# **SCORE A C A D E M Y**

## IMP for MATHEMATICS HSC BOARD EXAM 2019

## Chapter 1: Logic

- Write the following statement in four different ways, conveying the same meaning. "If you drive over 80 km per hour, then you will get a fine."
   i) Write the contrapositive of the inverse of the statement "If two numbers are not equal, then their
  - statement in two numbers are not equal, then then squares are not equal". ii) If  $(P \land q) \rightarrow r$  is false, then find the truth value of the

negation of the statement. (p  $\vee \sim r$ )  $\rightarrow$  (q  $\wedge \sim p$ )

iii) Show that the dual of (p  $\rightarrow \sim q$ ) v q is a contradiction.

- 3. Textbook exercise 1.7 (Q4)
- 4. Textbook page 38 (Q.8, Q4, Q3)
- 5. Textbook page 39 (Q.4, Q.15, 19, 20)
- 6. Textbook page 40 Q.29.
- 7. Textbook page 36 read rule V for MCQs



MHTCET 2019 CRASH COURSE

Course Duration: 21<sup>st</sup> Mar to 30<sup>th</sup> April 2019

Only at iScore Guarantee of Quality & Success " STUDY with US

SCORE 100 Plus mark in MHTCET

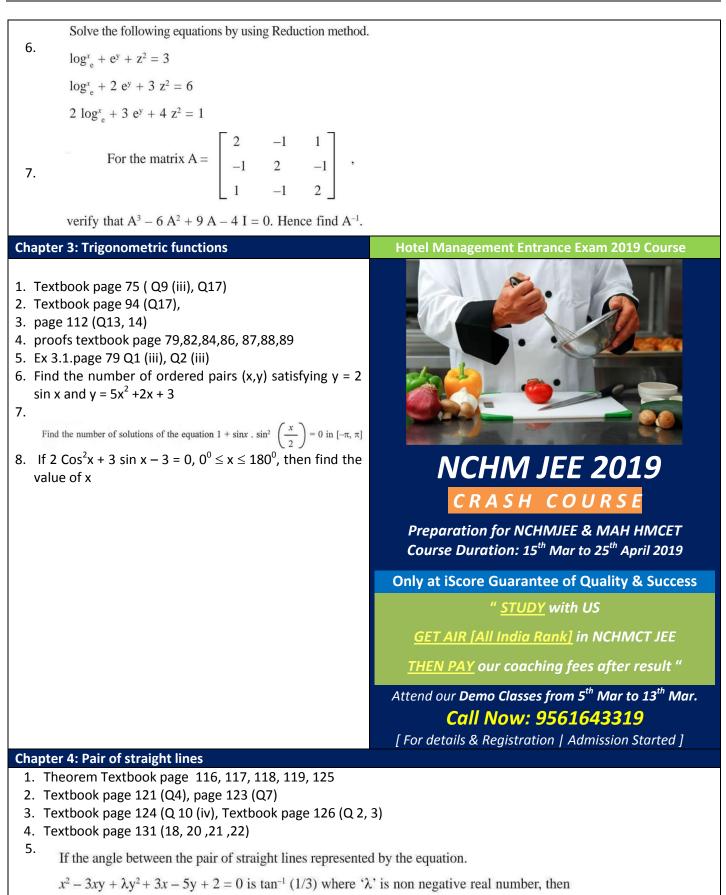
**THEN PAY** our coaching fees after result "

Attend our **Demo Classes from 10<sup>th</sup> Mar to 19<sup>th</sup> Mar.** Call Now: 9561643319

[For details & Registration | Admission Started ]

