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Abstract. One interesting example of a discrete mathematical model used in biology is a food web.
The first biology courses in high school and in college present the fundamental nature of a food
web, one that is understandable by students at all levels. But food webs as part of a larger system
are often not addressed. This paper presents materials that can be used in undergraduate classes
in biology (and mathematics) and provides students with the opportunity to explore mathematical
models of predator-prey relationships, determine trophic levels, dominant species, stability of the
ecosystem, competition graphs, interval graphs, and even confront problems that would appear to
have logical answers that are as yet unsolved.
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Goals:

• Recognize various relationships between organisms, and look for patterns in food webs.

• Use graphs and directed graphs to model complex trophic relationships.

• Determine trophic levels and status within a food web, and the significance of these levels in
calculating the relative importance of each species (vertices) and each relationship (arcs) in
a food web.

• Use the food web and corresponding competition graph to determine the dimension of the
community’s habitat.
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1. Introduction
Early on, the relationships between mathematics and the physical sciences have been appreciated
and often have been used as a reason to study mathematics and its applications to the physical sci-
ences. However, the interplay between mathematics and the biological sciences was understood by
only a few. The uses of mathematical models in the biological sciences were restricted to continu-
ous models, most often using a dynamical systems approach. All this has changed! Increasingly,
many biological phenomena are being viewed as involving the processing of information, which
ultimately involves using discrete mathematics. Technology has made working with large data
sets possible, thus modern mathematical and information sciences have played an important role
in many major biological accomplishments. For example no place is this more true than in se-
quencing the human genome, and making mathematical models of fundamental importance in the
rapidly-expanding and evolving concept of “digital biology” [3]. In discrete models, since data is
discrete, this data does not have to be smoothed out, or points eliminated, to allow for mathematical
models to be applied.

One example of a discrete mathematical model used in biology is that of a food web. The first
biology courses in high school and in college present the fundamental nature of a food web, one
that is understandable by students at all level. But food webs as part of a larger system are often
not addressed. This paper presents materials that can be used in undergraduate classes in biology
(and mathematics) and provides students with the opportunity to explore mathematical models of
predator-prey relationships, determine trophic levels, dominant species, stability of the ecosystem,
and even confront problems that would appear to have logical answers that are as yet unsolved.

2. Modeling Predator-Prey Relationships with Food Webs

2.1. Food Webs
Have you ever played the game Jenga? It’s a game where towers are built from interwoven wooden
blocks, and each player tries to remove a single block without the tower falling. The player who
crashes the tower of blocks loses the game.

Food webs are towers of organisms. Each organism depends for food on one or many other
organisms in an ecosystem. The exceptions are primary producers—the organisms at the foun-
dation of the ecosystems that produce their energy from sunlight through photosynthesis or from
chemicals through chemosynthesis. Factors that limit the success of primary producers are gen-
erally sunlight, water, or nutrient availability. These are physical factors that control a food web
from the “bottom up.” On the other hand, certain biological factors can also control a food web
from the “top down.” For example, certain predators, such as a shark, lion, wolf, or a human can
suppress or enhance the abundance of other organisms. They can suppress them directly by eat-
ing their prey or indirectly by eating something that would eat something else. Understanding the
difference between direct and indirect interactions within ecosystems is critical to building food
webs. For example, suppose your favorite food is a hamburger. The meat came from a cow, but
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a cow is not a primary producer—it can’t photosynthesize! But a cow eats grass, and grass is a
primary producer. So, you eat cows, which eat grass. This is a simple food web with three players.
If you were to remove the grass, you wouldn’t have a cow to eat. So, the availability and growth
of grass indirectly influences whether or not you can eat a hamburger. On the other hand, if cows
were removed from the food web, then the direct link to your hamburger would be gone, even if
grass persisted.

Primary producers are always at the bottom of the food web. Above the primary producers are
various types of organisms that exclusively eat plants. These are considered to be herbivores, or
grazers. Animals that eat herbivores, or each other, are carnivores, or predators. Animals that eat
both plants and other animals are omnivores. An animal at the very top of the food web is called a
top predator.

