scroll compressor

LI
AN

Figure 2: Side view of a scroll compressor




To see how the compressor works, consider first the pocket of gas marked “1” in diagram
A of figure 1. This has just been ingested from the gas outside the scrolls and is now sealed
inside what we shall henceforth call a “chamber”. After one quarter of a cycle we move to
diagram B and find that chamber 1 has rotated clockwise and decreased in size; this continues
through diagrams C and D. Then, after one complete cycle we are back at diagram A, but the
gas that started life in chamber 1 is now in chamber 2. As we continue through the second
cycle, chamber 2 is compressed further and finally, at the beginning of the third cycle, it turns
into chamber 3 which now opens up to a vent at the centre of the scroll through which the
compressed gas escapes.

Today, scroll compressors are widely used for compressing refrigerants in air-conditioners
and industrial refrigerators, and somewhat less widely for air compression. There are many
advantages over the traditional pump-type design. For example, only a small number of
moving parts and no valves are required, and the rotary motion can be completely balanced,
reducing vibration and noise. The biggest problem with them is leakage of gas, resulting in
reduced efficiency, and when possible new designs are considered, controlling the leakage is of
paramount importance.

Another problem with the traditional design is that the compression takes place rather
slowly, so that a large number of turns is required to achieve the high compression ratios
demanded by customers. Unfortunately, for a given total cross-sectional area, increasing the
tightness of the spiral (i) decreases the “choke volume” of gas that can be ingested in each
cycle (i.e. the volume of chamber 1 in figure 1A), (i7) makes the job of machining the scrolls
more difficult, and (17) increases the rate of leakage. A possible solution to this problem is
to use a different spiral from the circle involute shown in figure 1, specifically one that gives
more rapid compression without reducing the intake volume.

The questions asked of the Study Group by DANFOSS were:

Q1. What different spiral geometries can be used to make a workable scroll compressor?

Q2. How do different scroll geometries affect the performance and efficiency of the
compressor?

Q3. Can we devise a “cost-function” that can be used to optimise over different pro-
posed designs?

The problem divides naturally into two lines of attack. First, it is an exercise in the geom-
etry of plane curves to determine the important characteristics (choke volume, compression
ratio, etc.) of a compressor made from a given spiral. Second, once these geometrical prop-
erties have been determined, the performance and efficiency must be found by considering
the fluid mechanics of the gas. It is the second aspect of the problem (i.e. questions 2 and
3) that is the subject of this case study. We will suppose that the chamber volumes and all
other important geometrical parameters are known, and attempt to assess their effects on
the behaviour of the gas in the compressor. For more details about the geometrical aspects
of the problem, see the Study Group Report [2]. (It was found that the important proper-
ties of a compressor design are conveniently found by expressing the spirals in the “natural”
arc-length/angle formulation.)
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Figure 3: Schematic diagram of the gap between two chambers.

The first consideration is the leakage between adjoining chambers, which forms the subject
of section 2. Then in section 3 we derive equations for the temperature and pressure of the
gas in each chamber. The leakage found in section 2 acts as a coupling mechanism between
a chamber and its neighbours, and a fully coupled model is described in section 4. Some
numerical results for a simple realisation of this model are presented in section 5 and the
conclusions are drawn in section 6, where some further projects for the interested reader are
also suggested.

2 Leakage between chambers

Ideally, the two halves of a scroll compressor remain perfectly in contact as they rotate. In
reality it is not practical to machine them accurately enough for this to be the case, and
instead there is a narrow gap. Typically the gap is around one micron across; this may be
increased by wear and/or poor machining, and it is known that if it reaches around eight
microns, the compressor becomes useless. In this section we analyse the flow through this gap
in an attempt to determine the leakage between neighbouring chambers in the compressor.
A schematic diagram of the geometry is given in figure 3. Here a gap of typical thickness d
and length L separates two adjacent chambers containing gas at pressures P, and P,. The
lengthscale L appears to be somewhat arbitrary; a typical value of 1cm was obtained by
“eyeballing” a sample compressor (whose total diameter was of the order of 20 ¢cm) supplied
by DANFOSS.

