Case Studies: Solar Powered Airplanes

Philipp Oettershagen, Autonomous Systems Lab philipp.oettershagen@mavt.ethz.ch

Topics in this case study

→ Overview

History and state-of-the-art of solarpowered (unmanned) aircrafts

Concept Design

Energetic modeling for sustained solar powered flight*

(*Or: How can we reach world-record endurance on/for a small Unmanned Aerial Vehicle)

Flight Autonomy

Autonomous flight and Kalman filtering approaches for the autonomous tracking of thermal updrafts

Part 1: Overview

History and State-of-the-art

Why Solar Powered Flight now?

Motivation

Today, realization of solar airplanes for continuous flight is possible

- efficient and flexible solar cells
- High energy density batteries
- Miniaturized sensors and processors
- Lightweight construction techniques

ETH zürich

Possible Solar UAS Applications

Disaster Scenario / Search and Rescue

Agricultural and industrial inspection

High-Altitude Long Endurance (HALE)

Working Principle of Solar-Electric Airplanes

Introduction – History of Solar Flight

- Premises of solar aviation with model airplanes
 - first flight of a solar-powered airplane: 4th Nov. 1974, Sunrise I & II (Boucher, US)
 Wingspan 9.76 m

Mass 12.25 kg

4480 solar cells → 600 W; Max duration: 3 hours

- In Europe, H. Bruss & F. Militky with Solaris in 1975
- Since then, this hobby became "affordable"

MikroSol, PiciSol, NanoSol 1995-1998

Sunrise II, 1975

Solaris, 1976

Solar Excel, 1990

Introduction – History of Solar Flight

- The dream of manned solar flight
 - first attempts : battery charged on the ground with solar power → then flights of some minutes (Solar One of Fred To (UK) in 1978 and Solar Riser from Larry Mauro (US) in 1979)
 - 1st solar manned flight without energy storage: Gossamer Penguin of Dr. MacCready (US) in 1979.
 - Next version: Solar Challenger crossed the English channel in 1981

Solar Riser, 1979

Gossamer Penguin, 1980

Solar Challenger, 1981

Introduction – History of Solar Flight

- The dream of manned solar flight
 - In 1983, Günter Rochelt (D) flies Solair I during 5 hours 41 minutes
 - In 1986, Eric Raymond (US) starts building Sunseeker. In 1990, he crossed the USA in 21 solar-powered flights with 121 hours in the air
 - In 1996, *Icare 2* wins the "Berblinger Contest" in Ulm (D).
 - In 2010, SolarImpulse A flies through the night (26h fully sustained flight)
 - In 2015, SolarImpulse B flies for 117h 52min (World Endurance and Range record for solarpowered manned airplanes)

Solair I, 1981

Sunseeker, 1990

Icare 2, 1996

SolarImpulse, 2010

ETHzürich

Introduction – History of Solar Flight

- The way to High Altitude Long Endurance (HALE) platforms
 - 1st continuous flight: Alan Cocconi of AcPropulsion built SoLong in 2005
 → Use of Solar Power and Thermals 22nd of April 2005 : 24 hours 11 min 3rd of June 2005 : 48 hours 16 min
 - Qinetiq (UK) built *Zephyr* in 2005
 - December 2005 : 6 hours at 7'925 m
 - July 2006 : 18 hours flight (7 during night)
 - Sept 2007 : 53 hours
 - August 2008 : 83 hours
 - July 2010: 336 hours (world flight endurance record)

Solong, 2005

Zephyr, 2005

12.12.2016 | 11

High Altitude Long Endurance platforms today

Airbus - Zephyr

Facebook - Aquila

Google - Titan

Part 2: Concept Design

Energetic modeling for sustained solar powered flight

Solar-Electric Airplane Conceptual Design

ETHzürich

Solar-powered UAV Conceptual Design: A Tool

Basic System Modeling (1/2)

Forward-integration of state equations:

$$\frac{dE_{bat}}{dt} = P_{solar} - P_{out}$$
$$\frac{dh}{dt} = \frac{1}{m_{tot}g} \cdot (\eta_{prop} \cdot P_{prop} - P_{level})$$

Power modeling

$$P_{solar}^{nom} = \boxed{I} \cdot A_{sm} \cdot \eta_{sm} \cdot \eta_{mppt}$$
$$I = I (day,t,lat,h)$$

$$P_{out} = P_{prop} + P_{av} + P_{pld}$$

$$P_{prop} = P_{level}/\eta_{prop}$$

1	Solar irradiance [W/m ²]
A _{sm}	Solar module area [m ²]
η_{sm}, η_{mppt}	Solar module and maximum power point tracker efficiency [-]
P_{av}, P_{pld}	Avionics and payload power [W]
η _{prop}	Propulsion system efficiency
m _{tot}	Total airplane mass

