

FME Desktop ®

Database (SQL Server)
Pathway Training

FME 2014-SP3 Edition

Safe Software Inc. makes no warranty either expressed or implied, including, but not limited to, any
implied warranties of merchantability or fitness for a particular purpose regarding these materials, and
makes such materials available solely on an “as-is” basis.

In no event shall Safe Software Inc. be liable to anyone for special, collateral, incidental, or consequential
damages in connection with or arising out of purchase or use of these materials. The sole and exclusive
liability of Safe Software Inc., regardless of the form or action, shall not exceed the purchase price of the
materials described herein.

This manual describes the functionality and use of the software at the time of publication. The software
described herein, and the descriptions themselves, are subject to change without notice.

Copyright
© 1994 – 2014 Safe Software Inc. All rights are reserved.

Revisions
Every effort has been made to ensure the accuracy of this document. Safe Software Inc. regrets any
errors and omissions that may occur and would appreciate being informed of any errors found. Safe
Software Inc. will correct any such errors and omissions in a subsequent version, as feasible. Please
contact us at:

Safe Software Inc.
Suite 2017, 7445 – 132nd Street
Surrey, BC
Canada
V3W1J8

www.safe.com

Safe Software Inc. assumes no responsibility for any errors in this document or their consequences, and
reserves the right to make improvements and changes to this document without notice.

Trademarks
FME is a registered trademark of Safe Software Inc.

All brand or product names mentioned herein may be trademarks or registered trademarks of their
respective holders and should be noted as such.

Documentation Information
Document Name: FME Desktop Database Pathway Training Manual
FME Version: FME 2014-SP3 32-bit
Operating System: Windows 7 SP-1, 64-bit
Database: Microsoft SQL Server Express 2012, 64-bit
Updated: September 2014

FME Desktop Database Training Manual

Introduction Page 3

Introduction .. 5	

Database Pathway ... 5	

FME Version ... 5	

Sample Data ... 5	

Supported Database ... 5	

Connecting to a Spatial Database ... 6	

Basic Connection Parameters .. 6	

Connecting to SQL Server .. 6	

Creative Feature Reading ... 10	

Where Clause ... 10	

Search Envelope .. 11	

Concatenated Parameters .. 14	

FeatureReader ... 18	

Updating Features ... 22	

Controlling Translations .. 22	

Writer Parameters .. 23	

Feature Type Parameters ... 24	

Format Attributes .. 25	

Parameter Priority ... 26	

Time and Date Attributes in Spatial Databases ... 37	

Formatting Date Attributes with Transformers .. 37	

Coordinate System Granularity ... 38	

Supported Formats ... 38	

Multiple Geometries .. 39	

Multiple Geometry Writing .. 39	

Multiple Geometry Reading .. 40	

Database Transformers ... 48	

SQLExecutor .. 48	

SQLCreator .. 48	

Geometry ... 52	

Supported Geometries ... 52	

Spatial Indices .. 52	

Geometry or Geography? ... 53	

Cleaning Geometry ... 53	

Performance .. 54	

Default Performance ... 54	

Transaction Interval .. 54	

Bulk Insert ... 55	

Start Transaction At .. 55	

Session Review ... 56	

What You Should Have Learned from this Session ... 56	

FME Desktop Database Training Manual

Page 4 Introduction

FME Desktop Database Training Manual

Introduction Page 5

Introduction

This training material is part of the FME Training Pathway system.

Database Pathway
This training material is part of the
FME Training Database Pathway.

It contains advanced content and
assumes that the user is familiar with
all of the concepts and practices
covered by the FME Database
Pathway Tutorial, and the FME
Desktop Basic Training Course.

FME Version
This training material is designed
specifically for use with FME2014-
SP3. You may not have some of the
functionality described if you use an
older version of FME.

Sample Data
This sample data required to carry
out the examples and exercises in
this document can be obtained from:

www.safe.com/fmedata

Supported Database
For the purposes of simplicity, this training includes documented steps for SQL Server 2012 only.
In particular it was created using SQL Server Express 2012 SP1

FME Desktop Database Training Manual

Page 6 Connecting to a Spatial Database

Connecting to a Spatial Database

Connecting to the database is the one step all FME operations must
perform.

Connecting to a database is slightly different to selecting a file for a file/folder-based format. The
operation relies much more on format specific parameters.

Basic Connection Parameters
The basic connection parameters are:

• Host Name
• Database Name
• Username
• Password
• Network Port Number

These parameters may differ
slightly for each format, but will
always be found in any
Reader/Writer dialog by clicking on
the “Parameters…” button.

Connecting to SQL Server
Connecting to a SQL Server
database requires just four of the
basic connection parameters.
Port number is not required.

There is an additional option to use
Windows Authentication.

FME Desktop Database Training Manual

Connecting to a Spatial Database Page 7

Example	
 1:	
 Connection	
 Parameters	

Scenario	
 FME	
 user;	
 Planning	
 Department	

Data	
 Parks	
 (MapInfo	
 TAB)	

Overall	
 Goal	
 Test	
 connection	
 parameters	
 by	
 writing	
 City	
 Parks	
 data	
 to	
 SQL	
 Server	

Demonstrates	
 Connection	
 parameters	
 and	
 database	
 writing	

Finished	
 Workspace	
 C:\FMEData2014\Workspaces\Database\mssql1-­‐complete.fmw	

Follow these steps to test the connection to your SQL Server database.

1) Start SQL Server Management Studio
Start the SQL Server Management Studio.
It is found under Start > All Programs > Microsoft
SQL Server 2012 > SQL Server Management Studio

When the management studio starts, it will prompt for a login.

The Server name field is important, as it provides the server name for FME to connect to. For this
course, the server name is FMETRAINING (it is not case-sensitive).

If that fails, simply use a dot
(period) character by itself.

At the time of writing, the
official FME training uses
Windows Authentication to
connect, so leave that setting
as it is and click Connect.

FME Desktop Database Training Manual

Page 8 Connecting to a Spatial Database

3) Browse for Database
You will now be connected to the SQL Server database.

In the Object Explorer window, click the + button next to the Databases entry to list databases.

Select a suitable database for training
use.

For FME training we recommend (and will illustrate examples) using a database called fmedata.

NB: If there is no database listed, then right-click on Databases, and choose New Database, in
order to create one.