A local coordinate system is adopted with x pointing along the gap and y pointing across
it. With respect to these coordinates we denote the bottom and top scroll walls (both of
which are moving as the compressor rotates) by y = hy(z,t) and y = hay(x, ).

2.1 Governing equations and boundary conditions

The governing equations for the flow are the compressible Navier-Stokes equations (see [4])

p + div(pu) = 0, (1)



p% = —gradp + (A + p)grad divu + pV3u, (2)
where p, u and p are the density, velocity and pressure fields, A and p are the dilatational
and shear viscosities, and D/Dt is the usual convective derivative. Equation (1) represents
conservation of mass, and must be satisfied by any continuum with velocity w and density p,
while (2) is the generalisation of the usual incompressible Navier-Stokes equation, which is
recovered if divu is set to zero.

In contrast with the incompressible case, (1, 2) is not a closed system since the unknowns
p, uw and p outnumber the equations by one. Thus it is necessary to consider also the energy
equation (see [4])
DT ) 9
PCo Ty +pdive = kV*T + @, (3)
where T is absolute temperature, k£ and ¢, are the thermal diffusivity and specific heat at
constant volume of the gas, and ® is the dissipation, given by
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The terms in (3) represent respectively (i) rate of change of thermal energy, (i) work done
by pressure, (i) diffusion of heat and (iv) heat generated by viscous effects.

Finally, the system is closed by specifying an equation of state. Treating the air as a
perfect gas, we set

p = pRT, (5)

where the so-called gas constant R can be written as
R =c,—cy,

and ¢, is the specific heat at constant pressure. It is convenient to substitute (1) and (5) into
the left-hand side of (3) to obtain the energy equation in the form

1 Dp v pDp (6)

which takes a value very close to 1.4 for air.

As an aside we note that in many gas dynamics problems the right-hand side of (6) is
negligible compared with the left-hand side. If so, (6) implies that D/Dt(p/p?) = 0, and
often one can deduce further that p is given as a function of density by p = kp? for some
constant k; such flows are described as homentropic. This approach does not work for the
current problem since we will find that the dissipation term on the right-hand side of (6) is
necessarily the same order as the left-hand side.

On the upper and lower walls we specify the velocity u = (u, v) of the gas to be the same
as that of the scroll:

e o
ot Ui oz’

u=u; v= ony = hi(z,t); i=1,2. (7)



Property Symbol Approx. value Units

Viscosity L 107° Pas

Density p 1 Kgm™3
Thermal diffusivity k& 2.5 x 1072 Jm s K1
Specific heat Cy 103 JKg K1
Gap thickness d 1076 m

Contact length L 1072 m

Rotation frequency w 50 st

Pressure drop AP 108 Pa

Table 1: Estimated parameter values for leakage between chambers in a scroll compressor

Here the horizontal velocity u; and position h; of each wall are determined by the prescribed
shape and motion of the scroll. Note that (7) holds for any such motion, even if the walls
were flexible (e.g. peristaltic action), although only rigid walls are relevant to our application.

We now integrate (1) with respect to y and apply the boundary conditions (7) to obtain
an integrated equation representing total conservation of mass:

ha

ha
m; +q, =0, where m = pdy, q= / pu dy. (8)
h1 hl

The quantities m and ¢ represent respectively the mass density of gas in, and flux of gas
through, each cross-section.
As boundary conditions for the temperature we assume that the scroll walls are thermally
insulated, so that the normal derivative of T is zero, that is
or  0h; OT

ay ax ax on y hl(x7t)7 3 Y (9)

We also have to match the solution in the gap with the prescribed pressure in the chamber
on either side:
p— Prasxr — —00, p— P,asx — +o0. (10)

2.2 Dimensionless parameters

Now we compare the sizes of the different terms in equations (1-6) to see what simplifications
can be made. Typical values for the physical parameters in the problem are given in table 1.
First we note that the geometry is very slender: the gap is typically much longer than it is
thick. This feature is chacterised by the slenderness parameter,

€=~ 1074, (11)

and the fact that this is very small will enable us to use lubrication theory: a great simplifi-
cation of the Navier-Stokes equations.