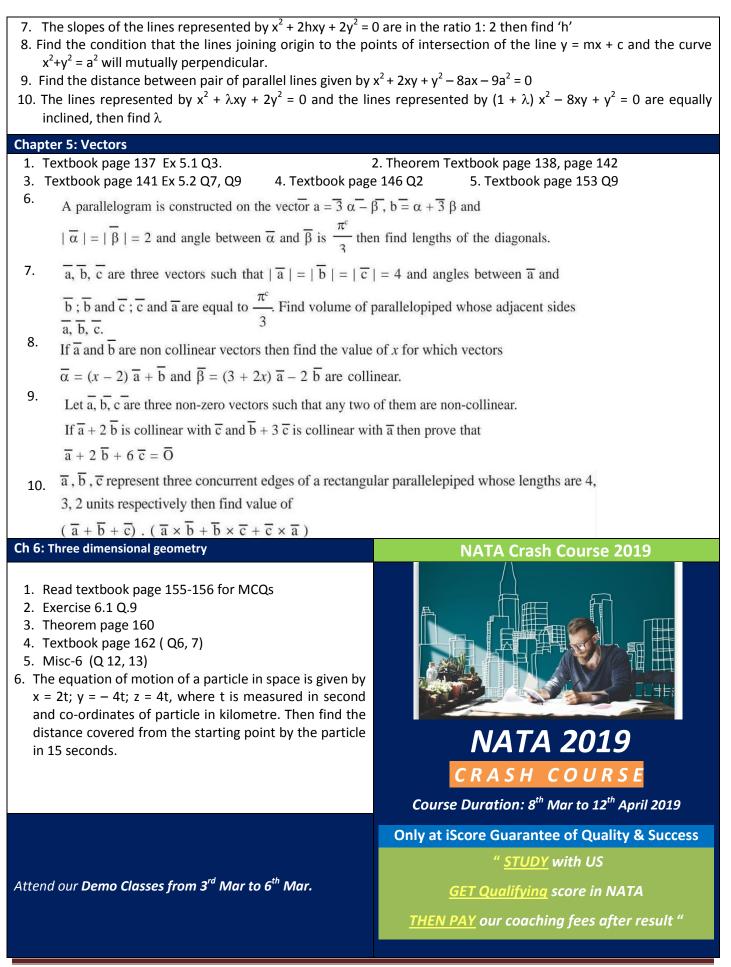
## **Chapter 2: Matrices**

Three cricket fans, nick named as Soni, Moni and Dhoni, went to play for a country match. Their individual scores being x, y and z respectively. Find x, y, z using inversion method from the following data :


 The sum of their scores is a century.

ii) If we subtract the sum of Soni and Moni's score from twice of Dhoni's score it is still a half century.iii) Four times Moni's score minus Soni's score equal to Dhoni's score.

- 2. Textbook page 52 Q3 and page 54 (Q5, 10, 13, 19)
- 3. If A is invertible matrix of order 3 and |A| = 5, then find the value of |adjA|.


4. If  $f(x) = x^2 - 2x - 3$ , find f(A) when  $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ 5. If  $f(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \end{bmatrix}$  show that  $(f(x))^{-1} = f(-x)$ .

Prof Inamdar's iScore Academy – Providing IMP for 12<sup>th</sup> HSC since 2014 helping students to get great results Page 1



find ' $\lambda$ '.

6. The orthocentre of the triangle formed by lines x + y = 1, 2x + 3y = 6 and 4x - y + 4 = 0 lie in which quadrant?



Prof Inamdar's iScore Academy – Providing IMP for 12<sup>th</sup> HSC since 2014 helping students to get great results Page 3

## Chapter 7: Line

- 1. Textbook page 171 Q9
- 2. Exercise 7.1 page 172 Q14
- 3. Textbook page 176 Q2
- 4. Textbook page 179 Q7
- 5. Textbook page 182 Q17
- 6. A line makes the same angle  $\theta$  with each of X and Z axis. If the angle  $\beta$  which it makes with Y axis is such that  $\sin^2\beta = 3\sin^2\theta$ , then find the value of  $\cos^2\theta$

## **Chapter 8: Plane NEET Crash Course 2019** 1. Textbook page 186 (Q4) 2. Textbook page 190 (Q2) 3. Textbook page 192 exercise 8.1 Q12 4. Textbook page 199 exercise 8.2 Q 6,9, 10 5. Misc - 8. Page 201 Q13, Q15 NEET 2019 CRASH COURSE *Course Duration: 21<sup>st</sup> Mar to 30<sup>th</sup> April 2019* **Only at iScore Guarantee of Quality & Success STUDY** with US **QUALIFY** in NEET THEN PAY our coaching fees after result " Attend our Demo Classes from 10<sup>th</sup> Mar to 19<sup>th</sup> Mar. Call Now: 9561643319 [For details & Registration | Admission Started ]

## **Chapter 9: Linear Programming**

- 1. Textbook page 206 ( Q 4)
- 2. Textbook page 209 (Q 11)
- 3. Textbook page 217 problem based on infinite nos of optimal solution, unbounded solutions, infeasible solution.
- 4. Find the area of feasible region for the constraints x + 3y  $\leq$  3, x  $\geq$  0, y  $\geq$  0
- 5. Find the solution set of inequation  $x 2y \ge 0$ ,  $2x y + 2 \le 0$ ,  $x \ge 0$ ,  $y \ge 0$ .
- 6. Draw the geometrical shape of the common region represented by the inequalities  $0 \le x \le 6$ ,  $0 \le y \le 4$

## **Chapter 10: Continuity**

- 1. Textbook page 8 (Q.4, 5, 8)
- 2. Textbook page 14( Q xv)
- 3. Textbook page 17 Q.5 (viii)
- 4. Textbook page 23 (Q.4, 5,6)
- 5. Textbook page 27 Q2 (viii)
- Let f (x) be a continuous function and g (x) be a discontiuous function, prove that f (x) + g (x) is discontinuous function.