4) Start FME Workbench
Start FME Workbench, and open the Generate Workspace dialog.
Set up a translation as follows:

Reader Format MapInfo TAB (MITAB)
Reader Dataset C:\FMEData2014\Data\Parks\Parks.tab

Writer Format Microsoft SQL Server Spatial

Click the writer parameters button. In
the parameters dialog enter the
database connection parameters.

In FME training this will usually be:

Server fmetraining
Database fmedata
Use Windows
Authentication Yes

Click OK, and then OK again, to
create the workspace.

FME Desktop Database Training Manual

Connecting to a Spatial Database Page 9

5) Run Workspace
Run the workspace. The foot of the log file will report success as follows:

If the log reports a message like one of these:

• SQL Server does not exist or access denied.
• Login failed for user 'xxxx'.

…then you should check the connection parameters entered into the dialog and, if necessary, re-
check these against the parameters entered into the SQL Server Management Studio.

FME Desktop Database Training Manual

Page 10 Creative Feature Reading

Creative Feature Reading

Rather than a plain reader, there are some quite creative ways by
which database features can be read using Workbench.

Using FME to read from a database should be carefully planned and considered. Frequently not
every feature in every table is required, and yet that is what a user might be doing.

The fewer features that are read from the database, the quicker the read will be, the less system
resources are used, and the faster the overall translation will be.

There are a number of items of functionality that can improve the performance of database
reading in this way:

• Where Clause
• Search Envelope
• Concatenated Parameters
• FeatureReader

Where Clause
Most database readers will have a “where
clause” parameter. Here a query can be
set, so that only features that pass the
query will be returned to FME.

This employs database query tools –
which in turn make use of database
indices – and is a lot more efficient than
reading an entire table and then filtering it
with a Tester transformer.

Chef Bimm says…

‘Think of a database like a restaurant. A sensible person would browse
the menu, and order just the dishes that they want. A foolish person
would order everything and waste the food they didn’t really need.

Like a restaurant, it’s very expensive and time-consuming to order all
data from a database just to discard most of it. Far better to order only
the data you intend to consume in the current session!’

FME Desktop Database Training Manual

Creative Feature Reading Page 11

Search Envelope
Similar to a where clause, “search envelope” parameters set a spatial query; only features that
fall inside the specified extents will be returned to FME.

Again, this employs native database
functionality, and is more efficient than
reading the entire table and then clipping
it with a Clipper transformer.

An optional “Clip to Search Envelope”
parameter defines whether features will
be clipped where they cross the defined
extents, or be allowed to pass completely
where at least a part of them falls inside
the extents.

Of course the limitation here is that the
four parameters only define a rectangular
envelope.

To use a search envelope requires a spatial index to exist for that table; FME can’t instruct the
database to do a spatial query without one. If a format doesn’t support a spatial index being
created on a view, then FME will not be able to do spatial queries on that view.

FME Desktop Database Training Manual

Page 12 Creative Feature Reading

Example	
 2:	
 Where	
 Clause	

Scenario	
 FME	
 user;	
 Planning	
 Department	

Data	
 Postal	
 Address	
 Data	
 (ESRI	
 File	
 Geodatabase)	

Overall	
 Goal	
 Read	
 address	
 data	
 with	
 a	
 query	

Demonstrates	
 Where	
 Clause	
 parameters	

Finished	
 Workspace	
 C:\FMEData2014\Workspaces\Database\mssql2-­‐complete.fmw	

1) Start FME Workbench
Start Workbench if necessary and open the Generate Workspace dialog.
Set up a translation as follows:

Reader Format Esri Geodatabase (File Geodb API)
Reader Dataset C:\FMEData2014\Data\Addresses\Addresses.gdb
Reader Parameter Table List: PostalAddress

Writer Format Microsoft SQL Server Spatial
Writer Parameters Enter the database connection parameters as before.

Once you are sure the
connection parameters are
correct, then choose the
“Save as My Defaults”
option at the foot of the
parameters dialog.

This will save the
parameters and prevent
them having to be entered
again and again.

FME Desktop Database Training Manual

Creative Feature Reading Page 13

4) Redirect to Inspector, Save and Run Workspace
Turn on ‘Redirect to Inspection Application’. Save and run the workspace. Note how many
features were read and how long it took.
On my computer it reads 13,597 features in 8.6 seconds.

5) Set Where Clause
The Planning Department is not interested in PostalAddresses that have a Status of Other.

Set the PostalAddress reader feature type ‘Format Parameters’ WHERE Clause to be Status <>
‘Other’. For some versions of SQL, ‘not equal’ is <>, for others it is !=.

6) Re-run Workspace
Re-run the workspace. Note how many features were read now and compare how long it took.
On my computer it’s now 12,210 features in 7.1 seconds.

FME Desktop Database Training Manual

Page 14 Creative Feature Reading

Concatenated Parameters
The problem with the where clause – as with other Reader/Writer parameters – is that it is difficult
to get user input and apply it to the clause.

Simply publishing the parameter is not useful because the user would have to enter the full
clause (<field> = <value>), when often only the <value> part is required as input.

This is where a concatenated parameter comes in. It is a parameter that is built of a constant
string (the <field> part) and a user-defined value (the <value> part).

Remember that you’ll still need to put whatever kind of quoting the database is expecting (for
SQL Server this is single quotes) around the value part of the parameter.

NB: Scripted Parameters do a similar task, but for more complex scenarios where the value has
to be incorporated using a Python or Tcl script. This would be more useful for manipulating the
search envelope parameter values.

FME Desktop Database Training Manual

Creative Feature Reading Page 15

Example	
 3:	
 Concatenated	
 Parameter	

Scenario	
 FME	
 user;	
 Planning	
 Department	

Data	
 SQL	
 Server	
 (Postal	
 Address	
 Data)	

Overall	
 Goal	
 Read	
 address	
 data	
 with	
 a	
 user-­‐defined	
 query	

Demonstrates	
 Concatenated	
 parameters	
 for	
 a	
 database	

Starting	
 Workspace	
 C:\FMEData2014\Workspaces\Database\mssql3-­‐begin.fmwt	

Finished	
 Workspace	
 C:\FMEData2014\Workspaces\Database\mssql3a-­‐complete.fmw	

C:\FMEData2014\Workspaces\Database\mssql3b-­‐complete.fmw	

Here we wish to let the user choose which Status to read data from. We will want to create a
WHERE Status NOT IN () statement. It will require the use of two parameters concatenated
together.

