

# Impact of Oil Phase Concentration on Physical and Oxidative Stability of Oil-In-Water Emulsions Stabilized by Sodium Caseinate and Ultra-High Pressure Homogenization

| Journal:         | Journal of Dispersion Science and Technology                                                                              |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| Manuscript ID    | LDIS-2019-0285.R1                                                                                                         |  |
| Manuscript Type: | Original Article                                                                                                          |  |
| Keywords:        | Submicron emulsions, ultra-high pressure homogenization, conventional homogenization, sodium caseinate, oil concentration |  |
|                  |                                                                                                                           |  |

SCHOLARONE<sup>™</sup> Manuscripts

URL: http://mc.manuscriptcentral.com/ijds Email: LDIS-peerreview@journals.tandf.co.uk

# Impact of Oil Phase Concentration on Physical and Oxidative Stability of Oil-In-Water Emulsions Stabilized by Sodium Caseinate and Ultra-High Pressure Homogenization

#### ABSTRACT

In the present study, oil-in-water emulsions were formulated using 5.0% (w/v) of sodium caseinate (SC) and different oil concentrations (10-30 %, v/v) by conventional homogenization (CH) and ultra-high pressure homogenization (UHPH, 200-300 MPa). The effect of oil concentration and pressure of treatment on emulsions characteristics and stability was studied. Emulsions were characterized assessing their microstructure, droplet size distribution, rheological properties, emulsifying activity index, creaming stability by Turbiscan®, and photo-oxidation. UHPH emulsions, especially those treated at 200 MPa, showed smaller droplet size and greater physical stability than CH emulsions. In addition, emulsions containing higher oil volume fractions (20 and 30%) exhibited greater physical and oxidative stability. UHPH emulsions treated at 200 MPa and containing 20% oil content were the most stable emulsions against physical separation and photo-oxidation. These results show that UHPH is a potential technology to enhance the physical and oxidative stability of emulsions containing sodium caseinate as emulsifier for several applications.

**Keywords**: Submicron emulsions, ultra-high pressure homogenization, conventional homogenization, sodium caseinate, oil concentration.

# 1. Introduction

Emulsions form part of most commercial food products, including simple (e.g., milk) and
sophisticated (e.g., mayonnaise) food systems. An emulsion is a mix of two non-miscible
phases, which can be mixed by reducing droplet size using a proper emulsifier with the aid of
a mechanical treatment such as homogenization.

- In the last decade, there is a high interest in using emulsion-based systems for the delivery of bioactive compounds. Emulsions with large droplet size (i.e. conventional emulsions;  $>1 \mu m$ ) have poor physical and oxidative stability when compared to submicron/nano emulsions [1]. Gravitational forces can be reduced when emulsion droplet size decreases,
- 5 31 preventing flocculation, creaming or sedimentation [2].
- The formation of sub-micron emulsions requires high-energy inputs. Current equipment used for emulsion preparation includes microfluidizers, sonicators or (ultra) high-pressure homogenizers [3] and conventional homogenizers [1]. Ultra-High Pressure Homogenization (UHPH) is a powerful technology that has been used to produce nano stable emulsions (< 1  $\mu$ m) [1, 4-8]. In previous studies carried out in our laboratory [1, 6-8] using dairy proteins ingredients (sodium caseinate and whey protein isolate) and soy proteins, UHPH was capable of producing submicron emulsions with an improved physical and oxidative stability. Fernandez-Avila and Trujillo [9] applied UHPH (200 MPa) to obtain submicron emulsions enriched in conjugated linoleic acid (CLA, 6%, v/v) and stabilized by soy protein isolates (4%, w/v) to be incorporated into UHT milk. The authors reported that UHPH produced emulsions with low droplet size, high physical and oxidative stability during months and enhanced CLA delivery. Subsequent to homogenization, the oil and water phases tend to separate. Proteins, when
  - 45 used as emulsifiers in the emulsion preparation, are adsorbed to the interface between oil

Page 3 of 31

| 2              |    |                                                                                              |
|----------------|----|----------------------------------------------------------------------------------------------|
| 3<br>4         | 46 | and water during homogenization, which reduces the interfacial tension between oil and       |
| 5<br>6         | 47 | water phases and prevents coalescence [10]. Proteins also play an important role as          |
| 7<br>8<br>0    | 48 | inhibitors of lipid oxidation [2]. Sodium caseinate (SC), a milk protein product, can        |
| 9<br>10<br>11  | 49 | protect oil droplets against coalescence through electrostatic and steric repulsion [11].    |
| 12<br>13       | 50 | The choice of the oil concentration to be used in the emulsion formulation is critical as it |
| 14<br>15<br>16 | 51 | has an eminent effect on emulsion structure and stability [12]. Different authors [4, 13,    |
| 17<br>18       | 52 | 14] studied physical stability of concentrated emulsions produced by UHPH. However, to       |
| 19<br>20<br>21 | 53 | the best of our knowledge, the effect of different oil concentrations on oxidative stability |
| 21<br>22<br>23 | 54 | of emulsions prepared by UHPH and milk proteins has been only reported in a recently         |
| 24<br>25       | 55 | published work using whey protein isolate [8].                                               |
| 26<br>27<br>28 | 56 | In a previous research [7], UHPH emulsions, in comparison to conventional                    |
| 29<br>30       | 57 | homogenization, were screened (100-300 MPa) using SC at different protein levels (1 -        |
| 31<br>32       | 58 | 5%, w/v) using a mixture of sunflower and olive oils (20%, v/v). It was concluded that       |
| 33<br>34<br>35 | 59 | UHPH treatment (200 and 300 MPa) was capable of producing sodium caseinate (5%,              |
| 36<br>37       | 60 | w/v) emulsions with improved physical and oxidative stability. The objective of the          |
| 38<br>39<br>40 | 61 | present study is to characterize UHPH emulsions with different oil concentrations (10, 20    |
| 40<br>41<br>42 | 62 | and 30%) emulsified by sodium caseinate (5%), in comparison to colloid mill and              |
| 43<br>44<br>45 | 63 | conventional homogenization.                                                                 |
| 45<br>46       |    |                                                                                              |

# 64 Materials and Methods

# 65 Materials

Sodium caseinate was obtained from Zeus Quimica (Sodium Caseinate 110, Barcelona,
Spain). The physico-chemical characteristics, as indicated by the producer were: moisture =
5.73%; granulometry (% < 300 mm) = 99.99; pH = 6.7; sediment at 70 °C (%) = 0.05;</li>

minerals = 3.52%; MAT (N x 6.38) = 90%; fat = 1 %; density = 0.42. Refined sunflower and
olive oils were purchased from Gustav Heess Company (Barcelona, Spain). The
characteristics and composition of oils according to the producer are detailed in Hebishy et al.
[8].

#### **Preparation of Emulsions**

# 74 Experimental Design

The effect of homogenization methods, pressure, and oil content on emulsion stability was studied using a completely randomized factorial design. Twelve formulations were produced and stored in glass bottles (4 °C) for physical analyses Oxidative stability was examined during 10-days storage period at 10 °C in samples stored under light (2000 lux/m<sup>2</sup>).

# **Preparation of Protein Dispersions**

Protein dispersions (5%, w/v; pH  $\approx$  6.5-7) were prepared in deionized water at 20 °C using a pilot-scale high speed (250 rpm) mechanical blender (Frigomat, Guardamiglio, Italy). The solutions were then placed at 4°C overnight to facilitate rehydration and equilibration of minerals.

# 84 Homogenization Treatments

After overnight rehydration, protein dispersions were equilibrated at 20 °C and mixed with
the oil phase; sunflower and olive oil (3:1). Pre-emulsion (CM emulsion) was formed by
mixing protein dispersion with oil using a colloid mill high-shear system (E. Bachiller B,
S.A, Barcelona, Spain) during 5 min (5000 rpm).

89 CM emulsions were homogenized using APV Rannie Copenhagen Series Conventional
90 Homogenizer (Model 40.120 H, single-stage hydraulic valve assembly, Copenhagen,

91 Denmark) at 15 MPa (CH emulsions).

UHPH emulsions were formed by passing CM emulsions through a Stansted high-pressure
homogenizer with a flow rate of 120 L/h (Model/DRG number FPG 11,300:400 Hygienic
Homogenizer, Stansted Fluid Power Ltd., Harlow, UK). Emulsions were cooled immediately
after the HP-valve using two spiral-type heat exchangers (Garvía, Barcelona, Spain) in order
to minimize temperature retention. Emulsions were UHPH-treated for single-stage at two
different pressures (200 and 300 MPa) with an inlet temperature (Tin) of 25 °C. The inlet and
outlet temperatures were monitored for the whole duration of the experiment.

99 The experiment was repeated three times.

### 100 Emulsion Measurements and Analyses

## 101 Droplet Size Distribution

Emulsions droplet size distribution was measured the same day of preparation, as described by Hebishy et al. [1] using a Beckman Coulter laser diffraction particle size analyser (LS 13 320 series, Beckman Coulter, Fullerton, CA, USA) by applying an optical model according to the Mie theory of light scattering. Emulsions were diluted in distilled water to get an appropriate obscuration. Samples were analysed at least four times and droplet size indices (d4.3 and d3.2, µm) and specific surface area (SSA, m<sup>2</sup>/mL) were determined.

108 Rheological Measurements

109 Rheological measurements were performed in triplicate using a controlled stress rheometer 110 (Haake Rheo Stress 1, Thermo Electron Corporation, Karlsruhe, Germany) with a parallel 111 plate geometry [15] probe (1°, 60 mm diameter) at 25 °C. Before starting the experiment, the 112 emulsion loaded to the rheometer was allowed to stand for 5 min in order to reach equilibrium and to avoid any structure destruction. Ostwald de Waele rheological model:  $\tau =$ 

K<sup>-m</sup> was used to fit the flow curves, and the consistency coefficient (K, mPa × s) and flow  
behaviour index (n) were obtained.  
*Emulsifying properties*  
Emulsifying activity index (EAI) value was determined based on the method of Pearce and  
Kinsella. [16] with a minor modification. Briefly, aliquots (100 µI) of samples were diluted  
by 0.1% (w/v) SDS solution to give appropriate absorbance after which the absorbance was  
measured using a UV-visible spectrophotometer (CECIL model 9000 series, Cambridge, UK)  
at 500 nm. EAI value was calculated from the equation (Eq. 1) below as proposed by  
Cameron et al. [17].  

$$\frac{2 \times 2.303 \times A \times DF}{EAI (m^2/g)} = \frac{2 \times 2.303 \times A \times DF}{C \times O \times (1-0) \times 1000}$$
where (DF) is the dilution factor (i.e. 250 times for CM emulsions and 2500 times for CH and  
UHPH emulsions), (A) is the spectorophotometric absorbance at 500 nm, (C) is the weight of  
protein per unit volume of aqueous phase before emulsion is formed (g/mI), (θ) is the oil  
volume fraction (0.1, 0.2 and 0.3 for 10, 20 and 30% oil, respectively), and (Ø) is the optical  
path (0.01m). Measurements were performed in triplicate after the same day of preparation.  
*Physical Stability*  
Emulsion stability was measured with a vertical scan analyser Turbiscan MA 2000  
(Formulaction, Toulouse, France) with an electro-luminescent diode in the near infrared (λair

134 = 850 nm), as reported by Hebishy et al. [1]. Turbiscan is a powerful technique that allows

135 the optical characterization of dispersions, detecting variations in droplet size (i.e.,

| 3        |
|----------|
| 4        |
| 5        |
| 6        |
| 7        |
| /        |
| 8        |
| 9        |
| 10       |
| 11       |
| 12       |
| 13       |
| 14       |
| 15       |
| 16       |
| 10       |
| 17       |
| 18       |
| 19       |
| 20       |
| 21       |
| 22       |
| 23       |
| 24       |
| 25       |
| 26       |
| 20       |
| 27       |
| 28       |
| 29       |
| 30       |
| 31       |
| 32       |
| 33       |
| 34       |
| 35       |
| 36       |
| 27       |
| 20       |
| 38       |
| 39       |
| 40       |
| 41       |
| 42       |
| 43       |
| 44       |
| 45       |
| 46       |
| 47       |
| 48       |
| 40       |
| 49<br>50 |
| 50       |
| 51       |
| 52       |
| 53       |
| 54       |
| 55       |
| 56       |
| 57       |
| 58       |
| 50       |

60

flocculation, coalescence) or migration phenomena (i.e., creaming, sedimentation). Turbiscan
measures the backscattered light at pre-set intervals (30 min for CM emulsions, 3 days for
CH and UHPH emulsions) during the experiment (5 h for CM emulsions and 18 days for CH
and UHPH emulsions). In order to follow the creaming kinetics, migration velocity (V;
µm/min) was also calculated by Turbisoft software.
Creaming stability was also determined by measuring droplet size (d4.3) at the top or at the
bottom of the emulsions stored for 9 days at room temperature, as reported by Hebishy [18].

