(waveTheories)/

waves2Foam Toolbox o oo oooo	Extreme Wave Simulation 000 0	NewWave Theory 0 0 00	Implementation 0 000000 0000	Modifications 0 00000	Tutorial 000000000000

Focused Wave generation based on Linear New Wave Theory, using OpenFOAM and waves2Foam toolbox

Eirini Katsidoniotaki

Department of Engineering Sciences/Electricity Division, Uppsala University, Uppsala, Sweden

2019-11-27

waves2Foam Toolbox o oo oooo	Extreme Wave Simulation 000 0	NewWave Theory 0 0 00	Implementation 0 000000 0000	Modifications 0 00000	Tutorial 000000000000

Contents

- 1 waves2Foam Toolbox
- 2 Extreme Wave Simulation
- 3 Linear NewWave Theory
- Implementation
- 5 Modifications
- 6 Tutorial

waves2Foam Toolbox		NewWave Theory	Implementation	Modifications	
• 00 0000	000 0		0 000000 0000	0 00000	

waves2Foam toolbox developed at the Technical University of Denmark by Niels G. Jacobsen

- Plug-in toolbox to the OpenFOAM package
- Generation and Absorption of free surface waves
- Modelling free-surface and bodies interaction

waves2Foam Toolbox ○ ●O ○○○○	Extreme Wave Simulation 000 0	NewWave Theory 0 00	Implementation 0 000000 0000	Modifications 0 00000	Tutorial 000000000000
Installation					

Intructions on how to download and install

waves2Foam toolbox can be downloaded

svn co http://svn.code.sf.net/p/openfoam-extend/svn \
/trunk/Breeder_1.6/other/waves2Foam

The toolbox's manual is available on the following link:

https://www.researchgate.net/publication/ \
319160515_waves2Foam_Manual

More info at:

http://openfoamwiki.net/index.php/Contrib/waves2Foam

waves2Foam Toolbox ○ ○● ○○○○	Extreme Wave Simulation 000 0	NewWave Theory o o oo	Implementation 0 000000 0000	Modifications 0 00000	Tutorial 000000000000
Installation					

Intructions for coupling with OpenFOAMv1906

1. In the file:

/waves2Foam/src/waves2FoamProcessing/Make/les

Comment out the line as shown below:

/* \$(ppw)/\$(spec)/\$(specHelp)/complexExp.C */

2. In the file:

/postProcessing/postProcessingWaves/spectralAnalysis \
/fftBasedMethods/reflectionAnalysis2DFFT/ \
/reflectionAnalysis2DFFT.C

In 4 instances in the code, change:

```
"complex::zero" to "complex(Zero)"
```

waves2Foam Toolbox ○ ○○ ●○○○	Extreme Wave Simulation 000 0	NewWave Theory 0 0 00	Implementation 0 000000 0000	Modifications o ooooo	Tutorial 000000000000
Description					

waves2Foam toolbox includes utilities for:

- Probes and Wave Gauges definition
- Wave Generation and Absorption through Relaxation Zone technique
- Wave Theory selection
- Initial conditions according to user defined wave theory
- Solvers for the wave interaction and propagation

waves2Foam Toolbox ○ ○ ○●○○	Extreme Wave Simulation 000 0	NewWave Theory o o oo	Implementation 0 000000 0000	Modifications 0 00000	Tutorial 000000000000
Description					

Available Wave Theories in waves2Foam toolbox

1 Regular Wave Theories

- First order Stokes
- Second order Stokes
- Fifth order Stokes
- 2 Bichromatic Wave Theories
 - First order bichromatic
 - Second order bichromatic
 - Irregular waves First order

- 🚾 Potential Current
- res Solitary First order
- res Combined Waves
- res External Wave Theories
 - Fast summation of irregular waves
 - OceanWave3D

waves2Foam Toolbox ○ ○○ ○○●○	Extreme Wave Simulation 000 0	NewWave Theory 0 00	Implementation 0 000000 0000	Modifications 0 00000	Tutorial 000000000000
Description					

waveProperties.input file is the key component for wave generation

- All the communication between the User, waves2Foam toolbox and OpenFOAM
- Located in constant folder of the case directory
- All the ocean wave related information

waves2Foam Toolbox ○ ○○ ○○○●	Extreme Wave Simulation 000 0	NewWave Theory o o	Implementation 0 000000 0000	Modifications 0 00000	Tutorial 000000000000
Description					

waves2Foam consists of the libraries:

