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1 NEWTON’S LAWS 
1.1 INERTIAL FRAMES 
Newton’s first law states that velocity, �⃗�, is a constant if the force, �⃗�, is zero. Newton’s second law is the 

very famous �⃗� = 𝑚�⃗�. At first glance, it would seem that Newton’s first law is simply a recapitulation of 

the second law. After all, since acceleration, �⃗�, is simply the first time derivative of velocity, then if velocity 

is constant, acceleration is zero and thereby force is zero. However, there is indeed a reason to explicitly 

state Newton’s first law. Newton’s first law sets the frame of reference as the inertial frame. Examples of 

nearly inertial frames are the Earth, an Earth-bound lab, and a train moving with constant speed with respect 

to the Earth.  

Any rapidly rotating frame is a non-inertial reference frame. Non-inertial but accelerating frames rely on 

Einstein’s equivalence principle, which states that  

“All the phenomena in a frame that are accelerating with respect to an inertial frame with 

acceleration �⃗�𝑓 happens as if in an inertial frame with apparent gravity, where the acceleration of 

gravity is given by −�⃗�𝑓.” 

1.2 NEWTON’S LAWS 
In more exact terms, the first law can be said to mean:  

“There exists a frame of reference such that in this frame a body not acted upon by any force continues 

to be either in the state of rest or a uniform motion (i.e. with constant velocity). Such a frame is called 

inertial. Any frame moving with constant velocity with respect to an inertial frame is also inertial.” 

This should make sense and establishes a context for Newton’s second law. Newton’s second law can be 

effectively worded as “In an inertial frame, a body of mass 𝑚 acted upon by a force �⃗�, acquires an 

acceleration �⃗� = �⃗�/𝑚.” 

1.3 GALILEAN INVARIANCE 
The last sentence of Newton’s first law in the prior subsection is a little more nuanced than it appears. Let’s 

prove that for any frame moving with uniform motion with respect to an inertial frame is also inertial. This 

is frequently called the Galilean invariance.  

Consider two inertial frames given by 𝑆 and 𝑆′ that both share a universal time. Suppose 𝑆′ is in relative 

uniform motion to 𝑆 with speed 𝑣. Therefore, for a position 𝑟′(𝑡) in 𝑆′ frame and position 𝑟(𝑡) in 𝑆 frame 

then  

𝑟′(𝑡) = 𝑟(𝑡) + 𝑣𝑡 

The velocity of the object in the 𝑆′ frame is given by  

𝑢′(𝑡) =
𝑑𝑟′(𝑡)

𝑑𝑡
=
𝑑(𝑟(𝑡) + 𝑣𝑡)

𝑑𝑡
=
𝑑𝑟(𝑡)

𝑑𝑡
+ 𝑣 = 𝑢(𝑡) + 𝑣 

Differentiating once more to yield acceleration gets 

𝑎′(𝑡) =
𝑑𝑢′(𝑡)

𝑑𝑡
=
𝑑(𝑢(𝑡) + 𝑣)

𝑑𝑡
=
𝑑𝑢(𝑡)

𝑑𝑡
= 𝑎(𝑡) 

Therefore, assuming the mass is identical in both inertial frames, Newton’s laws in frame 𝑆 should also be 

true in frame 𝑆′ (and all other frames move with uniform relative motion to 𝑆). 
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2 MATHEMATICAL DESCRIPTION OF FLUID FLOW 
2.1 FIELDS AND FORCES 
Fluids can be described based on velocity vector fields, �⃗⃗�(𝑟, 𝑡), and pressure scalar fields 𝑃(𝑟, 𝑡). These 

variables satisfy differential equations, which express the two basic laws of nature: the conservation of mass 

and Newton’s second law. The conservation of mass states that fluid can move from point to point, but it 

cannot be created or destroyed. Newton’s second law implies that we use an inertial frame of reference; 

otherwise, fictitious forces such as centrifugal and Coriolos forces must be included.  

Two kinds of forces are typically considered in the study of fluid mechanics. The first is long-range “body 

forces” such as gravity, usually known per unit mass (�⃗�) or per unit volume (e.g. 𝜌�⃗�). The second is surface 

“contact forces” due to the short-range action of fluids on fluids (or solids) across an imaginary (or real) 

interface, such as pressure or viscous friction. 

2.2 CONTINUITY EQUATION 
The conservation of mass for a fluid, and by extension the continuity equation, will be derived below. 

1. Let’s assume an arbitrary control volume in space, given by 𝑉. It has a surface 𝑆 and a normal 

direction given by �⃗⃗�. 

2. Since mass is conserved, we can say that 

(total rate of increase of mass in 𝑉) = (total net flow of mass into 𝑉) 

3. In integral form, this can be written as  

∭(rate of increase of mass in unit volume) 𝑑𝑉

=∯(amount of mass crossing, per unit time, a unit area of 𝑆 in the inward direction)𝑑𝑆 

This can be mathematically expressed as 

∭
𝜕𝜌

𝜕𝑡
𝑑𝑉 = −∯𝜌�⃗� ⋅ �̂� 𝑑𝑆 

4. Applying the divergence theorem (see Appendix) yields 

∭
𝜕𝜌

𝜕𝑡
𝑑𝑉 = −∭∇ ⋅ 𝜌�⃗� 𝑑𝑉 

5. Therefore, we can say 

∭(
𝜕𝜌

𝜕𝑡
+ ∇ ⋅ 𝜌�⃗�) 𝑑𝑉 = 0 

6. The integrand must in and of itself be equal to zero because the above expression must be true for 

an arbitrary volume 𝑉 and for any arbitrary integral bounds (i.e. for all volumes). As such, we arrive 

at the continuity equation 

𝜕𝜌

𝜕𝑡
+ ∇ ⋅ 𝜌�⃗� = 0 

2.3 THE STRESS TENSOR 
Consider 𝑓 as the surface force per unit area of an imaginary (or real) interface dividing a fluid, exerted by 

the fluid “outside” (where �⃗⃗� points) on the fluid (or solid) “inside”. For a given point in space 𝑟, movement 

of time 𝑡, and orientation �⃗⃗� this force is a vector. However, 𝑓 is not a vector field because it depends on �⃗⃗� 

and 𝑡. Consider the simplest case: a fluid at rest with �⃗⃗�(𝑟, 𝑡) = 0. Then, 𝑓 is created by pressure only and 

is directed opposite to �⃗⃗�, and its magnitude is simply 𝜌.  



MATHEMATICAL DESCRIPTION OF FLUID FLOW | 5 
 

Therefore, for this case 

𝑓 = −𝑃�⃗⃗� 

Since 𝑓(𝑟, 𝑡, �⃗⃗�) = −𝑃(𝑟, 𝑡)�⃗⃗�, this means that 𝑓 = (scalar field)�⃗⃗�. But in the general case, when �⃗⃗� ≠ 0 and 

𝑓 can be directed in all possible ways relative to �⃗⃗�, we need a new type of field: a tensor field, where the 

tensor is a second-rank invariant object (scalars being of zero rank, and vectors being of first rank) which 

has nine components. Then, in general 

𝑓 ≡ �̿� ⋅ �⃗⃗� 

where �̿� = �̿�(𝑟, 𝑡) is the stress tensor and depends only on the point in space 𝑟 and time 𝑡, as a field should. 

It completely specifies the force distribution in a moving fluid due to contact forces.  

In any given coordinate system, with unit vectors 𝑖,̂ 𝑗̂, �̂� the components of a tensor make up a matrix given 

by  

�̿� = (

𝜎𝑖𝑖 𝜎𝑖𝑗 𝜎𝑖𝑘
𝜎𝑗𝑖 𝜎𝑗𝑗 𝜎𝑗𝑘
𝜎𝑘𝑖 𝜎𝑘𝑗 𝜎𝑘𝑘

) ;   𝜎𝑖𝑗 = 𝑖̂ ⋅ �̿� ⋅ 𝑗 ̂

In the particular case of a system at rest, �⃗⃗� = 0, the stress tensor �̿� must be such that  

�̿� ⋅ �⃗⃗� = −𝑃�⃗⃗� 

for any �⃗⃗�. That is, �̿� ⋅ �⃗⃗� ∝ �⃗⃗� . This can be true for an arbitrary �⃗⃗� only if �̿� ∝ I ̿where I ̿is the identity tensor 

(also called unit tensor), which in all coordinate systems has the components 

I̿ = (
1 0 0
0 1 0
0 0 1

) 

As such, 

I𝑖𝑗 = 𝛿𝑖𝑗 

where 𝛿𝑖𝑗 is the Kronecker delta. So, in a fluid at rest, 

�̿� = −𝑃I ̿

If �⃗⃗� ≠ 0 (and �⃗⃗� ≠ constant) then 

�̿� = −𝑃I̿ + �̿� 

where �̿� is sometimes called “extra stress” or more commonly “viscous stress”. It is nonzero if the fluid is 

sheared or strained. An easier way to use this tensor is to note that 

𝜎𝑖𝑗 = −𝑃𝛿𝑖𝑗 + 𝜏𝑖𝑗 

where 

𝜏𝑖𝑗 = 𝜇(∇𝑖𝑢𝑗 + ∇𝑗𝑢𝑖) 
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2.4 NEWTON’S LAW OF VISCOSITY 
When a simple fluid is sheared, it resists with the force (per unit area of the plane) which is proportional to 

the gradient (i.e. derivative) of velocity. For general motion, this becomes 

�̿� = 2𝜇�̿� 

where 𝜇 is the viscosity and �̿� is the rate of strain tensor defined by  

�̿� ≡
1

2
(∇�⃗⃗� + ∇�⃗⃗�T) 

where the superscript T refers to the transpose. Therefore, 

�̿� = −𝑃I̿ + 2𝜇�̿� 

which is an approximate empirical relationship of Newtonian fluids, not valid for complicated fluids like 

polymer solutions. Note that �̿� is symmetric such that 𝐸𝑖𝑗 = 𝐸𝑗𝑖. The term ∇�⃗⃗� is not the divergence of �⃗⃗� 

since that would require a dot product. Rather, it represents the velocity gradient tensor, which is the 

gradient operator applied to �⃗⃗�. In Cartesian coordinates this is  

∇�⃗⃗� =

(

 
 
 
 

𝜕𝑢𝑥
𝜕𝑥

𝜕𝑢𝑥
𝜕𝑦
 
𝜕𝑢𝑥
𝜕𝑧

𝜕𝑢𝑦

𝜕𝑥

𝜕𝑢𝑦

𝜕𝑦

𝜕𝑢𝑦

𝜕𝑧
𝜕𝑢𝑧
𝜕𝑥
 
𝜕𝑢𝑧
𝜕𝑦

𝜕𝑢𝑧
𝜕𝑧 )

 
 
 
 

 

There is a point of notation that should be discussed. We should note that multiplying two tensors can be 

done via (�⃗��⃗⃗�)
𝑖𝑗
= 𝑎𝑖𝑏𝑗. This is also written as (�⃗�⨂�⃗⃗�)

𝑖𝑗
= 𝑎𝑖𝑏𝑗. The ⨂ operator is often referred to as the 

tensor product.  