Through the various interactions in a food web, energy gets transferred from one organism
to another. Food webs, through both direct and indirect interactions, describe the flow of energy
through an ecosystem. By tracking the energy flow, you can derive where the energy from your
last meal came from, and how many species contributed to your meal. Understanding food webs
can also help to predict how important any given species is, and how ecosystems change with
the addition of a new species or removal of a current species. Food webs are complex! In this
module, you will explore the complexity of food webs in mathematical terms, using a physical
model, called a directed graph (digraph), to map the interactions between organisms.

A digraph represents the species in an ecosystem as points or vertices (singular = vertex) and
puts arrows for arcs from some vertices to others depending on the energy transfer, from a prey to
a predator of that prey.

The species that occupy an area and interact either directly or indirectly form a community.
The mixture and characteristics of these species define the biological structure of the community.
These include parameters such as feeding patterns, abundance, population density, dominance, and
diversity. Acquisition of food is a fundamental process of nature providing both energy and nutri-
ents. The interactions of species as they attempt to acquire food determine much of the structure
of a community. We use food webs to represent these feeding relationships within a community.

Remark 1. Example 1 In the partial food web below, sharks eat sea otters, sea otters eat sea
urchins and large crabs, large crabs eat small fishes, and sea urchins and small fishes eat kelp. Said
in another way, sea urchins and large crabs are eaten by sea otters (both are prey for sea otters)
and sea otters are prey for sharks. These relationships are modeled by the food web shown in
Figure 1.

Activity 1. Create a food web from the following predator-prey table (Table 1 is related to the food web
shown in Figure 1). There are various tools online that are used to construct food webs from data of this
nature, but this time, try it by hand.
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Figure 1: Food web.

Remark 2. Question Are there any species that are only predators and not prey, any that are prey
that are not predators? What are they?

2.2. Trophic Levels and Trophic Status
Now let’s consider where a species is located “in the food chain” or specifically in the food web.
For example, producers, such as kelp in our first example in Figure 1, are at the bottom of the food
chain; sharks appeared at the top. If it is a food chain, where one and only one species is above the
other, it is easy, but what if the food web is more complex as in our first example and represents a
whole community?

Trophic levels in food webs provide a way of organizing species in a community food web into
feeding groups. Scientists have used various methods in classifying species in a food web into these
various feeding groups. The most elementary way is to divide them into the following categories:
primary producers, secondary producers and consumers, the latter which are then divided into
herbivores and carnivores based on their consumption of plant or animal products. This makes the
assumption that there are at most three (trophic) levels in a food web. It also opens the question
of how to classify consumers such as bears who are omnivores. Most books group omnivores with
carnivores, but is there a scientific basis for doing so? Other scientists consider the positioning in
the food web to be most important: a consumer is at a higher level than what it consumes. They
then define trophic levels as follows: a species that is never a predator is at trophic level 0, one
who preys on that species is at level 1, etc. Determining trophic level in a food chain is easy under
this latter definition. For example, for the food chain below, kelp is at trophic level 0, sea urchins
are at trophic level 1, sea otters are at trophic level 2, and sharks are at trophic level 3.

Food webs, however, are not necessarily food chains like in Figure 2, but they are a mixture
of multiple food chains meshed together. Determining trophic level for more complex food webs
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Species Species they feed on
Shark Sea otter

Sea otter Sea stars, sea urchins, large crabs, large fish and

octopus, abalone

Sea stars Abalone, small herbivorous fishes, sea urchins

Sea urchins Kelp, sessile invertebrates, drift algae and dead ani-
mals

Abalone Drift algae and dead animals

Large crabs Sea stars, smaller predatory fishes and invertebrates,

drift algae and dead animals, small herbivorous fishes

and invertebrates, kelp

Smaller predatory fishes Sessile invertebrates, planktonic invertebrates

Small herbivorous fishes and Kelp

invertebrates

Kelp - -

Large fish and octopus Smaller predatory fishes and invertebrates

Sessile invertebrates Microscopic planktonic algae, planktonic inverte-
brates

algae and dead animals Kelp, sessile invertebrates

Planktonic invertebrates Microscopic planktonic algae

Microscopic planktonic algae - -

Table 1: Sea otter food web data.