- 1 waves2Foam
- 2 waves2FoamMooring
- 3 waves2FoamPorosity
- 4 waves2FoamProcessing
- 5 waves2FoamSampling

For the purpose of this tutorial, the following libraries are important:

- waves2Foam for the Wave Theories
- waves2FoamProcessing for setting the wave parameters

waves2Foam Toolbox	Extreme Wave Simulation	NewWave Theory	Implementation	Modifications	
	000				
00 0000			000000 0000	00000	

Extreme Wave Simulations

Eirini Katsidoniotaki Focused Wave generation based on Linear New Wave Theory

2019-11-27

waves2Foam Toolbox	Extreme Wave Simulation	NewWave Theory	Implementation	Modifications	
0	000		0 000000	0 00000	
0000		õo	0000		

Extreme waves have the key role for the development of offshore Renewable Energy Systems

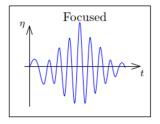
- Experiments in wave tanks are expensive and lack of flecxibility
- CFD has attracted a lot of attention
- Ability to predict impact forces
- But how to simulate Extreme Waves?

waves2Foam Toolbox 0 00 0000	Extreme Wave Simulation 000 0	NewWave Theory 0 0 00	Implementation 0 000000 0000	Modifications 0 00000	Tutorial 000000000000

Extreme waves are highly transient events within a multi-frequency sea state

- High order Stokes waves are insufficient
- Random wave generation is computational expensive

12 / 46


Need for a methodology for Extreme Wave Simulation!

waves2Foam Toolbox o oo oooo	Extreme Wave Simulation 000 ●	NewWave Theory 0 00	Implementation 0 000000 0000	Modifications 0 00000	Tutorial 000000000000
focusedWave					

Focused Wave: Concept for extreme wave representation

Motion of a single event with a **specific shape** and **crest height** over a single associated period.

Examination of peak surface elevation and loads.

waves2Foam Toolbox o oo oooo	Extreme Wave Simulation 000 0	NewWave Theory ● ○	Implementation 0 000000 0000	Modifications 0 00000	Tutorial 000000000000
0000		00	0000		

NewWave Theory

Eirini Katsidoniotaki Focused Wave generation based on Linear New Wave Theory

2019-11-27

∃ >

waves2Foam Toolbox 0 00 0000	Extreme Wave Simulation 000 0	NewWave Theory ○ ● ○○	Implementation 0 000000 0000	Modifications 0 00000	Tutorial 000000000000
Introduction					

NewWave Theory is extensively referred in Offshore Engineering for modelling extreme wave interactions with offshore structures.

- Linear, Random, Gaussian sea
- Sea state discretization into a finite number of sinusoidal wave components
- In this tutorial, linear NewWave approximation is described

waves2Foam Toolbox o oo oooo	Extreme Wave Simulation 000 0	NewWave Theory ○ ●○	Implementation 0 000000 0000	Modifications o ooooo	Tutorial 000000000000
Theoretical Background					

The focused wave group of localized waves is derived from a measured theoretical spectrum

The amplitude a_i , of each wave component N, for a specific frequency f_i is defined as:

$$a_i = A_o \frac{S(f_i)\Delta f}{\sum_{n=1}^N S(f_i)\Delta f} \tag{1}$$

where the frequency step Δf given by

$$\Delta f = \frac{f_u - f_l}{N - 1} \tag{2}$$

 $Ao\ {\rm is}$ the target theoretical linear crest amplitude of the focused wave given by

$$A_o = \sqrt{2m_0 ln(N)} \tag{3}$$

waves2Foam Toolbox o oo oooo	Extreme Wave Simulation 000 0	NewWave Theory ○ ○	Implementation 0 000000 0000	Modifications 0 00000	Tutorial 000000000000
Theoretical Background	l				

JONSWAP or Pierson-Moskowitz are frequently employed for the Surface spectral density $S(f_i)$.