Basic System Modeling (2/2)

To derive the level flight power (constant altitude flight), we combine

$$P_{level} = F_D \cdot v$$

Autonomous Systems Lab

with

$$F_D = \frac{1}{2} \cdot \rho \cdot c_D \cdot A_{wing} \cdot v^2$$

$$F_L = \frac{1}{2} \cdot \rho \cdot c_L \cdot A_{wing} \cdot v^2 = m_{tot} \cdot g$$

V	Airspeed [m/s]
A _{wing}	Wing area [m ²]
C _D , C _L	Drag / Lift coefficients [-]
ρ	Local air density [kg/m ³]

and minimize the resulting expression w.r.t. the airspeed to yield

$$P_{level} = \left(\frac{C_D(v)}{C_L^{\frac{3}{2}}(v)}\right)_{min} \sqrt{\frac{2(m_{tot}g)^3}{\rho \cdot A_{wing}}}$$

 C_D and C_L are functions of the airspeed v! They are retrieved from airplane and airfoil analysis tools such as XFOIL or XFLR5.

Example (see image): AtlantikSolar UAV, MH139 airfoil, m_{tot}=6.9kg, A_{wing}=1.7m², v_{opt}=7.6m/s, P_{level}=21W.

Performance Metrics

E_batBattery energy [J]SoCBattery state of charge [%]P_out^nomNominal required output power [W]

If perpetual flight is not possible, the main performance metric is the maximum endurance T_{end} . If perpetual flight is possible, we define:

$$T_{exc} = \frac{E_{bat}(t = t_{eq})}{P_{out}^{nom}}\Big|_{P_{solar}(t > t_{sr}) = 0} \qquad T_{cm} = T(E_{bat} = E_{bat}^{max})$$

In the conceptual design phase, we optimize both T_{exc} and T_{cm} to generate sufficient safety margins for perpetual flight!

ETHzürich

Conceptual Design Results

- Low-altitude perpetual flight (700m AMSL)
- Current technology
- Aspect ratio 12
- Minimal payload: 0.6kg, 7W
- Latitude 37.34°N
- June 21
- Clear sky

Example: Solar Powered Airliner?

- Payload 100 passengers, 12000 kg
- Speed: 600 km/h
- Height: 12 km: ρ = 0.31 kg/m³
- Wing area and mass for AR=10: $C_{L} \approx 0.5 \Rightarrow A = \frac{b^{2}}{AR} = \frac{2mg}{\rho V^{2}C_{L}}$ $m = m_{pld} + m_{propulsion} + m_{struct}$ $\approx m_{pld} + 0.043 \left(\frac{b}{m}\right)^{3.1} AR^{-0.25} \text{kg}$
- ⇒ m ≈ 13 t (unrealistically light), b ≈ 24 m, A ≈ 57 m²
- Power for level flight / Drag: Assume glide ratio $1:30 \Rightarrow C_{D}=C_{I}/30$

$$P_{level} = \frac{\rho}{2} A C_D V^3 \approx 680 \,\mathrm{kW}$$

Solar Power Irradiance: max. 1.4 kW/m²
Autonomous Systems Lab

It is – **unfortunately** – far from being realistic...

Solar-powered UAV Design Example

olar

Hzürich

Atlantik

- Fully autonomous, minimal supervisory requirements
- Versatile sensor payload

nomous Svs

AtlantikSolar UAV	
Wingspan	5.65 m
Mass	6.9 kg
Nominal cruise speed	10 m/s
Minimum endurance ^a	13 hrs
Record endurance	81.5 hrs
Max. solar power	280 W
Power consumption	43 W

a – full battery with no solar charging

For student projects, please contact us! (e.g. philipp.oettershagen@mavt.ethz.ch)

Avionics

Perception

ETH zürich

Sensorpod: Sensor and Processing Unit

Visual-inertial SLAM sensor

- Developed at ETH Zurich
- FPGA board for visual-inertial odometry
- Hardware synchronized IMU and camera data
- Up to four cameras

Janosch Nikolic, Joern Rehder, Michael Burri, Pascal Gohl, Stefan Leutenegger, Paul T Furgale, Roland Siegwart, **A synchronized visual-inertial sensor system with FPGA pre-processing for accurate real-time SLAM**, Robotics and Automation (ICRA), 2014 IEEE International Conference on, pp.431–437, 2014

ETHzürich

Flight-endurance record: 81h flight (14.07.15)

- Conditions
 - Excellent irradiance
 - Significant thermals during the day
- Achievements
 - Duration: 81h23m
 - Distance: 2316km
 - Av. airspeed: 8.6 m/s
 - P_mean: 43W
 - SoC_{min}: 39%
 - World record in flight endurance for all aircrafts with m_{tot}<50kg