1) Start FME Workbench
Start Workbench (if necessary) and open the workspace from the previous example.
Alternatively you can open C:\FMEData2014\Workspaces\Database\mssql3-begin.fmwt

2) Add Parameter
Right-click on “User Parameters” in the Navigator
window and choose Add Parameter.

When prompted, choose a
parameter of type ‘Choice
(Multiple).
Set the name to StatusNot
and the prompt to ‘Status is
not’.

FME Desktop Database Training Manual

Page 16 Creative Feature Reading

Next, press the ‘Configuration’ button. The purpose of the entries here are to populate the NOT
IN() clause in a later parameter. The NOT IN list is comma separated, and the text values must
be in single quotes.

Add the following to the Choice List:
‘Current’,
‘Retired’,
‘Pending’,
‘Temporary’,
‘Other’,

Click OK to close the Edit Choice List, and OK again to close the Add/Edit Parameter.

FME Desktop Database Training Manual

Creative Feature Reading Page 17

3) Add Parameter
Right-click the Where Clause reader feature type parameter and choose Create User Parameter.

Leave the type as Text, and set the Where clause default value to:
 Status NOT IN ('start', $(StatusNot) 'end')
The ‘start’, and ‘end’ values are there as placeholders. This ensures that there are a correct
number of commas for the SQL statement, and that the statement will still work if no Status
values are selected.
The easiest method is to use the Text Editor where the “Status NOT IN” part can be typed
manually (as a constant) and the published parameter can be selected from a list.

Turn off the Published flag,
so the user is not prompted
to set this concatenated
parameter.

This is now concatenated
with the previous parameter
to form the required WHERE
clause.

4) Run Workspace
It’s time to load the database. Turn off ‘Redirect to Inspection Application’.
Run the workspace using prompt and run.
When prompted, enter a Status of Other into the field provided.

Advanced Task
Although it’s no longer database related, the Status selection dialog could be cleaned up by
changing the Published Parameter type from Choice (Multiple) to Choice with Alias (Multiple).

FME Desktop Database Training Manual

Page 18 Creative Feature Reading

FeatureReader
The FeatureReader transformer is one that acts – as the name suggests – as a reader in itself.
The idea is that each incoming feature acts as a query to a database (or, in fact, any dataset) that
can include both spatial and non-spatial components. This way queries can be carried out mid-
translation, rather than through Reader parameters.

Incoming features are known as Initiators. Each of them causes a single query to be carried out
through a reader. The query can use the geometry of the incoming feature as a base against
which to test a spatial predicate, and the reader returns one or more features as the result of the
query.

For example, an incoming line feature (maybe a road) can be used to define the base for an
intersection query against linear database features such as rivers or rail.

FME Desktop Database Training Manual

Creative Feature Reading Page 19

Example	
 4:	
 FeatureReader	

Scenario	
 FME	
 user;	
 Planning	
 Department	

Data	
 Zoning	
 Data	
 (MapInfo	
 TAB)	
 Postal	
 Address	
 Data	
 (SQL	
 Server)	

Overall	
 Goal	
 Read	
 address	
 data	
 within	
 a	
 user-­‐defined	
 zoning	
 area	

Demonstrates	
 FeatureReader	
 Transformer	

Finished	
 Workspace	
 C:\FMEData2014\Workspaces\Database\mssql4-­‐complete.fmw	

In this example we wish to let the user select a set of addresses by zoning category. However,
zoning is not an attribute of the address data; therefore we will have to carry out an extract using
the boundary of the zone in the FeatureReader transformer.

1) Start FME Workbench
Start Workbench if necessary and begin with an empty workspace.

2) Add Reader
First let’s add a reader (using Readers > Add Reader) to read the following dataset:

Reader Format MapInfo TAB (MITAB)
Reader Dataset C:\FMEData2014\Data\Zoning\Zones.tab

This is the dataset that contains the zoning information.

3) Add Parameter
The next step is to set up a published parameter for the user to select their zone type.
Right-click on “User Parameters” in the Navigator window and choose Add Parameter.

When prompted, choose a
parameter of type Choice
(Multiple).
Set the name to
ZoneCategoryList and the
prompt to “Read what zones?”
Click on the Configuration
button, and select Import.
Select the Zone.tab file, and
import the ZoneCategory
values. Click OK to create the
parameter.

For the Default Value, select
all the ZoneCategory values.

The optional flag should be unset.

FME Desktop Database Training Manual

Page 20 Creative Feature Reading

4) Add Tester
Add a Tester transformer connected to the Zones Feature Type. The Tester will be used to filter
zones and keep only the one chosen by the user.

Open the Parameters dialog for the Tester. Set the parameters as follows:

Left Value User Parameter> ZoneCategoryList
Operator Contains
Right Value Attribute > ZoneCategory

5) Add an Aggregator
The upcoming FeatureReader will issue a request to the database for each feature. The more
features you have, the more requests, and this takes time. If you have only one feature, the
translation will run faster.
Open the Parameters dialog for the Aggregator. Set the following parameter:

Mode: Geometry – Assemble One Level

6) Add FeatureReader
Add a FeatureReader transformer connected to the Aggregator. This will be how features are
read from the address database table.

FME Desktop Database Training Manual

Creative Feature Reading Page 21

7) Set Parameters
Open the parameters wizard for the FeatureReader and set the parameters as follows:

Panel 1:
Reader Format SQL Server Spatial

Click the reader parameters button and enter the database connection parameters as before.
Save these settings as the default, if desired.
Click the Table List button and select the PostalAddress table.

Panel 2:
Feature Types Query the Feature Types specified on the previous page
Where Clause <none>

Panel 3:
Spatial Test CONTAINS

Panel 4:
Attribute Handling Result Attributes Only
Geometry Handling Result Geometry Only

8) Add Inspectors and Run Workspace
Add Inspector transformers to the FeatureReader output ports. Save and run the workspace
using File > Prompt and Run. When prompted, select Industrial and Light Industrial.

The workspace will read addresses from the SQL
Server database, only where they fall inside the chosen
census tract.

The output will look like this:

FME Desktop Database Training Manual

Page 22 Updating Features

Updating Features

Updating entire tables is simple enough, but updating individual
features is a task that requires a little more finesse.

Once information is stored in a database, its source is unlikely to stay static. Changes will occur.

Sometimes an update will involve reloading an entire set of data, totally replacing the existing
content. Sometimes the table will also be replaced, and sometimes just emptied (truncated) and
refilled. Sometimes individual features will be updated or deleted.

