

Goals for Chapter 12

- To study the concept of density
- To investigate pressure in a fluid
- To study buoyancy in fluids
- To compare laminar versus turbulent fluid flow and how the fluid speed depends on the size of the tube
- To learn how to use Bernoulli's equation to relate pressure and flow speed of a fluid

States of Matter

Solid

- Has a definite volume and shape

Liquid

- Has a definite volume but not a definite shape

Gas - unconfined

- Has neither a definite volume nor shape

Both liquids and gases are fluids.

A fluid is a collection of molecules that are randomly arranged and held together by weak cohesive forces and by forces exerted by the walls of a container.

Fluid Statics

- Describes fluids at rest

Fluid Dynamics

- Describes fluids in motion

Density

- The density of a material is its mass per unit volume: $\rho=m / V$.
- The specific gravity of a material is its density compared to that of water at $4^{\circ} \mathrm{C}$.
- The values of density for a substance vary slightly with temperature since volume is temperature dependent.
- The various densities indicate the average molecular spacing in a gas is much greater than that in a solid or

Densities of some common substances

Table 12.1 Densities of Some Common Substances

Material	Density $\left(\mathbf{k g} / \mathbf{m}^{\mathbf{3}}\right)^{*}$	Material	Density $\left(\mathbf{k g} / \mathbf{m}^{\mathbf{3}}\right)^{*}$
Air $\left(1 \mathrm{~atm}, 20^{\circ} \mathrm{C}\right)$	1.20	Iron, steel	7.8×10^{3}
Ethanol	0.81×10^{3}	Brass	8.6×10^{3}
Benzene	0.90×10^{3}	Copper	8.9×10^{3}
Ice	0.92×10^{3}	Silver	10.5×10^{3}
Water	1.00×10^{3}	Lead	11.3×10^{3}
Seawater	1.03×10^{3}	Mercury	13.6×10^{3}
Blood	1.06×10^{3}	Gold	19.3×10^{3}
Glycerine	1.26×10^{3}	Platinum	21.4×10^{3}
Concrete	2×10^{3}	White dwarf star	10^{10}
Aluminum	2.7×10^{3}	Neutron star	10^{18}

*To obtain the densities in grams per cubic centimeter, simply divide by 10^{3}.

Pressure

The pressure P of the fluid at the level to which the device has been submerged is the ratio of the force to the area.

$$
P \equiv \frac{F}{A}
$$

At any point on the surface of the object, the force exerted by the fluid is perpendicular to the surface of the object.

Pressure is a scalar quantity.
If the pressure varies over an area,

$$
P \equiv \frac{d F}{d A}
$$

And $d F=P d A$.

Unit of pressure is pascal (Pa)

$$
1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}
$$

Atmospheric Pressure

- Atmospheric pressure P_{a} is the pressure of the earth's atmosphere. It changes with elevation.
- Atmospheric pressure at sea level is 1 atmosphere (1atm)

$$
1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}
$$

- $1 \mathrm{~atm}=1.013 \mathrm{bar}=14.70 \mathrm{lb} / \mathrm{inch}^{2}$
- $1 \mathrm{~N}=0.2248 \mathrm{lb}$

Pressure in a Fluid -examples

- A. Find the mass and weight of the air at $20^{\circ} \mathrm{Cin}$ a living room with a 4.0 mx 5.0 m floor and ceiling 3.0 m high.
- $M=\rho V=\left(1.2 \mathrm{~kg} / \mathrm{m}^{3}\right)(4 m x 5 m x 3 \mathrm{~m})=72 \mathrm{~kg}$
- $W=m g=(72 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=700 \mathrm{~N}$
- B. What is the total downward force on the floor due to the air pressure of $1.013 \times 10^{5} \mathrm{~Pa}$
- $F=p A=\left(1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)(4 m \times 5 \mathrm{~m})=2 \times 10^{6} \mathrm{~N}$

Pressure and Depth

Examine a sample of liquid within a cylinder.

-It has a cross-sectional area A and height h.
The liquid has a density of ρ.
-Assume the density is the same throughout the fluid. This means it is an incompressible liquid.

The three forces are:

-Downward force on the top, $\mathrm{P}_{0} \mathrm{~A}$

- Upward on the bottom, PA
- Gravity acting downward, $\mathrm{Mg}: M=\rho V=\rho A h$.

Since the net force must be zero:

$$
\begin{gathered}
\sum \overrightarrow{\mathbf{F}}=P A \hat{\mathbf{j}}-P_{0} A \hat{\mathbf{j}}-M g \hat{\mathbf{j}}=0 \\
P A-P_{0} A-M g=0 \\
M=\rho V=\rho A\left(y_{1}-\mathrm{y}_{2}\right)=\rho \mathrm{Ah} \\
P A-P_{0} A-\rho \mathrm{Ahg}=0 \\
P=P_{0}+\rho g h
\end{gathered}
$$

The parcel of fluid is in equilibrium, so the net force on it is zero.