143 Emulsion Microstructure

Microstructure of emulsions was performed using confocal laser scanning microscopy, as detailed by Hebishy [18]. The oil and protein were fluorescently stained with the fluorescent dyes, fluorescein isothiocyanate (FITC; Fluka, Steinheim, Germany) for protein, and Nile red (Sigma, Steinheim, Germany) for oil droplets. To assess changes in emulsion microstructure, micrographs were also obtained by using a transmission electron microscope with a Jeol 1400 (Jeol Ltd., Tokyo, Japan) equipped with a Gatan Ultrascan ES1000 CCD Camera, preparing samples according to Hebishy et al. [1].

- 151 Oxidative Stability of Emulsions
- 152 For the determination of primary oxidation products, lipid hydroperoxides were measured by
- 153 mixing 0.3 mL of emulsion with 1.5 mL of isooctane/2-propanol (3:1, v/v) by vortexing (10
- 154 s, three times) and isolating the organic solvent phase by centrifugation at 1000× g for 2 min.
- 155 The organic solvent phase (200  $\mu$ L) was added to 2.8 mL of methanol/1-butanol (2:1, v/v),
- <sup>156</sup> followed by 15 μL of 3.97 M ammonium thiocyanate and 15 μL of ferrous iron solution
- 157 [prepared by mixing 0.132 M BaCl<sub>2</sub> and 0.144 M FeSO<sub>4</sub>). The absorbance of the solution was
- <sup>59</sup> 158 measured at 510 nm, 20 min after the addition of the iron [19]. The hydroperoxide

| 2<br>3                                                               | 159 | concentration was determined using a $Fe^{+3}$ standard curve with an iron concentration varying |
|----------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------|
| 4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 | 160 | from 1 to 20 ug, as described by Shantha and Decker [19]. The perovide value, expressed as       |
|                                                                      | 100 | The period of $\mu$ sharing and becker [17]. The period develop of $\mu$                         |
|                                                                      | 161 | milliequivalents of peroxide per kilogram of oil, was calculated using Eq. (2).                  |
|                                                                      | 162 | $(As-Ab) \times m$                                                                               |
|                                                                      | 163 | Peroxide Value (PV) = Eq. (2)                                                                    |
|                                                                      | 164 | $55.84 \times m_0 \times 2$                                                                      |
| 17<br>18<br>19                                                       | 165 | where $As = absorbance$ of the sample, $Ab = absorbance$ of the blank, $m = slope$ of the        |
| 20<br>21                                                             | 166 | calibration curve, $m0 = mass$ (g) of the oil contained in mass of the emulsion used,            |
| 22<br>23                                                             | 167 | 55.84 = atomic weight of iron. The result was divided by a factor of 2 to express the peroxide   |
| 24<br>25                                                             | 168 | value as milliequivalents of peroxide instead of milliequivalents of oxygen.                     |
| 26<br>27                                                             |     |                                                                                                  |
| 27<br>28<br>29                                                       | 169 | For the determination of secondary oxidation products, thiobarbituric acid-reactive              |
| 30<br>31                                                             | 170 | substances (TBARS) were determined according to an adapted method of McDonald and                |
| 32<br>33                                                             | 171 | Hultin [20]. The emulsion (1.0 mL) was combined with 2.0 mL of TBA solution (prepared by         |
| 34<br>35<br>26                                                       | 172 | mixing 15 g of trichloroacetic acid, 0.375 g of thiobarbituric acid, 1.76 mL of 12 N HCl, 0.1    |
| 37<br>38                                                             | 173 | g of butylated hydroxy Toluene (BHT) and 82.8 mL of $H_2O$ ) in test tubes and placed in a       |
| 39<br>40                                                             | 174 | boiling water bath for 15 min. The tubes were allowed to cool to room temperature for 10         |
| 41<br>42                                                             | 175 | min, and then, the coloured solution was separated by filtration through glass wool. The         |
| 43<br>44<br>45                                                       | 176 | absorbance was measured at 532 nm. Concentrations of TBARS were calculated from a                |
| 46<br>47                                                             | 177 | standard curve prepared using 1,1,3,3-tetraethoxypropane and presented as ( $\mu g$              |
| 48<br>49                                                             | 178 | malondialdehyde/mL).                                                                             |
| 50<br>51<br>52<br>53                                                 | 179 | Statistical Analyses                                                                             |
| 54<br>55<br>56                                                       | 180 | Statistical analyses were performed using SAS System® v9.2 (SAS Institute Inc., Cary, NC,        |
| 57<br>58                                                             | 181 | USA) at 5% (p < 0.05) significance level and multiple comparisons of means using Tukey           |
| 59<br>60                                                             | 182 | test. A general linear model with repeated measures was performed to compare between             |

| 3      |  |
|--------|--|
| 4      |  |
| 5      |  |
| 6      |  |
| 7      |  |
| ,<br>0 |  |
| 0      |  |
| 9      |  |
| 10     |  |
| 11     |  |
| 12     |  |
| 13     |  |
| 14     |  |
| 15     |  |
| 16     |  |
| 17     |  |
| 10     |  |
| 10     |  |
| 19     |  |
| 20     |  |
| 21     |  |
| 22     |  |
| 23     |  |
| 24     |  |
| 25     |  |
| 26     |  |
| 20     |  |
| 27     |  |
| 28     |  |
| 29     |  |
| 30     |  |
| 31     |  |
| 32     |  |
| 33     |  |
| 34     |  |
| 35     |  |
| 36     |  |
| 20     |  |
| 3/     |  |
| 38     |  |
| 39     |  |
| 40     |  |
| 41     |  |
| 42     |  |
| 43     |  |
| 44     |  |
| 45     |  |
| 16     |  |
| 40     |  |
| 4/     |  |
| 48     |  |
| 49     |  |
| 50     |  |
| 51     |  |
| 52     |  |
| 53     |  |
| 54     |  |
| 55     |  |
| 55     |  |
| 20     |  |
| 5/     |  |
| 58     |  |
| 59     |  |
| 60     |  |

183 samples. The rheological consistency coefficient (K value) was compared separately for the 184 CH and UHPH treatments containing 30% oil content, due to the high variation in viscosity between CH and UHPH emulsions comparing to other treatments, which made it hard to 185 186 detect statistical differences. A second comparison was needed for K value excluding the CH 187 and UHPH treatments containing 30% oil content. Due to the high variation of data, d3.2, 188 d4.3 and SSA values were compared only between CH and UHPH emulsions, excluding CM 189 emulsions. However, emulsifying activity index (EAI), hydroperoxides and TBARS values 190 were compared between the CM, CH and UHPH emulsions. 191 **Results and Discussion** Temperature elevation during UHPH treatment 192

193 Temperatures of emulsions were monitored before (T1) and at the outlet (T2) of the highpressure valve (Table 1). Very little and non-significant variations in temperature (T1) were 194 195 noticed. On the other hand, results showed an increase in temperature (T2) of emulsions with 196 different oil concentrations (10, 20 and 30%) by the rate of 21.19, 21.5 and 23.7 °C per 100 MPa (as pressure increased from 200 to 300 MPa). Similar increase (12-18 °C per 100 MPa) 197 198 has been reported by previous studies [21-24] in high-pressure homogenized emulsions. This 199 increase in the temperature could be due to the high velocity, shear, turbulence and cavitation 200 forces at which the fluid exits the HP-valve, which may be turned into heat. 201 A marked increase in temperature (T2) was shown when the oil concentration increased. T2

increased by 0.459 and 0.585 °C per 1% oil content for emulsions treated at 200 and 300

203 MPa, respectively. However, this increase was only significant when oil concentration

204 increased to 30% and not to 20% (P < 0.05). Hayes and Kelly [22] reported that milk (0-10%)

205 fat) outlet temperature increased (0.5  $^{\circ}$ C / 1% fat) as milk fat content increased in samples