➔ Continuous flight proven to be feasible with good energetic margins and without using thermals or potential energy storage

Atlantik Olar

AtlantikSolar 2 UAV Flight Endurance Record Attempt

Test Flight #5 July 14th-17th 2015 Rafz, Switzerland

Note: Video sequences that are marked with an asterisk (*) were not recorded during this record flight but during previous test flights.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ЕТН

Autonomous Systems Lab

Part 3: Flight Autonomy

Autonomous flight and recursive filtering approaches for the autonomous tracking of thermal updrafts

ETHzürich

Flight Autonomy:

Example: Autonomous Thermal Updraft Tracking

Flight Autonomy:

Example: Autonomous Thermal Updraft Tracking

Attempt tracking of

- a single thermal updraft represented as
- a Gaussian updraft speed distribution •
- with an Extended Kalman Filter (EKF) •

Г1//Л

Use simple 4-state EKF:

State

$$X = \begin{bmatrix} R \\ R \\ y \end{bmatrix} = \begin{bmatrix} Rath a paraje servingen \\ Radius \\ Distance north of A/C \\ Distance east of A/C \end{bmatrix}$$

[Max undraft stronath]

System
model
$$X_{k+1} = f(X_k) = X_k + \begin{bmatrix} 0 \\ 0 \\ -v_{wind,north} \cdot \Delta h/v_c \\ -v_{wind,east} \cdot \Delta h/v_c \end{bmatrix}$$

Measurement $z_1 = w(W, R, x, y) = W \cdot e^{-\frac{x^2 + y^2}{R^2}}$

Autonomous Systems Lab

ETHzürich

Flight Autonomy:

Example: Autonomous Thermal Updraft Tracking

Goal: Map (1) location and (2) orientation in thermal to an expected roll angle tracking error while in attitude stabilized mode.

 $z_2 = \frac{c}{R^2} \frac{r \cdot W}{R^2} \cdot e^{-\frac{r^2}{R^2}} \sin \zeta \cdot \cos \phi$

Roll Angle Tracking Error

Updraft gradient at current position

(Lateral) orientation of A/C w.r.t thermal core

 ϕ = Roll angle. ψ = Yaw Angle. ζ = Direction of. thermal center $r = \sqrt{x^2 + y^2}$ $sin\zeta = \frac{\cos\psi \cdot y - \sin\psi \cdot x}{r}$

Future improvements / work:

- Unscented Kalman Filter (UKF)
- Particle Filter (PF)
- Non-gaussian updraft distribution (parabolic, ...)
- Infrared-camera based detection of ground hotspots

12.12.2016

| 42

SolAIR Project: Solar-powered Automated Aerial Imaging and Reconnaissance Using Infrared Cameras

AtlantikSolar 3 UAV

Fully autonomous solar-powered 26-hour day/night flight with RGB+IR camera payloads and victim detection

> Test Flight #7 July 19th-20th 2016 Hinwil, Switzerland

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera

Eidgenössisches Departement für Verteidigung. Bevolkerungsschutz und Sport VBS

armasuisse Wissenschaft + Technologie

Note: Video sequences that are marked with an asterisk (*) were not recorded during this flight but during previous test flights. They are used mainly for visualization purposes.

References

- B.W. McCormick. Aerodynamics, Aeronautics and Flight Mechanics 2nd Edition. John Wiley & Sons, 1995
- [2] J. Wildi. Grundlagen der Flugtechnik / Ausgewählte Kapitel der Flugtechnik. Lecture Notes ETH Zurich
- [3] B. Etkin. Dynamics of Atmospheric Flight. Dover Publications, 2005
- [4] G. J. J. Ducard. Fault-Tolerant Flight Control and Guidance Systems for a Small Unmanned Aerial Vehicle. PhD Thesis ETH Zurich No. 17505, 2007
- [5] R.W. Beard and T.W. McLain. Small Unmanned Aircraft: Theory and Practice. Princeton University Press, 2012. ISBN: 9780691149219.
- [6] A. Noth. Design of Solar Powered Airplanes for Continuous Flight. PhD Thesis ETH Zurich No. 18010, 2008
- [7] H. Tennekes. The Simple Science of Flight. From Insects to Jumbo Jets. Revised and Expanded Edition, 2009. MIT Press. Paperback ISBN 978-0-262-51313-5
- [8] S. Leutenegger, M. Jabas, and R. Y. Siegwart. Solar Airplane Conceptual Design and Performance Estimation. Journal of Intelligent and Robotic Systems, Vol. 61, No. 1-4, pp. 545-561, DOI: 10.1007/s10846-010-9484-x

Thanks for your attention! Questions?

philipp.oettershagen@mavt.ethz.ch