FME provides tools to carry out all sorts of updates and deletions in a database, mostly through
parameters.

Controlling Translations
You’ll recall that operations on a Reader or Writer (i.e.
at the Database level) are carried out using
Reader/Writer Parameters, located in the Navigator
window.

Operations on a feature type (i.e. at the database table
level) are carried out using Feature Type Parameters,
located both in the Navigator window and Feature Type
Properties dialog (Format Parameters tab).

Operations on individual features in FME are carried
out using Format Attributes. Format Attributes are
accessed through the Feature Type Properties dialog
(Format Attributes tab)

FME Desktop Database Training Manual

Updating Features Page 23

Writer Parameters
Updates and deletions to a database can be primarily controlled through a Writer parameter
called Writer Mode. This parameter informs FME what action to carry out on the database. Its
three values are INSERT, UPDATE, and DELETE.

INSERT means records are simply added to the database. This can be part of an update where
the entire contents of a table are deleted and replaced with new features.

UPDATE means that records are not being inserted or deleted, but simply replaced. Each FME
feature written to a database in UPDATE mode replaces an existing database record.

DELETE means that records are being removed (deleted) from a database. Each FME feature
written to a database in DELETE mode causes a database record to be deleted.

FME Desktop Database Training Manual

Page 24 Updating Features

Feature Type Parameters
Several Feature Type parameters exist to help update existing database tables.

To replace the entire contents of a table, the parameters to use are “Drop Table First” or
“Truncate Table First”.

“Truncate Table First” is used when the table needs to be emptied of existing data, but does not
otherwise need an update to its schema.

“Drop Table First” is used when the table needs to be emptied AND an update is to be made to
the database schema. For example, use this when you wish to update a table with new content
and require a new column to be added to the table.

When using either of these, you would want to set the Writer Mode parameter to INSERT.
UPDATE and DELETE will be of no use when the existing table has been emptied first.

Two other Feature Type parameters of use are Writer Mode and SQL Key Columns.

Writer Mode acts in the same way as the Writer parameter Writer Mode. The difference is that, as
a Feature Type parameter, it only acts on a single table. This is useful for writing to multiple
tables using different actions. For example, the mode for one table can be set to INSERT, while
the mode for another could be set to UPDATE (and another to DELETE).

The SQL Key Columns parameter is used to select a database column, to specify how incoming
features are matched to existing records in an UPDATE or DELETE action.

An UPDATE is carried out when an incoming FME feature has an attribute(s) with the same
name and value as the selected column(s), for a record in the database.

FME Desktop Database Training Manual

Updating Features Page 25

Format Attributes
In some cases, UPDATE and DELETE operations will need to be carried out on individual
features. Not every record in a table needs to be updated, and not every record will get the same
action carried out.

Operations like this – on individual features in FME – are carried out using Format Attributes. For
databases there are two particular format attributes that control updates on individual features.

fme_db_operation
fme_db_operation is a format attribute whose value denotes how a database writer should handle
that feature. It may take the value DELETE, INSERT or UPDATE.

This format attribute is equivalent to the Writer and Feature Type parameter called Writer Mode.
The advantage of using it – instead of those parameters – is that every single feature can be
given a different action.

In comparison, the Feature Type parameter forces all features for a particular table to be
processed the same way, and the Writer parameter forces all features for all tables to have the
same action.

fme_where
fme_where is a format attribute whose value denotes a match that identifies which database
record(s) this feature should update.

This format attribute is equivalent to the Feature Type parameter called SQL Key Columns. Again,
the advantage here is that each individual feature can be given a completely different WHERE
clause; whereas the Feature Type parameter applies the same clause to all features.

The structure of this attribute is usually:

<database field> <operator> <value>

For example a where statement of MyField = 4 says to update features where the database
column named “MyField” has a value of 4.

By creating this string using the AttributeCreator transformer (or the StringConcatenator) the
WHERE clause <value> can be obtained directly from an attribute – or attributes – from a
published parameter, from an FME Function, or from a more complex string or arithmetic
expression.

If the attribute is a string,
then that part has a
quote around it, for
example MyField = ‘abc’

FME Desktop Database Training Manual

Page 26 Updating Features

Identifying Features
When an entire database or table needs updating, it’s easy to identify which features are to be
processed in which way. However, when only certain features need to be updated it’s important
to be able to identify which features they are.

In this scenario the source data sometimes indicates which features require updates. On other
occasions it’s necessary to go through a process of change detection.

A typical Change Detection workspace uses a ChangeDetector or Matcher transformer
(sometimes in a Custom Transformer like the UpdateDetector) and will look like this:

Parameter Priority
The basic rule for parameters is that any higher-level
parameter affects every component below it. For example, a
Reader Parameter affects all Feature Types that belong to
that particular reader.

Database writing mode does work in this way in general. For
example, if the writer level is set to INSERT then ALL
features are written to tables as an insert.

However, this mode can be set not only at the Writer level,
but also at the Feature Type level, or on individual features
with a format attribute; and this causes a different effect.

When the same parameter exists at multiple levels, the
higher-up parameter only applies when the lower-down
parameters are not set (or are set to “INHERIT FROM
WRITER”). When the same parameter is set at different
levels, then the lower-level parameter wins out.

For example, a Writer might be set as INSERT mode; but a table is set to UPDATE mode. In that
case the Feature Type level parameter wins out, and features are written to that table as an
update.

FME Desktop Database Training Manual

Updating Features Page 27

Example	
 5:	
 Feature	
 Updates	

Scenario	
 FME	
 user;	
 Planning	
 Department	

Data	
 Postal	
 Address	
 Data	
 (ESRI	
 File	
 Geodatabase)	

Overall	
 Goal	
 Load	
 address	
 data	
 and	
 updates	

Demonstrates	
 Feature-­‐level	
 updates	

Finished	
 Workspace	
 C:\FMEData\Workspaces\PathwayManuals\Database2a(MSSQL)-­‐Complete.fmw	

C:\FMEData\Workspaces\PathwayManuals\Database2b(MSSQL)-­‐Complete.fmw	

Planning Department Changes Its Mind

The Retired PostalAddress features should be removed from the database, the Pending should
be updated to Current, and the Other should be inserted. The Current and Temporary features do
not have to be inserted again.

1) Start FME Workbench
Start Workbench if necessary and open the Exercise 3 workspace. Save it as mssql5.fmw.

2) Assign Operation Type
The different action types defined in the updates file need to have different values for
fme_db_operation in order to carry out the different action for each.