2.5 GENERALIZED GAUSS’ THEOREM 
Recall that the standard divergence theorem states that 

∯𝑓 ⋅ �̂� 𝑑𝑆 =∭div(𝑓) 𝑑𝑉 

We can write a generalized Gauss’ theorem that is as follows 

∭∇(operation)(tensor)𝑑𝑉 =∯�̂�(operation)(tensor) 𝑑𝑆 

Recall that a scalar is a tensor of rank 0, a vector is a tensor of rank 1, and then tensors we have described 

here are rank 2. The (operation) term can be a variety of things, such as (dot product), (ordinary product), 

(tensor product), or (cross product). In the case of (operation) = (dot product) and (tensor) = (vector) then 

we arrive at the divergence theorem. 

Let us consider an example of the generalized Gauss’ theorem. In this case, we will have (operation) = 

(ordinary product) and (tensor) = (scalar). Therefore, 

∫∇𝑓 𝑑𝑉 = ∮ �̂�𝑓 𝑑𝑆 
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In one-dimensional space between the points 𝑎 and 𝑏, the gradient operator is just ∇= 𝑥
𝑑

𝑑𝑥
 for a line in the 

𝑥 dimension. We also note that 𝑑𝑉 = 𝑑𝑥 for this system. The lefthand term then becomes 

∫∇𝑓 𝑑𝑉 = ∫𝑥
𝑑𝑓

𝑑𝑥

𝑏

𝑎

𝑑𝑥 = ∫𝑥𝑑𝑓

𝑏

𝑎

 

Since there is no surface to integrate over, the righthand term becomes 

∮�̂�𝑓 𝑑𝑆 = (𝑓|𝑥=𝑏 − 𝑓|𝑥=𝑎)�̂� 

Therefore, equation the two expressions (and dropping the 𝑥 since we only have one dimension anyway) 

∫𝑑𝑓

𝑏

𝑎

= 𝑓|𝑥=𝑏 − 𝑓|𝑥=𝑎 

which is the fundamental theorem of calculus! 

2.6 NEWTON’S EQUATION OF MOTION FOR A FLUID 
Recall that in an inertial frame, �⃗� = 𝑚�⃗�. This will apply to any fluid element so small that it can be 

considered to have a single value of �⃗�. Let it be infinitesimally small. Then, 𝑚 = 𝜌 𝑑𝑉 and �⃗� = �⃗⃗� 𝑑𝑉, 

where �⃗⃗� is the total (body and contact) force per unit volume. Then 𝜌�⃗� = �⃗⃗�.  

If only gravity were present, then �⃗⃗� = 𝜌�⃗�, but we need to find contact force per unit volume given the 

stress tensor field �̿�. Consider a continuum (e.g. fluid) at rest (�⃗⃗� = 0, �⃗� = 0) under the combined action of 

some arbitrary body force field (not only gravity) and �̿�. Then, 0 = �⃗⃗� = �⃗⃗�𝑏 + �⃗⃗�𝑐 where the 𝑏 subscript is 

for body force and 𝑐 subscript is for contact force. We also have that �⃗⃗�𝑏(𝑟) is known (imposed from things 

such gravity, electromagnetic field, etc.) while �⃗⃗�𝑐(𝑟) depends only on �̿�(𝑟). 

Any part of this continuum, enclosed in a volume 𝑉, is at rest, and so the total force acting on it must be 

zero. Thus, 

(total body force in 𝑉) + (sum of contact forces acting on matter in 𝑉 across surface 𝑆) = 0 

This becomes 

∭�⃗⃗�𝑏 𝑑𝑉 +∯𝑓𝑑𝑆 = 0 

Substituting in for the force 

∭�⃗⃗�𝑏 𝑑𝑉 +∯�̿� ⋅ �̂� 𝑑𝑆 = 0 

Applying the divergence theorem 

∭�⃗⃗�𝑏 𝑑𝑉 +∭∇ ⋅ �̿� 𝑑𝑉 = 0 

Combing the integrals 
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∭[�⃗⃗�𝑏 + ∇ ⋅ �̿�] 𝑑𝑉 = 0 

Like with the continuity equation, this expression must hold for an arbitrary volume, and therefore the 

integrand itself must be zero, such that 

�⃗⃗�𝑏 + ∇ ⋅ �̿� = 0 

We can now introduce motion by making the expression no longer equal zero. Since it is a force balance, 

we can say that 

𝜌�⃗� = �⃗⃗�𝑏 + ∇ ⋅ �̿� 

In the absence of electromagnetic effects, �⃗⃗�𝑏 = 𝜌�⃗�, so 

𝜌�⃗� = 𝜌�⃗� + ∇ ⋅ �̿� 

This is known as Newton’s Second Law for fluids. We can write �⃗� = 𝑑�⃗⃗�/𝑑𝑡 of the fluid element, so 

𝜌
𝐷�⃗⃗�

𝐷𝑡
= 𝜌�⃗� + ∇ ⋅ �̿�  

This equation is exact with no assumptions other than Newton’s Second Law. 

2.7 NAVIER-STOKES EQUATION 
We can now derive the Navier-Stokes equation from Newton’s Second Law for fluids. We make two key 

simplifications. For any arbitrary scalar field 𝑓(𝑟),  

∇ ⋅ 𝑓𝐼 ̿ = ∇𝑓 

For an incompressible fluid 

∇ ⋅ (∇�⃗⃗� + ∇�⃗⃗�T) = ∇2�⃗⃗� 

This then means that 

∇ ⋅ �̿� = −∇𝑃 + 𝜇∇2�⃗⃗� 

Therefore, we arrive at 

𝜌
𝐷�⃗⃗�

𝐷𝑡
= −∇𝑃 + 𝜇∇2�⃗⃗� + 𝜌�⃗� 

where the capital 𝐷 indicates a material derivative. This is defined as 

𝐷�⃗⃗�

𝐷𝑡
≡
𝜕�⃗⃗�

𝜕𝑡
+
𝜕𝑟

𝜕𝑡

𝜕�⃗⃗�

𝜕𝑟
=
𝜕�⃗⃗�

𝜕𝑡
+ �⃗⃗� ⋅ ∇�⃗⃗� 

As such, the Navier-Stokes equation (for an incompressible fluid) simplifies to 

𝜌 (
𝜕�⃗⃗�

𝜕𝑡
+ �⃗⃗� ⋅ ∇�⃗⃗�) = −∇𝑃 + 𝜇∇2�⃗⃗� + 𝜌�⃗� 
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2.8 SIMPLIFYING THE NAVIER-STOKES EQUATION 

2.8.1 REDUCED PRESSURE 
The Navier-Stokes equation can often be written without explicit use of gravity terms through the use of a 

modified pressure, 𝑃mod. Modified pressure can be used when the problem does not involve free surfaces 

(e.g. water/air interface). The modified pressure is defined as  

𝑃mod ≡ 𝑃 − 𝑃hydrostatic 

where  

𝑃hydrostatic = 𝜌�⃗� ⋅ 𝑟 + constant 

Then,  

𝑃 = 𝑃mod + 𝜌�⃗� ⋅ 𝑟 + constant 

With this, the 𝜌�⃗� − ∇𝑃 term in the N-S equation becomes 

𝜌𝑟 − ∇𝑃 = 𝜌�⃗� − ∇𝑃mod − 𝜌∇(�⃗� ⋅ 𝑟 + constant) = −∇𝑃mod 

From this, we can see that we can neglect the gravity term in the N-S equation and replaced ∇𝑃 with ∇𝑃mod. 

This means that 

𝜌 (
𝜕�⃗⃗�

𝜕𝑡
+ �⃗⃗� ⋅ ∇�⃗⃗�) = −∇𝑃mod + 𝜇∇

2�⃗⃗� 

Oftentimes, the “mod” subscript is omitted for brevity’s sake. 

2.8.2 REYNOLDS NUMBER 
The Navier-Stokes equation can be written using only dimensionless quantities. A dimensionless variable 

is defined as the original value divided by a given scale. For distances, you should use an appropriate length 

given the boundary conditions and is denoted 𝐿. The dimensionless velocity is denoted 𝑢. The 

dimensionless pressure is simply 𝜌𝑢2, and the dimensionless time is then 𝐿/𝑢. With these definitions, the 

Navier-Stokes equation becomes the following 

𝜕�⃗⃗�

𝜕𝑡
+ �⃗⃗� ⋅ ∇�⃗⃗� = −∇𝑃 +

1

Re
∇2�⃗⃗� 

where Re is the Reynolds number is 

Re ≡
𝜌𝑢𝐿

𝜂
=
𝑢𝐿

ν
 

If the geometry of two problems is similar except for scale, and the Reynolds number is identical in both 

cases, then the mathematical solutions, in scaled dimensionless variables, are identical. This is the basis 

behind most “scale-up” studies. 

2.8.3 APPROXIMATE SOLUTIONS OF THE NAVIER-STOKES EQUATION 
Generally, the forces on a given fluid are 

−(inertia force) = (pressure force) + (viscous force) 
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where inertia force is simply −𝑚�⃗�. In many flows, the pressure force is mainly balanced by either the 

inertial force or viscous force. The key question is when either of these terms can be neglected in the Navier-

Stokes equation. We will do this by estimating the ratio of 

|𝜌
𝐷�⃗⃗�
𝐷𝑡 |

|𝜂∇2�⃗⃗�|
 

After all of the relevant quantities are made dimensionless, this ratio becomes the following (assuming 

steady flow) 

Re
|
𝐷�⃗⃗�
𝐷𝑡 |

|∇2�⃗⃗�|
= Re

|�⃗⃗� ⋅ ∇𝑣|

|∇2�⃗⃗�|
 

If Re ≪ 1, viscous forces are dominant, which is called Stokes flow, creeping flow, or low Reynolds flow. 