Pressure at depth in a fluid

- $\quad \rho g h$ - is called hydrostatic pressure
- The total pressure at a depth h in a fluid of uniform density is given by $P=P_{0}+\rho g h$. As Figure at the right illustrates, the shape of the container does not matter.
- The gauge pressure is the pressure above atmospheric pressure. The absolute pressure is the total pressure.
- The hydrostatic pressure is the gauge pressure

The pressure at the top of each liquid column is atmospheric pressure, p_{0}.

The pressure at the bottom of each liquid column has the same value p.

The difference between p and p_{0} is ρ gh, where h is the distance from the top to the bottom of the liquid column. Hence all columns have the same height.

Examples

1. Water stands 12 m deep in a storage tank whose top is open to the atmosphere. What is the absolute and gauge pressure at the bottom of the tank? $\left(\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{p}_{0}\right.$ $=101.3 \mathrm{kPa}$)
2. What force is exerted by the water on the window of underwater vehicle at the depth of 50 m if the window is circular and has a diameter of 35 cm

Pascal's law

- Pascal's law: Pressure applied to an enclosed fluid is transmitted undiminished to every portion of the fluid and the walls of the containing vessel.

$$
P_{1}=P_{2} \quad \frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}}
$$

Applications: Hydraulic brakes
Car lifts
Hydraulic jacks
Forklifts

Pascal's Law, Example

The small piston of a hydraulic lift has a cross-sectional area of $3 \mathrm{~cm}^{2}$, and its large piston has a cross-sectional area of 200 cm^{2}. What downward force must be applied to the small piston for the lift to raise a load whose weight is $\mathrm{W}=15 \mathrm{kN}$.

$$
P_{1}=P_{2} \quad \frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}}
$$

Because the increase in pressure is the same on the two sides, a small force $\overrightarrow{\mathbf{F}}_{1}$ at the left produces a much greater force $\overrightarrow{\mathbf{F}}_{2}$ at the right.

Pressure Measurements: Barometer

Invented by Torricelli

A long closed tube is filled with mercury and inverted in a dish of mercury.

- The closed end is nearly a vacuum.

Measures atmospheric pressure as $\mathrm{P}_{\mathrm{o}}=\rho_{\mathrm{Hg}} \mathrm{g} \mathrm{h}$

One $1 \mathrm{~atm}=0.760 \mathrm{~m}(\mathrm{of}$ Hg)

Pressure Measurements: Manometer

A device for measuring the pressure of a gas contained in a vessel.

One end of the U -shaped tube is open to the atmosphere.

The other end is connected to the pressure to be measured.

Pressure at B is $\mathrm{P}=\mathrm{P}_{0}+\rho g h$

The height can be calibrated to measure the pressure.

Absolute vs. Gauge Pressure

$P=P_{0}+\rho g h$
P is the absolute pressure.
The gauge pressure is $P-P_{0}$.

- This is also $\rho g h$.
- This is what you measure in your tires.

Archimedes Principle

- Archimedes' Principle: When a body is completely or partially immersed in a fluid, the fluid exerts an upward force (the "buoyant force") on the body equal to the weight of the fluid displaced by the body.
(a) Arbitrary element of fluid in equilibrium

(b) Fluid element replaced with solid body of the same size and shape

The forces due to pressure are the same, so the body must be acted upon by the same buoyant force as the fluid element, regardless of the body's weight.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Archimedes's Principle, cont

The pressure at the bottom of the cube is greater than the pressure at the top of the cube.

The pressure at the top of the cube causes a downward force of $\mathrm{P}_{\text {top }} \mathrm{A}$.

The pressure at the bottom of the cube causes an upward force of $\mathrm{P}_{\mathrm{bot}} \mathrm{A}$.
$\mathrm{B}=\left(\mathrm{P}_{\text {bot }}-\mathrm{P}_{\text {top }}\right) \mathrm{A}=\left(\rho_{\text {fluid }} \mathrm{gh}\right) \mathrm{A}$
$\mathrm{B}=\rho_{\text {fluid }} \mathrm{g} \mathrm{V}_{\text {disp }}$

- $\mathrm{V}_{\text {disp }}=\mathrm{Ah}$ is the volume of the fluid displaced by the cube.
$\mathrm{B}=\mathrm{Mg}$

The buoyant force on the cube is the resultant of the forces exerted on its top and bottom faces by the liquid.

- $M g$ is the weight of the fluid displaced by the cube.