The workspace must be set up to assign the following:

Status fme_db_operation
Other INSERT

Retired DELETE
Pending UPDATE

In FME2013-SP1 (or newer) this can be done with an AttributeCreator transformer using new
Conditional Mapping functions.

Place an AttributeCreator transformer and connect it to the Reader Feature Type, like so:

3) Set up INSERT
Open the AttributeCreator parameters dialog. Enter fme_db_operation as the Attribute Name to
be created. Open the Value drop-down menu and choose “Set to Conditional Value”

FME Desktop Database Training Manual

Page 28 Updating Features

FME Desktop Database Training Manual

Updating Features Page 29

In the Condition Definition
dialog there is a line for each
test to be carried out. To start
with double-click in the first “If”
condition.

This opens up a Tester-
like dialog. In here enter
a test to check whether
the incoming feature is an
INSERT:

Back in the Condition Definition
dialog, set the output value
(remember we are setting
fme_db_operation here) to
INSERT

4) Set up UPDATE/DELETE
Now repeat this process to set
up Conditional Mapping for the
Pending (UPDATE) and
Retired (DELETE) Status types.

FME Desktop Database Training Manual

Page 30 Updating Features

5) Assign WHERE Clauses
The AttributeCreator dialog will now show there are 4 possible values for fme_db_operation
(INSERT, UPDATE, DELETE, <Do Nothing>.

Now we can set up a WHERE clause by creating fme_where.

In the AttributeCreator parameters dialog, click on the entry for fme_db_operation and then click
the Duplicate button. This sets up a duplicate set up conditions/values and is the easiest method
to use where all of the tests (here for Update Type) will be the same.

Change the newly created attribute name from fme_db_operation(1) to fme_where and select
“Set to Conditional Value”.

Because this is a set of duplicate conditions, in the Condition Definition dialog we can leave the
Test Conditions to be the same and now only need to start editing the output values.

Where Status is “Other”, the output value can be left empty, as a WHERE clause is not required
for an INSERT. So set the output value to “Do Nothing”:

FME Desktop Database Training Manual

Updating Features Page 31

FME Desktop Database Training Manual

Page 32 Updating Features

Where Status is “Pending” the output value needs to be a SQL WHERE clause. So click the drop-
down menu and select Open String Editor.

In the String Editor dialog, use either the Basic or Advanced version to create a string matching a
field called AddressId to the value of the attribute called AddressId.

The Advanced Editor will merely show the string: AddressId = @Value(AddressId)

Now repeat the process for the DELETE update type (it will have the exact same WHERE clause):

You could, of course, delete the existing DELETE condition and duplicate the UPDATE one.

FME Desktop Database Training Manual

Updating Features Page 33

For the Pending status features, the Status must also be updated to be Current. Another
conditional statement will be used to set Status.
Add Status, and set it to a Conditional Value.

If the Status is Pending, set a new value of Current.

Hit OK to exit the AttributeCreator parameters.

6) Check Parameters
The workspace is now complete, but the
parameters need attention.

At this point the Writer (database) parameters
probably look like this:

…and the Feature Type
(table) parameters like this:

FME Desktop Database Training Manual

Page 34 Updating Features

Make sure that “Drop Table First” and “Truncate Table First” is set to No.

The question now is one of Writer Mode. From the above screenshots you can see there are
parameters on both the Writer and the Feature Type. Currently:

Writer: Writer Mode INSERT
Feature Type: Writer Mode INHERIT FROM WRITER

We have already defined writer mode (through fme_db_operation) to be a separate action
(INSERT, UPDATE, DELETE) for individual features. According to the FME Readers and Writers
Manual, this will work “unless the parameter at the feature type level is set to INSERT”!

The current setup – with feature type mode set (via the writer mode) to INSERT – is not going to
give the results we need. We should change the mode to be UPDATE. The two options here are:

• Leave the writer:writer mode parameter as-is, and set the feature type:writer mode
parameter to UPDATE.

• Set the writer:writer mode parameter to UPDATE, and leave the feature type:writer mode
parameter as-is.

Choose one of these methods to change writer mode to UPDATE. Are there any obvious benefits
to choosing one over the other?

FME Desktop Database Training Manual

Updating Features Page 35

7) Save and Run Workspace
Save the workspace, press “Prompt and Run” and select “Status is not” Current and Temporary,
and then run it.

The workspace will give a WARNing because the SQL Server writer is using Bulk Insert mode.
This mode allows quicker insertion of data, but it does not allow features to be updated.

Locate the Writer parameter for Bulk Insert and set it to No. This isn’t truly necessary for the
translation to work—it will simply remove the warning message.

FME Desktop Database Training Manual

Page 36 Updating Features

8) Run Workspace (Optional)
Run the workspace once more.

NB: Each time you run this workspace, it’s worth returning first to the original setup workspace,
changing the feature type parameter Drop Table First to yes, and then running that. Otherwise we
can’t be sure that any of the features won’t already have been (partly) updated.

Notice that 4,082 features are written to the database. These are composed of:

INSERTS 1387
DELETES 1362
UPDATES 1333

Because ORIGINAL features (12,210) + INSERTS (1387) – DELETES (1362) = 11972, there
should now be 12,235 records in the database.

FME Desktop Database Training Manual

Time and Date Attributes in Spatial Databases Page 37

Time and Date Attributes in Spatial Databases

Time and Date Attributes are among the more tricky to get into,
and out of, a database.

Time and date attributes are complicated territory because each different database format may
have its own unique structure for dates.

Microsoft SQL Server
DateTime fields represent date and time data from January 1, 1753 to December 31 9999.
For example, a value of 20061231235959 represents 11:59:59PM on December 31, 2006.
When writing to the database, the writer expects the date attribute to be in the form
YYYYMMDDHHMMSS

SmallDateTime fields represent date and time data from January 1, 1900 to June 6, 2079.
For example, a value of 20060101101000 represents 10:10:00AM on January 1, 2006.
When writing to the database, the writer expects the date attribute to be in the form
YYYYMMDDHHMMSS.

Oracle
fyi: Oracle expects DATE values in the format YYYYMMDDHHMMSS even though when you
display a date field from an Oracle table it shows something like this: 01-JAN-08 12:00:00

Formatting Date Attributes with Transformers
To write dates to a database DATE or DATETIME field you can use the TimeStamper or
DateFormatter transformer to get the date into the correct format.