This then means that the Navier-Stokes equation can be written as 

0 = −∇𝑃 + 𝜂∇2�⃗⃗� 

where the left-hand side of the Navier-Stokes equation is approximately zero under this assumption. Note 

that this drops out the density term. 
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3 FORCES AND TORQUES: SPHERE IN STOKES FLOW 
3.1.1 PROBLEM SETUP 
Consider Stokes flow past a sphere of radius 𝑎. Far upstream, the flow is uniform with velocity 𝑈, and the 

pressure there is 𝑃0. In the spherical coordinate system centered at the center of the sphere, the axis 𝜃 = 0 

is along the direction of the incoming flow (which will be said to flow in the �̂� direction). It can be derived 

(although it will simply be stated here) that the velocity profiles and pressure profile are 

𝑢𝑟 = 𝑈 (1 −
3

2

𝑎

𝑟
+
1

2
(
𝑎

𝑟
)
3

) cos𝜃 

𝑢𝜃 = −𝑈(1 −
3

4

𝑎

𝑟
−
1

4
(
𝑎

𝑟
)
3

) sin 𝜃 

𝑢𝜙 = 0 

and 

𝑃 = 𝑃0 −
3

2

𝜂𝑈

𝑎
(
𝑎

𝑟
)
2

cos 𝜃 

The goal is to calculate the total force on the sphere from the fluid, which can be calculated as the sum of 

the force due to the tangential stress on the surface of the sphere, the force from the viscous normal stress, 

and the force on the sphere due to pressure. Why is this so? First, let’s write out the expression for force: 

𝑓 = �̿� ⋅ �̂� 

We know that the normal direction on the surface of the sphere is �̂�, so �̂� = �̂�. We can rewrite the force as 

𝑓 = �̿� ⋅ �̂� 

 

From symmetry, we can make the argument that the force has no 𝜙 component. Therefore, 

𝑓 = 𝑓𝑟�̂� + 𝑓𝜃𝜃 

where 𝑓𝑟 ≡ �̂� ⋅ 𝑓 and is the normal stress and 𝑓𝜃 ≡ 𝜃 ⋅ 𝑓 and is the tangential stress. We can now state that 

𝑓𝑟 = �̂� ⋅ 𝑓 = �̂� ⋅ �̿� ⋅ �̂� = 𝜎𝑟𝑟 = −𝑃𝛿𝑟𝑟 + 𝜏𝑟𝑟 = −𝑃 + 2𝜂
𝜕𝑢𝑟
𝜕𝑟

 

We can also state that 

𝑓𝜃 = 𝜃 ⋅ 𝑓 = 𝜃 ⋅ �̿� ⋅ �̂� = 𝜎𝜃𝑟 = −𝑃𝛿𝜃𝑟 + 𝜏𝜃𝑟 = 𝜂 (𝑟
𝜕

𝜕𝑟
(
𝑢𝜃
𝑟
) +

1

𝑟

𝜕𝑢𝑟
𝜕𝜃
) 

From this, we see that there are three components to the total force: the force due to tangential stress 𝜏𝜃𝑟, 

the force due to normal stress 𝜏𝑟𝑟, and the force due to pressure. 

3.1.2 FORCE DUE TO TANGENTIAL STRESS 
We now look at calculating the force due to the tangential stress, 𝜏𝜃𝑟. Therefore, we must first calculate the 

tangential stress, which turns out to be 
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𝜏𝜃𝑟 = 𝜂 (𝑟
𝜕

𝜕𝑟
(
𝑢𝜃
𝑟
) +

1

𝑟

𝜕𝑢𝑟
𝜕𝜃
) = −

3

2

𝜂𝑈 sin 𝜃

𝑎
 

The force due to tangential stress is then 

�⃗� = ∯𝑓𝜃�̂� 𝑑𝑆 =∯𝜏𝜃𝑟 𝜃𝑑𝑆 

It is difficult to do the surface integral of a vector, so some simplification must be made. By symmetry, we 

can note that the force on the sphere will only act in the direction of flow (which we have defined as the �̂� 

direction). Therefore, we can say multiply both sides by �̂� 

�⃗� ⋅ �̂� = (∯𝜏𝜃𝑟 𝜃𝑑𝑆) ⋅ �̂� 

Since �̂� is a constant, it can be pulled into the integrand (and we can note that 𝐹 = �⃗� ⋅ �̂�) 

𝐹 =∯𝜏𝜃𝑟 𝜃 ⋅ �̂�𝑑𝑆 

We then note that 𝜃 ⋅ �̂� = − sin 𝜃. This is not a trivial statement, so let’s understand this a bit more.  

The figure on the next page is a 2D projection of the 3D sphere, where the cyan arrows represent the fluid, 

and the yellow arrows represent the tangential force (the maroon arrows represent the normal force, which 

we will return to later). Due to mathematical convention (and the right-hand rule), the quadrants are 

numbered counter clockwise such that the angles are as shown below (note that we defined in the problem 

statement that 𝜃 = 0 aligns with the direction of the fluid flow). We see that at 𝜃 = 0 and 𝜃 = 𝜋, the force 

in the �̂� direction should be zero. We also see that at 𝜃 = 𝜋/2, the force should be in the −�̂� direction 

whereas at 𝜃 = 3𝜋/2, the force should be in the +�̂� direction. The trigonometric function that satisfies 

these conditions is −sin𝜃 and therefore is the value of 𝜃 ⋅ �̂�. 

 

Making this substitution, 

𝐹 =∯−𝜏𝜃𝑟 sin𝜃 𝑑𝑆 

This is now a scalar quantity we can integrate easily. We note that 𝑑𝑆 = 𝑟2 sin 𝜃 𝑑𝜃𝑑𝜙 in spherical 

coordinates, and substituting this in (and applying 𝑟 = 𝑎), we arrive at 
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𝐹 = ∫ ∫−𝜏𝜃𝑟 sin
2 𝜃 𝑎2𝑑𝜃𝑑𝜙

𝜋

0

2𝜋

0

 

When we substituting in 𝜏𝜃𝑟 (evaluated at 𝑟 = 𝑎), we arrive at 

𝐹 = ∫ ∫−(−
3

2

𝜂𝑈 sin𝜃

𝑎
) sin2 𝜃 𝑎2𝑑𝜃𝑑𝜙

𝜋

0

2𝜋

0

 

which simplifies to 

𝐹 =
3

2
𝜂𝑈𝑎∫ ∫ sin3 𝜃 𝑑𝜃𝑑𝜙

𝜋

0

2𝜋

0

 

This becomes 

𝐹 = 3𝜂𝑈𝑎𝜋∫ sin3 𝜃 𝑑𝜃

𝜋

0

 

We can split this into 

𝐹 = 3𝜂𝑈𝑎𝜋∫ sin2 𝜃 sin 𝜃 𝑑𝜃

𝜋

0

 

By using a trigonometric identity, 

𝐹 = 3𝜂𝑈𝑎𝜋∫(1 − cos2 𝜃) sin 𝜃 𝑑𝜃

𝜋

0

 

By using the substitution 𝜉 = cos 𝜃 and 𝑑𝜉 = −sin 𝜃 𝑑𝜃 we can say that that 

𝐹 = −3𝜂𝑈𝑎𝜋 ∫ (𝜉2 − 1)𝑑𝜉

𝜃=𝜋

𝜃=0

 

which becomes 

𝐹 = 4𝜋𝜂𝑈𝑎 

Assigning the sign yields 

�⃗� = 4𝜋𝜂𝑈𝑎 �̂� 

3.1.3 FORCE DUE TO VISCOUS NORMAL STRESS 
The total force in the 𝑟 direction can be found by 

�⃗� = ∯𝑓𝑟�̂� 𝑑𝑆 

Substituting in the value of 𝑓𝑟 yields 



FORCES AND TORQUES: SPHERE IN STOKES FLOW | 14 
 

�⃗� = ∯(−𝑃 + 𝜏𝑟𝑟)�̂� 𝑑𝑆 

This can be split up into two parts: 

�⃗� = ∯−𝑃�̂� 𝑑𝑆 +∯𝜏𝑟𝑟�̂� 𝑑𝑆 

The right integral is the force due to the viscous normal stress and will be determined in this part of the 

problem. Just to be rigorous, we once again note that it is difficult to calculate the surface integral of a 

vector and must multiply both sides by �̂�, the direction of the force. As such, 

𝐹 = �⃗� ⋅ �̂� = ∯−𝑃�̂� ⋅ �̂� 𝑑𝑆 +∯𝜏𝑟𝑟�̂� ⋅ �̂� 𝑑𝑆 

The left integral is the force due to pressure, and the right integral is the force due to the viscous normal 

stress. I will focus on the force due to the viscous normal stress in this subsection. It can be calculated by  

𝜏𝑟𝑟 = 2𝜂
𝜕𝑢𝑟
𝜕𝑟

 

By evaluating this at 𝑟 = 𝑎, we arrive at 

𝜏𝑟𝑟 = 0 

Therefore, when we go to calculate the force due to the viscous normal stress, we would find that 

∯𝜏𝑟𝑟 �̂� ⋅ �̂� 𝑑𝑆 = 0 

and so there is no contribution from the viscous normal stress. 

3.1.4 FORCE DUE TO PRESSURE 
We will now calculate the force due to pressure (i.e. the left surface integral in the previous subsection). It 

was explicitly derived in the previous subsection, but I will drive this point home by recalling that 𝑓 =

−𝑃�̂�. As such, since �̂� = �̂� and since we must convert the vector to a scalar for integration purposes, we 

arrive at the same result as in the prior subsection  

𝐹 =∯−𝑃�̂� ⋅ �̂� 𝑑𝑆 

We can now note that �̂� ⋅ �̂� = cos 𝜃. Once again, this is not a trivial point, but it can be determined from 

the previous figure by focusing on the maroon arrows that represent the normal force. We see that the value 

of the force should align with �̂� at 𝜃 = 0 and be in the direction of −�̂� at 𝜃 = 𝜋. Further, we see that at 

𝜃 = 𝜋/2 and 𝜃 = 3𝜋/2, the normal force is orthogonal to the direction of fluid flow and therefore has no 

component in the �̂� direction. The appropriate trigonometric function for this is cos 𝜃. 

Applying this identity, 

𝐹 =∯−𝑃cos 𝜃 𝑑𝑆 

We recall that 𝑑𝑆 = 𝑟2 sin 𝜃 𝑑𝜃𝑑𝜙 in spherical coordinates. Substituting this in and making 𝑟 = 𝑎, we 

arrive at 
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𝐹 = ∫ ∫−𝑃 cos𝜃 𝑎2 sin𝜃 𝑑𝜃𝑑𝜙

𝜋

0

2𝜋

0

 

Substituting in for the pressure 

𝐹 = ∫ ∫−(𝑃0 −
3

2

𝜂𝑈

𝑎
cos 𝜃) cos𝜃 𝑎2 sin𝜃 𝑑𝜃𝑑𝜙

𝜋

0

2𝜋

0

 

This simplifies to 

𝐹 = ∫ ∫
3

2
𝜂𝑈𝑎 cos2 𝜃 sin 𝜃

𝜋

0

𝑑𝜃𝑑𝜙

2𝜋

0

−∫ ∫𝑃0𝑎 cos𝜃 sin𝜃 𝑑𝜃𝑑𝜙

𝜋

0

2𝜋

0

 

The right term goes to zero because the integral of an odd function over a symmetric range is zero (or you 

can calculate it yourself to find out). This means that 

𝐹 = ∫ ∫
3

2
𝜂𝑈𝑎 cos2 𝜃 sin 𝜃

𝜋

0

𝑑𝜃𝑑𝜙

2𝜋

0

 

This becomes 

𝐹 = 3𝜋𝜂𝑈𝑎∫ cos2 𝜃 sin𝜃 𝑑𝜃

𝜋

0

 

By using the substitution 𝜉 = cos 𝜃 and 𝑑𝜉 = −sin 𝜃 𝑑𝜃, we can integrate the expression with ease to yield 

𝐹 = 2𝜋𝜂𝑈𝑎 

If we apply the direction now we arrive at 

�⃗� = 2𝜋𝜂𝑈𝑎 �̂� 

3.1.5 TOTAL FORCE ON THE SPHERE FROM THE FLUID 
The total force on the sphere from the fluid is the sum of the forces in the prior three sections. As such, the 

total force is simply 

�⃗� = 6𝜋𝜂𝑈𝑎 �̂� 

This is often referred to as Stokes’ formula.  
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4 ONE-DIMENSIONAL FLOW IN VISCOUS FLUIDS 
4.1 POISEUILLE FLOW 
Let us consider the steady flow of an incompressible fluid through a horizontal cylinder of length 𝐿 and 

radius 𝑎. The goal is to find the velocity profile, mean velocity, and volumetric flow rate.  