| 3<br>4                                                                                                                                                                                                                                                          | 206                                                                                                                                          | homogenized at 150 MPa. This could be a direct result of viscous dissipation or the increased                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23                                                                                                                                                       | 207                                                                                                                                          | number of oil droplets, which increases collision between droplets. Another explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                 | 208                                                                                                                                          | could be the high fluid compression in the intensifier during the pressure built up as the oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                 | 209                                                                                                                                          | content increased from 10 to 30%. This is due to higher heat of compression for oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                 | 210                                                                                                                                          | comparing to water [4].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                 | 211                                                                                                                                          | Droplet size distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                 | 212                                                                                                                                          | Table 2 and Figure 1 (A-C) show the mean droplet sizes (d3.2 and d4.3) and specific surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                 | 213                                                                                                                                          | area (SSA, m <sup>2</sup> /ml) of SC emulsions containing different oil contents.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 24<br>25<br>26                                                                                                                                                                                                                                                  | 214                                                                                                                                          | CM treatment resulted in emulsions with largest droplet size (average of d4.3 value ~ 15 $\mu$ m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 26<br>27<br>28                                                                                                                                                                                                                                                  | 215                                                                                                                                          | comparing with CH and UHPH treatments (average of d4.3 value ~ 1.12 and 0.123 $\mu$ m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 28<br>29<br>30<br>31<br>32                                                                                                                                                                                                                                      | 216                                                                                                                                          | respectively). In CM emulsions, droplets tend to coalesce after homogenization (Fig. 2 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                 | 217                                                                                                                                          | (A)), as a result of high droplet sizes obtained in this type of equipment, as the energy input is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 22                                                                                                                                                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 33<br>34<br>35                                                                                                                                                                                                                                                  | 218                                                                                                                                          | not as high as pressure homogenizers (the more the energy input, the more the interfacial area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 33<br>34<br>35<br>36<br>37                                                                                                                                                                                                                                      | 218<br>219                                                                                                                                   | not as high as pressure homogenizers (the more the energy input, the more the interfacial area<br>that can be created) [3]. Droplets with larger sizes would cream more rapidly, coming close                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 33<br>34<br>35<br>36<br>37<br>38<br>39                                                                                                                                                                                                                          | 218<br>219<br>220                                                                                                                            | not as high as pressure homogenizers (the more the energy input, the more the interfacial area<br>that can be created) [3]. Droplets with larger sizes would cream more rapidly, coming close<br>to each other in the cream layer, thereby promoting membranes disruption [25]. Low protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42                                                                                                                                                                                                        | <ul><li>218</li><li>219</li><li>220</li><li>221</li></ul>                                                                                    | not as high as pressure homogenizers (the more the energy input, the more the interfacial area<br>that can be created) [3]. Droplets with larger sizes would cream more rapidly, coming close<br>to each other in the cream layer, thereby promoting membranes disruption [25]. Low protein<br>coverage (Fig. 2 A (B)) and high interfacial tension could be another reason for the high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44                                                                                                                                                                                            | <ul> <li>218</li> <li>219</li> <li>220</li> <li>221</li> <li>222</li> </ul>                                                                  | not as high as pressure homogenizers (the more the energy input, the more the interfacial area<br>that can be created) [3]. Droplets with larger sizes would cream more rapidly, coming close<br>to each other in the cream layer, thereby promoting membranes disruption [25]. Low protein<br>coverage (Fig. 2 A (B)) and high interfacial tension could be another reason for the high<br>coalescence rate in CM emulsions. Droplet size (d3.2) of CM emulsions has been influenced                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47                                                                                                                                                                          | <ul> <li>218</li> <li>219</li> <li>220</li> <li>221</li> <li>222</li> <li>223</li> </ul>                                                     | not as high as pressure homogenizers (the more the energy input, the more the interfacial area<br>that can be created) [3]. Droplets with larger sizes would cream more rapidly, coming close<br>to each other in the cream layer, thereby promoting membranes disruption [25]. Low protein<br>coverage (Fig. 2 A (B)) and high interfacial tension could be another reason for the high<br>coalescence rate in CM emulsions. Droplet size (d3.2) of CM emulsions has been influenced<br>by varying the oil content, as can be seen in Table 1.                                                                                                                                                                                                                                                                                                                                                                          |
| 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50                                                                                                                                                  | <ul> <li>218</li> <li>219</li> <li>220</li> <li>221</li> <li>222</li> <li>223</li> <li>224</li> </ul>                                        | not as high as pressure homogenizers (the more the energy input, the more the interfacial area<br>that can be created) [3]. Droplets with larger sizes would cream more rapidly, coming close<br>to each other in the cream layer, thereby promoting membranes disruption [25]. Low protein<br>coverage (Fig. 2 A (B)) and high interfacial tension could be another reason for the high<br>coalescence rate in CM emulsions. Droplet size (d3.2) of CM emulsions has been influenced<br>by varying the oil content, as can be seen in Table 1.<br>CH emulsions containing 10% oil showed larger droplet size which was significantly                                                                                                                                                                                                                                                                                    |
| 32         33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         50         51         52                                             | <ul> <li>218</li> <li>219</li> <li>220</li> <li>221</li> <li>222</li> <li>223</li> <li>224</li> <li>225</li> </ul>                           | not as high as pressure homogenizers (the more the energy input, the more the interfacial area<br>that can be created) [3]. Droplets with larger sizes would cream more rapidly, coming close<br>to each other in the cream layer, thereby promoting membranes disruption [25]. Low protein<br>coverage (Fig. 2 A (B)) and high interfacial tension could be another reason for the high<br>coalescence rate in CM emulsions. Droplet size (d3.2) of CM emulsions has been influenced<br>by varying the oil content, as can be seen in Table 1.<br>CH emulsions containing 10% oil showed larger droplet size which was significantly<br>decreased when oil concentration increased to 20% after which the decrease was not                                                                                                                                                                                              |
| 32         33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         950         51         52         53                                 | <ul> <li>218</li> <li>219</li> <li>220</li> <li>221</li> <li>222</li> <li>223</li> <li>224</li> <li>225</li> <li>226</li> </ul>              | <ul> <li>not as high as pressure homogenizers (the more the energy input, the more the interfacial area that can be created) [3]. Droplets with larger sizes would cream more rapidly, coming close to each other in the cream layer, thereby promoting membranes disruption [25]. Low protein coverage (Fig. 2 A (B)) and high interfacial tension could be another reason for the high coalescence rate in CM emulsions. Droplet size (d3.2) of CM emulsions has been influenced by varying the oil content, as can be seen in Table 1.</li> <li>CH emulsions containing 10% oil showed larger droplet size which was significantly decreased when oil concentration increased to 20% after which the decrease was not significant. Droplet size distribution curves (Fig. 1 A-C) show that CH emulsions with 10%</li> </ul>                                                                                           |
| 32         33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         90         51         52         53         54         55         56 | <ul> <li>218</li> <li>219</li> <li>220</li> <li>221</li> <li>222</li> <li>223</li> <li>224</li> <li>225</li> <li>226</li> <li>227</li> </ul> | not as high as pressure homogenizers (the more the energy input, the more the interfacial area<br>that can be created) [3]. Droplets with larger sizes would cream more rapidly, coming close<br>to each other in the cream layer, thereby promoting membranes disruption [25]. Low protein<br>coverage (Fig. 2 A (B)) and high interfacial tension could be another reason for the high<br>coalescence rate in CM emulsions. Droplet size (d3.2) of CM emulsions has been influenced<br>by varying the oil content, as can be seen in Table 1.<br>CH emulsions containing 10% oil showed larger droplet size which was significantly<br>decreased when oil concentration increased to 20% after which the decrease was not<br>significant. Droplet size distribution curves (Fig. 1 A-C) show that CH emulsions with 10%<br>oil had a bimodal distribution with a first population of droplets at ~ 0.5 μm and a second |

| 1<br>2                |       |                                                                                                   |
|-----------------------|-------|---------------------------------------------------------------------------------------------------|
| 3<br>4                | 229   | first and second population of droplets were decreased to $\sim 0.1$ and 1 $\mu$ m, respectively. |
| 5<br>6<br>7<br>8<br>9 | 230   | CLSM images (Fig. 3 (D-F)) have shown a high degree of flocculation in all CH emulsions.          |
|                       | 231   | This could be attributed to poor protein coverage in these emulsions [26]. These results are      |
| 10<br>11              | 232   | not in agreement with other research studies that had been done in our lab under the same         |
| 12<br>13              | 233   | conditions of pressure levels and oil concentrations, but using isolates of whey and soy          |
| 14<br>15              | 234   | proteins [5, 8] at a lower protein concentration (4%, w/v). This increment in biopolymer          |
| 16<br>17<br>18        | 235   | concentration in the aqueous phase to $5\%$ (w/v) in the present study might have promoted        |
| 19<br>20              | 236   | depletion flocculation where droplet aggregation is promoted by the non-adsorbed protein          |
| 21<br>22<br>22        | 237   | remaining in the aqueous phase.                                                                   |
| 23<br>24<br>25        | 228   | LIHPH emulsions slightly showed signs of flocculation and coalescence (Fig. 2 B (D I))            |
| 26                    | 238   | OTIFIT emulsions slightly showed signs of nocculation and coalescence (Fig. 2 B (D-1)),           |
| 27<br>28              | 239   | which was more pronounced in emulsions containing 10% oil, which may explain the high             |
| 29<br>30<br>31        | 240   | creaming rate observed in these emulsions (Physical Stability section).                           |
| 32<br>33<br>34        | 241   | Rheological behavior                                                                              |
| 35<br>36<br>37        | 242   | Rheological behavior of emulsions (consistency coefficient (K) value and the flow behavior        |
| 38<br>39              | 243   | index (n)) is presented in Table 3.                                                               |
| 40<br>41              | 0.4.4 |                                                                                                   |
| 42<br>43              | 244   | CM emulsions showed low viscosities and Newtonian flow behavior due to low interaction            |
| 44<br>45              | 245   | between droplets. Increasing the oil concentration from 10 to 20 and 30% had a significant        |
| 46<br>47<br>48        | 246   | effect on viscosity of CM emulsions.                                                              |
| 49<br>50              | 247   | CH emulsions exhibited a shear thinning behavior (viscosity decreases on shearing during the      |
| 51<br>52<br>53        | 248   | test due to deformation and breakdown of aggregates) with a flow behavior index below 1           |
| 54<br>55              | 249   | which was accompanied by a significant increment in viscosity with increased oil                  |
| 56<br>57              | 250   | concentration from 10 to 30%. Although no change was observed in the flow behavior index          |
| 58<br>59<br>60        | 251   | when the oil concentration increased from 10 to 20%, this change became significant when          |
|                       |       |                                                                                                   |

Page 12 of 31

the oil concentration further increased to 30%. Increasing oil concentration increased
emulsion viscosity as previously reported [27, 28]. Mewis and Wagner [29] attributed this
viscosity increase to the strong inter-droplet interactions.

Applying UHPH homogenization pressures (200 and 300 MPa) at 10 and 20% oil concentration resulted in emulsions with similar viscosities to the CH emulsions, however viscosity increased dramatically when the same pressure was applied to emulsions containing 30% oil with a complete change of the behavior to shear thinning. Floury et al. [13] reported a change in flow behavior of UHPH emulsions (1.5% whey protein) from highly fluid to highly thick with varying oil volume fractions (10-50%). Similar trend was found in our recent published work [8] using whey protein isolate to produce emulsions with oil concentrations between 10-50% (v/v) under homogenization pressures (100-200 MPa). It was reported that viscosity had increased and flow behavior changed from Newtonian to shear-thinning when oil content increased from 10 to 50% in emulsions treated at 200 MPa. This increase in viscosity was more pronounced in emulsions containing 50% oil than those containing 30% oil. What distinguishes the latterly mentioned study using whey proteins from the present study is that it was not possible to produce SC emulsions containing 50% oil, as the emulsions completely gelled giving a mayonnaise-like structure (data not shown). Considerable increase in viscosity and change in flow behavior has been also reported in emulsions produced by the UHPH technology [4] using 4% whey protein isolate and 15-45% oil content and [14] using micellar casein at 2-3.5% and oil content of 10-30%.

272 Emulsifying activity index (EAI)

Emulsifying property refers to the stable interface area per unit weight of protein, which
represents the capability of proteins to adsorb at the oil-water interface. CM emulsions
presented low EAI values. Applying low-pressure (CH treatment) increased significantly the

| 1<br>ว               |     |                                                                                                             |
|----------------------|-----|-------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4          | 276 | EAI; however, applying ultra high-pressures (200 and 300 MPa) resulted in lower EAI values                  |
| 5<br>6               | 277 | (Table 3). Fernández-Ávila and Trujillo [6] also reported higher EAI values for emulsions                   |
| 7<br>8<br>0          | 278 | treated by CH than UHPH treatment, which was attributed to the increase in surface area                     |
| 10<br>11<br>12       | 279 | created during emulsification per unit mass in UHPH emulsions.                                              |
| 13<br>14             | 280 | In our previous study [8] under the same conditions of CM, CH and UHPH but using whey                       |
| 15<br>16             | 281 | protein isolate as emulsifier, it was reported that protein load (mg/m <sup>2</sup> ) on the surface of the |
| 18<br>19             | 282 | oil droplets was lower than CM and CH emulsions. However, the authors reported that when                    |
| 20<br>21             | 283 | taking into account the SSA of droplets, which was significantly higher for UHPH compared                   |
| 22<br>23             | 284 | with both CM and CH. The amount of surface protein per volume (millilitre) was much                         |
| 24<br>25<br>26       | 285 | higher in UHPH emulsions (41 and 53.51 mg/mL at 100 and 200 MPa, respectively) than in                      |
| 27<br>28             | 286 | CM and CH emulsions (23.30 and 25.80 mg/mL, respectively). This was attributed to the                       |
| 29<br>30             | 287 | increased spreading and rearrangement of adsorbed protein molecules at the interface. What                  |
| 31<br>32             | 288 | can be concluded is that, taking into consideration the SSA, UHPH treatment improved the                    |
| 33<br>34<br>35       | 289 | emulsifying activity of SC.                                                                                 |
| 36<br>37             | 290 | Cha et al. [30] reported an increase in the EAI in emulsions produced using                                 |
| 38<br>39             | 291 | myofibrillar proteins and lecithin as emulsifiers and high pressure homogenization at                       |
| 40<br>41<br>42       | 292 | pressures ranging between 40 and 120 MPa, using emulsions produced by ultraturrax as a                      |
| 43<br>44             | 293 | control. The elevated EAI was attributed by the authors to exposed hydrophobic groups,                      |
| 45<br>46             | 294 | which enhanced the interactions between proteins and lipids and increased solubility which                  |
| 47<br>48<br>40       | 295 | promoted proteins to diffuse at oil-water interface, thus improving the emulsifying                         |
| 49<br>50<br>51       | 296 | properties.                                                                                                 |
| 52<br>53<br>54       | 297 | CH emulsions presented higher EAI with an increase being significant when the oil                           |
| 55<br>56             | 298 | concentration increased from 10 to 20% however; this increase was not statistically                         |
| 57<br>58<br>59<br>60 | 299 | significant when oil concentration further increased to 30%. The EAI results correlated with                |

