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1 Impact of Oil Phase Concentration on Physical and Oxidative Stability of 

2 Oil-In-Water Emulsions Stabilized by Sodium Caseinate and Ultra-High 

3 Pressure Homogenization 

4 ABSTRACT 

5 In the present study, oil-in-water emulsions were formulated using 5.0% (w/v) of 

6 sodium caseinate (SC) and different oil concentrations (10-30 %, v/v) by conventional 

7 homogenization (CH) and ultra-high pressure homogenization (UHPH, 200-300 MPa). 

8 The effect of oil concentration and pressure of treatment on emulsions characteristics 

9 and stability was studied. Emulsions were characterized assessing their microstructure, 

10 droplet size distribution, rheological properties, emulsifying activity index, creaming 

11 stability by Turbiscan®, and photo-oxidation. UHPH emulsions, especially those 

12 treated at 200 MPa, showed smaller droplet size and greater physical stability than CH 

13 emulsions. In addition, emulsions containing higher oil volume fractions (20 and 30%) 

14 exhibited greater physical and oxidative stability. UHPH emulsions treated at 200 MPa 

15 and containing 20% oil content were the most stable emulsions against physical 

16 separation and photo-oxidation. These results show that UHPH is a potential 

17 technology to enhance the physical and oxidative stability of emulsions containing 

18 sodium caseinate as emulsifier for several applications.

19 Keywords: Submicron emulsions, ultra-high pressure homogenization, conventional 

20 homogenization, sodium caseinate, oil concentration.

21
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22 1. Introduction

23 Emulsions form part of most commercial food products, including simple (e.g., milk) and 

24 sophisticated (e.g., mayonnaise) food systems. An emulsion is a mix of two non-miscible 

25 phases, which can be mixed by reducing droplet size using a proper emulsifier with the aid of 

26 a mechanical treatment such as homogenization. 

27 In the last decade, there is a high interest in using emulsion-based systems for the delivery 

28 of bioactive compounds. Emulsions with large droplet size (i.e. conventional emulsions; 

29 >1 μm) have poor physical and oxidative stability when compared to submicron/nano 

30 emulsions [1]. Gravitational forces can be reduced when emulsion droplet size decreases, 

31 preventing flocculation, creaming or sedimentation [2].  

32 The formation of sub-micron emulsions requires high-energy inputs. Current equipment 

33 used for emulsion preparation includes microfluidizers, sonicators or (ultra) high-pressure 

34 homogenizers [3] and conventional homogenizers [1]. Ultra-High Pressure 

35 Homogenization (UHPH) is a powerful technology that has been used to produce nano 

36 stable emulsions (< 1 µm) [1, 4-8]. In previous studies carried out in our laboratory [1, 6-

37 8] using dairy proteins ingredients (sodium caseinate and whey protein isolate) and soy 

38 proteins, UHPH was capable of producing submicron emulsions with an improved 

39 physical and oxidative stability. Fernandez-Avila and Trujillo [9] applied UHPH (200 

40 MPa) to obtain submicron emulsions enriched in conjugated linoleic acid (CLA, 6%, v/v) 

41 and stabilized by soy protein isolates (4%, w/v) to be incorporated into UHT milk. The 

42 authors reported that UHPH produced emulsions with low droplet size, high physical and 

43 oxidative stability during months and enhanced CLA delivery.

44 Subsequent to homogenization, the oil and water phases tend to separate. Proteins, when 

45 used as emulsifiers in the emulsion preparation, are adsorbed to the interface between oil 
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46 and water during homogenization, which reduces the interfacial tension between oil and 

47 water phases and prevents coalescence [10]. Proteins also play an important role as 

48 inhibitors of lipid oxidation [2]. Sodium caseinate (SC), a milk protein product, can 

49 protect oil droplets against coalescence through electrostatic and steric repulsion [11]. 

50 The choice of the oil concentration to be used in the emulsion formulation is critical as it 

51 has an eminent effect on emulsion structure and stability [12]. Different authors [4, 13, 

52 14] studied physical stability of concentrated emulsions produced by UHPH. However, to 

53 the best of our knowledge, the effect of different oil concentrations on oxidative stability 

54 of emulsions prepared by UHPH and milk proteins has been only reported in a recently 

55 published work using whey protein isolate [8]. 