(ones that are not food chains) is more difficult. In fact, the number of trophic levels in a food web
is sometimes used as a measure of complexity, as we will see in the next section. But since food
webs can be represented as digraphs, we can use some properties of these digraphs to determine
trophic level in any kind of food web. Fortunately or unfortunately there are a number of possible
definitions of trophic level. We illustrate two of them here.

The length of a path in a digraph is the number of arcs included in the path. The shortest path
between two vertices x and y in a digraph is the path between x and y of shortest length among
all such paths. The longest path between two vertices x and y in a digraph is the path between
x and y of longest length. We use these definitions of path length to give various definitions of
trophic level in a food web. The first is a commonly used definition of trophic level, derived from
the trophic level of species in a chain:
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Figure 2: A food chain.

Remark 3. Definition – Option 1 The trophic level of species X is:

i. 0, if X is a primary producer in the food web (a species that
does not consume any species in the food web)

ii. k, if the shortest path from a level 0 species to X is of length k.

Example from food web in Figure 1:

Species Trophic level Shortest path
Kelp 0

Sea urchins 1 Kelp-Sea urchins

Small fishes 1 Kelp-Small fishes

Large crabs 2 Kelp-Sea urchins-Large crabs

Sea otters 2 Kelp-Sea urchins-Sea otters

Sharks 3 Kelp-Sea urchins-Sharks

Table 2: Trophic level using Option 1 definition of the food web in Figure 1.

Activity 2a. Expand this table to include the trophic level of all species given in Table 1. Answer the
following questions before moving on:

1. Do you see any challenges to using the shortest path for computing trophic level?

2. Large crabs are direct prey of sea otters, so would you think they would have different trophic levels?

3. Can you think of an alternative definition of trophic level?
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Remark 4. Definition – Option 2 The trophic level of species X is:

i. 0, if X is a primary producer in the food web (a species that
does not consume any species in the food web)

ii. k, if the longest path from a level 0 species to X is of length k.

Species Trophic level Longest path
Kelp 0

Sea urchins 1 Kelp-Sea urchins

Small fishes 1 Kelp-Small fishes

Large crabs 2 Kelp-Sea urchins-Large crabs

Sea otters 3 Kelp-Small fishes-Sea otters

Sharks 4 Kelp-Small fishes-Large
crabs-Sea otters-Sharks

Table 3: Trophic level using Option 2 definition of the food web in Figure 1.

Notice that the highest trophic level is now four and that sharks have a higher level using this
definition than they did with the other definition, and that large crabs and sea otters now have
different trophic levels. Importantly, this definition of trophic level using the longest path satisfies
the following assumption:

Remark 5. Assumption If species X is a predator of species Y , then the trophic level of species
X is greater than the trophic level of species Y .

Activity 2b.

1. Complete your table of trophic levels in Activity 2a to include the trophic level using the longest

2. An ecological rule of thumb is that about 10% of the energy passes from one trophic level to another.
Compare these two definitions of trophic level relative with regard to energy loss. For example, if kelp
starts with 1 million units of energy, how much energy is left for sharks using each definition?

Neither of these definitions is entirely satisfactory, since each has its limitations in determining
a hierarchical structure of the food web; the first does not satisfy the assumption, and neither one
reflects the number of species that are direct or indirect prey of a species. To solve this problem,
we combine the length of the longest path and the number of species that are direct or indirect prey
and call it the trophic status of a species.

The trophic status of a species u is defined as:
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T (u) =
∑

k

knk,
where nk is the number of species
whose longest path to u has length k.

For example, the trophic status of sea otters as shown in Table 4 is computed as follows:

- The longest path to sea otters from kelp is 3, thus when k = 3, nk = 1.

- The longest path from small fishes to sea otters is 2, thus when k = 2, nk = 1.