In this problem, I will use cylindrical (𝑟, 𝜃, 𝑧) components. The 𝑧 direction will be the direction down the 

pipe. The value of 𝑟 = 0 will be set to be in the middle of the cylindrical pipe. With this set of definitions, 

we have that �⃗⃗� = 𝑢𝑧 (i.e. 𝑢𝑟 = 𝑢𝜃 = 0). We also postulate that 𝑢𝑧(𝑟). 

We start with the continuity equation: 

𝜕𝜌

𝜕𝑡
+ ∇ ⋅ 𝜌�⃗⃗� = 0 

Assuming that 𝜌 is constant, this simply becomes 

∇ ⋅ �⃗⃗� = 0 

which in cylindrical coordinates is 

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟) +

1

𝑟

𝜕

𝜕𝜃
(𝑢𝜃) +

𝜕

𝜕𝑧
(𝑢𝑧) = 0 

This simplifies to 

𝜕𝑢𝑧
𝜕𝑧

= 0 

Now, let us write the Navier-Stokes equation. Ignoring the effect of gravity, 

𝜌 (
𝜕�⃗⃗�

𝜕𝑡
+ �⃗⃗� ⋅ ∇�⃗⃗�) = −∇𝑃 + 𝜂∇2�⃗⃗� 

In cylindrical coordinates this becomes, 

𝜌 (
𝜕𝑢𝑧
𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝑧
𝜕𝑟

+
𝑢𝜃
𝑟

𝜕𝑢𝑧
𝜕𝜃

+ 𝑢𝑧
𝜕𝑢𝑧
𝜕𝑧
) = −

𝜕𝑃

𝜕𝑧
+ 𝜂 (

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑢𝑧
𝜕𝑟
) +

1

𝑟2
𝜕2𝑢𝑧
𝜕𝜃2

+
𝜕2𝑢𝑧
𝜕𝑧2

) 

We employ the previous assumptions. Also, we note that the pressure differential can be well-approximated 

by a linear pressure drop, Δ𝑃, which is conventionally defined to be a positive quantity. As such, 

𝑑𝑃

𝑑𝑧
=
𝑃2 − 𝑃1
𝐿

= −
Δ𝑃

𝐿
 

As such, the Navier-Stokes equation can be simplified to the following form 

0 =
Δ𝑃

𝐿
+ 𝜂 (

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑢𝑧
𝜕𝑟
)) 

Rearranging the above expression yields 

−
Δ𝑃

𝜂𝐿
𝑟 =

𝜕

𝜕𝑟
(𝑟
𝜕𝑢𝑧
𝜕𝑟
) 
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Integrating twice yields 

𝑢𝑧 = −
Δ𝑃

𝜂𝐿

𝑟2

4
+ 𝐶1 ln(𝑟) + 𝐶2 

We have to employ boundary conditions now. We know that at 𝑟 = 0, the velocity should be finite. As 

such, we can immediately say that 𝐶1 = 0. Therefore, 

𝑢𝑧 = −
Δ𝑃

𝜂𝐿

𝑟2

4
+ 𝐶2 

The other condition is that at 𝑟 = 𝑎, the no-slip boundary condition applies and 𝑢𝑧 = 0. We then have that 

𝐶2 =
Δ𝑃

𝜂𝐿

𝑎2

4
 

such that 

𝑢𝑧 =
Δ𝑃

4𝜂𝐿
(𝑎2 − 𝑟2) 

The mean velocity can be calculated by dividing the total volumetric flow rate by the cross-sectional area 

via 

〈𝑢𝑧〉 =
∬𝑢𝑧 𝑑𝐴

∬𝑑𝐴
 

This becomes 

〈𝑢𝑧〉 =
∫ ∫ 𝑢𝑧 𝑟𝑑𝑟𝑑𝜃

𝑎

0

2𝜋

0

∫ ∫ 𝑟𝑑𝑟𝑑𝜃
𝑎

0

2𝜋

0

=

𝜋𝑎4Δ𝑝
8𝜂𝐿

𝜋𝑎2
=
𝑎2Δ𝑃

8𝜂𝐿
 

The mean velocity in the cross-section is then 

〈𝑢𝑧〉 =
𝑎2Δ𝑃

8𝜂𝐿
 

The total (volumetric) flow rate can be found by multiplying the mean velocity in the cross-section by the 

cross-sectional area 

𝑄 =∬〈𝑢𝑧〉 𝑑𝐴 = ∫ ∫〈𝑢𝑧〉

𝑎

0

𝑟𝑑𝑟𝑑𝜃

2𝜋

0

=
𝜋𝑎4Δ𝑃

8𝜂𝐿
 

4.2 STOKES FLOW AROUND A SPHERE: TRIAL SOLUTIONS 
Consider a sphere rotating very slowly in the �̂� direction (in spherical coordinates) with an angular velocity 

Ω⃗⃗⃗. An image is shown below. We want to solve for the velocity profile and the torque of the fluid on the 

sphere. 



ONE-DIMENSIONAL FLOW IN VISCOUS FLUIDS | 18 
 

 

Before diving into the problem, I will remind you what angular velocity is. Angular velocity has units of 

inverse time. It has a direction along the axis of rotation (as defined by the right-hand rule). For instance, if 

the sphere is rotating counterclockwise, the direction would be upward as shown below. Also, the 

relationship between angular velocity and velocity is the distance from the axis of rotation. 

 

 

We start with the continuity equation. For constant density, we have the following in spherical coordinates 

𝜕𝑢𝜙

𝜕𝜙
= 0 

Now, we write the Navier-Stokes equation in the direction of fluid flow, which is 𝜙, to get 

0 =
1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝑢𝜙

𝜕𝑟
) +

1

𝑟2
𝜕

𝜕𝜃
(
1

sin 𝜃

𝜕

𝜕𝜃
(𝑢𝜙 sin𝜃)) 

We have the following boundary conditions:  

𝑟 = 𝑎,     𝑢𝜙 = 𝑎Ω sin𝜃 

𝑟 → ∞,     𝑢𝜙 = 0 

Let us pause for a second to figure out how the boundary conditions were obtained. On the surface of the 

sphere, the no-slip boundary condition applies. We are given angular velocity, which has units of 1/s. We 

want to convert this into the velocity in the 𝜙 direction. There are two ways we can figure out how to get 

this. The first is a purely mathematical argument. At the top of the sphere (𝜃 = 0) and the bottom of the 

sphere (𝜃 = 𝜋), the value of 𝑢𝜙 should be zero because there is no rotation at the vertical poles. Conversely, 

at 𝜃 = 𝜋/2, the velocity in the 𝜙 direction should simply be given by 𝑎Ω. The sine function is zero at 𝜃 =

0, 𝜋 so we can state that the aforementioned conditions are satisfied if we have 𝑢𝜙 = 𝑎Ωsin𝜃 at 𝑟 = 𝑎. 

The second way is a purely geometrical argument. Consider the following schematic. The velocity in the 𝜙 
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direction is related to the distance from the axis of rotation, not from the center of the sphere. To find this 

quantity, we see that we need to a factor of 𝑎sin𝜃 such that 𝑢𝜙 = 𝑎Ω sin 𝜃 at 𝑟 = 𝑎. 

 

The second way is a purely geometric argument. Consider the following schematic. To find the dostamce 

between the surface and the axis of rotation, we see that we need to a factor of 𝑎sin 𝜃 such that 𝑢𝜙 =

𝑎Ω sin 𝜃 at 𝑟 = 𝑎. 

By looking at the boundary condition at 𝑟 = 𝑎, it is reasonable to assume a solution of the form 

𝑢𝜙 = 𝑓(𝑟) sin 𝜃 

When this trial solution is inserted into the Navier-Stokes equation and simplified through the use of the 

product rule, it results in the following expression 

0 =
𝜕

𝜕𝑟
(𝑟2

𝜕𝑓

𝜕𝑟
) − 2𝑓 

This is called an equidimensional equation and can be solved with a trial solution of the form 

𝑓 = 𝑟𝑛 

where the powers of 𝑛 will be used to generate an expression for 𝑓 that has constant coefficients raised to 

the power of 𝑛. When substituting in 𝑓 = 𝑟𝑛 into the simplified Navier-Stokes equation we see that 𝑛 =

−2, 1. Therefore, the solution takes the form 

𝑓 = 𝐶1𝑟 +
𝐶2
𝑟2

 

Recall that we said 𝑢𝜙 = 𝑓(𝑟) sin𝜃, so  

𝑢𝜙 = (𝐶1𝑟 +
𝐶2
𝑟2
) sin 𝜃 

We now employ the boundary conditions to find that 𝐶1 = 0 and 𝐶2 = Ω𝑎
3 so that the velocity profile is 

𝑢𝜙 =
Ω𝑎3

𝑟2
sin𝜃 

If the pressure field is desired, one can solve the Navier-Stokes equations in the other dimensions (you 

would find that pressure is constant when this is done). The torque can be determined by computing the 
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stress, multiplying it by the lever arm, and then integrating over the surface of the sphere. Since we have 

flow in the 𝜙 direction that is a function of 𝑟, we want the stress that is 𝜏𝑟𝜙 which is 

𝜏𝑟𝜙 = 𝜂𝑟
𝜕

𝜕𝑟
(
𝑢𝜙

𝑟
) 

in our case once the simplifications are made. You can plug in the velocity distribution and apply 𝑟 = 𝑎 

(since we want the stress at the surface) to get 

𝜏𝑟𝜙|𝑟=𝑎
= −3𝜂Ωsin𝜃 

The lever arm is given by 𝑎sin 𝜃, so the torque can be found by 

𝐾 =∯𝜏𝑟𝜙|𝑟=𝑎
(𝑎 sin𝜃) 𝑑𝑆 

Once this computation is performed, you arrive at 

𝐾 = −8𝜋𝜂Ω𝑎3 

Of course, torque is a vector, and it needs a direction. It will be in the direction of the angular velocity. As 

such, 

�⃗⃗⃗� = −8𝜋𝜂Ω⃗⃗⃗𝑎3 

4.3 PLATE SUDDENLY SET IN MOTION: TIME-DEPENDENT FLOW 
Consider a semi-infinite body of liquid at a constant density and viscosity that is sitting atop a horizontal 

plate in the 𝑥𝑧 plane. The plate is suddenly set into motion at a velocity 𝑢0, causing a fluid velocity profile 

that changes in both time and in 𝑦, the vertical distance from the plate. The goal is to find the velocity 

profile. 