Now, given the pressure drop AP across the gap we can deduce a typical gas velocity U
by balancing the pressure gradient with viscous drag in (2):

_PAP

U==1

Another dimensionless parameter is the ratio between this and the velocity due to rotation
of the compressor:

wlL pwlL?
U AP
In general the gas flow can be decomposed into (i) a “Couette flow” caused by relative
tangential motion of the walls, (7i) a “squeeze film” due to movement of the walls towards or
away from each other, and (7i) a “Poiseiulle flow” in which gas is forced through the gap by
the imposed pressure difference. If, as appears to be the case, €2 is small, this says that (i)
dominates over (7) and (i).

Now, using U as the velocity scale we compare the left- and right-hand sides of (2) to
determine the importance of inertia in the problem. As usual in lubrication-type problems,
the corresponding dimensionless parameter is the reduced Reynolds number, which is the
classical Reynolds number reduced by a factor of €%

~ pULe*  pd*AP
ow PR
Since Re™ is small, viscous effects dominate inertia, that is the left-hand side of (2) can safely

be neglected.!
Similarly, we compare the left- and right-hand sides of (6) using the reduced Peclet number:

_ pe, ULE  pe,d*AP
B k C pklL?

It is no accident that Pe* ~ Re* since their ratio, the Prandtl number Pr = k/(uc,), is close
to unity for air.

We can immediately deduce a typical rate of leakage from the velocity scale U. The rate
at which gas is lost through the channel is of order Ud, and so the cumulative loss over a
cycle is typically Ud/w. We simply have to compare this with the original area of a chamber
to obtain the relative loss of gas due to leakage:

~5x 1072 (12)

Re*

~ 1074 (13)

Pe* ~ 1074

d*AP G
pwld

relative loss = (14)
The values given in table 1 suggest that this is rather small: about 0.2%. However, it is
clearly highly sensitive to increases in d, and if we set d = 8 um, then the typical relative
loss is dramatically increased to around 100%. This is in encouraging agreement with the
experimental observations noted earlier.

"'We can also interpret Re* as the square of a typical Mach number:

U? AP
—5» Where ==
c P

Re* =

and hence deduce that the flow is wholly subsonic.



2.3 Dimensionless equations

In nondimensionalising the equations (1-6) we utilise the slenderness of the geometry and the
difference between the velocity scales for the gas and for the compressor. Thus we set

x=L2, y=dy, u=Uu, v=eUV, t=1t/w, (15)

hi=dhj, w =wLu;, p=APp, p=pp, T=APT/(pc,).
Henceforth we drop the primes and proceed with the dimensionless variables. The Navier-

Stokes equations (2), up to order Re* and €2, reduce to the lubrication equations (see [4])

py =0, Uy = pa. (16)
Thus,
u = %yz—i-Ay—i—B, (17)

for some A(x,t), B(x,t), found using the dimensionless version of (7) to be given by

A - Qug — uy) B Pa(h1 + ho) B— Q(houy — hyus) n Pzhihy

h 2 ’ h 2

(18)
where h is the gap thickness:
h = hy — hy.

Now consider the dimensionless version of the energy equation (6) and thermal boundary
condition (9), taking only the terms at leading order in e:

1 p
—— (i + upe +0p,) — == 2 (Ui + up, +vp,) — u} + O(€)
v 17 P (19)
= ﬁ (Tyy + 0(62)) s
T, = O(¢*) ony = hy,hs. (20)

Now we use the fact that Pe* is much smaller than one to expand 1" as an asymptotic expansion
in powers of Pe™:
T:T0+P6*T1+

Notice that, since €2 < Pe*, it makes sense to keep terms of order Pe* while neglecting those
of order €.
To lowest order in Pe*, (19, 20) reduces to the trivial homogeneous Neumann problem

0*Ty 9Ty

ay2 :O, a—y :()ony:hl,hQ, (21)

from which we can deduce only that Tj is independent of y. But from (16) we know that p is
also independent of y, and thus (5) implies that p must likewise be a function only of x and
t to lowest order.