56 In a previous research [7], UHPH emulsions, in comparison to conventional 

57 homogenization, were screened (100-300 MPa) using SC at different protein levels (1 - 

58 5%, w/v) using a mixture of sunflower and olive oils (20%, v/v). It was concluded that 

59 UHPH treatment (200 and 300 MPa) was capable of producing sodium caseinate (5%, 

60 w/v) emulsions with improved physical and oxidative stability. The objective of the 

61 present study is to characterize UHPH emulsions with different oil concentrations (10, 20 

62 and 30%) emulsified by sodium caseinate (5%), in comparison to colloid mill and 

63 conventional homogenization. 

64 Materials and Methods

65 Materials

66 Sodium caseinate was obtained from Zeus Quimica (Sodium Caseinate 110, Barcelona, 

67 Spain). The physico-chemical characteristics, as indicated by the producer were: moisture = 

68 5.73%; granulometry (% < 300 mm) = 99.99; pH = 6.7; sediment at 70 °C (%) = 0.05; 
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69 minerals = 3.52%; MAT (N x 6.38) = 90%; fat = 1 %; density = 0.42. Refined sunflower and 

70 olive oils were purchased from Gustav Heess Company (Barcelona, Spain). The 

71 characteristics and composition of oils according to the producer are detailed in Hebishy et al. 

72 [8].

73 Preparation of Emulsions

74 Experimental Design

75 The effect of homogenization methods, pressure, and oil content on emulsion stability was 

76 studied using a completely randomized factorial design. Twelve formulations were produced 

77 and stored in glass bottles (4 °C) for physical analyses Oxidative stability was examined 

78 during 10-days storage period at 10 °C in samples stored under light (2000 lux/m2).

79 Preparation of Protein Dispersions

80 Protein dispersions (5%, w/v; pH ≈ 6.5-7) were prepared in deionized water at 20 °C using a 

81 pilot-scale high speed (250 rpm) mechanical blender (Frigomat, Guardamiglio, Italy). The 

82 solutions were then placed at 4°C overnight to facilitate rehydration and equilibration of 

83 minerals. 

84 Homogenization Treatments

85 After overnight rehydration, protein dispersions were equilibrated at 20 °C and mixed with 

86 the oil phase; sunflower and olive oil (3:1). Pre-emulsion (CM emulsion) was formed by 

87 mixing protein dispersion with oil using a colloid mill high-shear system (E. Bachiller B, 

88 S.A, Barcelona, Spain) during 5 min (5000 rpm). 

89 CM emulsions were homogenized using APV Rannie Copenhagen Series Conventional 

90 Homogenizer (Model 40.120 H, single-stage hydraulic valve assembly, Copenhagen, 
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91 Denmark) at 15 MPa (CH emulsions).

92 UHPH emulsions were formed by passing CM emulsions through a Stansted high-pressure 

93 homogenizer with a flow rate of 120 L/h (Model/DRG number FPG 11,300:400 Hygienic 

94 Homogenizer, Stansted Fluid Power Ltd., Harlow, UK). Emulsions were cooled immediately 

95 after the HP-valve using two spiral-type heat exchangers (Garvía, Barcelona, Spain) in order 

96 to minimize temperature retention. Emulsions were UHPH-treated for single-stage at two 

97 different pressures (200 and 300 MPa) with an inlet temperature (Tin) of 25 °C. The inlet and 

98 outlet temperatures were monitored for the whole duration of the experiment.

99 The experiment was repeated three times.

100 Emulsion Measurements and Analyses

101 Droplet Size Distribution

102 Emulsions droplet size distribution was measured the same day of preparation, as described 

103 by Hebishy et al. [1] using a Beckman Coulter laser diffraction particle size analyser (LS 13 

104 320 series, Beckman Coulter, Fullerton, CA, USA) by applying an optical model according to 

105 the Mie theory of light scattering. Emulsions were diluted in distilled water to get an 

106 appropriate obscuration. Samples were analysed at least four times and droplet size indices 

107 (d4.3 and d3.2, μm) and specific surface area (SSA, m2/mL) were determined. 

108 Rheological Measurements

109 Rheological measurements were performed in triplicate using a controlled stress rheometer 

110 (Haake Rheo Stress 1, Thermo Electron Corporation, Karlsruhe, Germany) with a parallel 

111 plate geometry [15] probe (1°, 60 mm diameter) at 25 °C. Before starting the experiment, the 

112 emulsion loaded to the rheometer was allowed to stand for 5 min in order to reach 
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113 equilibrium and to avoid any structure destruction. Ostwald de Waele rheological model: τ = 

114 K·γn was used to fit the flow curves, and the consistency coefficient (K, mPa × s) and flow 

115 behaviour index (n) were obtained.