#### 7.

Discuss the continuity of the function

$$f(x) = \frac{(1 - \tan(x/2))(1 - \sin x)}{(1 + \tan(x/2))(\pi - 2x)^3}, x \neq \pi/2$$
$$= \frac{1}{16}, x = \pi/2 \text{ at } x = \pi/2$$

8.

Let f (x) = 
$$\frac{\log (1 + x - x^2) + \log (1 - x + x^2)}{\sec x - \cos x}$$
,  $x \neq 0$ 

then find the value of f(0) so that f(x) is continuous at x = 0

**MHTCET CRASH COURSE 2019** 

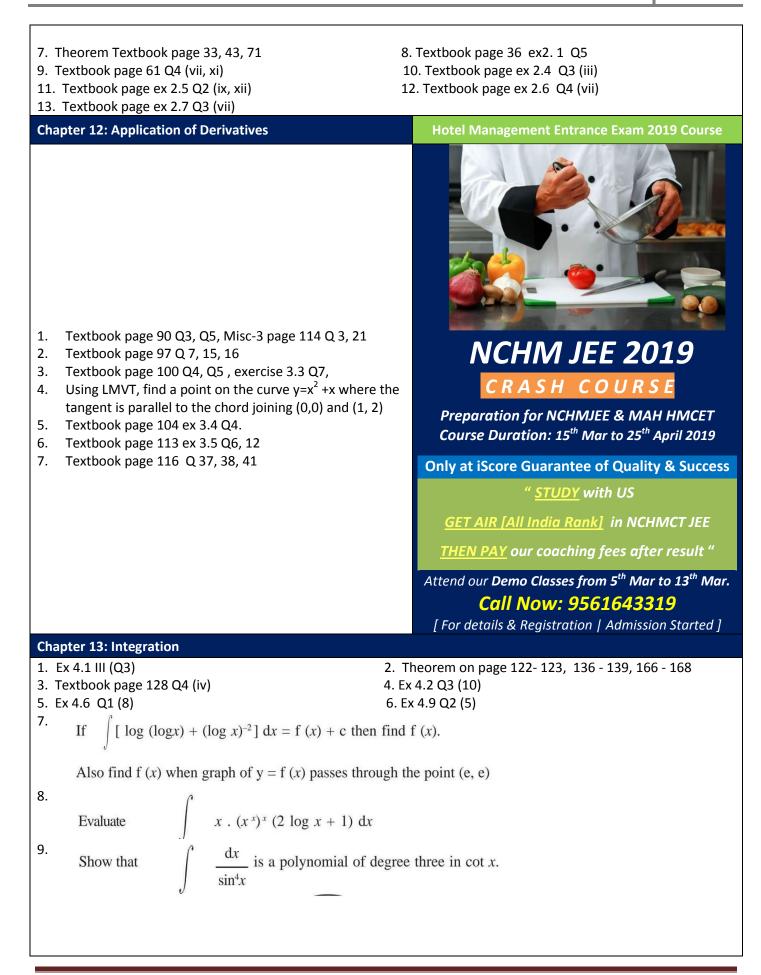
THEN PAY our coaching fees after result "

Attend our **Demo Classes from 10<sup>th</sup> Mar to 19<sup>th</sup>** Mar.

## Call Now: 9561643319

[For details & Registration | Admission Started ]

## **Chapter 11: Derivatives**


- 1. Let f (x) = e<sup>x</sup>, g (x) = sin<sup>-1</sup>x and h (x) = f (g (x)) then find  $\frac{h'(x)}{h(x)}$
- 2. Find the deivative of f (tan x) w.r. to g (sec x) at  $x = \pi/4$  where f'(1) = 2 and g' ( $\sqrt{2}$ ) = 4

3. If 
$$y = \tan^{-1}$$
  $\left(\frac{1}{1+x+x^2}\right) + \tan^{-1}\left(\frac{1}{x^2+3x+3}\right) + \tan^{-1}\left(\frac{1}{x^2+5x+7}\right)$ 

+ ..... + n terms then find y'(0)

- 4. If f (x) = cos x cos 2x cos 4x cos (8x) . cos 16x then find f' ( $\pi/4$ )
- 5. If f be twice differentiable function such that  $f^{11}(x) = -f(x)$  and f'(x) = g(x),

show that  $\frac{dy}{dx} = \frac{y^2 - x}{2y^3 - 2xy - 1}$ 



## **Chapter 14: Definite Integration**

- 1. Textbook exercise 5.2 Q30
- 2. Textbook page 214 (Q2, Q3)
- 3. Properties textbook page 215, 221,225.
- 4. Textbook page 233 Q3 (7)
- 5. Textbook page 187 Q1 (iii)