As always, we start with the Navier-Stokes equation 

𝜌 (
𝜕�⃗⃗�

𝜕𝑡
+ �⃗⃗� ⋅ ∇�⃗⃗�) = −∇𝑃 + 𝜂∇2�⃗⃗� + 𝜌�⃗� 

The fluid velocity is �⃗⃗� = 𝑢𝑥(𝑦, 𝑡). Therefore, the above equation simplifies to the following once relevant 

terms are canceled in the Navier-Stokes equation: 

𝜕𝑢𝑥
𝜕𝑡

= 𝜈
𝜕2𝑢𝑥
𝜕𝑦2

 

where 𝜈 ≡ 𝜂/𝜌. We have the following conditions:  

𝑡 ≤ 0,     𝑢𝑥 = 0 

𝑦 = 0,     𝑢𝑥 = 𝑢0 

𝑦 = ∞,     𝑢𝑥 = 0 

To solve this, we need to first introduce a non-dimensional quantity for the velocity. I will define the non-

dimensional velocity as 
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𝜙 ≡
𝑢𝑥
𝑢0

 

The boundary conditions now become the following for 𝜙(𝑦, 𝑡) 

𝜙(𝑦, 0) = 0,      𝜙(0, 𝑡) = 1,     𝜙(∞, 𝑡) = 0 

We know that 𝜙 should be a quantity that is proportional to 𝑦, 𝑡, and 𝜈 (our independent and dependent 

variables in the simplified Navier-Stokes equation). We can then say that 

𝜙 = 𝜙(𝜂) 

where  

𝜂 ≡
𝑦

√4𝜈𝑡
 

It should be apparent that the dimensions of 𝜂 are indeed unitless. I have included the factor of 4 because I 

know what the answer is going to be in advance and it simplifies the algebra. This step is not necessary and 

does not change the validity of the solution. With these expressions, we can rewrite the partial differential 

equation as  

𝜕𝜙

𝜕𝑡
= 𝜈

𝜕2𝜙

𝜕𝑦2
 

Let’s break this down part by part. For the time component we can say that 

𝜕𝜙

𝜕𝑡
=
𝑑𝜙

𝑑𝜂

𝜕𝜂

𝜕𝑡
= −

1

2

𝜂

𝑡

𝑑𝜙

𝑑𝜂
 

For the 𝑦 component we can say that 

𝜕𝜙

𝜕𝑦
=
𝑑𝜙

𝑑𝜂

𝜕𝜂

𝜕𝑦
=
𝑑𝜙

𝑑𝜂

1

√4𝜈𝑡
 

Therefore, 

𝜕2𝜙

𝜕𝑦2
=
𝑑2𝜙

𝑑𝑦2
1

4𝜈𝑡
 

This makes the N-S equation become 

𝑑2𝜙

𝑑𝜂2
+ 2𝜂

𝑑𝜙

𝑑𝜂
= 0 

If I tentatively define 

𝜓 ≡
𝑑𝜙

𝑑𝜂
 

such that 

𝑑𝜓

𝑑𝜂
+ 2𝜂𝜓 = 0 
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we can then rearrange this to  

1

𝜓
𝑑𝜓 = −2𝜂 𝑑𝜂 

and integrate once to get 

𝜓 = 𝐶1 exp(−𝜂
2) 

Transforming this back to our prior set of variables, 

𝑑𝜙

𝑑𝜂
= 𝐶1 exp(−𝜂

2) 

And integrating one final time yields 

𝜙 = 𝐶1∫exp(−�̅�
2) 𝑑�̅�

𝜂

0

+ 𝐶2 

where I have set �̅� to be a dummy variable of integration to distinguish it from 𝜂 in our integral’s bounds. 

The boundary conditions are 

𝜂 = 0,     𝜙 = 1 

𝜂 = ∞,     𝜙 = 0 

Applying these boundary conditions yields the following after some algebra, 

𝜙 = 1 −
∫ exp(−�̅�2)
𝜂

0
𝑑�̅�

∫ exp(−�̅�2)
∞

0
𝑑�̅�
= 1 −

2

√𝜋
∫ exp(−�̅�2) 𝑑�̅�

𝜂

0

= 1 − erf(𝜂) = erfc(η) 

This solution makes use of the error function, denoted erf, but do not let this scare you – it is simply a short-

hand way of expressing the otherwise messy integral shown above. The complementary error function, 

erfc, is simply 1 minus the error function. With this, we can transform 𝜙 back to our original variables to 

arrive at 

𝑢𝑥 = 𝑢0 erfc (
𝑦

√4𝜈𝑡
) 
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5 VORTICITY 
5.1 DEFINITION OF VORTICITY 
Vorticity is defined as  

�⃗⃗⃗� = ∇×�⃗⃗� 

The vorticity indicates the local rate of rotation of a fluid element. Generally, it is different from point to 

point. The surface integral of a curl can be related to the line integral of velocity via Stokes’ theorem (see 

Appendix): 

∯�⃗⃗⃗� ⋅ �̂� 𝑑𝑆 = ∮ �⃗⃗� ⋅ 𝑑𝑟 

The line integral of velocity is also called the circulation of velocity (over a given boundary). To test this 

formula out, consider a disk in rotation with a radius 𝑎. The above expression then lets us say that 

�⃗⃗⃗�𝜋𝑎2 = (Ω⃗⃗⃗𝑎)2𝜋𝑎 

such that 

�⃗⃗⃗� = 2Ω⃗⃗⃗ 

To clarify, the left-hand side of the first equation is vorticity multiplied by the surface area of the disk 

whereas the right-hand side of the first equation is the velocity multiplied by the circumference of the disk.  

In the following sections, we will find that 

1. Vorticity is generated on solid surfaces due to no-slip boundary condition 

2. Vorticity “diffuses” due to viscosity 

3. Vorticity is swept downstream due to convection 

5.2 CURL OF NAVIER-STOKES 
The curl of the Navier-Stokes equation (in dimensionless form) is the following: 

𝜕�⃗⃗⃗�

𝜕𝑡
+ �⃗⃗� ⋅ ∇�⃗⃗⃗� = �⃗⃗⃗� ⋅ ∇�⃗⃗� +

1

Re
∇2�⃗⃗⃗� 

In a 2D or axisymmetric flow, we have that �⃗⃗⃗� ⋅ ∇�⃗⃗� = 0, so the Navier-Stokes equation becomes 

𝜕�⃗⃗⃗�

𝜕𝑡
+ �⃗⃗� ⋅ ∇�⃗⃗⃗� =

1

Re
∇2�⃗⃗⃗� 

5.3 LOW REYNOLDS NUMBER 
One extreme case we will consider is when the Reynolds number is very small (approaching zero), such as 

with creeping flow. Recall that this is the same as creeping flow, so the entire left-hand side of the (velocity-

pressure form) Navier-Stokes equation drops out. When dealing with the vorticity form, since convection 

is negligible, nd we can write the Navier-Stokes equation in dimensional variables as follows 

𝜕�⃗⃗⃗�

𝜕𝑡
=
𝜂

𝜌
∇2�⃗⃗⃗� 

where 𝜂/𝜌 is the kinematic viscosity, often denoted 𝜈. This equation is that of the diffusion equation. Of 

course, if the vorticity does not change with time we arrive at 
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∇2�⃗⃗⃗� = 0 

This essentially means that for creeping flow with low Reynolds number, and the vorticity looks like the 

following where each line represents a constant vorticity contour line and the flow comes from the left. 

 

5.4 HIGH REYNOLDS NUMBER 
If the Reynolds number is very large (approaching infinity), 

1

Re
∇2�⃗⃗⃗� can be ignored, and the Navier-Stokes 

equation simplifies to 

𝜕�⃗⃗⃗�

𝜕𝑡
+ �⃗⃗� ⋅ ∇�⃗⃗⃗� = 0 

which is the same as 

𝐷�⃗⃗⃗�

𝐷𝑡
= 0 

This states that the vorticity is conserved (i.e. it remains constant) in each moving fluid element. In a steady 

flow, the vorticity is then constant along a given streamline. When the Reynolds number is high, we have 

increasing convection, and the vorticity field around an arbitrary body looks as follow, with �⃗⃗⃗� = 0 outside 

the boundary layer and wake but �⃗⃗⃗� ≠ 0 inside the boundary layer and wake. 

 

While the above form of the Navier-Stokes equation tells us physical information about the vorticity, it is 

not incredibly useful for gaining information about the velocity profiles since the boundary conditions for 

vorticity are not straightforward. We would also like to write the velocity-pressure form of the Navier-

Stokes equation but in a way that accounts for regions of irrotational flow.  

From vector calculus (see Appendix) and under the conditions of no divergence of velocity, we know that 

the following is true 

∇2�⃗⃗� = −∇×(∇×�⃗⃗�) = −∇×�⃗⃗⃗� 

This is an important quantity to know because then we can say that in irritational flow, where �⃗⃗⃗� = 0, the 

viscous force 𝜂∇2�⃗⃗� = 0 for any value of viscosity (of course, this also holds true if the viscosity is 

incredibly small) even though the viscous stresses are not necessarily zero. Therefore, outside the boundary 

layer and wake where there is irrotational flow, we can say that the Navier-Stokes equation simplifies to  
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𝜌 (
𝜕�⃗⃗�

𝜕𝑡
+ �⃗⃗� ⋅ ∇�⃗⃗�) = −∇𝑃 + 𝜌�⃗� 

In steady flow, the time derivative goes away to yield 

𝜌(�⃗⃗� ⋅ ∇�⃗⃗�) = −∇𝑃 + 𝜌�⃗� 

This equation is called Euler’s equation. After a bit of vector calculus and algebra which has been omitted 

here for brevity, we can arrive at 

𝑢2

2
+
𝑃

𝜌
+ 𝑔𝑧 = constant 

throughout the irrotational flow areas. This formula is called Bernoulli’s theorem. 