| 1         |  |
|-----------|--|
| 2         |  |
| 3         |  |
| 4         |  |
| 5         |  |
| 6         |  |
| 7         |  |
| 8         |  |
| 9         |  |
| 10        |  |
| 11        |  |
| 12        |  |
| 13        |  |
| 14        |  |
| 15        |  |
| 16        |  |
| 17        |  |
| 18        |  |
| 19        |  |
| 20        |  |
| ∠ I<br>רר |  |
| 22        |  |
| 23        |  |
| 24        |  |
| 25        |  |
| 20        |  |
| 28        |  |
| 29        |  |
| 30        |  |
| 31        |  |
| 32        |  |
| 33        |  |
| 34        |  |
| 35        |  |
| 36        |  |
| 37        |  |
| 38        |  |
| 39        |  |
| 40        |  |
| 41        |  |
| 42        |  |
| 43        |  |
| 44        |  |
| 45        |  |
| 46        |  |
| 47        |  |
| 48        |  |
| 49        |  |
| 50        |  |
| 51        |  |
| 52        |  |
| 55<br>E1  |  |
| 54<br>55  |  |
| 55<br>56  |  |
| 50<br>57  |  |
| 57<br>58  |  |
| 50        |  |
| 60        |  |
| ~ ~ ~     |  |

| 300                                                                                                                | the droplet size and SSA results, presenting same trend. The EAI results were also in line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 301                                                                                                                | with the TEM (Fig. 2 A) images. In this sense, the emulsions containing 10% oil presented a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 302                                                                                                                | poor surface coverage (Fig. 2 A (C)), while emulsions with 30% oil presented oil droplets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 303                                                                                                                | with high surface protein covering the droplets (Fig. 2 A (D)).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 304                                                                                                                | Table 3 shows a significant increase in EAI value in UHPH emulsions with increasing the oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 305                                                                                                                | concentration from 10 to 20% oil (P < 0.05). Fernández-Ávila and Trujillo [6] also reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 306                                                                                                                | similar results when oil content increased from 10 to 20% in UHPH emulsions stabilized by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 307                                                                                                                | soy proteins. However, in our study, no further significant effect on the EAI was observed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 308                                                                                                                | when oil concentration increased to 30%. This may indicate that the amount of SC started to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 309                                                                                                                | become limited to cover the newly created O/W interface. Increasing the oil concentration,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 310                                                                                                                | with a fixed protein amount, reduces the protein at the interface, thus suggesting the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 311                                                                                                                | spreading of protein at an interface to form a thinner layer [31]. A similar trend was observed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 312                                                                                                                | in emulsions stabilized by bovine serum albumin [32] when the oil volume fraction increased                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 313                                                                                                                | from 25 to 56%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 314                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                    | Physical stability of emulsions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 315                                                                                                                | <i>Physical stability of emulsions</i><br>Figure 4 (A–F) shows the backscattering (BS) profiles for all emulsions containing 5% of SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul><li>315</li><li>316</li></ul>                                                                                  | <i>Physical stability of emulsions</i><br>Figure 4 (A–F) shows the backscattering (BS) profiles for all emulsions containing 5% of SC prepared with CM, CH and UHPH at 200 MPa. UHPH emulsions have shown longer stability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul><li>315</li><li>316</li><li>317</li></ul>                                                                      | <ul> <li><i>Physical stability of emulsions</i></li> <li>Figure 4 (A–F) shows the backscattering (BS) profiles for all emulsions containing 5% of SC prepared with CM, CH and UHPH at 200 MPa. UHPH emulsions have shown longer stability (Fig. 4 E,F) as compared to CM (Fig. 4 A,B) and CH emulsions (Fig. 4 C,D). For instance,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul><li>315</li><li>316</li><li>317</li><li>318</li></ul>                                                          | <ul> <li><i>Physical stability of emulsions</i></li> <li>Figure 4 (A–F) shows the backscattering (BS) profiles for all emulsions containing 5% of SC</li> <li>prepared with CM, CH and UHPH at 200 MPa. UHPH emulsions have shown longer stability</li> <li>(Fig. 4 E,F) as compared to CM (Fig. 4 A,B) and CH emulsions (Fig. 4 C,D). For instance,</li> <li>the same extent of creaming appears about 17 days after UHPH treatment at 200 MPa vs. 2</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul><li>315</li><li>316</li><li>317</li><li>318</li><li>319</li></ul>                                              | <ul> <li><i>Physical stability of emulsions</i></li> <li>Figure 4 (A–F) shows the backscattering (BS) profiles for all emulsions containing 5% of SC</li> <li>prepared with CM, CH and UHPH at 200 MPa. UHPH emulsions have shown longer stability</li> <li>(Fig. 4 E,F) as compared to CM (Fig. 4 A,B) and CH emulsions (Fig. 4 C,D). For instance,</li> <li>the same extent of creaming appears about 17 days after UHPH treatment at 200 MPa vs. 2</li> <li>days after conventional homogenization (CH) and 5 hours after colloid mill (CM).</li> </ul>                                                                                                                                                                                                                                                                                                            |
| <ul> <li>315</li> <li>316</li> <li>317</li> <li>318</li> <li>319</li> <li>320</li> </ul>                           | <ul> <li><i>Physical stability of emulsions</i></li> <li>Figure 4 (A–F) shows the backscattering (BS) profiles for all emulsions containing 5% of SC</li> <li>prepared with CM, CH and UHPH at 200 MPa. UHPH emulsions have shown longer stability</li> <li>(Fig. 4 E,F) as compared to CM (Fig. 4 A,B) and CH emulsions (Fig. 4 C,D). For instance,</li> <li>the same extent of creaming appears about 17 days after UHPH treatment at 200 MPa vs. 2</li> <li>days after conventional homogenization (CH) and 5 hours after colloid mill (CM).</li> <li>Backscattering results have shown a drop of BS at the bottom of all samples, due to</li> </ul>                                                                                                                                                                                                               |
| <ul> <li>315</li> <li>316</li> <li>317</li> <li>318</li> <li>319</li> <li>320</li> <li>321</li> </ul>              | <ul> <li><i>Physical stability of emulsions</i></li> <li>Figure 4 (A–F) shows the backscattering (BS) profiles for all emulsions containing 5% of SC</li> <li>prepared with CM, CH and UHPH at 200 MPa. UHPH emulsions have shown longer stability</li> <li>(Fig. 4 E,F) as compared to CM (Fig. 4 A,B) and CH emulsions (Fig. 4 C,D). For instance,</li> <li>the same extent of creaming appears about 17 days after UHPH treatment at 200 MPa vs. 2</li> <li>days after conventional homogenization (CH) and 5 hours after colloid mill (CM).</li> <li>Backscattering results have shown a drop of BS at the bottom of all samples, due to</li> <li>clarification of the mixture in the following order: CM &gt; CH &gt; UHPH emulsions. On the</li> </ul>                                                                                                          |
| <ul> <li>315</li> <li>316</li> <li>317</li> <li>318</li> <li>319</li> <li>320</li> <li>321</li> <li>322</li> </ul> | <ul> <li><i>Physical stability of emulsions</i></li> <li>Figure 4 (A–F) shows the backscattering (BS) profiles for all emulsions containing 5% of SC</li> <li>prepared with CM, CH and UHPH at 200 MPa. UHPH emulsions have shown longer stability</li> <li>(Fig. 4 E,F) as compared to CM (Fig. 4 A,B) and CH emulsions (Fig. 4 C,D). For instance,</li> <li>the same extent of creaming appears about 17 days after UHPH treatment at 200 MPa vs. 2</li> <li>days after conventional homogenization (CH) and 5 hours after colloid mill (CM).</li> <li>Backscattering results have shown a drop of BS at the bottom of all samples, due to</li> <li>clarification of the mixture in the following order: CM &gt; CH &gt; UHPH emulsions. On the</li> <li>other hand, there was an increase in BS at the top of samples, associated to creaming (particle</li> </ul> |

Physical stability was also assessed in the emulsions, measuring the d4.3 value at the top or at

| 2        |          |
|----------|----------|
| 3        | 324      |
| 4        | 524      |
| 5        |          |
| 6        | 325      |
| 7        |          |
| /<br>0   | 376      |
| 0        | 520      |
| 9        |          |
| 10       | 327      |
| 11       |          |
| 12       | 220      |
| 13       | 328      |
| 14       |          |
| 15       |          |
| 16       | 329      |
| 10       | 52)      |
| 17       |          |
| 18       | 330      |
| 19       |          |
| 20       | 221      |
| 21       | 331      |
| 22       |          |
| 22       | 332      |
| 23       | 552      |
| 24       |          |
| 25       | 333      |
| 26       |          |
| 27       |          |
| 28       | 224      |
| 20       | 334      |
| 20       |          |
| 50<br>21 | 335      |
| 31       | 555      |
| 32       |          |
| 33       | 336      |
| 34       |          |
| 35       | 337      |
| 36       | 557      |
| 37       |          |
| 20       | 338      |
| 38       |          |
| 39       | 220      |
| 40       | 339      |
| 41       |          |
| 42       | 340      |
| 43       | 2.10     |
| 44       |          |
| 15       | 341      |
| 45       |          |
| 46       | 3/12     |
| 4/       | 572      |
| 48       |          |
| 49       | 343      |
| 50       |          |
| 51       | 244      |
| 52       | 344      |
| 52       |          |
| 55       | 345      |
| 54       | 515      |
| 55       | <b>a</b> |
| 56       | 346      |
| 57       |          |
| 58       | 317      |
| 59       | 547      |
|          |          |