We can obtain no more information about the functions p(z, t) and p(z, t) from the leading-
order problem (21). This situation, where the leading-order problem admits nonunique solu-
tions, arises quite often. The way to resolve the nonuniqueness is to proceed to higher order
in Pe* and consider the problem for 7}, namely?

82T1 1 Y p 2
oT;
8—; = 0 ony=hy,hs. (23)

Now we have an inhomogeneous Neumann problem, which can only admit solutions for T}
if a solvability condition is satisfied. In this case, by integrating (22) with respect to y and
applying (23) we obtain the required relation between p(x,t) and p(x,t), namely

2

Qpe + up, — P Qpy +ap,) = (v — 1)“2) (24)

where ~ denotes the cross-sectional average:

1 [
P -dy.
h/hl 4

Now we simply substitute in the analytic form (17) of u to obtain

P h2px P
Qp—2p) =" Py, 2

A second equation linking p and p is obtained by substituting (17) into the dimensionless
form of (8), the result of which is

Qph(ur +up) pph?

Q(ph), + s = 0, where ¢ =
(ph)i +q. =0, where ¢ 5 D

(26)

2.4 Solution in the quasi-steady limit

Equations (25, 26) form a closed leading-order system for p and p; recall that u;, us and h
are prescribed functions of x and t. They can be simplified further by taking the quasi-steady
limit Q@ — 0. Then, from (25) we deduce that

£(0)-

which implies that the gas is isothermal. So in (26) we can set p = p/(T'(y — 1)) where T is
independent of z. Then, by setting 2 = 0 in (26) we find that the flux

W ppe

C12T(y — 1) (28)

q:

2Strictly speaking we should expand p, p and u in powers of Pe* also, but for ease of presentation we do
not bother; in effect we use p, p and u as shorthand for pg, pp and wug.

9



is a function only of t. Now we simply divide by A% and integrate with respect to = from —oo
to +o00, applying the matching conditions (10), to obtain

P2 — P2 AN
= ([ %) (29)
24T(y —1) \J_o h

This tells us how the flux, i.e. the leakage through the gap, depends on the pressure in the
chamber on either side and the geometry of the channel.

It is worth emphasising the difference between this quasi-steady solution and a steady-
state solution in which all the dependent variables are assumed to be independent of t. We
have taken a limit in which the time-derivatives in (25, 26) can be neglected, but p and p may
still depend on ¢. In particular, in (29) P;, P», T and h can all be expected to be functions
of time.3

Since the minimum gap thickness is very small, the integral in (29) is dominated by the
behaviour of A near its minimum. In a neighbourhood of this point, we can approximate h
by a quadratic function, say
Kk(t)z?

5
where k is the difference between the curvatures of the two channel walls at their closest point.
Then

h=d(t) +

/°° de 3r
Lo M A2 2k
3 Conservation equations for the chambers

Now we consider the conservation of mass and energy for a single chamber of gas. Since the
Reynolds number on the scale of a chamber is large, it is usual to assume that the gas in
each chamber is turbulent and thus well-mixed. Hence we can associate a spatially-uniform
temperature T'(¢) and pressure P(t) with the mass M (t) of gas in the chamber, which has a
given volume V'(¢).

First, note that the ratio of kinetic to thermal energy is of order

kinetic energy N pw?L? _ O’Re* < 1.

thermal energy AP

Therefore we neglect kinetic energy throughout, so that the internal energy in the chamber
is simply
E = Mec,T. (30)

The internal energy is changed due to (see e.g. [5]):

e The work done by changes in the volume V' of the chamber which, recall, is assumed to
be a prescribed function of time. The work done is given by —P dV/dt.

3The quasi-steady limit reflects the fact that they vary only slowly with ¢: the parameter Q can be thought
of as the ratio of the timescale (L/U) associated with convection in the gas flow to that (1/w) over which P;,
Py, T, etc. vary.