Archimedes's Principle: Totally Submerged Object

If the density of the object is less than the density of the fluid, the unsupported object accelerates upward.

If the density of the object is more than the density of the fluid, the unsupported object sinks.

If the density of the submerged object equals the density of the fluid, the object remains in equilibrium.

The direction of the motion of an object in a fluid is determined only by the densities of the fluid and the object.

Archimedes's Principle: Floating Object

The density of the object is less than the density of the fluid.
The object is in static equilibrium.
The object is only partially submerged.
The upward buoyant force is balanced by the downward force of gravity.

Volume of the fluid displaced corresponds to the volume of the object beneath the fluid level.

Buoyancy

A 15 kg solid gold statue is raised from the sea bottom. What is the tension in the hoisting cable when the statue is (a) at rest and completely underwater and (b) at rest and completely out o the water.

Solutions: (a) $T+B-m g=0 \quad B=\rho_{w} g V$

$$
\mathrm{V}=\mathrm{m} / \rho_{\mathrm{gold}}=15 \mathrm{~kg} / 19300 \mathrm{~kg} / \mathrm{m}^{3}=7.78 \times 10^{-4} \mathrm{~m}^{3}
$$

$$
B=\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(7.78 \times 10^{-4} \mathrm{~m}^{3}\right)=7.84 \mathrm{~N}
$$

$\mathrm{T}=\mathrm{mg}-\mathrm{B}=147 \mathrm{~N}-7.84 \mathrm{~N}=139 \mathrm{~N}$
(b) $\mathrm{T}=147 \mathrm{~N}(\mathrm{~B}=0)$

Example

A sample of unknown material appears to weigh 320 N in air and 250 N in fresh water ($\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$). What are (a) the volume and (b) the density of this material?
(a) $T_{2}=m g-B \quad T_{1}=m g \quad T_{2}=T_{1}-B$
$B=320 N-250 N=70 N \quad V=B / \rho_{\text {water }} g$ $V=70 \mathrm{~N} /\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=0.007 \mathrm{~m}^{3}$ (b) $\rho_{\text {material }}=m / V=32.65 \mathrm{~kg} / 0.007 \mathrm{~m}^{3}$ $=4573 \mathrm{~kg} / \mathrm{m}^{3}$

Example

A raft is constructed from wood having a density 600 $\mathrm{kg} / \mathrm{m}^{3}$. Its surface area is $5.7 \mathrm{~m}^{2}$ and its volume is $0.6 \mathrm{~m}^{3}$. When the raft is placed in fresh water to what depth h is the bottom of the raft submerged?
$\rho_{\text {wood }} g \mathrm{~V}_{\text {total }}=\rho_{\text {water }} \mathrm{gV}_{\text {sub }} \mathrm{V}_{\text {sub }}=\left(600 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(0.6 \mathrm{~m}^{3}\right) / 1000$ $\mathrm{kg} / \mathrm{m}^{3}=0.36 \mathrm{~m}^{3} \mathrm{~h}=\mathrm{V} / \mathrm{A}=0.36 \mathrm{~m}^{3} / 5.7 \mathrm{~m}^{2}=0.063 \mathrm{~m}$

Archimedes's Principle, Iceberg Example

What fraction of the iceberg is below water? Density of ice $=920 \mathrm{~kg} / \mathrm{m}^{3}$, density of sea water $=1030 \mathrm{~kg} / \mathrm{m}^{3}$
$B=m g$
$\left(\rho_{\text {seawater }}\right)\left(\mathrm{V}_{\text {displaced }}\right) \mathrm{g}=\left(\rho_{\text {ice }}\right)\left(\mathrm{V}_{\text {ice }}\right) \mathrm{g}$
$V_{\text {disp }} / V_{\text {ice }}=\rho_{\text {ice }} / \rho_{\text {seawater }}=$
920/1030=0.89

About 89% of the ice is below the water's surface.

Fluid flow

- The flow lines in the bottom figure are laminar because adjacent layers slide smoothly past each other.
- In the figure at the right, the upward flow is laminar at first but then becomes turbulent flow.

Types of Fluid Flow

Laminar flow

- Steady flow
- Each particle of the fluid follows a smooth path.
- The paths of the different particles never cross each other.
- Every given fluid particle arriving at a given point has the same velocity.

Turbulent flow

- An irregular flow characterized by small whirlpool-like regions.
- Turbulent flow occurs when the particles go above some critical speed.

Ideal Fluid Flow

There are four simplifying assumptions made to the complex flow of fluids to make the analysis easier .

- The fluid is non-viscous - internal friction is neglected
- An object moving through the fluid experiences no viscous forces.
- The flow is steady - all particles passing through a point have the same velocity.
- The fluid is incompressible - the density of the incompressible fluid remains constant.
- The flow is irrotational - the fluid has no angular momentum about any point.