The linear surface displacement η is given by:

$$\eta(x,t) = \sum_{n=1}^{N} a_i \cos[k_i(x-x_0) - \omega_i(t-t_0)]$$
(4)

 x_0, t_0 are the predefined focal location and focal time, respectively, $k_i = \omega_i^2/gtanh(k_ih)$ is the wave number and $\omega_i = 2\pi f_i$ is the frequency.

waves2Foam Toolbox 0 00 0000	Extreme Wave Simulation 000 0	NewWave Theory o o oo	Implementation • • • • • • •	Modifications 0 00000	Tutorial 000000000000

Implementation

Eirini Katsidoniotaki Focused Wave generation based on Linear New Wave Theory

waves2Foam Toolbox o oo oooo	Extreme Wave Simulation 000 0	NewWave Theory 0 00	Implementation • • • • • • • • • • • • •	Modifications 0 00000	Tutorial 000000000000
waveTheory class part of	of waves2Foam library				

waveTheory class part of waves2Foam library

Base class waveTheory and sub-classes located at:

\$WM_PROJECT_DIR/applications/utilities/waves2Foam/src \
/waves2Foam/waveTheories/waveTheory

Each sub-class follows a different wave theory (Stokes first, irregular etc..)

waves2Foam Toolbox 0 00 0000	Extreme Wave Simulation 000 0	NewWave Theory 0 00	Implementation o o o o o o o o o o o o o	Modifications 0 00000	Tutorial 000000000000		
waveTheory class part of waves2Foam library							

waveTheory.H

```
//- Runtime type information
  TypeName("waveTheory");
  // Declare run-time constructor selection table
      declareRunTimeSelectionTable
      (
           autoPtr,
           waveTheory,
           dictionary,
           (
            const word& subDictName, const fvMesh& mesh_
          ),
          (subDictName, mesh_)
     );
```

waves2Foam Toolbox o oo oooo	Extreme Wave Simulation 000 0	NewWave Theory 0 000	Implementation 0 000000 0000	Modifications 0 00000	Tutorial 000000000000			
waveTheory class part of waves2Foam library								

waveTheory.H

Auto-pointer connects base class and sub-classes The wave theory is passed as argument through the dictionary

```
// Constructors
        //- Construct from components
        waveTheorv
            const word& type,
            const fvMesh& mesh_
        );
// Selectors
        //- Return a reference to the selected turbulence model
        static autoPtr<waveTheory> New
            const word& subDictName.
            const fvMesh& mesh_
        );
```

waves2Foam Toolbox 0 00 0000	Extreme Wave Simulation 000 0	NewWave Theory 0 00	Implementation 0 000000 0000	Modifications 0 00000	Tutorial 000000000000			
waveTheory class part of waves2Foam library								

waveTheory class

Virtual functions for defining the surface elevation $\eta,$ pressure gradient p and velocity U

∃ >

waves2Foam Toolbox 0 00 0000	Extreme Wave Simulation 000 0	NewWave Theory 0 00	Implementation ○ ○○○○●○ ○○○○	Modifications 0 00000	Tutorial 000000000000
waveTheory class part of	of waves2Foam library				

irregular.C sub-class

Irregular Wave Theory is one of the sub-classes of the main class waveTheory.

```
class irregular
:
    public waveTheory
{
...
}
```

waves2Foam Toolbox 0 00 0000	Extreme Wave Simulation 000 0	NewWave Theory 0 0 00	Implementation ○ ○○○○○ ○○○○	Modifications 0 00000	Tutorial 000000000000			
waveTheory class part of waves2Foam library								

irregular.C sub-class

Member function for surface elevation η

```
scalar irregular::eta
(
    const point& x,
    const scalar& time
 const
{
    scalar eta(0):
    forAll (amp_, index)
    ſ
        scalar arg = omega_[index]*time - (k_[index] & x) + phi_[index];
        eta += amp_[index]*Foam::cos(arg);
    3
    eta *= factor(time);
    eta += seaLevel :
    return eta:
}
                                                                    ∃ >
```

waves2Foam Toolbox o oo oooo	Extreme Wave Simulation 000 0	NewWave Theory 0 000	Implementation ○ ○○○○○○ ●○○○	Modifications 0 00000	Tutorial 000000000000		
waveProperties.C part of waves2FoamProcessing library							

waveProperties.C part of waves2FoamProcessing library

Base class waveProperties.C and sub-classes located at:

\$WM_PROJECT_DIR/applications/utilities/waves2Foam/src \
/waves2FoamProcessing/preProcessing/setWavePropeties

Each sub-class follows a different wave theory (Stokes first, irregular etc..)

waves2Foam Toolbox o oo oooo	Extreme Wave Simulation 000 0	NewWave Theory 0 000	Implementation ○ ○○○○○○ ○●○○	Modifications 0 00000	Tutorial 000000000000		
waveProperties.C part of waves2FoamProcessing library							

waveProperties.C

```
autoPtr<setWaveProperties> setWaveProperties::New
   const Time& rT,
   dictionary& dict,
   bool write
)
ł
   word waveTheoryTypeName;
   dict.lookup("waveType") >> waveTheoryTypeName;
    setWavePropertiesConstructorTable::iterator cstrIter =
        setWavePropertiesConstructorTablePtr ->find
        (
            waveTheoryTypeName+"Properties"
        ):
   return autoPtr<setWaveProperties>(cstrIter()(rT. dict. write));
}
```

waves2Foam Toolbox o oo oooo	Extreme Wave Simulation 000 0	NewWave Theory 0 00	Implementation 0 00000 0000	Modifications 0 00000	Tutorial 000000000000		
waveProperties.C part of waves2FoamProcessing library							

irregularProperties sub-class

waveProperties file is created according to the selected Wave Theory

```
void irregularProperties::set( Ostream& os )
ſ
   // Write the beginning of the sub-dictionary
   writeBeginning( os );
    // Write the already given parameters
   writeGiven( os, "waveType" );
   writeGiven( os, "spectrum");
    writeGiven( os. "N" ):
   writeGiven( os, "Tsoft");
    if (dict .found("writeSpectrum" ))
    ſ
        writeGiven( os, "writeSpectrum");
    }
   if (dict_.found("Tend"))
    Ł
        writeGiven(os, "Tend"):
        writeGiven(os, "Tdecay");
    3
```

waves2Foam Toolbox o oo oooo	Extreme Wave Simulation 000 0	NewWave Theory 0 00	Implementation ○ ○○○○○○ ○○○●	Modifications 0 00000	Tutorial 000000000000	
waveProperties.C part of waves2FoamProcessing library						

irregularProperties sub-class

Wave Spectra class is called by the irregularProperties

```
// Make a pointer to the spectral theory
    scalarField amp(0);
    scalarField frequency(0):
    scalarField phaselag(0);
    vectorField waveNumber(0):
    autoPtr<waveSpectra> spectra
        waveSpectra::New(rT_, dict_, amp, frequency, phaselag, waveNumber)
    ):
    // Computing the spectral quantities
    spectra->set( os );
    if (write )
    {
        writeDerived( os, "amplitude", amp);
        writeDerived( os, "frequency", frequency);
        writeDerived( os, "phaselag", phaselag);
        writeDerived( os, "waveNumber", waveNumber);
    r
```

waves2Foam Toolbox		NewWave Theory		Modifications	
0 00	000 0		0 000000	00000	
0000		00	0000		

Modifications

Eirini Katsidoniotaki Focused Wave generation based on Linear New Wave Theory

waves2Foam Toolbox o oo oooo	Extreme Wave Simulation 000 0	NewWave Theory 0 00	Implementation 0 000000 0000	Modifications ○ ●0000	Tutorial 000000000000	
Modify waves2Foam library						