10



e The energy transported into and out of the chamber through the gaps on either side.
Assuming the flow through these gaps is adiabatic, the energy transported by a mass
flux ¢ is ¢H, where H is the enthalpy, equal to c,T'.

e Dissipation and energy losses to the external environment, which we denote by Q.

Putting all these together, we obtain

dE dv )

— = —P% + qic, T — g, T + Q, (31)
where the subscripts ¢ and o correspond to flow into and out of the chamber respectively.
Notice that the temperature of gas flowing out of the chamber is the same as that of the gas
in the chamber, T ‘

Henceforth we neglect @), although thermal interaction with the surroundings might be
included in a more refined model. Therefore, substituting (30) into (31) and rearranging, we
obtain an ordinary differential equation relating P and T"

dP av
Vo =7R(aTi = ¢T) = 7P (32)

Next we consider conservation of mass for the chamber. This simply states that the mass

change is equal to the flux into the chamber minus that out:

dM
— =i — (- 33
ik ' (33)
But M = pV, where the density p is given in terms of P and 7" by using the equation of state
(5). Thus (33) can be rearranged to a second equation relating P and T

dI' T dP T dV RI?

W P& vVa PV

(g — QO) . (34)

Now the idea is as follows. Given the pressure P and temperature 7" in two neighbouring
chambers, and the geometry of the gap between them, we can evaluate the flux from one to
the other using (29). Then for each chamber we have the two differential equations (32, 34)
for P and T', which are coupled to the corresponding equations for the neighbouring chambers
by the fluxes ¢ on either side.

4 The coupled problem

The situation is depicted schematically in figure 4. We have a series of chambers, in the n*"
of which the gas is at pressure P, and temperature 7,,. The flux between the n™* and (n+1)™
chamber is denoted by ¢,, with the sign convention that ¢, > 0 if gas flows from chamber n
to chamber (n + 1).

From the theory of section 2, we know that in each of the gaps between the chambers
the temperature is constant, but the value of that constant is determined by the sign of ¢: if

11
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Figure 4: Schematic diagram of the coupling between neighbouring chambers.

¢» > 0 then the gas transported by ¢, has temperature T,,, while if ¢, < 0 it is at T}, 1. Thus,
when we redimensionalise (29) we obtain the following expression for g¢,:

(Pr = Pr) @2V [ 1T, if P, > P,
97vV2 uR /T if Py < Prya.
Similarly, when we write down the conservation equations (32, 34) for the n'* chamber,

whether each of ¢,_; and g, qualifies as flux into (¢;) or out of (¢,) the chamber depends on
its sign. The resulting equations can conveniently be written in the form

dn = (35)

P, YR YV,
Fn = PV, {anlTn — @y + CI:—1<Tn71 - Tn) + Qr—f(TnJrl - Tn)} - V. (36)
- — nTn - nTn

+(v = Dnr T + 7641 (Tooy = T) + 7945 (Toa — T)

where ¢* denotes the positive part of ¢:

+  Jq itg>0,
=V 0 ifg<o.

To solve the dynamical system (36, 37) we need to apply “end conditions” at the outermost
chambers. Suppose there are N chambers altogether, with the first and N*™ open to reservoirs
at given pressure and temperature Py, Py and Ty, Ty. (Note that Ty and/or Ty need only be
specified if Py > P, and/or Py > Py_1, so that gas flows into the adjoining chambers.) We
also have to specify P, and T, forn =1,..., N — 1 at t = 0. Finally, there is a complicated
closure condition associated with the periodicity of the motion. Roughly speaking, it is clear
that after a complete cycle, what was the n'™ chamber has now become the (n+ 1)™ chamber.
The way in which this condition is implemented in practice should be made clear by the
following outlined solution procedure.