In regions with irrotational flow (also known as potential flow), we can define 𝜙 as the velocity potential 

such that 

�⃗⃗� ≡ ∇𝜙 

This holds because the curl of velocity is zero. Then, from the continuity equation we can say that 

∇ ⋅ �⃗⃗� = 0 

which implies 

∇2𝜙 = 0 

5.5 CIRCULATION 
Suppose a closed curve made up of fluid particles and moving with a fluid where the viscous force is zero 

or negligible at all points along it. Consider the circulation of velocity along the curve: 

circulation = ∮ �⃗⃗� ⋅ 𝑑𝑟 

We would like to know how the circulation changes with time, or 

𝑑

𝑑𝑡
∮ �⃗⃗� ⋅ 𝑑𝑟 

We can distribute the derivative inside and then note that the derivative of the position vector is velocity 

∮
𝑑

𝑑𝑡
(�⃗⃗� ⋅ 𝑑𝑟) =

𝑑�⃗⃗�

𝑑𝑡
⋅ 𝑑𝑟 + �⃗⃗� ⋅

𝑑

𝑑𝑡
(𝑑𝑟) =

𝑑�⃗⃗�

𝑑𝑡
⋅ 𝑑𝑟 + �⃗⃗� ⋅ 𝑑�⃗⃗� =

𝑑�⃗⃗�

𝑑𝑡
⋅ 𝑑𝑟 + 𝑑 (

1

2
�⃗⃗� ⋅ �⃗⃗�) 

Therefore, 

𝑑

𝑑𝑡
∮ �⃗⃗� ⋅ 𝑑𝑟 =

𝑑�⃗⃗�

𝑑𝑡
⋅ 𝑑𝑟 + 𝑑 (

1

2
�⃗⃗�2) 

We then note that ∮𝑑𝑓 = 0 for any single-value function. Thus, in general, for any closed curve 

𝑑

𝑑𝑡
∮ �⃗⃗� ⋅ 𝑑𝑟 = ∮

𝑑�⃗⃗�

𝑑𝑡
⋅ 𝑑𝑟 
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This says that the time derivative of circulation of velocity over a closed curve is equal to the circulation of 

acceleration over the same curve. If on the curve, the viscous force −𝜈∇×�⃗⃗⃗� is negligible then 

𝑑�⃗⃗�

𝑑𝑡
= −

1

𝜌
∇𝑃 

Therefore, plugging this into the rate of change of circulation from above (and if 𝜌 is constant) 

𝑑

𝑑𝑡
∮ �⃗⃗� ⋅ 𝑑𝑟 = −∮

1

𝜌
∇𝑃 ⋅ 𝑑𝑟 = −

1

𝜌
∮𝑑𝑃 = 0 

Therefore, if 𝜌 is constant, the circulation does not change. This is known as Kelvin’s theorem. 
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6 BOUNDARY LAYER THEORY 
6.1 HIGH REYNOLDS NUMBER FLOW OVER A FLAT PLATE PARALLEL TO FLOW 
Recall from transport phenomena that the vorticity diffusion due to viscosity can be thought of as 

(penetration depth of vorticity diffusion over time 𝑡) ∼ √𝜈𝑡 

This relationship will prove quite useful.  

Consider a flat plate of very small thickness and a length ℓ. It is placed in a steady uniform stream of fluid 

(with speed 𝑈), with the stream parallel to the length. In the absence of any effects of viscosity, the plate 

causes no disturbance to the stream and the fluid velocity is uniform. However, real fluids have no-slip 

boundary conditions that slow down the fluid near the liquid-solid interface. The boundary layer thickness 

will be small compared to length 𝑙 provided that ℓ𝑈/𝜈 ≫ 1. The velocity just outside the boundary layer is 

effectively unchanged and is therefore equal to 𝑈. The pressure outside the boundary layer is also uniform 

and is approximately uniform throughout the boundary layer as well. We can postulate that the boundary 

layer thickness would be given by1 

𝛿 ∼ √𝜈𝑡 ∼ √𝜈𝑥/𝑈 

This then says that the further away from the leading edge of the plate you are, the larger the boundary layer 

thickness, as would be expected. The stress can be estimated as  

𝜏wall ∼
𝜂𝑈

𝛿
∼ 𝜂𝑈

3
2𝜈−

1
2𝑥−

1
2 ∼ 𝜌𝜈

1
2𝑈

3
2𝑥−

1
2 

The exact solution is 

𝜏wall = 𝜂 (
𝜕𝑢

𝜕𝑦
)
𝑦=0

= 0.33𝜌𝜈
1
2𝑈

3
2𝑥−

1
2 = 0.33𝜂𝑈 (

𝑈

𝜈𝑥
)

1
2
 

The velocity can be found from the stress by integrating, which yields 

𝑢 = 0.33𝜈−
1
2𝑈

3
2𝑥−

1
2𝑦 + 𝐶 

To find the constant, we employ the no-slip boundary condition, which yields 𝐶 = 0. 

𝑢 = 0.33𝜈−
1
2𝑈

3
2𝑥−

1
2𝑦 

The drag force per unit length exerted on the two sides of the plate is given by 

𝐹𝐷,per width = 2∫𝜏wall

ℓ

0

𝑑𝑥 = 1.33𝜌𝜈
1
2𝑈

3
2𝐿
1
2 

As such, the drag force on a plate of width 𝐿, that becomes2 

𝐹𝐷 = 1.33𝜌𝜈
1
2𝑈

3
2𝐿
3
2 

                                                      
1 Note that if we have a disk spinning in a fluid, we replace 𝑈 with Ω𝑥 to arrive at 𝛿 ∼ √𝜈/Ω.  

2 More generally, for a width 𝑊, it is 𝐹𝐷 = 1.33𝜌𝜈
1

2𝑈
3

2𝑊𝐿
1

2 
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If one wants to write the boundary layer equations (the analogous to the Navier-Stokes equation), we note 

that the velocity gradient in the 𝑥 direction is significantly smaller than that in the 𝑦 direction. If we start 

with the Navier-Stokes equation in the 𝑥 direction as 

𝜌 (𝑢𝑥
𝜕𝑢𝑥
𝜕𝑥

+ 𝑢𝑦
𝜕𝑢𝑥
𝜕𝑦
) = −

𝜕𝑃

𝜕𝑥
+ 𝜂 (

𝜕2𝑢𝑥
𝜕𝑥2

+
𝜕2𝑢𝑥
𝜕𝑦2

) 

we will see that the 𝜕2𝑢𝑥/𝜕𝑥
2 term in the Laplacian can be ignored since the velocity gradient in 𝑥 is small. 

Note that the 
𝜕𝑢𝑥

𝜕𝑥
 term in the left-hand side of the equation cannot be dropped because 𝑢𝑦 is small and 

therefore 𝑢𝑥 𝜕𝑢𝑥/𝜕𝑥 is not significantly smaller than 𝑢𝑦 𝜕𝑢𝑥/𝜕𝑦. Therefore, 

𝑢𝑥
𝜕𝑢𝑥
𝜕𝑥

+ 𝑢𝑦
𝜕𝑢𝑥
𝜕𝑦

− 𝜈
𝜕2𝑢𝑥
𝜕𝑦2

= −
1

𝜌

𝜕𝑃

𝜕𝑥
 

From Bernoulli’s equation, we know that 𝑃 +
1

2
𝜌𝑈2 = constant. Taking the 𝑥 derivative of both sides 

yields 

𝑑𝑃

𝑑𝑥
=
𝑑 (
1
2𝜌𝑈

2 + 𝐶)

𝑑𝑥
 

This becomes 

𝑑𝑃

𝑑𝑥
= −𝜌𝑈

𝑑𝑈

𝑑𝑥
 

We can substitute this into the boundary layer equation to arrive at 

𝑢𝑥
𝜕𝑢𝑥
𝜕𝑥

+ 𝑢𝑦
𝜕𝑢𝑥
𝜕𝑦

− 𝜈
𝜕2𝑢𝑥
𝜕𝑦2

= 𝑈
𝑑𝑈

𝑑𝑥
 

If 𝑈 is constant, then  

𝑢𝑥
𝜕𝑢𝑥
𝜕𝑥

+ 𝑢𝑦
𝜕𝑢𝑥
𝜕𝑦

= 𝜈
𝜕2𝑢𝑥
𝜕𝑦2

 

Naturally, the continuity equation can also be written and is given by 

𝜕𝑢𝑥
𝜕𝑥

+
𝜕𝑢𝑦

𝜕𝑦
= 0 

While these equations are originally derived for a flat plate, they also apply to flow around a cylinder 

oriented in the same direction as the plate. In that case, 𝑥 is the distance from the leading edge of the cylinder 

whereas 𝑦 is the distance normal to the surface of the cylinder.  

6.2 LOW REYNOLDS NUMBER FLOW OVER A FLAT PLATE (ANY DIRECTION) 
For a similar flat plate as the previous scenario but now in low Reynolds flow and oriented in any direction 

(not necessarily parallel to flow), we know that the left-hand side of the Navier-Stokes equation becomes 

zero due to the creeping flow approximation. As such, 

0 = −∇𝑃 + 𝜂∇2�⃗⃗� 
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We can do dimensional analysis to find the drag force. We expect the force to be a function of 𝐿, 𝑈, and 𝜂. 

Importantly, it is not a function of 𝜌 since that term drops out at low Reynolds numbers. We then find that  

𝐹𝑑 ∼ 𝜂𝑢𝐿 

The difference between a parallel and perpendicular plate is just a numerical factor: 

𝐹𝑑,parallel

𝐹𝑑,perp
=
1

2
 

6.3 HIGH REYNOLDS NUMBER FLOW OVER A FLAT PLATE PERPENDICULAR TO FLOW 
Let us recall from the prior section that the flow around a body at high Reynolds number creates a boundary 

layer forms in the wake of the object.  

 

The area where vorticity is not zero (inside the layer) is called the vortex sheet. Outside the vortex sheet, 

the vorticity is zero. This means that the velocity can be written as the gradient of a potential function 

outside the boundary layer: 

�⃗⃗� = ∇𝜙 

and since divergence of velocity is zero 

∇2𝜙 = 0 

Further, outside the boundary layer we know that the Bernoulli equation applies. A general approach to 

boundary layer problems is then as follows: 

1. Since the boundary layer is thin at Re → ∞, find the velocity profile in the irrotational region by 

solving ∇2𝜙 = 0 outside the body 

2. Find the pressure outside the boundary layer by using Bernoulli’s equation (it is approximately the 

same as the pressure inside the boundary layer but Bernoulli’s equation does not apply there) 

3. Solve the boundary layer equations of motion and find shear stresses as needed 

It can be shown that the drag force of a plate perpendicular to high Reynolds number flow is 

𝐹𝑑 ∝
1

2
𝜌𝑈2𝐿2 

As such, 

𝐹𝑑,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
𝐹𝑑,⊥

∝
𝜌𝜈

1
2𝑈

3
2𝐿
3
2

𝜌𝑈2𝐿2
∝ 𝜈

1
2𝑈−

1
2𝐿−

1
2 =

1

√Re
≪ 1 

This shows that a parallel plate in high Reynolds number flow has effectively no drag force compared to a 

plate perpendicular to the follow. 
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7 APPENDIX: VECTOR CALCULUS 
7.1 COORDINATE SYSTEMS 

7.1.1 CARTESIAN COORDINATE SYSTEM 
The following diagram is a schematic of the Cartesian coordinate system. 

 

With this definition, the position vector in Cartesian coordinates is  

𝑟 = 𝑥𝑥 + 𝑦�̂� + 𝑧�̂� 

7.1.2 CYLINDRICAL COORDINATE SYSTEM 
The following diagram is a schematic of the cylindrical coordinate system. Take note that the standard 

definition is that the sign of the azimuth is considered positive in the counter clockwise direction. 