## **Chapter 15: Application of Definite Integral**

Textbook page 238 Q5, Q8
 Find the area enclosed within the curves x| +|y| =1

## NATA CRASH COURSE 2019



# NATA 2019 CRASH COURSE

*Course Duration:* 8<sup>th</sup> Mar to 12<sup>th</sup> April 2019

iScore Guarantee of Quality

" <u>STUDY</u> with US

**GET Qualifying** score in NATA

**THEN PAY** our coaching fees after result "

Attend our **Demo Classes from 3<sup>rd</sup> Mar to 6<sup>th</sup> Mar. Call Now: 9561643319** [For details & Registration | Admission Started ]

## **Chapter 16: Differential equation**

- 1. Textbook page 249 exercise 7.1 Q1 (viii, ix, x)
- 2. Textbook page 250 Q1, Q5
   4. Textbook page 266 Q5

- 3. Textbook page 273 Q10, 14.
   5. Textbook page 274 Q.20.
- 6. Find differential equation associated to the primitive  $y = ae^{4x} be^{-3x} + c$ 
  - 7. Find A if  $x = 4t^3$ ,  $y = 4t^2 t^4$  constitute a solution of the differential equation

36 
$$\frac{d^2y}{dx^2}$$
 [y - (2x)<sup>2/3</sup>] = A +  $\left(\frac{x}{4}\right)^{2/3}$ 

8. Find the particular solution of the differenital equation given as

$$e^{\frac{-3}{dx}} = x + 1$$
 at y (0) = 3

Prof Inamdar's iScore Academy – Providing IMP for 12<sup>th</sup> HSC since 2014 helping students to get great results Page 7

2. Textbook page 288 Q7, 8

4 Textbook page 298 Q3

- 9. Find y  $(\pi/2)$  if  $(2 + \sin x) \frac{dy}{dx} + (y + 1) \cos x = 0$  and y (0) = 1
- 10. Verify  $y = \frac{1}{4}e^{-2x} + cx + d$ , is the solution of the differential equation  $\frac{d^2y}{dx^2} = e^{-2x}$
- 11. Find the equation of the curve whose slope  $\frac{dy}{dx} = \frac{2y}{x}$ , x, y > 0 which passes

through the point (1, 1)

- 12. Find the equation of curve passing through (1,  $\pi/4$ ) and having slope  $\frac{\sin 2y}{x + \tan y}$
- 13. Find the integrating factor (I.F.) of differential equation  $\frac{dy}{dx} = e^{x-y} (1 e^y)$

## **Ch 8 Probability Distribution**

- 1. Textbook page 284 Q4
- 3. Textbook page 295 Q4
- 5. Textbook page 304 Q11, 14
  - 6. In a roadside joint, veg and non-veg samosas are served along with other things. Profit per samosa is 3 rupees for a veg samosa and 5 rupees for a non-veg samosa. The probability distribution for the demand of veg and non-veg samosa are as follows:

| i)  | Demand (veg) :     | 10  | 15  | 20   | 25    | 30   |
|-----|--------------------|-----|-----|------|-------|------|
|     | Probability :      | 0.3 | 0.2 | 0.3  | 0.15  | 0.05 |
| ii) | Demand (non-veg) : | 5   | 7   | 9    | 11    |      |
|     | Probability :      | 0.4 | 0.3 | 0.15 | 0.15. |      |

Which type of samosa brings in more expected profit?

## **Ch 9 Binomial Distribution**

- 1. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point 0, 1, 2 are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent. Find the probability of India getting at least 7 points .
- 2. 100 identical coins, each with probability p, of showing up heads are tossed once. If 0 and the possibility of heads showing on 50 coins is equal to that of heads showing on 51 coins, then find the value of p.
- 3. In a bag containing 100 eggs, 10 eggs are rotten. Find the probability that out of a sample of 5 eggs none are rotten, if the sampling is with replacement.
- 4. A fair coin is tossed six times. What is the probability of obtaining four or more heads?
- 5. The probability of India winning a test match against England is 2/3. Assuming independence from match to match, find the probability that in a 7 match series India's third win occurs at the 5th match.
- 6. Let x denotes the number of times heads occur in n tosses of a fair coin, if P(X = 4), P (X = 5) and P(X = 6) are in A.P. find n.
- 7. Textbook page 312 Q4.

BEST CLASSES for Coaching of MHTCET | NATA | Hotel Mgmt Entrance | NEET | NDA

iScore is the only institute that offer Guarantee of Quality where it gives student advantage to pay coaching fees after result only if they succeed. STUDY WITH US  $\rightarrow$  SCORE IN EXAM  $\rightarrow$  THEN PAY AFTER RESULT

Visit us for imp of Biology on www.iscoreAcademy.com