A format string of ^Y^m^d^H^M^S will return a date-time in the form YYYYMMDDHHMMSS
A format string of ^Y^m^d will return a date in the form YYYYMMDD

New for FME2013, the DateFormatter now also allows you to specify the source date format
using the same format strings. Also provided are default output strings of the most common
output formats.

FME Desktop Database Training Manual

Page 38 Coordinate System Granularity

Coordinate System Granularity

Granularity refers to the level at which different features can be
written to different coordinate systems

FME has the unique ability to allow different tables to have different coordinate systems.

The first feature to be written to a table sets the coordinate system for all subsequent features in
that table (rather than the entire writer). Therefore each table may have a different coordinate
system.

Supported Formats
This functionality is supported in the following database formats:

• Geodatabase and SDE
• SQL Server
• Informix
• Teradata
• IBM DB2

It is not (yet) supported in:

• Oracle
• GeoMedia SQL Server Warehouse
• GeoMedia Access Warehouse

FME Desktop Database Training Manual

Multiple Geometries Page 39

Multiple Geometries

Multiple Geometries are permitted where supported by the database,
usually in the form of multiple geometry columns per table

Most databases include the ability to have multiple geometry columns per table, and FME does
too. However, the table must exist beforehand – FME cannot create multiple geometry tables.

Multiple Geometry Writing
There are two multiple-geometry writing scenarios:

• Reading AND Writing multiple geometries
• Reading single geometry features and converting them to multiple geometries

In a Multiple -> Multiple translation, the writing is handled automatically.

However, when converting single geometries to multiple, the key is in how to identify two features
that are related, and how to assign each of them to the appropriate geometry column.

The functionality used to do this involves geometry names and aggregates.

Because FME doesn’t (*yet*) support multiple geometries within Workbench, the setup for each
database record to be written is a little contrived. It will be composed of two or more features,
each of which contributes its geometry to the final record.

A geometry name is applied to each feature (with a GeometryPropertySetter) and this identifies
the geometry column(s) to write to.

The features are grouped together as an aggregate - usually with an Aggregator transformer –
and this identifies which features form a particular database record.

A MultipleGeometrySetter transformer is used to tell the writer to treat each feature in the
aggregate as a different geometry for the same record.

FME Desktop Database Training Manual

Page 40 Multiple Geometries

Multiple Geometry Reading
Similar to writing, multiple geometry reading involves aggregates and lists.

Each multiple geometry feature that
FME reads is an aggregate.
The Deaggregator transformer can
be used to split up the record into
the individual geometries, and an
attribute (_geometry_name) used to
determine which geometry came from which column.

FME Desktop Database Training Manual

Multiple Geometries Page 41

Example	
 6:	
 Multiple	
 Geometry	
 Writing	

Scenario	
 FME	
 user;	
 Planning	
 Department	

Data	
 Parks	
 (MapInfo	
 TAB,	
 SQL	
 Server)	

Overall	
 Goal	
 Write	
 to	
 multiple	
 geometry	
 columns	

Demonstrates	
 Multiple	
 Geometry	
 Writing	

Finished	
 Workspace	
 C:\FMEData2014\Workspaces\Database\mssql6-­‐complete.fmw	

SQL	
 Script	
 C:\FMEData2014\Workspaces\Database\TableCreate.sql	

In this example, FME will be used to create multiple geometries where the two geometries are
different representations (point and polygon) of the same park objects.

A workspace will then be created to read the data back, and filter it (either points or polygons)
depending on the scale required for the output.

1) Start FME Workbench
Start FME Workbench, and open the Generate Workspace dialog.
Set up a translation as follows:

Reader Format MapInfo TAB (MITAB)
Reader Dataset C:\FMEData2014\Data\Parks\Parks.tab

Writer Format Microsoft SQL Server Spatial

Click the writer parameters button. In the parameters dialog enter the database connection
parameters. Click OK, and then OK again, to create the workspace.

2) Create Table
FME isn’t (yet) able to create tables with multiple geometry columns, so this must be done with a
piece of SQL code. However, FME can run such code, and that is how we will create the table.

Locate and double-click the writer parameter ‘SQL Statement to Execute Before Translation’.
Enter the following script:

FME_SQL_DELIMITER ;
-DROP TABLE Parks;
CREATE table Parks (
 "ParkId" INTEGER,
 "RefParkId" INTEGER,
 "ParkName" CHAR (40),
 "NeighborhoodName" CHAR (40),
 "EWStreet" CHAR (30),
 "NSStreet" CHAR (30),
 "DogPark" CHAR (1),
 "Washrooms" CHAR (1),
 "SpecialFeatures" CHAR (1),
 "POINTS" GEOGRAPHY,
 "POLYGONS" GEOMETRY,
);

FME Desktop Database Training Manual

Page 42 Multiple Geometries

The script will check if the table exists and, if so, drop it before continuing.
Then it will recreate the table with multiple geometry fields; one for points, one for polygons.

3) Add CenterPointReplacer
Now to create the multiple geometries: The park features are originally polygons; to create points
insert a CenterPointReplacer transformer, connected to a second output stream from the source
feature type.

The transformer has no parameters (except name) to worry about.

The workspace will now look something like this:

4) Add Reprojector
The point geometry will be stored as a geography spatial type, which must be in a round-earth
coordinate system. Insert a Reprojector transformer after the CenterPointReplacer, and set the
Destination Coordinate System as LL84.

FME Desktop Database Training Manual

Multiple Geometries Page 43

5) Add GeometryPropertySetter
Now there are two sets of geometries, and they must be given different names. The names
should match the geometry columns names in the database: POINTS and POLYGONS

Place two GeometryPropertySetter
transformers as shown:

Open the Parameters dialog for each transformer in turn.
Change the Property to Set parameter to Geometry Name.

Enter the required geometry name in the field provided (either POLYGONS or POINTS)

7) Add Aggregator
The next step is to identify the matching features. This is done with an Aggregator transformer.
Place an Aggregator transformer and connect both streams of data to it.

In the parameters, set group_by to use ParkId; this is how the two sets of features are paired off
and aggregated together. Set the Mode as ‘Geometry-Assemble One Level’, and set Keep Input
Attributes to Yes.

FME Desktop Database Training Manual

Page 44 Multiple Geometries

Set the Aggregate Type parameter to “Multiple Geometry” so that FME knows these are multiple
geometry features,

FME Desktop Database Training Manual

Multiple Geometries Page 45

8) Set Multiple Geometry Parameter
One last task: In the Navigator window,
locate the Writer parameter Handle Multiple
Spatial Columns, and set it to Yes.