60

325 the bottom of the emulsion tubes stored at room temperature for 9 days and under the same conditions for comparison. Physical stability was determined in the homogenized emulsions 326 327 (conventional and UHPH), but not in the CM emulsions where oily or creamy phases were clearly separated from the aqueous phases 2 hours after preparation. 328 329 CM emulsions containing the lowest oil concentration (10%) showed the highest creaming 330 rate (Fig. 4 A). However, increasing the oil concentration improved creaming stability (Fig. 4 B). The explanation for this low creaming stability of CM emulsions containing 10% oil 331 332 could be the large droplet size (Table 2) and the high probability of coalescence, as discussed 333 before in the Particle Size Distribution section. 334 CH emulsions had higher creaming stability than CM emulsions; however, they were not as 335 stable as UHPH emulsions (Table 3 and Fig. 4 C-F). Oil-phase concentration played an important role in the creaming stability of CH emulsions (higher oil concentration slowed 336 337 down the creaming rate). Even d4.3 value obtained at the top or the bottom of the CH emulsions (Table 3) showed significant differences after 9 days of storage during 9 days, 338 339 regardless of the oil concentration, Figure (4 D) shows clearly the slow change of 340 backscattering in CH emulsions containing 30% oil in comparison to their counterpart of 341 emulsions containing 10% oil (Fig. 4 C). This could be due to the increase in packing fraction 342 of oil droplets [33], which enhanced emulsion viscosity and lowered the creaming rate. High 343 creaming stability with increasing oil content was also reported in CH emulsions stabilized by whey protein isolate [8] when oil content increased from 10 to 30 and 50%, and in non-344 345 heated soy protein isolate (SPI) [5] when soybean oil content increased from 10 to 20%, 346 owing to high consistency. The later study reported that these emulsions also exhibited 347 greater thickness of SPI at the droplets surface and the absence of clusters of protein

| 2         |  |
|-----------|--|
| 3         |  |
| 4         |  |
| 5         |  |
| 6         |  |
| 7         |  |
| ,<br>Q    |  |
| 0         |  |
| 9         |  |
| 10        |  |
| 11        |  |
| 12        |  |
| 13        |  |
| 14        |  |
| 15        |  |
| 16        |  |
| 17        |  |
| 18        |  |
| 19        |  |
| 20        |  |
| 21        |  |
| י∠<br>21  |  |
| 22        |  |
| 23        |  |
| 24        |  |
| 25        |  |
| 26        |  |
| 27        |  |
| 28        |  |
| 29        |  |
| 30        |  |
| 31        |  |
| 32        |  |
| 33        |  |
| 31        |  |
| 25        |  |
| 22        |  |
| 30        |  |
| 37        |  |
| 38        |  |
| 39        |  |
| 40        |  |
| 41        |  |
| 42        |  |
| 43        |  |
| 44        |  |
| 45        |  |
| 46        |  |
| 47        |  |
| -⊤/<br>⊿Ω |  |
| +0<br>10  |  |
| 49        |  |
| 50        |  |
| 51        |  |
| 52        |  |
| 53        |  |
| 54        |  |
| 55        |  |
| 56        |  |
| 57        |  |
| 58        |  |
| 59        |  |
| 60        |  |

348 aggregates. Higher oil content results in multiplied number of droplets [34], improving the349 resistance of emulsions to flow, and increasing the apparent viscosity [35].

350 UHPH emulsions displayed better creaming stability; the emulsions remained turbid with no 351 visual separation during 18 days (Fig. 4 E,F) comparing to CM (Fig. 4 A,B) and CH (Fig. 4 352 C,D) emulsions. High-pressure homogenization reduces droplet size resulting in emulsions 353 that are, according to Stokes law, higher stable towards creaming [36]. On the other hand, 354 smaller size and the rigid interfacial layers, as a result strong interactions between adsorbed 355 proteins at the interface due to the unfolding and exposure of hydrophobic sites of proteins, 356 increase emulsion density, embedding droplets migration. San Martín-González et al. [14] 357 observed that high-pressure homogenization (300 MPa), regardless of oil and casein 358 concentration, reduced creaming index to zero during 10 days of storage. The authors 359 attributed this high stability to increased availability of caseins due to extensive disruption. 360 Although the changes in d4.3 value between top and bottom of emulsions with 10% oil 361 showed no significant differences, Turbiscan was able to detect such slight creaming in emulsions with 10% oil (Fig. 4 E) comparing to no creaming in those containing 30% oil 362 363 (Fig. 4 F). This may be attributed to large droplet size in these emulsions due the flocculation 364 or coalescence observed, as explained in the Droplet Size Distribution section. These results 365 are in line with what was reported in a previous study [5], UHPH emulsions showed no 366 creaming after more than 5 months of cold storage.

367 Oxidative stability

Table 4 shows the hydroperoxide and TBARS (µg malondialdehyde/mL) contents of CM,
CH and UHPH emulsions stabilized by SC using different oil concentrations.

370 CM emulsions presented generally higher hydroperoxides and TBARS values than other

Page 17 of 31

| 2<br>3<br>4                      | 371 | emulsions especially those containing 10% and 30% oil content. There were no significant        |
|----------------------------------|-----|-------------------------------------------------------------------------------------------------|
| 5<br>6                           | 372 | differences for hydroperoxides at day 1 between CM, CH and UHPH emulsions. The high             |
| /<br>8<br>9                      | 373 | hydroperoxide and TBARS indicates the progression to a secondary state of oxidation in          |
| 10<br>11                         | 374 | these emulsions. This high sensitivity of CM emulsions to oxidation may be attributed to        |
| 12<br>13                         | 375 | exposure of oil droplets to the oxidation factors due to poor protein coverage at the interface |
| 14<br>15                         | 376 | and the high coalescence rate between oil droplets (Fig. 2 A (A)). Similar trend was also       |
| 16<br>17<br>18                   | 377 | observed in our previous study [8] using whey protein isolate. Oil concentration significantly  |
| 19<br>20                         | 378 | affected the oxidative stability of CM emulsions. As can be seen from Table 4, all emulsions    |
| 21<br>22<br>23<br>24<br>25       | 379 | presented similar level of hydroperoxides and TBARS contents at day 1 of storage, except for    |
|                                  | 380 | significant amount in emulsions containing 10% oil. As the storage time progressed to 10        |
| 26<br>27                         | 381 | days, emulsions containing 10% oil presented the highest hydroperoxide content. Emulsions       |
| 28<br>29<br>30<br>31<br>32<br>33 | 382 | containing 20% oil showed the lowest amount of TBARS after 10 days, contrary to                 |
|                                  | 383 | emulsions containing 10 and 30 %.                                                               |
|                                  |     |                                                                                                 |
| 34<br>35                         | 384 | CH emulsions containing 10 and 20% oil presented lower amount of hydroperoxides which           |
| 36<br>37                         | 385 | has significantly increased after 10 days of storage, being higher in hydroperoxides in         |
| 38<br>39<br>40                   | 386 | emulsions containing 20% oil. On the other hand, the TBARS content has been decreased or        |
| 40<br>41<br>42                   | 387 | maintained the same in these samples after 10 days of storage with no significant differences   |
| 43<br>44                         | 388 | (day 10 – day 1). No significant changes were found in hydroperoxide content of CH              |
| 45<br>46                         | 389 | emulsions at first or last day of storage. There was an increase in TBARS levels in emulsions   |
| 47<br>48<br>49                   | 390 | containing 30% oil, unlike emulsions containing 10 and 20% oil, being significant when          |
| 50<br>51                         | 391 | comparing to emulsions with 10% oil. Therefore, it can be concluded that increasing the oil     |
| 52<br>53                         | 392 | content in CH emulsion systems more than 20% oil may facilitate lipid oxidation and bring it    |
| 54<br>55<br>56                   | 393 | from primary to secondary oxidation.                                                            |
| 57<br>58<br>59<br>60             | 394 | UHPH emulsions showed no differences in hydroperoxides neither at first nor last day of         |

storage. Lower oxidative stability was observed in emulsions containing 10% oil; however, UHPH emulsions (20% oil) showed the best oxidative stability; the increase in TBARS content was not significant after 10 days of storage, it had even decreased significantly in emulsions containing 20% oil and treated at 200 MPa. This may indicate the sensitivity of emulsions containing 10% oil to oxidation. Results obtained by Fernández Ávila and Trujillo [6] indicated more protein coverage at the interface of CH and UHPH emulsions stabilized with non-heated SPI containing 20% (v/v) oil than those containing 10% (v/v) oil. The possible reasons for the high oxidation rate in emulsions with low oil content (10%), especially those treated at 300 MPa, could be the following: 1) the creaming observed in these emulsions, which makes the lipids closer to the ambient and favors oxidation [28]; 2) the increase in the amount of free radicals as a reason of the proportional increase in the aqueous phase fraction, as well as the water soluble prooxidants [37]; 3) the low viscosity of these emulsions, in comparison to emulsions with high oil content (30%). It has been proposed that elevated viscosity can affect oxidation by reducing the diffusion of potential pro-oxidative molecules, such as ferrous ions or lipid hydroperoxides [38-40]. Improved oxidative stability was found by other researchers when oil volume fraction increased from 10 to 20% [5, 6] 5 to 40% [28], or from 5 to 30% [37]. In a recent study [8], we reported that increasing the oil content in UHPH emulsions stabilized by whey proteins from 10 to 30% oil resulted in improved oxidative stability, which is in line with what has been found in the present study. However, additional increase in oil concentration to 50% caused poor emulsion stability to oxidation.

416 Conclusion

417 Ultra high pressure homogenization technology is capable of producing submicron emulsions
418 with up to 30% (v/v) oil content using SC (5%, w/v) as emulsifier with a high physical and