  

With this definition, the position vector in cylindrical coordinates is  

𝑟 = 𝑟�̂� + 𝑧�̂� 

To convert from cylindrical coordinates to Cartesian coordinates, 

𝑥 = 𝑟 cos 𝜃 

𝑦 = 𝑟 sin𝜃 

𝑧 = 𝑧 
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7.1.3 SPHERICAL COORDINATE SYSTEM 
The following diagram is a schematic of the spherical coordinate system. Note that many mathematics 

textbooks use a slightly different convention by swapping the definitions of 𝜃 and 𝜙. Take note that the 

standard definition is that the sign of the azimuth is considered positive in the counter clockwise direction 

and that the inclination angle is the angle between the zenith direction and a given point.  

 

 

With this definition, the position vector in spherical coordinates is  

𝑟 = 𝑟�̂� 

To convert from spherical coordinates to Cartesian coordinates, 

𝑥 = 𝑟 sin 𝜃 cos𝜙 

𝑦 = 𝑟 sin 𝜃 sin𝜙 

𝑧 = 𝑟 cos 𝜃 

7.1.4 SURFACE DIFFERENTIALS 
The surface differentials, 𝑑𝑆, in each of the three major coordinate systems are as follows. 

Coordinate system Surface differential, 𝑑𝑆 

Cartesian (top, �̂� = �̂�) 𝑑𝑥 𝑑𝑦 

Cartesian (side, �̂� = �̂�) 𝑑𝑥 𝑑𝑧 
Cartesian (side, �̂� = 𝑥) 𝑑𝑦 𝑑𝑧 
Cylindrical (top, �̂� = �̂�) 𝑟 𝑑𝑟 𝑑𝜃 

Cylindrical (side, �̂� = �̂�) 𝑟 𝑑𝜃 𝑑𝑧 
Spherical (�̂� = �̂�) 𝑟2 sin𝜃  𝑑𝜃 𝑑𝜙 

 

7.1.5 VOLUME DIFFERENTIALS 
The volume differentials, 𝑑𝑉, in each of the three major coordinate systems are as follows. 

Coordinate system Volume differential, 𝑑𝑉 

Cartesian 𝑑𝑥 𝑑𝑦 𝑑𝑧 
Cylindrical 𝑟 𝑑𝑟 𝑑𝜃 𝑑𝑧 
Spherical 𝑟2 sin 𝜃  𝑑𝑟 𝑑𝜃 𝑑𝜙 
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7.2 MATHEMATICAL OPERATIONS 

7.2.1 MAGNITUDE 
The magnitude of a vector is its length and can be computed as the following. 

In the Cartesian coordinate system 

|�⃗�| = √𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2 

In the cylindrical coordinate system 

|�⃗�| = √𝑣𝑟
2 + 𝑣𝑧

2 

In the spherical coordinate system 

|�⃗�| = 𝑣𝑟 

7.2.2 DOT PRODUCT 
The dot product of two vectors is 

�⃗⃗� ⋅ �⃗� = ∑𝑢𝑖𝑣𝑖

𝑛

𝑖=1

 

The dot product of a tensor with a vector, such as 𝑓 = �̿� ⋅ �⃗⃗� is what one would expect from matrix algebra: 

(

𝑓1
𝑓2
𝑓3

) = (

𝜎𝑖𝑖 𝜎𝑖𝑗 𝜎𝑖𝑘
𝜎𝑗𝑖 𝜎𝑗𝑗 𝜎𝑗𝑘
𝜎𝑘𝑖 𝜎𝑘𝑗 𝜎𝑘𝑘

) ⋅ (

𝑛1
𝑛2
𝑛3
) 

7.2.3 CROSS PRODUCT 
In matrix notation, the cross product is 

�⃗⃗�×�⃗� = det(
𝑖̂ 𝑗̂ �̂�
𝑢𝑖 𝑢𝑗 𝑢𝑖
𝑣𝑖 𝑣𝑗 𝑣𝑗

) = (𝑢𝑗𝑣𝑘 − 𝑢𝑘𝑣𝑗)𝑖̂ + (𝑢𝑘𝑣𝑖 − 𝑢𝑖𝑣𝑘)𝑗̂ + (𝑢𝑖𝑣𝑗 − 𝑢𝑗𝑣𝑖)�̂� 

where 𝑖, 𝑗, and 𝑘 represent the three coordinates in the given coordinate system.  

7.3 OPERATORS 

7.3.1 GRADIENT 
The gradient is a mathematical operator that acts on a scalar function and is written as grad(𝑓) or ∇𝑓. The 

result is always a vector. It is essentially the derivative applied to functions of several variables. 

In Cartesian coordinates, the gradient is 

ˆ ˆ ˆgrad( )
f f f

f x y z
x y z
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In cylindrical coordinates, the gradient is 

 
1 ˆˆ ˆgrad( )

f f f
f r z

r r z




  
  
  

 

In spherical coordinates, the gradient is 

1 1ˆ ˆˆgrad( )
sin

f f f
f r

r r r
 

  

  
  
  

 

7.3.2 DIVERGENCE 
The divergence is a mathematical operator that acts on a vector function and is written as div(�⃗�) or ∇ ⋅ �⃗�. 

The result is always a scalar. The divergence represents the flux emanating from any point of the given 

vector function (essentially, a rate of loss of a specific quantity). 

In Cartesian coordinates, the divergence is 

 div( )
yx z

vv v
v

x y z

 
  
  

 

In cylindrical coordinates, the divergence is 

   
1 1

div( ) z
r

v v
v rv

r r r z





 
  

  
 

In spherical coordinates, the divergence is 

    2

2

1 1 1
div( ) sin

sin sin
r

v
v r v v

r r r r



 
   

 
  

  
  

7.3.3 CURL 
The curl is a mathematical operator that acts on a vector function and is written as curl(�⃗�) or ∇×�⃗�. The 

result is always a vector. The curl represents the infinitesimal rotation of a vector function. 

In Cartesian coordinates, the curl is 

 ˆ ˆ ˆcurl( )
y yx xz z

v vv vv v
v x y z

y z z x x y

       
         

         
 

In cylindrical coordinates, the curl is 

 
 1 1ˆˆcurl( ) z r z r
rvvv v v v

v r
r z z r r r

 
 

       
        

         
 

In spherical coordinates, the curl is 

 
     sin1 1 1 1ˆ ˆˆcurl( )

sin sin

r r
v rv rvv v v

v r
r r r r r r
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7.3.4 LAPLACIAN 
The Laplacian is a mathematical operator that acts on a scalar function and is written as ∇2𝑓. The result is 

always a scalar. It represents the divergence of the gradient of a scalar function. 

In Cartesian coordinates, the Laplacian is 

 

2 2 2
2

2 2 2

f f f
f

x y z

  
   

  
 

In cylindrical coordinates, the Laplacian is 

 

2 2
2

2 2 2

1 1f f f
f r

r r r r z

    
    

    
 

In spherical coordinates, the Laplacian is 

 

2
2 2

2 2 2 2 2

1 1 1
sin

sin sin

f f f
f r

r r r r r


    

       
      

       
 

7.4 COMMON IDENTITIES OF SECOND DERIVATIVES 
The following identities are useful when dealing with second derivative terms. For a scalar field 𝑓, 

div(grad(𝑓)) = ∇2𝑓 

curl(grad(𝑓)) = 0 

Further, for a vector field 𝑓, 

div (curl(𝑓)) = 0 

∇2𝑓 = grad (div(𝑓)) − curl (curl(𝑓)) 

In the special case of divergenceless velocity (from the continuity equation), we can then make the 

simplification that ∇2�⃗⃗� = −curl(curl(�⃗⃗�)) = −curl(�⃗⃗⃗�). 

7.5 SURFACE INTEGRATION 

7.5.1 THE SURFACE INTEGRAL 
The surface integral is a generalization of multiple integrals to integration over surfaces. It is the two-

dimensional extension of the one-dimensional line integral. The notation of the surface integral is not agreed 

upon. Some texts using a double integral with an 𝑆 beneath to indicate a surface integral, whereas other 

texts use the symbol for a line integral – an integral with a circle around the center – to represent surface 

integrals as well. Some other texts using a double integral with a circle around it. They all mean the same 

thing.  

The surface integral of a scalar field is written and computed as  

𝐹 =∯𝑓 𝑑𝑆 
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The surface integral of a vector field cannot be as easily computed. If one wants to compute the surface 

integral of, say, the force (which is a vector), one needs to convert it first to a scalar and then apply the 

direction at the end of the computation. As such, the general method of doing the surface integral of a vector 

is to say 

𝐹 =∯𝑓 ⋅ �̂� 𝑑𝑆 

where �̂� is in the same direction as 𝐹 is anticipated to be in. In the special case of �̂� = �̂�, this surface integral 

is called the flux 

Flux = ∯𝑓 ⋅ �̂� 𝑑𝑆 

To make the computation of surface integrals easier, common systems and their corresponding 𝑑𝑆 

equivalents are included in section 1.1.4. You can then simply substitute in for the surface element 𝑑𝑆 in 

the integral to convert it to a standard double integral and then apply the appropriate bounds. For surface 

integrals of vector fields, be sure to substitute in the appropriate normal vector for the coordinate system. 

Note that if the vector field is given in terms of 𝑓(𝑥, 𝑦, 𝑧) = 𝛼𝑥 + 𝛽�̂� + 𝛾�̂� but you are setting up the surface 

integral for spherical coordinates (e.g. flux along the surface of a sphere), the normal vector is �̂� = �̂� but it 

is not apparent how to calculate the dot product of something with a Cartesian unit vector and spherical unit 

vector. To resolve this difference in coordinate systems, you will need to convert the normal vector into 

Cartesian coordinates. This can be done by recognizing that �̂� = 𝑟/|𝑟| = sin𝜃 cos𝜙 𝑥 + sin 𝜃 sin𝜙 �̂� +

cos 𝜃 �̂�, and then the dot product can be appropriately taken. 

7.5.2 DIVERGENCE THEOREM 
The divergence theorem can convert a surface integral into a volume integral when applied to a vector field 

via 

∯𝑓 ⋅ �̂� 𝑑𝑆 =∭div(𝑓) 𝑑𝑉 

The volume integral can be computed by substituting in the appropriate volume element 𝑑𝑉 and including 

the appropriate bounds. 