Modify waves2Foam library

- Starting by creating a new wave type named focusedWave in the library waves2Foam
- Use the irregular wave type as base
- Follow the commands:

cd \$WM_PROJECT_USER_DIR/applications/utilities \ /waves2Foam/src/waves2Foam/waveTheories

mkdir --parents focusedWave/focusedWave

```
cp -r irregular/irregular/irregular.* \
focusedWave/focusedWave/
```

waves2Foam Toolbox 0 00 0000	Extreme Wave Simulation 000 0	NewWave Theory 0 000	Implementation 0 000000 0000	Modifications ○ ○●○○○	Tutorial 000000000000	
Modify waves2Foam library						

Rename file, folders and the source code

```
cd focusedWave/focusedWave
mv irregular.C focusedWave.C
mv irregular.H focusedWave.H
sed -i s/irregular/focusedWave/g focusedWave.H
sed -i s/irregular/focusedWave/g focusedWave.C
```

waves2Foam Toolbox 0 00 0000	Extreme Wave Simulation 000 0	NewWave Theory 0 0 00	Implementation 0 000000 0000	Modifications ○ ○○●○○	Tutorial 000000000000	
Modify waves2Foam library						

Create Make folder

- First, create a back-up of the original Make folder and rename it Make_backup.
- Then, a new Make folder is created and working on it.
 - cd \$WM_PROJECT_USER_DIR/applications/utilities \ /waves2Foam/src/waves2Foam

mv Make Make_backup

- cp -r Make_backup Make
- cd Make

waves2Foam Toolbox o oo oooo	Extreme Wave Simulation 000 0	NewWave Theory 0 000	Implementation 0 000000 0000	Modifications ○ ○○○●○	Tutorial 000000000000
Modify waves2Foam lib	rary				

Modify Make/files

Add the following piece of code at the end of the section /*WAVE THEORIES*/:

/* Focused wave theories */
focusedWave=focusedWave
\$(waveTheories)/\$(focusedWave)/focusedWave/focusedWave.C

waves2Foam Toolbox o oo oooo	Extreme Wave Simulation 000 0	NewWave Theory 0 00	Implementation 0 000000 0000	Modifications ○ ○○○○●	Tutorial 000000000000	
Modify waves2Foam library						

focusedWave and focusedWaveProperties class are going to be part of the waves2Foam toolbox

Go to:

cd \$WM_PROJECT_USER_DIR/applications/utilities/waves2Foam/src

Compile the libraries by executing: ./Allwmake

Tutorial

Eirini Katsidoniotaki Focused Wave generation based on Linear New Wave Theory

- (日)

waves2Foam Toolbox o oo oooo	Extreme Wave Simulation 000 0	NewWave Theory 0 00	Implementation 0 000000 0000	Modifications 0 00000	Tutorial o∙oooooooooo

Description

Numerical Wave Tank (NWT) for NewWave Theory Focused Wave

- 2D NWT of COAST Lab Ocean Basin at the University of Plymouth, w/o floating body
- 3m depth, 8 wave gauges positions are used
- Pierson-Moskowitz spectrum together with NewWave Theory
- 65 wave components (simplified for faster simulation)
- Frequency range uniformly spaced between 0.101563Hz and 2Hz
- Theoretical focus location x_0 =4.35m (wave gauge 5)
- Theoretical focus time t₀=20sec

	0 00	Extreme Wave Simulation 000 0			Modifications 0 00000	Tutorial co∙cococococo
--	---------	-------------------------------------	--	--	-----------------------------	---------------------------

NewWave Theory Characteristics

Ao	fp	Hs	kA	x_0	t_0	f_l	f_u	Ν
(m)	(Hz)	(m)	(m)	(m)	(sec)	(Hz)	(Hz)	(-)
0.25	0.4	0.274	0.160972	4.35	20	0.101563	2	65

< 円

waves2Foam Toolbox o oo oooo	Extreme Wave Simulation 000 0	NewWave Theory 0 0 00	Implementation 0 000000 0000	Modifications 0 00000	Tutorial 00000000000

Create the case newWaveFocusedWave

- Copy the existing tutorial waveFlume included in the waves2Foam toolbox
- Modify the blockMeshDict to match the new NWT dimensions
- New boundary conditions alpha.water, p_rgh, U
- Modify the fvSchemes and fvSolution in the system folder
- Modify the controlDict in the system folder, mainly by adding the wave gauges