116 Emulsifying properties

117 Emulsifying activity index (EAI) value was determined based on the method of Pearce and 

118 Kinsella. [16] with a minor modification. Briefly, aliquots (100 µl) of samples were diluted 

119 by 0.1% (w/v) SDS solution to give appropriate absorbance after which the absorbance was 

120 measured using a UV-visible spectrophotometer (CECIL model 9000 series, Cambridge, UK) 

121 at 500 nm. EAI value was calculated from the equation (Eq. 1) below as proposed by 

122 Cameron et al. [17].

123 2 × 2.303 × A × DF

124                         EAI (m2/g) =      Eq. (1)

125 C × Ø × (1–θ) × 1000

126 where (DF) is the dilution factor (i.e. 250 times for CM emulsions and 2500 times for CH and 

127 UHPH emulsions), (A) is the spectorophotometric absorbance at 500 nm, (C) is the weight of 

128 protein per unit volume of aqueous phase before emulsion is formed (g/ml), (θ) is the oil 

129 volume fraction (0.1, 0.2 and 0.3 for 10, 20 and 30% oil, respectively), and (Ø) is the optical 

130 path (0.01m). Measurements were performed in triplicate after the same day of preparation.

131 Physical Stability

132 Emulsion stability was measured with a vertical scan analyser Turbiscan MA 2000 

133 (Formulaction, Toulouse, France) with an electro-luminescent diode in the near infrared (λair 

134 = 850 nm), as reported by Hebishy et al. [1]. Turbiscan is a powerful technique that allows 

135 the optical characterization of dispersions, detecting variations in droplet size (i.e., 
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136 flocculation, coalescence) or migration phenomena (i.e., creaming, sedimentation). Turbiscan 

137 measures the backscattered light at pre-set intervals (30 min for CM emulsions, 3 days for 

138 CH and UHPH emulsions) during the experiment (5 h for CM emulsions and 18 days for CH 

139 and UHPH emulsions). In order to follow the creaming kinetics, migration velocity (V; 

140 μm/min) was also calculated by Turbisoft software.

141 Creaming stability was also determined by measuring droplet size (d4.3) at the top or at the 

142 bottom of the emulsions stored for 9 days at room temperature, as reported by Hebishy [18]. 

143 Emulsion Microstructure

144 Microstructure of emulsions was performed using confocal laser scanning microscopy, as 

145 detailed by Hebishy [18]. The oil and protein were fluorescently stained with the fluorescent 

146 dyes, fluorescein isothiocyanate (FITC; Fluka, Steinheim, Germany) for protein, and Nile red 

147 (Sigma, Steinheim, Germany) for oil droplets. To assess changes in emulsion microstructure, 

148 micrographs were also obtained by using a transmission electron microscope with a Jeol 1400 

149 (Jeol Ltd., Tokyo, Japan) equipped with a Gatan Ultrascan ES1000 CCD Camera, preparing 

150 samples according to Hebishy et al. [1].

151 Oxidative Stability of Emulsions

152 For the determination of primary oxidation products, lipid hydroperoxides were measured by 

153 mixing 0.3 mL of emulsion with 1.5 mL of isooctane/2-propanol (3:1, v/v) by vortexing (10 

154 s, three times) and isolating the organic solvent phase by centrifugation at 1000× g for 2 min. 

155 The organic solvent phase (200 μL) was added to 2.8 mL of methanol/1-butanol (2:1, v/v), 

156 followed by 15 μL of 3.97 M ammonium thiocyanate and 15 μL of ferrous iron solution 

157 (prepared by mixing 0.132 M BaCl2 and 0.144 M FeSO4). The absorbance of the solution was 

158 measured at 510 nm, 20 min after the addition of the iron [19]. The hydroperoxide 
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159 concentration was determined using a Fe+3 standard curve with an iron concentration varying 

160 from 1 to 20 μg, as described by Shantha and Decker [19]. The peroxide value, expressed as 

161 milliequivalents of peroxide per kilogram of oil, was calculated using Eq. (2).