9) Save and Run Workspace
Save the workspace and then run it. The workspace will check for a table of that name, delete it if
necessary, create it anew, and then fill the table with multiple-geometry features.

10) Start SQL Server Management Studio
Start the SQL Server Management Studio and log in.

11) Browse for Database
In the Object Explorer window, browse to the
fmedata database, and then browse to the
Parks table.

Right-click on the table name, and choose the
option to Select Top 1000 Rows.

Notice that each record has two geometry
columns:

Click the Spatial Results tab, and flip between
the two spatial columns:

FME Desktop Database Training Manual

Page 46 Multiple Geometries

Example	
 7:	
 Multiple	
 Geometry	
 Reading	

Scenario	
 FME	
 user,	
 Planning	
 Department	

Data	
 Parks	
 (SQL	
 Server,	
 KML)	

Overall	
 Goal	
 Read	
 and	
 filter	
 multiple	
 geometry	
 columns	

Demonstrates	
 Multiple	
 Geometry	
 Reading	

Finished	
 Workspace	
 C:\FMEData2014\Workspaces\Database\mssql7-­‐complete.fmw	

In this example, FME will be used to read the previous data back, and filter it (either points or
polygons) depending on the scale required for the output.

1) Start FME Workbench
Start FME Workbench, and open the Generate Workspace dialog.
Set up a translation as follows:

Reader Format Microsoft SQL Server Spatial

In the Reader parameters dialog enter the database connection parameters, then select Parks as
the table to read.

Writer Format Google Earth KML
Writer Dataset C:\FMEData2014\Output\Training\Parks.kml

Click OK to create the workspace.

2) Set Multiple Geometry Parameter
In the Navigator window, locate the reader parameter Handle Multiple Spatial Columns, and set it
to Yes.

3) Add Deaggregator
Add a Deaggregator transformer. This will divide the data into its two geometry types.
Notice that one of the parameters is for Geometry Name Attribute.

4) Add Tester
Add a Tester transformer. Set up a test to check if the geometry name attribute (by default
_geometry_name) has a value of POINTS.

To prove that the workspace is doing what is expected (so far) attach an Inspector transformer to
each Tester output port and run the translation. Points and polygons should get separated out.

5) Add Reprojector

The features from the SQL Server database do not contain coordinate system information. You
will have to add this to the features. Add a CoordinateSystemSetter after each Tester output. The
points are in LL84, and the polygons are in UTM83-10.

FME Desktop Database Training Manual

Multiple Geometries Page 47

Advanced Task
Although it’s no longer database related, let’s work on making the KML display the different
features at different zoom levels.

6) Add KMLRegionSetters
Add two KMLRegionSetter transformers; one for the points, one for the polygons.

The point’s version should be set to:

Bounding Box: Calculate: Yes – 2D
Buffer XY Region By 0.003
Minimum Display Size 10
Maximum Display Size 30

The polygon’s version should be set to:

Bounding Box: Calculate: Yes – 2D
Minimum Display Size 50
Maximum Display Size -1

7) Add KMLStylers
Add two KMLStyler transformers; one for the buffered points, one for the polygons.
Assign the buffered points a circular red icon (e.g. H1), and the polygons green.

The workspace will now look like this:

8) Save and Run Workspace
Save the workspace and then run it.
Open the output in Google Earth.

The ‘point’ geometry will show when the view is zoomed out; as it is zoomed in the points will
disappear to be replaced by the actual polygons. You can experiment with the different display
sizes and the point buffer parameter if you wish to fine-tune the result.

FME Desktop Database Training Manual

Page 48 Database Transformers

Database Transformers

Besides the FeatureReader there are a number of database-related
transformers for submitting SQL statements directly to the database.

There are two methods to submit SQL statements to a database. Firstly, SQL statements can be
entered into parameters to run before and after a translation. Secondly, there are SQL-related
transformers.

Such statements might be used to:

• Create, drop, modify or truncate a database table
• Carrying out a database join
• Drop constraints prior to data loading
• Any other function that is usually carried out using a SQL statement.

This section will focus on the use of transformers to run SQL statements.

SQLExecutor
The SQLExecutor is a transformer for executing SQL statements against a database.
Each incoming INITIATOR feature triggers the SQL statement that has been defined.

If the SQL is a query, and if features are returned from the
database, those features form the output from the transformer.
There will be a feature output for each row of the results.

The transformer also exposes result attributes, and does not
need to be followed by an AttributeExposer.

SQLCreator
The SQLCreator transformer is similar to the SQLExecutor, but does not rely on incoming
features to trigger it. Instead, the statement is executed once only.

Like the SQLExecutor, there will be a feature output for each
row of the results.

FME Desktop Database Training Manual

Database Transformers Page 49

Example	
 8:	
 SQLExecutor	

Scenario	
 FME	
 user;	
 Planning	
 Department	

Data	
 Address	
 Data	
 (SQL	
 Server)	
 Fire	
 Halls	
 (GML)	

Overall	
 Goal	
 Carry	
 out	
 a	
 join	
 using	
 the	
 SQLExecutor	

Demonstrates	
 SQLExecutor	
 transformer	

Finished	
 Workspace	
 C:\FMEData2014\Workspaces\Database\mssql8-­‐complete.fmw	

The city has a dataset of Fire Halls in GML format.

In this example, FME will be used to update the address database, to flag addresses that are a
Fire Hall. This will be done by using a SQLExecutor transformer to do a database join.

1) Inspect Source Data
Use the FME Data Inspector to open and inspect the source file:

Reader Format GML (Geography Markup Language)
Reader Dataset C:\FMEData2014\Data\Emergency\FireHalls.gml

Use the Table View window to view the text records. Notice that each Fire Hall facility has an
address field. We’ll try to match this to the SQL Server address table.

2) Start FME Workbench
Start Workbench if necessary and begin with an empty workspace.

FME Desktop Database Training Manual

Page 50 Database Transformers

3) Add Reader
Add a Reader using Readers > Add Reader. Set it up as follows:

Reader Format GML (Geography Markup Language)
Reader Dataset C:\FMEData2014\Data\Emergency\FireHalls.gml

4) Add SQLExecutor
Connect an SQLExecutor transformer.