| _                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3                                                                                                                                                                                                                                                                                                                                              | /10                                                                                                                                                                  |
| 4                                                                                                                                                                                                                                                                                                                                              | 41)                                                                                                                                                                  |
| 5                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                      |
| 6                                                                                                                                                                                                                                                                                                                                              | 420                                                                                                                                                                  |
| 7                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                      |
| /                                                                                                                                                                                                                                                                                                                                              | 121                                                                                                                                                                  |
| 8                                                                                                                                                                                                                                                                                                                                              | 421                                                                                                                                                                  |
| 9                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                      |
| 10                                                                                                                                                                                                                                                                                                                                             | 422                                                                                                                                                                  |
| 11                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| 12                                                                                                                                                                                                                                                                                                                                             | 400                                                                                                                                                                  |
| 13                                                                                                                                                                                                                                                                                                                                             | 423                                                                                                                                                                  |
| 14                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| 15                                                                                                                                                                                                                                                                                                                                             | 424                                                                                                                                                                  |
| 15                                                                                                                                                                                                                                                                                                                                             | 747                                                                                                                                                                  |
| 16                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| 17                                                                                                                                                                                                                                                                                                                                             | 425                                                                                                                                                                  |
| 18                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| 19                                                                                                                                                                                                                                                                                                                                             | 10 (                                                                                                                                                                 |
| 20                                                                                                                                                                                                                                                                                                                                             | 426                                                                                                                                                                  |
| 20                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| 21                                                                                                                                                                                                                                                                                                                                             | 127                                                                                                                                                                  |
| 22                                                                                                                                                                                                                                                                                                                                             | 727                                                                                                                                                                  |
| 23                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| 24                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| 25                                                                                                                                                                                                                                                                                                                                             | 428                                                                                                                                                                  |
| 26                                                                                                                                                                                                                                                                                                                                             | .20                                                                                                                                                                  |
| 20                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| 27                                                                                                                                                                                                                                                                                                                                             | 429                                                                                                                                                                  |
| 28                                                                                                                                                                                                                                                                                                                                             | 430                                                                                                                                                                  |
| 29                                                                                                                                                                                                                                                                                                                                             | 121                                                                                                                                                                  |
| 30                                                                                                                                                                                                                                                                                                                                             | 431                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |
| 31                                                                                                                                                                                                                                                                                                                                             | 432                                                                                                                                                                  |
| 31<br>32                                                                                                                                                                                                                                                                                                                                       | 432<br>433                                                                                                                                                           |
| 31<br>32<br>33                                                                                                                                                                                                                                                                                                                                 | 432<br>433<br>434                                                                                                                                                    |
| 31<br>32<br>33                                                                                                                                                                                                                                                                                                                                 | 432<br>433<br>434                                                                                                                                                    |
| 31<br>32<br>33<br>34                                                                                                                                                                                                                                                                                                                           | 432<br>433<br>434<br>435                                                                                                                                             |
| 31<br>32<br>33<br>34<br>35                                                                                                                                                                                                                                                                                                                     | 432<br>433<br>434<br>435<br>436                                                                                                                                      |
| 31<br>32<br>33<br>34<br>35<br>36                                                                                                                                                                                                                                                                                                               | 432<br>433<br>434<br>435<br>436<br>437                                                                                                                               |
| 31<br>32<br>33<br>34<br>35<br>36<br>37                                                                                                                                                                                                                                                                                                         | 432<br>433<br>434<br>435<br>436<br>437                                                                                                                               |
| 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38                                                                                                                                                                                                                                                                                                   | 432<br>433<br>434<br>435<br>436<br>437<br>438                                                                                                                        |
| 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39                                                                                                                                                                                                                                                                                             | 432<br>433<br>434<br>435<br>436<br>437<br>438<br>439                                                                                                                 |
| <ol> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> </ol>                                                                                                                                                                                                             | 432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440                                                                                                          |
| <ol> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> </ol>                                                                                                                                                                                                 | 432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440                                                                                                          |
| <ol> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> </ol>                                                                                                                                                                                     | 432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441                                                                                                   |
| <ol> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> </ol>                                                                                                                                                                                     | 432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441<br>442                                                                                            |
| <ol> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> </ol>                                                                                                                                                                         | 432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441<br>442<br>443                                                                                     |
| <ol> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> </ol>                                                                                                                                                             | 432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441<br>442<br>443                                                                                     |
| <ol> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> </ol>                                                                                                                                                 | 432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441<br>442<br>443<br>444                                                                              |
| <ol> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> </ol>                                                                                                                                     | 432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441<br>442<br>443<br>444<br>445                                                                       |
| <ol> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> </ol>                                                                                                                         | 432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441<br>442<br>443<br>444<br>445<br>446                                                                |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> </ul>                                                                                                             | 432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441<br>442<br>443<br>444<br>445<br>446<br>447                                                         |
| <ol> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>40</li> </ol>                                                                                                 | 432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441<br>442<br>443<br>444<br>445<br>446<br>447                                                         |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> </ul>                                                                                                 | 432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441<br>442<br>443<br>444<br>445<br>446<br>447<br>448                                                  |
| <ol> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> </ol>                                                                                     | 432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449                                           |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> <li>51</li> </ul>                                                                         | 432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450                                    |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> <li>51</li> <li>52</li> </ul>                                                             | 432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450                                    |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> <li>51</li> <li>52</li> <li>53</li> </ul>                                                 | 432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451                             |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> <li>51</li> <li>52</li> <li>53</li> <li>54</li> </ul>                                     | 432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451<br>452                      |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> <li>51</li> <li>52</li> <li>53</li> <li>54</li> </ul>                                     | 432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451<br>452<br>452               |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> <li>51</li> <li>52</li> <li>53</li> <li>54</li> <li>55</li> </ul>                         | 432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451<br>452<br>453               |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> <li>51</li> <li>52</li> <li>53</li> <li>54</li> <li>55</li> <li>56</li> </ul>             | 432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451<br>452<br>453<br>454        |
| <ul> <li>31</li> <li>32</li> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> <li>51</li> <li>52</li> <li>53</li> <li>54</li> <li>55</li> <li>56</li> <li>57</li> </ul> | 432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441<br>442<br>443<br>444<br>445<br>446<br>447<br>448<br>449<br>450<br>451<br>452<br>453<br>454<br>455 |

59

60

| 419 | oxidative stability con | mpared to conventiona | l treatments. Us | sing high oil co | oncentrations ( | (20) |
|-----|-------------------------|-----------------------|------------------|------------------|-----------------|------|
|-----|-------------------------|-----------------------|------------------|------------------|-----------------|------|

- 420 and 30%) enhanced physical and creaming stability of all emulsions. Oxidative stability is oil
- 421 concentration and homogenization treatment dependent. While increasing oil concentration,
- <sup>0</sup> 422 especially in emulsions containing 20% oil, produced the most stable emulsions in case of
- 423 CM and UHPH emulsions, increasing oil concentration to 30% adversely affected lipid
- 5 424 oxidation of CH emulsions during storage. To sum up, findings of the present study suggest
- 425 the advantages of using UHPH technology to produce submicron emulsions with high
- 426 physical and oxidative stability which might be used as carriers for bioactive ingredients with
- $\frac{1}{2}$  427 high sensitivity to oxidation.

# 5 428 References

- [1] Hebishy, E.; Buffa, M.; Guamis, B.; Blasco-Moreno, A.; Trujillo, A. J. Physical and oxidative stability of whey protein oil-in-water emulsions produced by conventional and ultra high-pressure homogenization: Effects of pressure and protein concentration on emulsion characteristics. Innov Food Sci Emerg 2015, 32, 79-90.
- [2] McClements, D.J.; Decker, E.A. Lipid Oxidation in Oil-in-Water Emulsions: Impact of Molecular Environment on Chemical Reactions in Heterogeneous Food Systems. J Food Sci 2000, 65, 1270-1282.
- [3] Stang, M.; Schuchmann, H.; Schubert, H. Emulsification in High-Pressure Homogenizers. Eng Life Sci **2001**, 1, 151-157.
- [4] Cortés-Muñoz, M.; Chevalier-Lucia, D.; Dumay, E. Characteristics of submicron emulsions prepared by ultra-high pressure homogenisation: Effect of chilled or frozen storage. Food Hydrocolloid 2009, 23, 640-654.
- [5] Fernández-Ávila, C.; Escriu, R.; Trujillo, A.J. Ultra-High Pressure Homogenization enhances physicochemical properties of soy protein isolate-stabilized emulsions. Food Res Int **2015**, 75, 357-366.
- [6] Fernandez-Avila, C.; Trujillo, A.J. Ultra-High Pressure Homogenization improves oxidative stability and interfacial properties of soy protein isolate-stabilized emulsions. Food Chem 2016, 209, 104-113.
- [7] Hebishy, E.; Buffa, M.; Juan, B.; Blasco-Moreno, A.; Trujillo, A.-J. Ultra highpressure homogenized emulsions stabilized by sodium caseinate: Effects of protein concentration and pressure on emulsions structure and stability. LWT - Food Sci Tech 2017, 76, 57-66.
  - [8] Hebishy, E.; Zamora, A.; Buffa, M.; Blasco-Moreno, A.; Trujillo, A.-J. Characterization of Whey Protein Oil-In-Water Emulsions with Different Oil Concentrations Stabilized by Ultra-High Pressure Homogenization. Processes 2017, 5.
- [9] Fernandez-Avila, C.; Trujillo, A.J. Enhanced stability of emulsions treated by UltraHigh Pressure Homogenization for delivering conjugated linoleic acid in Caco-2 cells.
  Food Hydrocolloid 2017, 71, 271-281.

| 2        |            |                                                                                                                                                                                |
|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3        | 458        | [10] Dickinson, E. Milk protein interfacial layers and the relationship to emulsion                                                                                            |
| 4        | 459        | stability and rheology Colloid Surface B <b>2001</b> 20 197-210                                                                                                                |
| 5        | 460        | [11] Dickinson E Caseins in emulsions: interfacial properties and interactions. Int                                                                                            |
| 6<br>7   | 461        | Dairy I 1999 9 305-312                                                                                                                                                         |
| /<br>8   | 462        | [12] Soleimannour M · Koocheki A · Kadkhodaee R Influence of main emulsion                                                                                                     |
| 9        | 463        | components on the physical properties of corn oil in water emulsion: Effect of oil                                                                                             |
| 10       | 467        | volume fraction, where protein concentrate and Lenidium perfection. Effect of on                                                                                               |
| 11       | 404        | Pos Int 2013 50 457 466                                                                                                                                                        |
| 12       | 405        | [12] Eloury L. Degrumouy A. Lardières I. Effect of high programs                                                                                                               |
| 13       | 400        | [15] Floury, J., Destumaux, A., Lardieles, J. Effect of high-pressure                                                                                                          |
| 14       | 40/        | nomogenization on droplet size distributions and mediogical properties of model off-                                                                                           |
| 15       | 468        | in-water emulsions. Innov Food Sci Emerg Technologies 2000, 1, 127-134.                                                                                                        |
| 16       | 469        | [14] San Martin-Gonzalez, M.F.; Roach, A.; Harte, F. Rheological properties of                                                                                                 |
| 17<br>10 | 470        | corn oil emulsions stabilized by commercial micellar casein and high pressure                                                                                                  |
| 10       | 471        | homogenization. LWT - Food Sci Tech 2009, 42, 307-311.                                                                                                                         |
| 20       | 472        | [15] Saeidy, S.; Nasirpour, A.; Djelveh, G.; Ursu, AV.; Delattre, C.; Pierre, G.;                                                                                              |
| 21       | 473        | Michaud, P. Emulsion properties of Asafoetida gum: Effect of oil concentration on                                                                                              |
| 22       | 474        | stability and rheological properties. Colloid Surface A 2019, 560, 114-121.                                                                                                    |
| 23       | 475        | [16] Pearce, K.N.; Kinsella, J.E. Emulsifying properties of proteins: evaluation of a                                                                                          |
| 24       | 476        | turbidimetric technique. J Agric Food Chem <b>1978</b> , 26, 716-723.                                                                                                          |
| 25       | 477        | [17] Cameron, D.R.; Weber, M.E.; Idziak, E.S.; Neufeld, R.J.; Cooper, D.G.                                                                                                     |
| 26       | 478        | Determination of Interfacial Areas in Emulsions Using Turbidimetric and Droplet                                                                                                |
| 27<br>29 | 479        | Size Data: Correction of the Formula for Emulsifying Activity Index. J. Agric. Food                                                                                            |
| 20       | 480        | Chem. 1991, 39, 655–659.                                                                                                                                                       |
| 30       | 481        | [18] Hebishy, E. Application of ultra high-pressure homogenization (UHPH) in the                                                                                               |
| 31       | 482        | production of submicron/nano-oil-in-water emulsions using vegetable oils and milk                                                                                              |
| 32       | 483        | proteins as emulsifiers. Universitat Autonoma de Barcelona 2013, Doctoral degree,                                                                                              |
| 33       | 484        | ISBN 9788449040344, http://hdl.handle.net/10803/126517.                                                                                                                        |
| 34       | 485        | [19] Shantha, N.C.; Decker, E.A. Rapid, sensitive, iron-based spectrophotometric                                                                                               |
| 35       | 486        | methods for determination of peroxide values of food linids J AOAC Int <b>1994</b> 77                                                                                          |
| 36       | 487        | 421-424                                                                                                                                                                        |
| 3/<br>20 | 488        | [20] Mcdonald R E Hultin H O Some Characteristics of the Enzymic Lipid                                                                                                         |
| 20<br>20 | 489        | Peroxidation System in the Microsomal Fraction of Flounder Skeletal Muscle I Food                                                                                              |
| 40       | 490        | Sci 1987 52 15-21                                                                                                                                                              |
| 41       | 490<br>701 | [21] Thiebaud M · Dumay E · Picart I · Guiraud IP · Cheffel IC High                                                                                                            |
| 42       | 491        | prossure homogenization of raw hoving milk Effects on fat globula size distribution                                                                                            |
| 43       | 492        | and microbial inactivation. Int Dairy 1 2003, 13, 427,439                                                                                                                      |
| 44       | 495        | and incloud inactivation. Int Daily $J 2003$ , $I3$ , $427-439$ .                                                                                                              |
| 45       | 494        | [22] Hayes, M.O., Keny, A.L. High pressure homogenisation of faw whole bovine<br>mills (a) offects on fat globula size and other properties. I Dairy Des <b>2003</b> , 70, 207 |
| 46       | 493        | mink (a) effects on fat globule size and other properties. J Dairy Res 2005, 70, 297-                                                                                          |
| 47<br>79 | 496        |                                                                                                                                                                                |
| 40       | 49/        | [23] Desrumaux, A.; Marcand, J. Formation of sunflower off emulsions stabilized                                                                                                |
| 50       | 498        | by whey proteins with high-pressure homogenization (up to 350 MPa): effect of                                                                                                  |
| 51       | 499        | pressure on emulsion characteristics. Int J Food Sci Tech 2002, 37, 263-269.                                                                                                   |
| 52       | 500        | [24] Floury, J.; Desrumaux, A.; Axelos, M.A.V.; Legrand, J. Effect of high                                                                                                     |
| 53       | 501        | pressure homogenisation on methylcellulose as food emulsifier. J Food Eng 2003, 58,                                                                                            |
| 54       | 502        | 227-238.                                                                                                                                                                       |
| 55<br>56 | 503        | [25] McClements, D. J. (2005). Food emulsions: Principles, practices, and                                                                                                      |
| 57       | 504        | techniques, 2 <sup>nd</sup> Ed., CRC Press, Boca Raton, Florida, USA.                                                                                                          |
| 58       |            |                                                                                                                                                                                |
| 59<br>60 |            |                                                                                                                                                                                |
| 00       |            |                                                                                                                                                                                |