- The longest path from large crabs to sea otters is 1, and so is the longest path from sea
urchins to sea otters 1. Thus when k = 1, nk = 2.

Therefore, the trophic status of sea otters is

T (sea otters) = 3(1) + 2(1) + 1(2) = 7.

The trophic status for kelp, sea urchins, small fishes, large crabs, and sharks are shown in Table 4.

Species Trophic level Longest path
Definition 2

Kelp 0 0

Sea urchins 1 1

Small fishes 1 1

Large crabs 2 2(1) + 1(1) = 3

Sea otters 3 3(1) + 2(1) + 1(2) = 7

Sharks 4 4(1) + 3(1) + 2(1) + 1(1) = 12

Table 4: Trophic status for species in the food web in Figure 1.

Activity 2c. Find the trophic status of the species in Table 1.

2.3. Dominant Species
There are many ways of describing dominant species in a food web. One way is to regard Keystone
species (a predator species whose removal causes additional species to disappear – species who
effectively control the nature of the community) as always dominant species.
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We can use our model using digraphs to recognize dominant species in a food web by consid-
ering what happens when an arc is removed from the digraph representing the food web.

Species A is dominant if the removal of any arc from a species B to A allows B to have
uncontrolled growth, and thus become a new “dominant” species. For example, when we remove
the arc from sea urchin to sea otter, sea urchins will have uncontrolled growth and they then become
a new “dominant” species in the food web.

Activity 3a. Determine the dominant species in the food web corresponding to Table 1 using the definition
of arc removal.

Various other definitions of dominant species exist, some of which are:

a. the most numerous species in a food web can be called dominant;

b. the species which occupies the most space can be called dominant;

c. the species with the highest total body mass can be called dominant or

d. the species that contributes the most energy flow can each be called dominant.

One example of a dominance definition, which incorporates both the number of species that are
direct or indirect prey and the extent of energy transfer, is based on the trophic status of the species.
This definition resembles the definition of status for people in a community or social network.

Remark 6. Trophic Status Dominant Species A species is dominant in a food web if its trophic
status is greater than the number of species in the food web above level 0.

Activity 3b.

a. Determine which species are dominant in the food web corresponding to Table 1 using the trophic
status definition.

b. Compare your results using trophic status the results you obtain using the definition involving arc
removal.

2.4. Adding Complexity–Weighted Food Webs and Flow-based Trophic Lev-
els

Not all relationships are the same. For example, you interact differently with your family more
than with strangers. Or perhaps you love to eat ice cream, and eat as few brussels sprouts as
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Figure 3:

possible. While both ice cream and brussels sprouts are foods, given an unlimited source of both,
would you eat an equal amount of both? Probably not! Similarly, species may eat much more of
one species of prey than another. We model this by putting numbers, or weights, on the arcs to
indicate food preferences. Consider the food web in Figure 3:

The weight of an arc, called wij , is the proportional food contribution of one vertex (i) to
another vertex (j) in the food web. For example, the weight 0.6 on the arc from rodents to snakes
reflects that snakes eat “rodents” more than “other lizards” in a ratio of 6 to 4. Specifically, 60%
of a snake’s diet comes from “rodents,” while 40% of its diet comes from “other lizards.” The sum
of the weights of the ingoing arcs to a species is 1 since the set of ingoing arcs represents the full
diet of the species.

Weighting is more important than you might realize. Looking at hawks, it’s clear that they eat
both snakes and lizards. However, since snakes are weighted so much more heavily, the removal
of snakes from this digraph would shift hawk diets dramatically. Instead of eating lizards 30% of
the time, they would eat lizards 100% of the time. Poor lizards! Lucky insects! When snakes are
removed, hawks only eat lizards, which would dramatically decrease the lizard population. This
in turn would vastly decreases lizard predation on insects, allowing insects to grow uncontrolled.
Now consider what would happen if lizards were initially 90% of hawk diets (instead of 30%).
Would the insect population increase so dramatically with the removal of snakes? Probably not!
This is important if you are an insect, or anything that eats an insect, or anything that an insect eats.
Therefore, it is important to consider the arc weight when predicting indirect changes that trickle
down through a food web. In other words, arc weight matters!