1. Suppose P, and T,, are given at t =0 forn =1,..., N.

2. Integrate the coupled ordinary differential equations (36, 37) forward through
one complete cycle, using the specified values of Py, Ty, Py, T

12



3. Set
{Vn7 an Tn}new = {anlv Pnflv Tnfl}old-

4. Go to step 2.

)

The desired final result is a periodic solution, in which the “new” and “old” values in step

3 above are identical, that is
periodic solution = {V,(t), P.(t), T,,(t)} = {Voor(t +7), Po1(t+7), Tua(t+7)},

where 7 = 27 /w is the period of the motion. However, when there is strong coupling between
the chambers it is far from clear that this periodic solution is unique or stable. Indeed, for
a high-dimensional nonlinear dynamical system such as this, we might expect to see rather
complicated dynamics in general.

4.1 The small coupling limit

If the leakage is relatively small (which it should be for any worthwhile compressor), we can
perturb about the zero-leakage solution, obtained by solving (36, 37) with ¢, = 0:*

Y 7-1

Here Vj is the choke volume: the volume of gas ingested by the compressor at the outset of
the cycle (the volume marked “1” in figure 1A). Then the lowest-order fluxes are obtained by
substituting (38) into the expression (35) for g,.

Interestingly, if the compressor is in a periodic state, we only need to find gy to evaluate
the total leakage: in its first cycle, a chamber gains —¢; and loses —qo. Then, in the next
cycle, it loses —q; and gains —qy. Over the lifetime of a chamber, all the intermediate fluxes
cancel each other out, so only ¢p remains. In the small-¢g limit, this is readily evaluated:

w =g n) () - () ] )

Thus, assuming that d and the other parameters in (39) are constant (and in any case beyond
our control), we obtain a functional form of the total leakage:

sttt = [ vE(D) () (5 ]a o

We can use this functional as part of a cost function in comparing proposed new compressor
designs, for all the variables on the right-hand side of (40) can readily be evaluated for any
given scroll geometry. Without performing any detailed calculations, we can immediately
deduce some desirable design properties that will reduce leakage:

e The contact should be as flat as possible, i.e. xk should be minimised.

e The volume should be reduced gradually on the first cycle. This follows from the obser-
vation that only ¢q is relevant to the total mass loss.

4When there is no leakage, the mass and entropy of the gas in each chamber are preserved: see e.g. [5].

13
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Figure 5: Schematic diagram of the compression of a single chamber (of volume V) which
opens up into a reservoir of volume V5.

5 Numerical results

In this section we present some preliminary numerical simulations of the system (36, 37). We
consider the simple configuration shown schematically in figure 5. Here, at the beginning of
the cycle (diagram 1) the shaded volume of gas V; is taken in from the atmosphere. As V;
decreases (diagram 2) the gas is compressed until the cycle is completed (diagram 3). Then
the gas is released into a reservoir of constant volume V, (diagram 4). The idea is that we
run the simulation through several such cycles and see what pressure we can achieve in the
reservoir; this seems like a good measure of the efficacy of the compressor.

Equations (36, 37) with gy and ¢; given by (35), ¢ = 0 and n = 1, 2 provide a closed
system for P, P, T7 and T, given the inlet pressure P and temperature 7. We initiate the
calculations with P, = P, = Ry, Ty = T, = T,. As outlined in section 4 at the end of each
cycle we perform a replacement algorithm corresponding to (i) a new chamber of atmospheric
gas forming in the “new” Vi; (ii) the “old” V; discharging into V5. For the latter we find the
new values of P, and 75 by setting the mass and energy in V5 after the discharge equal to the
total mass and energy in V; and V5 immediately prior to the discharge. Thus, after the n™
cycle we set

Vi+V,
PVi + PVo)Th T (n—)
PVIT + PVO T .