| 1<br>2    |            |                                                                                                                                 |
|-----------|------------|---------------------------------------------------------------------------------------------------------------------------------|
| 3         | 505        | [26] Tomas, A.: Paquet, D.: Courthaudon, J.L.: Lorient, D. Effect of Fat and                                                    |
| 4         | 506        | Protein Contents on Droplet Size and Surface Protein Coverage in Dairy Emulsions. J                                             |
| 5         | 507        | Dairy Sci <b>1994</b> , 77, 413-417.                                                                                            |
| 0<br>7    | 508        | [27] Wang, B.: Li, D.: Wang, LJ.: Özkan, N. Effect of concentrated flaxseed                                                     |
| ,<br>8    | 509        | protein on the stability and rheological properties of soybean oil-in-water emulsions. J                                        |
| 9         | 510        | Food Eng <b>2010</b> 96 555-561                                                                                                 |
| 10        | 511        | [28] Sun C · Gunasekaran S Effects of protein concentration and oil-phase                                                       |
| 11        | 512        | volume fraction on the stability and rheology of menhaden oil-in-water emulsions                                                |
| 12        | 512        | stabilized by whey protein isolate with xanthan gum. Food Hydrocolloid <b>2009</b> 23                                           |
| 13        | 514        | 165-174                                                                                                                         |
| 14<br>15  | 515        | [29] Mewis L. Wagner N. J. Thixotropy Adv Colloid Interfac 2009 147-148                                                         |
| 15        | 516        | 214_227                                                                                                                         |
| 17        | 517        | [30] Cha V Xiaojie S Fan W Henan Z Chuting C Vingnan G Meng V                                                                   |
| 18        | 518        | Cuining V Improving the stability of oil-in-water emulsions by using mussel                                                     |
| 19        | 519        | my affibrillar proteins and legithin as emulsifiers and high-pressure homogenization.                                           |
| 20        | 520        | Food Eng. <b>2019</b> , 258: 1-8                                                                                                |
| 21        | 520        | [31] Srinivasan M: Singh H: Munro PA Sodium Caseinate-Stabilized                                                                |
| 22        | 521        | Emulsions: Eactors Affecting Coverage and Composition of Surface Proteins. I Agric                                              |
| 25<br>24  | 522        | Endisions. Tactors Arteening Coverage and Composition of Surface Proteins. J Agric<br>Food Chem <b>1006</b> <i>AI</i> 3207 3211 |
| 25        | 523        | [32] Al Malah K I: Azzam M $\cap$ I: Omari P M Emulsifying properties of PSA                                                    |
| 26        | 524        | in different vogetable oil emulsions using conductivity technique. Food Hydrocolloid                                            |
| 27        | 525        | 2000 14 485 400                                                                                                                 |
| 28        | 520        | [22] Diakingan E: Calding M Phaslagy of Sadium Casainata Stabilized Oil in                                                      |
| 29        | 521        | [55] Dickinson, E., Golding, M. Kneology of Soutum Casemate Stabilized Off-Inf-                                                 |
| 30        | 528<br>520 | Water Emulsions. J Conolu Internac 1997, 191, 100-170.                                                                          |
| 31<br>22  | 529        | [54] Kezvani, E., Schleming, G., Tahenani, A.K. Assessment of physical and                                                      |
| 32        | 521        | surface methodology, LWT - Food Sei Tech 2012, 49, 92, 99                                                                       |
| 34        | 531        | surface methodology. LW1 - Food Sci Tech 2012, 48, 82-88.                                                                       |
| 35        | 532        | [35] Mirnosseini, H.; Tan, C.P.; Hamid, N.S.A.; Yusof, S. Optimization of the                                                   |
| 36        | 535        | contents of Arabic gum, xantnan gum and orange of affecting turbidity, average                                                  |
| 37        | 534        | particle size, polydispersity index and density in orange beverage emulsion. Food                                               |
| 38        | 535        | Hydrocollold 2008, 22, 1212-1223.                                                                                               |
| 39        | 536        | [36] Lee, SH.; Lefevre, T.; Subirade, M.; Paquin, P. Effects of ultra-nign pressure                                             |
| 40<br>//1 | 537        | homogenization on the properties and structure of interfacial protein layer in whey                                             |
| 42        | 538        | protein-stabilized emulsion. Food Chem 2009, 113, 191-195.                                                                      |
| 43        | 539        | [37] Kargar, M.; Spyropoulos, F.; Norton, I.I. The effect of interfacial                                                        |
| 44        | 540        | microstructure on the lipid oxidation stability of oil-in-water emulsions. J Colloid                                            |
| 45        | 541        | Interfac 2011, 357, 527-533.                                                                                                    |
| 46        | 542        | [38] Ponginebbi, L.; Nawar, W.W.; Chinachoti, P. Oxidation of linoleic acid in                                                  |
| 4/        | 543        | emulsions: Effect of substrate, emulsifier, and sugar concentration. J Am Oil Chem                                              |
| 48<br>40  | 544        | Soc 1999, 76, 131.                                                                                                              |
| 50        | 545        | [39] Sims, R. J. Oxidation of fats in food products. Inform <b>1994</b> , 5, 1020-1027.                                         |
| 51        | 546        | [40] Hsieh, Y.P.; Harris, N.D. Oxidation of Ascorbic Acid in Copper-Catalyzed                                                   |
| 52        | 547        | Sucrose Solutions. J Food Sci <b>198</b> 7, 52, 1384-1386.                                                                      |
| 53        | 548        |                                                                                                                                 |
| 54        | 549        |                                                                                                                                 |
| 55        |            |                                                                                                                                 |
| 50<br>57  |            |                                                                                                                                 |
| 58        |            |                                                                                                                                 |
| 59        |            |                                                                                                                                 |
| 60        |            |                                                                                                                                 |

**Table 1**. Mean  $\pm$  SD values of temperature measured before (T1) and at the outlet (T2) of the high-551 pressure valve for emulsions containing different oil concentrations (10, 20 and 30%) treated by ultra 552 high-pressure homogenization at 200 and 300 MPa (Tin = 25°C).

| Oil content (%) | Pressure (MPa)   | <b>T1 (⁰C)</b>       | <mark>T2 (°C)</mark>     |
|-----------------|------------------|----------------------|--------------------------|
| 10              | <mark>200</mark> | $41.00\pm2.29^{ab}$  | $84.31 \pm 3.01^{d}$     |
| 10              | <mark>300</mark> | $43.70 \pm 2.52^{a}$ | $105.5 \pm 3.28^{b}$     |
| 20              | <mark>200</mark> | $42.70\pm0.58^{a}$   | $86.00 \pm 3.00^{d}$     |
|                 | <mark>300</mark> | $40.50\pm5.50^{ab}$  | $107.5 \pm 0.50^{b}$     |
| 30              | 200              | $44.00 \pm 3.60^{a}$ | $93.50 \pm 3.77^{\circ}$ |
| <u>30</u>       | 300              | $47.82 \pm 3.82^{a}$ | $117.2 \pm 5.80^{a}$     |
|                 |                  |                      |                          |

554 Table 2. Mean  $\pm$  SD of particle size distribution indices (d3.2 and d4.3) and specific surface area 555 (SSA, m<sup>2</sup>/ml) of emulsions containing sunflower and olive oils (10, 20 and 30%) and prepared by 556 colloidal mill (CM), conventional homogenization (CH, 15 MPa) and ultra high-pressure 557 homogenization (UHPH) at 200 and 300 MPa with 5% of sodium caseinate.

|                |                    | Particle size distribution |                              |                                         |  |  |  |
|----------------|--------------------|----------------------------|------------------------------|-----------------------------------------|--|--|--|
| Pressure (MPa) | Oil content<br>(%) | d3.2<br>(µm)               | d4.3<br>(μm)                 | Specific surface<br>area<br>SSA (m²/ml) |  |  |  |
|                | 10                 | $6.358\pm0.643^{a}$        | $18.06\pm4.194^{\text{a}}$   | $0.915\pm0.154^{\text{a}}$              |  |  |  |
| СМ             | 20                 | $5.410\pm0.303^{ab}$       | $13.40\pm2.776^{a}$          | $1.117\pm0.068^{\text{a}}$              |  |  |  |
|                | 30                 | $5.232\pm0.417^{b}$        | $12.73\pm2.693^{\mathrm{a}}$ | $1.152\pm0.091^{a}$                     |  |  |  |
| ×              | 10                 | $0.614\pm0.042^{\rm c}$    | $1.315\pm0.234^{\text{b}}$   | $9.841\pm0.617^{a}$                     |  |  |  |
| СН             | 20                 | $0.521\pm0.036^{\rm c}$    | $0.961\pm0.122^{\rm c}$      | $11.56\pm0.825^{b}$                     |  |  |  |
|                | 30                 | $0.547\pm0.106^{\text{c}}$ | $1.076\pm0.104^{\text{b}}$   | $11.40\pm2.376^{b}$                     |  |  |  |
|                | 10                 | $0.110\pm0.007^{\text{d}}$ | $0.131\pm0.009^{\text{d}}$   | $54.91 \pm 3.15^{\circ}$                |  |  |  |
| UHPH (200MPa)  | 20                 | $0.102\pm0.004^{\text{d}}$ | $0.126\pm0.005^{\text{d}}$   | $59.21 \pm 1.80^{\circ}$                |  |  |  |
|                | 30                 | $0.108\pm0.008^{\text{d}}$ | $0.130\pm0.010^{\rm d}$      | $55.70\pm4.060^{\text{c}}$              |  |  |  |
|                | 10                 | $0.093 \pm 0.007^{\rm d}$  | $0.111\pm0.006^{\text{d}}$   | $65.16\pm4.10^{\rm c}$                  |  |  |  |
| UHPH (300MPa)  | 20                 | $0.105\pm0.014^{\rm d}$    | $0.119\pm0.007^{\text{d}}$   | $57.06\pm6.991^{\circ}$                 |  |  |  |
| . ,            | 30                 | $0.103 \pm 0.014^{d}$      | $0.121\pm0.017^{\text{d}}$   | $59.48\pm7.992^{\circ}$                 |  |  |  |

<sup>a-d</sup> Different letters in the same column indicate significant differences (P < 0.05) between treatments.