The continuity equation

- The figure at the right shows a flow tube with changing cross-sectional area.
- $d m_{1}=d m_{2}$ or $\rho \mathrm{A}_{1} \mathrm{v}_{1} \mathrm{dt}=\rho \mathrm{A}_{2} \mathrm{v}_{2} \mathrm{dt}$

The fluid is incompressible, so r is a constant, and flow is constant so $\mathrm{A}_{1} \mathrm{v}_{1}=\mathrm{A}_{2} \mathrm{v}_{2}=$ constant

- The continuity equation for an incompressible fluid

$$
A_{1} v_{1}=A_{2} v_{2} .
$$

- The volume flow rate

$$
d V / d t=A v .
$$

Example

Oil of density $850 \mathrm{~kg} / \mathrm{m}^{3}$ is pumped through a cylindrical pipe at a rate of 9.5 liters per sec. (a) The first section of the pipe has a diameter of 8 cm . What are the flow speed and mass flow rate? (b) The second section of the pipe has a diameter of 4 cm . What are the flow speed and mass flow rate in the section?

Bernoulli's equation

- Work done on the fluid during $d t$ is
$d W=F_{1} d s_{1}-F_{2} d s_{2}=p_{1} A_{1} d s_{1}-p_{2} A_{2} d s_{2}=\left(p_{1}-p_{2}\right) d V$

$$
\begin{aligned}
& \cdot d W=d K+d U \\
& d K=1 / 2 d m\left(v_{2}^{2}-v_{l}^{2}\right)=1 / 2 \rho d V\left(v_{2}^{2}-v_{1}^{2}\right) \\
& d U=d m g\left(y_{2}-y_{1}\right)=\rho d V g\left(y_{2}-y_{1}\right) \\
& \left(p_{1}-p_{2}\right) d V=1 / 2 \rho d V\left(v_{2}^{2}-v_{1}^{2}\right)+\rho d V g\left(y_{2}-y_{1}\right) \\
& \quad\left(p_{1}-p_{2}\right)=1 / 2 \rho\left(v_{2}^{2}-v_{1}^{2}\right)+\rho g\left(y_{2}-y_{1}\right)
\end{aligned}
$$

This is Bernoulli's equation. In more convenient form Bernoulli's equation is

$p_{1}+\rho g y_{1}+1 / 2 \rho v_{1}^{2}=p_{2}+\rho g y_{2}+1 / 2 \rho v_{2}^{2}$

Water pressure in the home

Water enters a house through a pipe with an inside diameter of 2 cm and an absolute pressure of $4 \times 10^{5} \mathrm{~Pa}$. A $1-\mathrm{cm}$ diameter pipe leads to the second-floor bathroom 5 m above. When the flow speed at the inlet pipe is $1.5 \mathrm{~m} / \mathrm{s}$, find the flow speed, pressure and volume flow rate in the bathroom.

Speed of efflux

A gasoline storage tank with crosssection area $A_{l^{\prime}}$ is filled to a depth h. The space above gasoline contains air at pressure $p_{0,}$ and gasoline flows out of the bottom of the tank through the pipe with cross-section area A_{2}. Derive expression for the flow speed in the pipe.

Example

If wind blows at $30 \mathrm{~m} / \mathrm{s}$ over the roof having an

 area of $175 \mathrm{~m}^{2}$, what is the upward force exerted on the roof?
Example

Water (density $=1000 \mathrm{~kg} / \mathrm{m}^{3}$) flows through a horizontal tapered pipe. The radius of pipe A is 12 cm and the radius of the pipe B is 7 cm . a. If the speed of the water in the pipe A is $2.2 \mathrm{~m} / \mathrm{s}$ what is the speed of the water in the pipe B . b) What is the pressure difference between pipe A and pipe B ?

Lift on an airplane wing

(a) Flow lines around an airplane wing

Flow lines are crowded together above the wing, so
flow speed is higher there and pressure is lower.

(b) Computer simulation of air parcels flowing around a wing, showing that air moves much faster over the top than over the bottom.

Notice that air
particles that are together at the leading edge of the wing do not meet up at the trailing edge!

Viscosity and turbulence

- Viscosity is internal friction in a fluid. (See Figures 12.27 and 12.28 at the right.)
- Turbulence is irregular chaotic flow that is no longer laminar. (See Figure 12.29 below.) ${ }_{\text {(a) }}$
(b)

Cross section of a cylindrical pipe

The velocity profile for
viscous fluid flowing in the pipe has a parabolic shape.

A curve ball (Bernoulli's equation applied to sports)

- Does a curve ball really curve? Follow Conceptual Example 12.11 and Figure 12.30 below to find out.