7.6 STOKES’ THEOREM 
Stokes’ theorem states can convert a surface integral into a line integral when applied to the curl of a vector 

field via 

∯(∇×𝑓) ⋅ �̂� 𝑑𝑆 = ∮𝑓 ⋅ 𝑑𝑟 

  



APPENDIX: PRACTICAL PROBLEM SOLVING METHODS | 36 
 

8 APPENDIX: PRACTICAL PROBLEM SOLVING METHODS 
8.1 DERIVING EXPRESSIONS FOR VELOCITY, PRESSURE, AND STRESS 
With these tools at our disposal, we can solve many types of fluid mechanics problem. The general approach 

has been outlined below. They will then be used in the following examples. Tabulated expressions for the 

Navier-Stokes equation and Newton’s Law of Viscosity are included in the Appendix. 

1. Choose an appropriate coordinate system 

2. Determine the direction of flow in this coordinate system (I refer to this as the 𝑗 direction) 

3. Use the continuity equation to provide further simplifications to the system 

4. Use physical details from the problem statement and the result of the continuity equation to 

determine which direction the velocity is a function of (I refer to this as the 𝑖 direction) 

5. For the velocity distribution, solve the Navier-Stokes equation in the direction of fluid flow (the 𝑗 
direction) 

6. For the pressure distribution, solve the Navier-Stokes equation in the direction that the pressure is 

a function of 

7. For the stress, 𝜏𝑖𝑗, substitute the velocity distribution into Newton’s Law of Viscosity 

8.2 COMMON BOUNDARY CONDITIONS 
The following are some of the most common boundary conditions (BC’s) used in fluid mechanics and help 

in determining the constants of integration when the Navier-Stokes equation is solved. 

 At a solid-liquid interface, the fluid velocity equals the velocity with which the solid surface is 

moving (in the common case that the solid interface is stationary, then the fluid velocity is zero at 

the interface). This is called the no-slip boundary condition 

 The inlet or outlet boundary conditions may be explicitly specified 

 If there is creeping flow around an object, consider the conditions infinitely far out 

 If the surface of a fluid is exposed to the atmosphere, the pressure at the surface is therefore 𝑃atm 

 At a liquid-gas interface that is oriented in a direction 𝑥, the stresses 𝜏𝑥𝑦 and 𝜏𝑥𝑧 are approximately 

zero, assuming the gas-side velocity gradient is not sufficiently large  

 Check for unphysical terms. For instance, if an equation has a 𝐶 ln(𝑥) term in it, then if 𝑥 = 0 is 

physically allowed then 𝐶 = 0 in order to make the equation physically realizable.  

8.3 USING NEWTON’S LAW OF VISCOSITY 
As derived previously, Newton’s Law of Viscosity is 

�̿� = 𝜇(∇�⃗⃗� + ∇�⃗⃗�T) 

This equation is written in its most general form and is a bit cumbersome to use in this way. I will show 

this cumbersome way first and then explain how to use it in a practical way. 

Rigorous Way: 

You must write out the full expression for the stress vector as defined above. For Cartesian coordinates, 

this would be 
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�̿� = 𝜇

(

 
 
 
 
 

(

 
 
 
 

𝜕𝑢𝑥
𝜕𝑥

𝜕𝑢𝑥
𝜕𝑦
 
𝜕𝑢𝑥
𝜕𝑧

𝜕𝑢𝑦

𝜕𝑥

𝜕𝑢𝑦

𝜕𝑦

𝜕𝑢𝑦

𝜕𝑧
𝜕𝑢𝑧
𝜕𝑥
 
𝜕𝑢𝑧
𝜕𝑦

𝜕𝑢𝑧
𝜕𝑧 )

 
 
 
 

+

(

 
 
 
 

𝜕𝑢𝑥
𝜕𝑥

𝜕𝑢𝑦

𝜕𝑥
 
𝜕𝑢𝑧
𝜕𝑥

𝜕𝑢𝑥
𝜕𝑦

𝜕𝑢𝑦

𝜕𝑦

𝜕𝑢𝑧
𝜕𝑦

𝜕𝑢𝑥
𝜕𝑧
 
𝜕𝑢𝑦

𝜕𝑧

𝜕𝑢𝑧
𝜕𝑧 )

 
 
 
 

)

 
 
 
 
 

 

Then, based on the problem, cancel relevant terms that go to zero and you have your expression for the 

stress. 

Practical Way: 

1. Determine what direction the velocity is a function of (I refer to this as the 𝑖 direction) 

2. Determine the direction of flow in the coordinate system of choice (I refer to this as the 𝑗 direction) 

3. The stress tensor is then written as 𝜏𝑖𝑗 and represents the stress on the positive 𝑖 face acting in the 

positive 𝑗 direction3 

4. The expression of 𝜏𝑖𝑗 can then be more simply expressed as 𝜏𝑖𝑗 = 𝜇(∇𝑖𝑢𝑗 + ∇𝑗𝑢𝑖). Here, I have 

introduced my own short-hand notation. The operator ∇𝑖 represents the gradient operator in the 𝑖 

direction and 𝑢𝑗 represents the velocity in the 𝑗 direction. Of course, if there is more than one 𝑖 

and/or 𝑗 values (e.g. if the fluid velocity is in greater than one dimension) you will need more than 

one expression for 𝜏𝑖𝑗 

8.4 CALCULATING MEAN VELOCITY AND FLOW RATE 
To calculate the mean velocity through a given area, simply divide the total volumetric flow rate by the 

cross-sectional area: 

〈𝑢〉 =
∬𝑢 𝑑𝐴

∬𝑑𝐴
 

using the appropriate 𝑑𝐴 elements for the given coordinate system. 

To calculate the volumetric flow rate through a cross-section once the mean velocity is known, this can 

typically be found by multiplying the mean velocity in the cross-section by the cross-sectional area. More 

generally speaking, the volumetric flow rate can be found by 

𝑄 =∬〈𝑢〉 𝑑𝐴 

To find the mass flow rate, simply multiply the volumetric flow rate by density. 

 

  

                                                      
3 Note that many textbooks, most notably BSL, define the stress tensor differently with a negative sign in the front. 
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9 APPENDIX: TABULATED EXPRESSIONS 
9.1 EXPRESSIONS FOR NEWTON’S LAW OF VISCOSITY 
Recall that Newton’s Law of Viscosity is  

�̿� = 𝜇(∇�⃗⃗� + ∇�⃗⃗�T) 

and that this can be rewritten as 

𝜏𝑖𝑗 = 𝜇(∇𝑖𝑢𝑗 + ∇𝑗𝑢𝑖) 

9.1.1 CARTESIAN COORDINATES 

𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 𝜇 (
𝜕𝑢𝑦

𝜕𝑥
+
𝜕𝑢𝑥
𝜕𝑦
) 

𝜏𝑦𝑧 = 𝜏𝑧𝑦 = 𝜇 (
𝜕𝑢𝑧
𝜕𝑦

+
𝜕𝑢𝑦

𝜕𝑧
) 

𝜏𝑧𝑥 = 𝜏𝑥𝑧 = 𝜇 (
𝜕𝑢𝑥
𝜕𝑧

+
𝜕𝑢𝑧
𝜕𝑥
) 

9.1.2 CYLINDRICAL COORDINATES 

𝜏𝑟𝜃 = 𝜏𝜃𝑟 = 𝜇 (𝑟
𝜕

𝜕𝑟
(
𝑢𝜃
𝑟
) +

1

𝑟

𝜕𝑢𝑟
𝜕𝜃
) 

𝜏𝜃𝑧 = 𝜏𝑧𝜃 = 𝜇 (
1

𝑟

𝜕𝑢𝑧
𝜕𝜃

+
𝜕𝑢𝜃
𝜕𝑧
) 

𝜏𝑧𝑟 = 𝜏𝑟𝑧 = 𝜇 (
𝜕𝑢𝑟
𝜕𝑧

+
𝜕𝑢𝑧
𝜕𝑟
) 

9.1.3 SPHERICAL COORDINATES 

𝜏𝑟𝜃 = 𝜏𝜃𝑟 = 𝜇 (𝑟
𝜕

𝜕𝑟
(
𝑢𝜃
𝑟
) +

1

𝑟

𝜕𝑢𝑟
𝜕𝜃
) 

𝜏𝜃𝜙 = 𝜏𝜙𝜃 = 𝜇 (
sin 𝜃

𝑟

𝜕

𝜕𝜃
(
𝑢𝜙

sin 𝜃
) +

1

𝑟 sin𝜃

𝜕𝑢𝜃
𝜕𝜙
) 

𝜏𝜙𝑟 = 𝜏𝑟𝜙 = 𝜇 (
1

𝑟 sin 𝜃

𝜕𝑢𝑟
𝜕𝜙

+ 𝑟
𝜕

𝜕𝑟
(
𝑢𝜙

𝑟
)) 

9.2 EXPRESSIONS FOR THE CONTINUITY EQUATION 
Recall that the continuity equation states 

𝜕𝜌

𝜕𝑡
+ ∇ ⋅ 𝜌�⃗⃗� = 0 

9.2.1 CARTESIAN COORDINATES 
𝜕𝜌

𝜕𝑡
+
𝜕

𝜕𝑥
(𝜌𝑢𝑥) +

𝜕

𝜕𝑦
(𝜌𝑢𝑦) +

𝜕

𝜕𝑧
(𝜌𝑢𝑧) = 0 
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9.2.2 CYLINDRICAL COORDINATES 
𝜕𝜌

𝜕𝑡
+
1

𝑟

𝜕

𝜕𝑟
(𝜌𝑟𝑢𝑟) +

1

𝑟

𝜕

𝜕𝜃
(𝜌𝑢𝜃) +

𝜕

𝜕𝑧
(𝜌𝑢𝑧) = 0 

9.2.3 SPHERICAL COORDINATES 
𝜕𝜌

𝜕𝑡
+
1

𝑟2
𝜕

𝜕𝑟
(𝜌𝑟2𝑢𝑟) +

1

𝑟 sin𝜃

𝜕

𝜕𝜃
(𝜌𝑢𝜃 sin 𝜃) +

1

𝑟 sin𝜃

𝜕

𝜕𝜙
(𝜌𝑢𝜙) = 0 

9.3 EXPRESSIONS FOR THE NAVIER-STOKES EQUATION 
The Navier-Stokes equation for an incompressible fluid is  

𝜌 (
𝜕�⃗⃗�

𝜕𝑡
+ �⃗⃗� ⋅ ∇�⃗⃗�) = −∇𝑃 + 𝜇∇2�⃗⃗� + 𝜌�⃗� 

9.3.1 CARTESIAN COORDINATES 

 

9.3.2 CYLINDRICAL COORDINATES 

 

9.3.3 SPHERICAL COORDINATES 

 