Table 3. Mean  $\pm$  SD of rheological characteristics (flow and consistency indices), emulsifying activity index (EAI, m<sup>2</sup>/g) and creaming stability (d4,3 values at the top or at the bottom of samples stored at room temperature for 9 days under the same conditions for comparison) of emulsions containing sunflower and olive oils (10, 20 and 30%) and prepared by colloidal mill (CM), conventional homogenization (CH, 15 MPa) and ultra high-pressure homogenization at 200 and 300 MPa with 5% of sodium caseinate.

|                  |                 | Rheological behavior & emulsifying activity |                              |                                             | Emulsions creaming stability after 9 days |                          |          |
|------------------|-----------------|---------------------------------------------|------------------------------|---------------------------------------------|-------------------------------------------|--------------------------|----------|
| Treatment        | Oil content (%) | Consistency coefficient<br>(K, mPa × s)     | Flow behavior<br>index (n)   | Emulsifying activity<br>index<br>(EAI,m²/g) | D4.3 (μm)<br>(TOP)                        | D4.3 (μm)<br>(BOTTOM)    | P value  |
|                  | 10              | $0.005 \pm 0.001^{\mathrm{h}}$              | $0.988\pm0.009^{a}$          | $6.76\pm0.37^{\rm f}$                       |                                           |                          |          |
| СМ               | 20              | $0.012\pm0.001^{\rm g}$                     | $0.986\pm0.025^{\mathrm{a}}$ | $15.50 \pm 4.00^{e}$                        | ND                                        | ND                       | ND       |
|                  | 30              | $0.024 \pm 0.002^{\rm f}$                   | $1.003\pm0.008^{a}$          | $28.20\pm6.18^{cd}$                         |                                           |                          |          |
|                  | 10              | $0.010 \pm 0.002^{\rm g}$                   | $0.858 \pm 0.019^{ab}$       | $55.00\pm4.36^{b}$                          | $1.07\pm0.10^{a}$                         | $0.41\pm0.26^{\rm a}$    | 0.0022** |
| СН               | 20              | $0.044 \pm 0.012^{de}$                      | $0.754\pm0.038^{bc}$         | $133.14 \pm 17.81^{a}$                      | $1.11\pm0.27^{a}$                         | $0.27\pm0.12^{\rm a}$    | 0.0022** |
|                  | 30              | $0.209 \pm 0.104^{\mathrm{C}*}$             | $0.608 \pm 0.068^{\circ}$    | $217.41 \pm 10.00^{a}$                      | $1.14\pm0.23^{a}$                         | $0.38\pm0.19^{\rm a}$    | 0.0022** |
|                  | 10              | $0.005 \pm 0.001^{\rm h}$                   | $0.998\pm0.017^{\mathrm{a}}$ | $8.93 \pm 1.40^{\rm f}$                     | $0.12\pm0.01^{\text{b}}$                  | $0.12\pm0.01^{\text{a}}$ | 0.9654   |
| UHPH<br>(200MDa) | 20              | $0.038\pm0.009^{\text{e}}$                  | $0.885 \pm 0.089^{ab}$       | $26.90 \pm 1.61^{cd}$                       | $0.14\pm0.02^{b}$                         | $0.14\pm0.02^{\rm a}$    | 0.9740   |
| (2001/11/8)      | 30              | $1.937 \pm 0.148^{\mathrm{B}^{*}}$          | $0.339\pm0.052^{\text{d}}$   | $38.76 \pm 4.41^{bc}$                       | $0.12\pm0.01^{\text{b}}$                  | $0.12\pm0.01^{\text{a}}$ | 0.8442   |
|                  | 10              | $0.005 \pm 0.001^{\rm h}$                   | $1.011\pm0.008^{a}$          | $6.49\pm0.98^{\rm f}$                       | $0.10\pm0.01^{\text{b}}$                  | $0.11\pm0.01^{\rm a}$    | 0.3745   |
| UHPH<br>(200MDa) | 20              | $0.049\pm0.009^{\text{d}}$                  | $0.850\pm0.044^{ab}$         | $20.55 \pm 3.47^{de}$                       | $0.12\pm0.02^{\rm b}$                     | $0.12\pm0.02^{\rm a}$    | 0.7338   |
| (SUUMPa)         | 30              | $4.283 \pm 1.022^{\mathrm{A}*}$             | $0.252\pm0.039^{\text{d}}$   | $27.31 \pm 5.42^{cd}$                       | $0.11 \pm 0.01^{b}$                       | $0.11\pm0.01^{a}$        | 0.8593   |

separately from rest of the samples due to the high variation in viscosity.

\*\*Sign and bold font size indicate that the differences between the d4,3 at the top or at the bottom of emulsions are significant (Wilcoxon statistic test P < 0.05) per level of pressure and protein concentration.

\* ND means not determined

 URL: http://mc.manuscriptcentral.com/ijds Email: LDIS-peerreview@journals.tandf.co.uk

572 Table 4. Mean  $\pm$  SD of hydroperoxides (milliequivalents /kg) and TBA reactive substances ( $\mu$ g malondialdehyde/mL) of O/W emulsions 573 containing sunflower and olive oils (10, 20 and 30%) and prepared by colloidal mill (CM), conventional homogenization (CH, 15 MPa) and 574 ultra high-pressure homogenization (UHPH) at 200 and 300 MPa with 5% of sodium caseinate.

|                   | Oil<br>content<br>(%) | Hydroperoxides (Milliequivalents /kg) |                            |                                            | TBARS <mark>(µg Malondialdehyde/mL)</mark> |                              |                                  |
|-------------------|-----------------------|---------------------------------------|----------------------------|--------------------------------------------|--------------------------------------------|------------------------------|----------------------------------|
| Pressure<br>(MPa) |                       | Day 1                                 | Day 10                     | <mark>Diference</mark><br>(Day 10 – Day 1) | Day 1                                      | Day 10                       | Diference<br>(Day 10 – Day<br>1) |
|                   | 10                    | $0.482 \pm 0.297^{a}$                 | $2.322 \pm 0.218^{a}$      | $1.840 \pm 0.079^{a}$                      | $0.217\pm0.054^{a}$                        | $0.239\pm0.055^{\text{a}}$   | $0.022\pm0.017^{\rm c}$          |
| СМ                | 20                    | $0.421 \pm 0.305^{a}$                 | $0.833 \pm 0.417^{b}$      | $0.412 \pm 0.112^{bc}$                     | $0.107\pm0.008^{\text{cd}}$                | $0.146\pm0.008^{bcde}$       | $0.039\pm0.014^{bc}$             |
|                   | 30                    | $0.197 \pm 0.087^{a}$                 | $0.578 \pm 0.112^{bc}$     | $0.381 \pm 0.025^{\rm bc}$                 | $0.155\pm0.010^{abc}$                      | $0.218\pm0.019^{ab}$         | $0.062\pm0.013^{ab}$             |
|                   | 10                    | $0.320 \pm 0.033^{a}$                 | $0.542 \pm 0.189^{bc}$     | $0.222 \pm 0.156^{bc}$                     | $0.174\pm0.006^{abc}$                      | $0.144\pm0.003^{bcde}$       | $-0.030\pm 0.005^{e}$            |
| СН                | 20                    | $0.198 \pm 0.062^{a}$                 | $0.703 \pm 0.077^{b}$      | $0.505 \pm 0.016^{b}$                      | $0.065\pm0.003^{d}$                        | $0.070 \pm 0.002^{e}$        | $0.005\pm0.004^{cde}$            |
|                   | 30                    | $0.603 \pm 0.399^{a}$                 | $0.493 \pm 0.334^{\rm bc}$ | $-0.109 \pm 0.099^{bc}$                    | $0.154\pm0.012^{abc}$                      | $0.172\pm0.008^{abc}$        | $0.017\pm0.008^{cd}$             |
|                   | 10                    | $0.655 \pm 0.514^{a}$                 | $0.248 \pm 0.065^{\rm bc}$ | $-0.406 \pm 0.449^{\circ}$                 | $0.141 \pm 0.005^{bc}$                     | $0.182\pm0.009^{abc}$        | $0.040 \pm 0.012^{bc}$           |
| UHPH<br>200MP9    | 20                    | $0.280 \pm 0.212^{a}$                 | $0.181 \pm 0.037^{\rm bc}$ | $-0.099 \pm 0.175^{bc}$                    | $0.107\pm0.004^{\text{cd}}$                | $0.091\pm0.004^{de}$         | $-0.015\pm0.008^{de}$            |
| 2001v11 a         | 30                    | $0.237 \pm 0.075^{a}$                 | $0.106 \pm 0.073^{\rm bc}$ | $-0.131 \pm 0.013^{bc}$                    | $0.187\pm0.008^{ab}$                       | $0.200\pm0.011^{ab}$         | $0.013\pm0.016^{\text{cd}}$      |
| IIIDII            | 10                    | $0.602 \pm 0.108^{a}$                 | $0.225 \pm 0.099^{\rm bc}$ | $-0.377 \pm 0.062^{bc}$                    | $0.148 \pm 0.008^{abc}$                    | $0.239\pm0.014^{\text{a}}$   | $0.091 \pm 0.020^{a}$            |
|                   | 20                    | $0.032 \pm 0.003^{a}$                 | $0.023 \pm 0.004^{\circ}$  | $-0.008 \pm 0.001^{\rm bc}$                | $0.108 \pm 0.013^{cd}$                     | $0.114\pm0.011^{\text{cde}}$ | $0.005\pm0.013^{cde}$            |
| JUUIVILLA         | 30                    | $0.108 \pm 0.025^{a}$                 | $0.097 \pm 0.031^{\rm bc}$ | $-0.011 \pm 0.040^{bc}$                    | $0.132 \pm 0.011^{bcd}$                    | $0.155\pm0.010^{bcd}$        | $0.023 \pm 0.005^{\circ}$        |
|                   |                       |                                       |                            |                                            |                                            |                              |                                  |

a-h Different letters in the same column indicate significant differences (P < 0.05) between treatments.



#### Figure 1.

Droplet size distribution curves measured by light scattering of O/W emulsions containing 5% of sodium caseinate and sunflower and olive oils at (a) 10, (b) 20 and (c) 30%, and prepared by colloidal mill (CM), conventional homogenization (15 MPa) and ultra high-pressure homogenization at 200 and 300 MPa.



**(B)** 



URL: http://mc.manuscriptcentral.com/ijds Email: LDIS-peerreview@journals.tandf.co.uk

# Figure 2.

(A) TEM images of O/W emulsions containing sunflower and olive oils at 10% (A,C) and 30% (B,D) and prepared by (A,B; ×4000 and ×50000, respectively) colloidal mill (CM), and by (C,D; ×100000) conventional homogenization (15 MPa) with 5% of sodium caseinate. Arrows indicate the coalescence between droplets in image (A) and difference in the protein amounts on the interface of oil droplets in images (B, C and D).

(B) TEM images (×50000) of O/W emulsions containing sunflower and olive oils (10, 20 and 30%) and 5% of sodium caseinate, prepared by (A-C) conventional homogenization (15 MPa) and (D-I) by ultra high-pressure homogenization at 200 MPa (D-F) and 300 MPa (G-I). Arrows indicate flocculation and coalescence between oil droplets.

for peer Review Only





#### Figure 3.

Confocal laser scanning microscope images of O/W emulsions containing sunflower and olive oils (10, 20 and 30%) and 5% of sodium caseinate, and prepared by (A-C) colloidal mill (CM) and (D-F) conventional homogenization (15 MPa).



**Figure 4.** Changes in backscattering profiles of O/W emulsions containing sunflower and olive oils (10 and 30%) and 5% of sodium caseinate and prepared by (A,B) colloidal mill (CM), conventional homogenization (15 MPa) (C,D), and by ultra high-pressure homogenization (UHPH) at 200 (E,F), as a function of sample height with storage time (5 h for CM emulsions and 18 days for both CH and UHPH emulsions).