PV, + BV
Pi(nt+) = R, Py(nt+) = [—1 ! 2 2] (nT—),

Tint+) =Ty, Ta(nt+) = [(

In all the calculations to follow the parameter values are set as follows,

uw=1 R=1 ~=14, r=1,
Pozl, T():l, ‘/2:10, ’7':17

and we examine the effects of varying the “leakage parameter” d and the form of V;(t). We

14
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Figure 6: Pressures P, (in the compression chamber) and P, (in the pressurised reservoir)
versus time. The volumes are V; =1 — 0.5 ¢, V5 = 10 and the leakage parameter d = 1.

start with the simplest case in which V; is linear in ¢, say
Vi=1-at,

where « € (0,1); @« = 0 implies a compression ratio of one, while as & — 1 the compression
ratio goes to infinity. (In [2] it is shown that this linear variation of V; with time corresponds
to the traditional circle involute design shown in figure 1.)

In figure 6 we plot the pressure in the chamber and the reservoir versus time for the case
a = 0.5,d=1. We can see how P; increases during each cycle and is reset each time a new
cycle begins. In the reservoir, P, varies only slightly during any cycle, and is incremented
gradually at each discharge. Closer examination reveals that, because of leakage between the
chamber and the reservoir, P, decreases when P, > P, and increases when P, < P;. For
these parameter values, the system appears to settle down to a periodic state after around
60 cycles, with the pressure in the reservoir enhanced by a factor of just over 2. From the
calculations we can also obtain the temperature variations, but we do not bother to show
these as they are irrelevant to the total energy stored in the reservoir, which is proportional
to PQ‘/Q

In figure 7 we present the corresponding results when o = 0.8, so the compression ratio is
five, compared with two in the previous calculation. As expected, the increased compression
ratio leads to a higher final pressure, although the system also takes somewhat longer to
converge to its periodic state.

In the light of figures 6 and 7 it is of interest to ask how the final pressure achieved in
the reservoir depends on the compression ratio, 7.e. on «. As a measure of this we take the

15



Py
10 -
8 L
NN P2
6 NN ST
4 1 \\\\\\
20 40 60 80 100 t

Figure 7: Pressures P; (in the compression chamber) and P, (in the pressurised reservoir)
versus time. The volumes are V; =1 — 0.8 t, V5, = 10 and the leakage parameter d = 1.
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Figure 8: Average reservior pressure over the 100" cycle versus compression parameter a.
The volumes are V; = 1 — at, V5, = 10 and the leakage parameter d = 0.25, 0.5, 0.75, 1.
Notice that the curves for d = 0.25 and d = 0.5 are indistinguishable.
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Figure 9: The family of curves V3 = 1 — 3t + (V; 4+ 3 — 1)¢? for various values of 3 (here
V; = 0.3). The value § = 1 — V} gives a straight line joining V; =l att =0to V3 =V} at
t =1; B = 0 has zero gradient at t = 0; 8 = 2(1+ /V}) is the value at which V; first reaches
zero for t € (0,1).

average of P, over the 100" cycle:

B 101
P(100) = / Py dt,
1

00

and plot the result versus « for various values of d in figure 8. Not surprisingly the pressure
achieved increases as « is increased and as d is decreased. However, for sufficiently small d,
decreasing d still further doesn’t appear to have much effect; the graphs for d = 0.25 and
d = 0.5 are indistinguishable. This is explained by examination of the transients, which makes
it clear that for these small values of d, P, has yet to equilibriate after 100 cycles.

So, we have shown the rather obvious results that the effectiveness of a compressor can
be enhanced by increasing the compression ratio and by reducing the leakage, although these
also make the convergence to maximum compression slower. Next we would like to compare
compressors with the same compression ratio but different histories Vi(t). Therefore we
consider the family

Vi=1-08t+(Vi+8-1)8,

shown in figure 9, where V; is the final volume (so the compression ratio is 1/Vy) and 3
changes the volume history for a fixed Vy; = 1 — V gives the linear V;(t), i.e. constant
compression rate, considered previously. Broadly speaking, if § is decreased the compression
is slower initially and accelerates towards the end of the cycle, and vice versa.