Open the SQLExecutor parameters dialog. Set up the parameters as follows:

Reader Format Microsoft SQL Server Spatial
Reader Dataset fmedata

SQL Statement select * from dbo.PostalAddress where
PostalAddress='@Value(Address)'
Combine Attributes Keep Initiator Attributes if Conflict

The SQL statement is most easily created by using the editor tool. Be sure to include the quote
characters around the final @Value() part!

FME Desktop Database Training Manual

Database Transformers Page 51

7) Add AttributeCopier
Add an AttributeCopier transformer to copy Name to OwnerName1

OwnerName1 is a field in the SQL Server Address table.

If we were to write the data this would cause FME to populate the name of the Fire Hall
OwnerName1 field of the PostalAddress table.

8) Save and Run Workspace
Save the workspace and then run it. Inspect the output to confirm the OwnerName1 field now
includes the contents of the Fire Hall Name attribute.

Advanced Task
If you have the time, use what you know about issuing updates to a database table to update the
SQL Server PostalAddresses that are Fire Hall facilities. You’ll have to use a FeatureHolder
transformer, otherwise the table will be locked by SQLExecutor while the writer is trying to write.

FME Desktop Database Training Manual

Page 52 Geometry

Geometry

Like any spatial format, it’s important to be aware of what
geometries are supported within SQL Server and how to clean bad
geometries to prevent translation failures.

Supported Geometries
Like any other format, the list of supported geometries is listed in the FME Readers and Writers
Manual. For SQL Server the following are listed as supported:

• Points
• Lines
• Polygons and Donut Polygons
• Aggregates
• Circular Arcs
• Curves
• Globes (read only)

Z values and Measures are supported as of FME2013.

Spatial Indices
Spatial Indices can be created on a SQL Server table with FME by using a Feature Type
Parameter called “Spatial Index Type”.

The three options are None, Auto, and Manual.

Automatic creation of a spatial index – possible only with SQL Server 2012 or later – uses a set of
default options and a set of Bounding Box coordinates to be specified in the same dialog.

However, due to the complexity of Spatial Index Creation, FME allows a user to specify a SQL
statement to create an index on a specific spatial column with non-default options:

Examples of SQL spatial index creation can be found in the FME Readers and Writers Manual.

FME Desktop Database Training Manual

Geometry Page 53

Geometry or Geography?
SQL Server supports both Geometry and Geography spatial types. The type of geometry can be
specified either at the Writer level (see Navigator Window):

…or at the Feature Type level:

Notice that there is also the option for the table to inherit the spatial type from the Writer level, in a
similar way to the Writer Mode parameter.

Cleaning Geometry
SQL Server is known to be very exacting about the structure of geometry being loaded. If the
data does not conform to SQL Server standards then an error is likely to occur.

The GeometryValidator transformer can be used to check for and repair features that have invalid
geometry structures. There are various modes of operation on this transformer; the one to start
with in this case should be Basic Geometry Integrity, which will clean up features with inherently
corrupt or badly formed geometry (rather than quirky structures simply not tolerated by SQL
Server). Self-intersections can also cause problems when writing to the GEOGRAPHY model.

FME Desktop Database Training Manual

Page 54 Performance

Performance

Performance is a key concern for most database users, and
manipulating how records are inserted and committed is one way in
which performance can be improved.

Default Performance
The default behavior of the SQL Server writer is to send one feature at a time to the database.

Once all features have been loaded in this way, the data is committed; meaning that the data is
made permanent in the database.

Transaction Interval
Transaction Interval is a SQL Server writer parameter that specifies the number of individual
features to be written to the database before a commit action takes place.

The default Transaction Interval, zero, causes all features to be loaded before being committed. A
value of one causes each individual feature to be committed by itself.

If writing to a database from FME fails for some reason, then the data loading process is rolled-
back (undone) to the previous commit point; so setting a transaction interval to commit data at
regular intervals ensures the entire process is not rolled-back because of one bad feature.

However, increasing the interval can help performance, because it takes fewer database
transactions to actually load data. Therefore setting this parameter becomes a trade-off between
performance and insurance.

Any data written by the SQLExecutor is NOT
considered to be part of the same
transaction as that written by a writer.

FME Desktop Database Training Manual

Performance Page 55

Bulk Insert
A further SQL Server writer parameter is Bulk Insert. By default, Bulk Insert is enabled when you
add a new writer.

Bulk Insert changes the behavior of FME to write features as a batch, rather than individually.
This can improve performance because it reduces the network traffic between FME and database
to just one set of communications, rather than a communication for every single feature. This is
particularly significant when loading data to Azure, the internet/cloud-based version of SQL
Server. In tests, Bulk Insert mode produced performance improvements of 400x-1000x.

For SQL Server, Bulk Insert is tied to Transaction Interval. The number of features written as a
batch is equal to the value of the Transaction Interval parameter; so <n> features are loaded into
the database at a time and then committed at once.

Bulk Insert works with both the Spatial and Non-Spatial versions of the SQL Server writer.

Start Transaction At
Whenever a translation fails mid-write, the current transaction is rolled-back. FME will report in
the log window how many transactions had been applied up to that point, and what the
transaction to restart at should be.

Then, once the problem is fixed, the translation can be re-run, but specifying which translation to
start at. The process is then easier and quicker because the database doesn’t need to recommit
any data except that in the failed transaction.

If the “Transaction to Start Writing At” parameter is set to
zero – the default – then all data is written as usual.

Some writers also support a format attribute called fme_db_transaction that can be used to
control commits and rollbacks at the feature level. See the Readers and Writers manual for
more documentation on this functionality.

As a previous example showed, the only writer mode compatible with Bulk Insert is INSERT.
Bulk Insert is not possible when the writer mode is set to either UPDATE or DELETE.

Other Bulk Insert dependencies are:

- .NET Framework v4
- SQL Native Client 2008 or greater
- Microsoft System CLR Types 2012

FME Desktop Database Training Manual

Page 56 Session Review

Session Review

This session was all about spatial databases and FME.

What You Should Have Learned from this Session
The following are key points to be learned from this session:

Theory

• Connecting to a database requires a set of connection parameters that may vary from
database to database

• Updating features is done with two FME Format Attributes

• Reader Parameters can be used to improve data reading performance

• FME can read and write multiple geometries, but not create a table with multiple

geometry columns

• Transactions help deal with performance and failover

FME Skills

• The ability to connect to a database, write data, and update individual features

• The ability to use reader parameters, both alone and with concatenated parameters

• The ability to read and write multiple geometries

• The ability to use the SQLExecutor and SQLCreator transformers