38 / 46

waveProperties.input file is adjusted to the new wave type

waves2Foam Toolbox Extreme Wave Simulation NewWave Theory Implementation Modifications Tutorial 0 000 0 0 0 0 0 0000 0000 0 00000 00000 0000 00 0000	0 0 0 0 0 000000000000000000000000000	o o o o o o o o o o o o o o o o o o o	000			o oc	000
---	---------------------------------------	---------------------------------------	-----	--	--	------	-----

Getting Started

Go to:

cd \$WM_PR0JECT_USER_DIR/applications/utilities/waves2Foam/tutorials/waveFoam
cp -r waveFlume newWave_focusedWave
cd newWave_focusedWave

∃ >

waveProperties.input file

```
inletCoeffs
{
    waveType focusedWave;
    N 65;
    // Ramp time of 2 s
    Tsoft 10;
    //Define the phases
    phaseMethod focusingPhase;
    focusTime 20.0;
    focusPoint (4.25 0 0);
```

∃ ▶ ∢

waves2Foam Toolbox Extreme Wave Simulation NewWave Theory Implementation Modifications Tutorial 0 00 0 0 0 0 000000 0 0 0 00000 00000 0000 00 0000	00000
---	-------

waveProperties.input file

```
//Define the spectrum
            spectrum PiersonMoskowitz_FW;
            Hs 0.274:
            Tp 2.5;
            depth
                          3.0;
            direction (1 \ 0 \ 0):
             Ao 0.25:
//Define the frequency
  frequencyAxis
          ſ
             discretisation equidistantFrequencyAxis;
             lowerFrequencyCutoff 0.0869595;
             upperFrequencyCutoff 2;
             writeSpectrum false;
          }
```

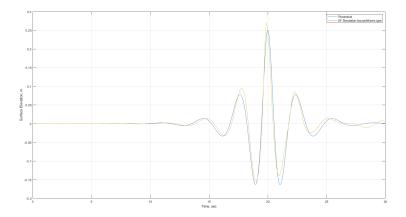
∃ ▶ ∢

waveProperties file is created by applying setWaveProperties utility

In the new file the wave components characteristics are calculated:

amplitude	nonuniform List <scalar></scalar>	frequency nonuniform List <scalar></scalar>
65		65
((
4.	.12942e-75	0.101675
1.	.31611e-30	0.131107
5.	.28844e-15	0.160538
• •		
3.	.55175e-05	1.92642
3.	.29281e-05	1.95585
3.	.05617e-05	1.98528
););

waveProperties file

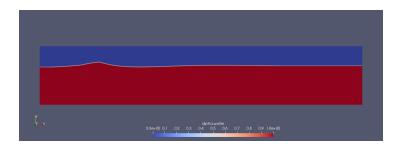

phaselag	nonuniform List <scalar></scalar>	wave	Number nonuniform List <vector></vector>
65		65	
((
-:	12.2657		(0.120267 0 0)
-:	15.8068		(0.157304 0 0)
-:	19.3402		(0.196146 0 0)
•	• • •		
•	•••		
•			
-3	178.609		(14.9346 0 0)
-:	180.353		(15.3944 0 0)
-:	182.068		(15.8612 0 0)
););	

æ

< 47 ▶

waves2Foam Toolbox Extreme Wave Simulation NewWave Theory Implementation Modifications Tutorial 0 000 0 0 0 0000000 00 0 0 000000 000000 000000 00 0 000000 00000 00000 00000 0000 00 000000 00000 00000
--

Theoretical vs Numerical Simulation


★ Ξ →

< A

э

waves2Foam Toolbox 0 00 0000	Extreme Wave Simulation 000 0	NewWave Theory 0 0 00	Implementation 0 000000 0000	Modifications 0 00000	Tutorial 000000000000000000000000000000000000

Animation

<ロト <問ト < 目ト < 目ト

3

waves2Foam Toolbox 0 00 0000	Extreme Wave Simulation 000 0	NewWave Theory 0 0 00	Implementation 0 000000 0000	Modifications 0 00000	Tutorial 000000000000

Thank you for your attention!