First we check how our theoretical approximate leakage [ given in (40) varies with . In
figure 10 we plot [ versus (3 for different values of V;. We observe that the theoretical leakage
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Figure 10: Theoretically predicted leakage | = fol(Vf%l — V7YY dt for the family of volume
histories depicted in figure 9; V; = 1 — gt + (V; + 3 — 1)t* with V; = 0.1, 0.2, 0.3, 0.4, 0.5.
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Figure 11: Average reservior pressure over the 100" cycle for d = 1 and the family of volume
histories depicted in figure 9; V; =1 — gt + (V; + 3 — 1)t* with V; = 0.1, 0.2, 0.3, 0.4, 0.5.



for a given volume ratio is reduced if the compression is slow at the beginning and faster at
the end. This echoes the suggestion at the end of section 4 that the volume should be reduced
gradually at the start. There is a surprise, however, in that [ can be negative if 5 is sufficiently
large and negative. This corresponds to large positive excursions in V; (see figure 9), as a
result of which the compressor acts like a bellows, sucking extra gas into the chamber.

This conclusion is backed up by figure 11 in which we plot P(100) from our simulation
versus (3 for different values of Vy (and with d = 1). Here the behaviour in general is extremely
interesting: depending on the compression ratio, P may be an increasing or decreasing func-
tion of 3, or may vary nonmonotonically. However, for the large compression ratios which are
likely to be of most practical interest, the optimal performance (i.e. largest possible value of

P(100)) is obtained by making ( as large and negative as possible.

6 Conclusions

Here we summarise the work presented in this case study and suggest some open questions
(labelled (a), (b), etc.) which the interested reader might consider further.

We have used compressible lubrication theory to obtain a theoretical prediction of the
leakage between adjoining chambers in a scroll compressor. One surprising outcome of the
analysis is that the gas flowing through the narrow gap between one chamber and the next is
1sothermal. In traditional inviscid gas dynamics one would expect the temperature to decrease
as the gas accelerates through the gap, while classical lubrication theory would predict an
increase in temperature due to viscous dissipation. Remarkably these two effects appear to
cancel each other out exactly.

(a) Is there a simple physical explanation for this result?

Our result for inter-chamber leakage was then incorporated in a coupled model for the
pressure and temperature of the gas in each chamber. The model takes the form of a dynamical
system.

(b) What can be said about the general properties of the dynamical system (36, 37)?
For example, is the desired periodic solution linearly stable?

Our analysis was limited to examination of the case in which the leakage is small. In this
limit we obtained an approximate measure of the total losses due to leakage, as a functional
of the geometry of the compressor. This could in future be included in a cost function for
evaluating proposed new compressor designs.

(c) What other parameters should be included in the cost function? How might an
optimisation procedure be implemented?

We performed some numerical simulations of a simple compressor with just one chamber
pumping gas into a sealed reservoir. From these we were able to test the effects on compressor
performance of varying the leakage rate, the volume ratio and the volume history. The most
intriguing possibility suggested by the simulations is that of making the chamber volume in-
crease initially, before a rapid compression just prior to discharge. This allows the compressor
to use the leakage in its favour by sucking more gas in from the atmosphere.
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(d) Is it physically possible to design a scroll for which the chamber volume varies
nonmonotonically with time?

Many potentially important physical effects have been neglected in this study, and might
be considered in the future to refine the model further.

(e) What would be the effects on our model of including (7) thermal losses through
the compressor walls; (i) dependence of viscosity upon temperature; (i) the
“squeeze film” and “Couette” effects in the lubrication analysis (i.e. the terms
multiplied by €2 in (25, 26))7

Perhaps most importantly, we have restricted our analysis to a two-dimensional configuration.

(f) How could one quantify leakage through the sides of the chambers (i.e. in the
plane shown in figure 2)?

Finally let us return to the three original questions posed on page 3 and examine the
extent to which they have been answered. Although Question 1 has not been adressed in this
case study, some progress was made at the Study Group, and in [2] a simple geometric method
is given to parametrise a large class of viable compressor spirals. Our modelling provides a
framework within which Question 2 can be answered, since different proposed designs can be
simulated and their performance and efficiency compared. Moreover, we have proposed some
general design strategies which might enhance performance. Finally, in answer to Question 3
we have identified an easily-evaluated functional which measures leakage and could form part
of a cost function.
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