Cox College
 Springfield, MO

Updated 8/2014

Dosage Calculation Competency

Level 1
Practice Sheet
\qquad DATE: \qquad I \qquad 1 \qquad

STUDENT I.D. \#:

\qquad ADVISOR: \qquad
A 95\% must be achieved on the competency exam to progress in the Nursing Program. Retesting cannot occur the same day as the failed exam. Each exam may be repeated once within the testing period unless there are no more published dates available. Testing process must be completed within specified testing dates. Failure to pass competency exam will result in following the remediation process as outlined in the student handbook.

Student will be allowed one hour to complete this competency.
If the student leaves during testing the exam will be collected and graded at that point whether completed or not.

A student photo ID is required to take the Dosage Calculation Competency Exam.
Only simple four function calculators are allowed for testing. Students may not share calculators.

DIRECTIONS:

Place all personal items in designated area.
Silence all cell phones.
Calculate the correct dosage and show your work on the exam.

- Failure to label answers will result in missing the problem.
- Failure to show work will result in missing the problem.
- All metric weights should be rounded to the nearest hundredth.
- Rounding should only be done at the last step in the problem.
- Round tablets/capsules to the nearest whole or half tablet (if scored).
- Liquid volumes greater than $1 \mathrm{~mL} / \mathrm{cc}$ should be rounded to the nearest tenth. If volumes are less than $1 \mathrm{~mL} / \mathrm{cc}$, round to the nearest hundredth.
- Drip Rates - Calculate drip rates to the tenths place and round off to the nearest whole number
- IV pump drip rates - Calculate to the hundredths place and round to the tenths place.

Once exam is complete submit to faculty in room and proceed to designated waiting area to receive notification of score.

THERE ARE 20 QUESTIONS TO THIS TEST.

For additional practice problems see:

Curren, A.M. (2010). Dimensional Analysis for Meds ($4^{\text {th }}$ ed). New York; Delmar.

Cox College
 Springfield, Missouri

 Dosage Calculation Competency

 Dosage Calculation Competency Math Review-Level One

Equivalents:

```
1 kilogram (kg) = 1000 Grams (GM)
    1 Gram (g) = 1000 milligrams (mg)
        1 mg = 1000 micrograms (mcg)
    1 Liter (L) = 1000 milliliters (mL)
        1 mL = 1 cubic centimeter (cc)
        30 mL = 1 ounce (oz)
        65 mg = 1 grain (gr)
2.2 pounds (lb) = 1 kilogram (KG)
```

Round the following to the nearest hundredth.

24 hour clock conversion:

1. 1815 on the 24 -hour clock is the same as \qquad in the 12 hour time.
2. On the 24 -hour clock $3: 05 \mathrm{pm}$ is the same as \qquad .

Cox College

Springfield, Missouri

Dosage Calculation Competency Practice Test-Level One

1. $300 \mathrm{mg}=\ldots \mathrm{GM}$
2. $3825 \mathrm{~g}=$ \qquad lb.
3. $255 \mathrm{mg}=$ \qquad GM
4. $650 \mathrm{mg}=$ \qquad gr
5. $140 \mathrm{lb}=$ \qquad KG
6. $3 L=$ \qquad mL
7. $1400 \mathrm{~g}=$ \qquad lbs
8. $10 \mathrm{gr}=$ \qquad mcg
9. $4 \mathrm{oz}=$ \qquad mL
\qquad gr.
10. The physician has ordered 100 mg Demerol po now. Read the label and determine how many tablets to administer. \qquad

11. Synthroid 0.1 mg p.o. daily. You have Synthroid in 50 mcg tablets. Give \qquad
12. Tetracycline syrup 250 mg p.o. q.i.d. You have tetracyline syrup 2000 mg in 60 mL . How many mL's will you give? \qquad
13. The physician orders: Potassium Chloride 10 mEq p.o now. Read the label and determine how much to give. \qquad

14. Polymox suspension 150 mg tid. You have Polymox oral suspension $125 \mathrm{mg} / 5 \mathrm{~mL}$ in an 80 mL bottle. Give \qquad
15. Sodium Salicylate gr 2 rectally every 4 hours. You have 130 mg suppository. Give \qquad
16. Demerol 40 mg IM q 3 hrs. for pain. The drug is available in an ampule containing $50 \mathrm{mg} / \mathrm{mL}$. Give \qquad
17. A newborn infant weights 3200 g . The mother wants to know the baby's weight in pounds. Answer \qquad
18. Bronkodyl elixir 0.05 g po q 6 hrs must be given using the solution containing 80 mg per 15 mL . Give \qquad

Answer Sheet - Level I practice test

Rounding to the hundredth.