Remark 7. Flow-based Trophic Level Weighting the edges of a food web or corresponding digraph
gives new alternative definitions of trophic level that take these weights into account. One such
definition is called the flow-based trophic level, or TL:

TL(species i) = 1 +
∑

(weight of each food source for i)× TL(food source)

TL(i) = 1 +
∑

i

(wij)× TL(food source j)
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Note that TL(primary producer) = 1. For example, TL(snake) = 1 + .6(1) + .3(1) = 1.9,
whereas TL(lizard) = 1 +1(1) = 2. Even though under either the shortest path or longest path
definitions, the snake and the lizard have the same trophic level, under the flow-based trophic level
definition the lizard has a slightly higher flow-based trophic level than the snake.

Activity 4.

a. Finish the calculations for flow-based trophic level for the food web given in Figure 3.

b. What happens to the flow-based trophic level for various species if an arc is removed? Try it by
removing the arc from snake to hawk.

3. Competition Graphs and Habitat Dimension
We will now use food webs, which model predator-prey relationships, to create additional models
to determine the dimension of community habitats from these relationships.

3.1. Competition Graphs
Given a food web, create a new (undirected) graph as follows. The vertices are the species in the
community and there is an edge between species a and species b if and only if a and b have a
common prey, i.e., if there is some x so that there are arcs from a to x and b to x in the food web.

If we take our canonical example from Figure 1 we get a very simple competition graph with
one edge and four independent vertices as shown in Figure 4:

Activity 5. Draw the competition graph for the following food web:

Remark 8. Note The competition graph solution for Activity 5 appears at the end of this article.

3.2. Interval Graphs and Habitat Dimension
A graph is an interval graph if we can find a set of intervals on the real line so that each vertex
is assigned an interval and two vertices are joined by an edge if and only if their corresponding
intervals overlap.

Interval graphs have been very important in genetics. They played a crucial role in the physical
mapping of DNA and more generally in the mapping of the human genome.
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Figure 4: A food web and its corresponding competition graph.

Figure 5: Foodweb from Wikimedia Commons.

Given a competition graph, we want to determine if it is an interval graph.

We need to find intervals on the real line for each vertex so that the intervals corresponding to
two vertices overlap if and only if there is an edge between the two vertices.

If G is the competition graph corresponding to a real community food web, and G is an in-
terval graph, then the species in the food web have one-dimensional habitats or niches, and this
single dimension applies to each species in the web. This one dimension might be determined by
temperature, moisture, pH, or a number of other things.

We have not described the endpoints of the intervals in Figure 6. It would be easy to do so, for
example, consider the possible correspondence:
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Figure 6: G and a demonstration that G is an interval graph.

c to [−2, 0]
d to [−1, 2]
b to [1, 4]
e to [1.5, 6]
f to [5, 7]
g to [9, 11]

Remark 9. Note The size of the interval makes no difference, nor does whether the intervals are
open (do not include the endpoints) or are closed (include the endpoints).

If we change the graph slightly to H , by adding vertex a and edge {a, b}, we don’t get an
interval graph. There is no place to put an interval corresponding to a which overlaps the interval
for b, but which overlaps the intervals for neither d nor e.

Remark 10. Note Independent vertices, like g, do not change the nature of the competition graph
in terms of it being an interval graph or not.

Activity 6.

a. Is the competition graph from Activity 5 an interval graph? Show the interval representation.

b. Give some examples of graphs that are not interval graphs.

c. Can you find a real community food web that has a competition graph that is not an interval graph?

Some graphs, like H shown in Figure 7, cannot be represented by intervals on the real line.
Can H be represented by intersecting rectangles in the plane (2-dimensional space)?
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Figure 7: Non-interval graph H .

More generally, we can consider ways to represent graphs where the edges correspond to inter-
sections of boxes in Euclidean space. An interval on the line is a one-dimensional representation. If
we find a representation of a graph where the vertices correspond to rectangles in two-dimensional
space so that two rectangles intersect if and only if the corresponding vertices are connected by an
edge, then we have a 2-dimensional representation as shown in Figure 8.

Remark 11. Definition The boxicity of G is the smallest p so that we can assign to each vertex
of G a box in Euclidean p-space so that two vertices are connected by an edge if and only if their
corresponding boxes overlap.

The term boxicity is well-defined [5], but hard to compute [5]. There are fast algorithms to test
if a graph is an interval graph, but if it is not an interval graph then there are no fast ways of telling
the boxicity of the graph.

The example in Figure 8 shows a graph G of boxicity 2 and overlapping 2-dimensional rectan-
gles to represent G.

Different factors determine a species normal healthy environment, factors such as moisture,
temperature, and pH. We can use each such factor as a dimension. Then the range of acceptable
values on each dimension is an interval. In other words, each species can be represented as a box
in Euclidean space, and the box represents its ecological niche.
For example, in Figure 9, the niche of the species might be determined by a temperature between
10 and 15 degrees centigrade, moisture level between 1 and 2, and pH between 7 and 8.

Activity 7. Can you find a 2-dimensional box (rectangle) representation for the graph H shown in Figure
7? What does it mean if you can, and what does it mean if you can’t?
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Figure 8: A 2-dimensional box representation of the graph G that is a square.

Figure 9: A 3-dimensional species habitat niche represented by temperature, moisture, and pH.

In the 1960’s, Joel Cohen found that generally food webs arising from “single habitat ecosys-
tems” (homogeneous ecosystems) have competition graphs that are interval graphs. This remark-
able empirical observation of Joel Cohen’s [1], that real-world competition graphs are usually
interval graphs, has led to a great deal of research on the structure of competition graphs and on
the relation between the structure of digraphs and their corresponding competition graphs. It has
also led to a great deal of research in ecology to determine just why this might be the case. Is
it that there is really only one overriding dimension that controls habitat (niche) formation for a
community of species?

36



M. Cozzens Food Webs, Competition Graphs, and Habitat Formation

Maybe this should not be surprising statistically. Models for randomly generating food webs
have been created and the probability that the corresponding competition graph is an interval graph
was calculated. Much of Cohen’s Food Webs and Niche Space [1] takes this approach. But Cohen,
Komlos, and Mueller [2] showed that under this model, the probability that a competition graph is
an interval graph goes to 0 as the number of species increases. In other words it should be highly
unlikely that competition graphs corresponding to food webs are interval graphs.

Activity 8. Can you find a competition graph with boxicity 3? In other words find a graph where there is
no rectangle representation of the vertices, but there is a 3-dimensional box representation of the vertices so
that there is an edge between two vertices if and only if the boxes overlap in 3-dimensional space.

Could one analyze the properties of competition graphs to better understand the underlying
food web (directed graph)? In other words, can we characterize the directed graphs whose corre-
sponding competition graphs are interval graphs? This is a fundamental open question in applied
graph theory. Indeed there is no forbidden list of digraphs (finite or infinite) such that when these
digraphs are excluded, one automatically has a competition graph which is an interval graph. This
problem is one which undergraduates with only the knowledge of this paper can tackle.

A second fundamental question, an ecology question, is whether or not it is possible that the
habitat or niche of the species in a community food web is truly based on one overriding com-
ponent, such as temperature or moisture or pH, and if so can one determine what that overriding
component is for a specific community food web?
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http : //octopus.gma.org/surfing/human/foodweb.html
http : //two.ucdavis.edu/ aking/mam99/graphics/foodweb

Untangling Food Webs to Study Niche Space and Trophic Level Energetics with Graph The-
oretic Visualization. John R. Jungck, Don Rohr,Yang Yang, Department of Biology; Tony
Abell, Department of Mathematics and Computer Science; Rama Viswanathan, Departments
of Chemistry and Mathematics and Computer Science; Beloit College (powerpoint available
through J. Jungck).

Food Webs, Competition Graphs, and Biodiversity by M. Cozzens at

http : //www.dimacs.rutgers.edu/ midgec

Competition graph solution for Activity 5:
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