1. 68.19
2. 0.01
3. 3.66
4. 2.17
5. 4.21
6. 0
7. 3.2
8. 0.1
9. 1
10. 20

24 hour clock Conversion

1. $6: 15 \mathrm{PM}$
2. 1505

Sample Exam

1. 0.3
2. 8.42
3. 0.26
4. 10
5. 63.64
6. 3000
7. 3.08
8. 650,000
9. 120
10. 3.69
11. 2 tablets
12. 2 tablets
13. 7.5 mL
14. 7.5 mL
15. 6 mL
16. 1 suppository
17. 0.8 mL
18. 7.04 lbs
19. 9.4 mL

Dosage Comp Level I Practice worksheet

Keys worked in Dimensional Analysis
\#1. $\quad 0.3 \mathrm{GM}$

Wanted GM	Conversion 1 GM	Have 300 mg	1×300
	1000 mg	1	1000×1

Answer
0.3
\#2. 8.42 lbs

Wanted	Conversion	Conversion	weight	
pounds	$2.2 \#$	1 KG	3825 g	$2.2 \times 1 \times 3825$
	1 KG	1000 g	1	$1 \times 1000 \times 1$

Answer
\#3. 0.26 GM

Wanted	Conversion 1 GM	Have 255 mg	1×255	Answer
	1000 mg	1	1000×1	

\#4. $\quad 10 \mathrm{gr}$

Wanted	Conversion		Have	Answer	
gr	1 gr	650 mg	1×650	10 gr	

\#5. 63.64 KG

Wanted KG	Conversion 1 KG	Have $140 \#$	1×140	Answer 63.64
	$2.2 \#$	1	2.2×1	

\#6. $\quad 3000 \mathrm{~mL}$

Wanted mL	Conversion 1000 mL	Have 3 L	Answer 3000×3	3000

\#7. $\quad 3.08$ pounds

Wanted lbs	Conversion $2.2 \#$	Conversion 1 KG	Have Answer 	1400 g	$2.2 \times 1 \times 1400$

\#8. $650,000 \mathrm{mcg}$

Wanted mcg	Conversion 1000 mcg	Conversion 65 mg	Have 10 gr	Answer $1000 \times 65 \times 10$	650,000

\#9. 120 mL

Wanted mL	Conversion 30 mL	Have 4 oz	30×4	Answer 120
	1 oz	1	1×1	

\#10 3.69 gr

Wanted	Conversion		Have	
gr	1 gr	240 mg	1×240	Answer 3.69 gr
	65 mg	1	65×1	

\#11 2 tablets

Wanted tablets	Dose on hand 1 tablet	Order 100 mg	1×100	Answer 2
	50 mg	1	50×1	

\#12. 2 tablets

Wanted tablets	Dose on hand 1 tablet	Conversion 1000 mcg	Order 0.1 mg	$1 \times 1000 \times 0.1$
	50 mcg	1 mg	1	$50 \times 1 \times 1$

Answer
\#13. $\quad 7.5 \mathrm{~mL}$

Wanted mL	Have on hand 60 mL	Order 250 mg	Answer	
	2000 mg	1	2000×1	7.5

\#14. $\quad 7.5 \mathrm{~mL}$

Wanted mL	Have on hand 15 mL	Order 10 mEq	15×10	Answer 7.5
	20 mEq	1	20×1	

\#15. 6 mL

Wanted mL	Have on hand 5 mL	Order 150 mg	5×150	Answer 6
	125 mg	1	125×1	

\#16 1 suppository

Answer 1
\#17. $\quad 0.8 \mathrm{~mL}$

Wanted mL	Have on hand 1 mL	Order 40 mg	1×40	Answer
	50 mg	1	50×1	

\#18. $\quad 7.04 \mathrm{lbs}$

Wanted lbs	Conversion $2.2 ~ l b s ~$	Conversion 1 KG	Have 3200 gm	$2.2 \times 1 \times 3200$
	1 KG	1000 g	1	$1 \times 1000 \times 1$

\#19. $\quad 9.4 \mathrm{~mL}$

Wanted mL	Have on hand 15 mL	Conversion 1000 mg	Order 0.05 g	$15 \times 1000 \times 0.05$	Answer 9.375
	80 mg	1 g	1	$80 \times 1 \times 1$	