162    (As-Ab) × m

163                 Peroxide Value (PV) =          Eq. (2)

164     55.84 × m0 × 2

165 where As = absorbance of the sample, Ab = absorbance of the blank, m = slope of the 

166 calibration curve, m0 = mass (g) of the oil contained in mass of the emulsion used, 

167 55.84 = atomic weight of iron. The result was divided by a factor of 2 to express the peroxide 

168 value as milliequivalents of peroxide instead of milliequivalents of oxygen.

169 For the determination of secondary oxidation products, thiobarbituric acid-reactive 

170 substances (TBARS) were determined according to an adapted method of McDonald and 

171 Hultin [20]. The emulsion (1.0 mL) was combined with 2.0 mL of TBA solution (prepared by 

172 mixing 15 g of trichloroacetic acid, 0.375 g of thiobarbituric acid, 1.76 mL of 12 N HCl, 0.1 

173 g of butylated hydroxy Toluene (BHT) and 82.8 mL of H2O) in test tubes and placed in a 

174 boiling water bath for 15 min. The tubes were allowed to cool to room temperature for 10 

175 min, and then, the coloured solution was separated by filtration through glass wool. The 

176 absorbance was measured at 532 nm. Concentrations of TBARS were calculated from a 

177 standard curve prepared using 1,1,3,3-tetraethoxypropane and presented as (µg 

178 malondialdehyde/mL).

179 Statistical Analyses

180 Statistical analyses were performed using SAS System® v9.2 (SAS Institute Inc., Cary, NC, 

181 USA) at 5% (p ˂ 0.05) significance level and multiple comparisons of means using Tukey 

182 test. A general linear model with repeated measures was performed to compare between 

Page 8 of 31

URL: http://mc.manuscriptcentral.com/ijds  Email: LDIS-peerreview@journals.tandf.co.uk

Journal of Dispersion Science and Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://www.sciencedirect.com/science/article/pii/S0260877412000362#b0165
https://www.sciencedirect.com/science/article/pii/S0260877412000362#e0025


For Peer Review Only

9

183 samples. The rheological consistency coefficient (K value) was compared separately for the 

184 CH and UHPH treatments containing 30% oil content, due to the high variation in viscosity 

185 between CH and UHPH emulsions comparing to other treatments, which made it hard to 

186 detect statistical differences. A second comparison was needed for K value excluding the CH 

187 and UHPH treatments containing 30% oil content. Due to the high variation of data, d3.2, 

188 d4.3 and SSA values were compared only between CH and UHPH emulsions, excluding CM 

189 emulsions. However, emulsifying activity index (EAI), hydroperoxides and TBARS values 

190 were compared between the CM, CH and UHPH emulsions.

191 Results and Discussion

192 Temperature elevation during UHPH treatment

193 Temperatures of emulsions were monitored before (T1) and at the outlet (T2) of the high-

194 pressure valve (Table 1). Very little and non-significant variations in temperature (T1) were 

195 noticed. On the other hand, results showed an increase in temperature (T2) of emulsions with 

196 different oil concentrations (10, 20 and 30%) by the rate of 21.19, 21.5 and 23.7 °C per 100 

197 MPa (as pressure increased from 200 to 300 MPa). Similar increase (12-18 °C per 100 MPa) 

198 has been reported by previous studies [21-24] in high-pressure homogenized emulsions. This 

199 increase in the temperature could be due to the high velocity, shear, turbulence and cavitation 

200 forces at which the fluid exits the HP-valve, which may be turned into heat.

201 A marked increase in temperature (T2) was shown when the oil concentration increased. T2 

202 increased by 0.459 and 0.585 °C per 1% oil content for emulsions treated at 200 and 300 

203 MPa, respectively. However, this increase was only significant when oil concentration 

204 increased to 30% and not to 20% (P < 0.05). Hayes and Kelly [22] reported that milk (0-10% 

205 fat) outlet temperature increased (0.5 °C / 1% fat) as milk fat content increased in samples 
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206 homogenized at 150 MPa. This could be a direct result of viscous dissipation or the increased 

207 number of oil droplets, which increases collision between droplets. Another explanation 

208 could be the high fluid compression in the intensifier during the pressure built up as the oil 

209 content increased from 10 to 30%. This is due to higher heat of compression for oil 

210 comparing to water [4]. 

211 Droplet size distribution

212 Table 2 and Figure 1 (A-C) show the mean droplet sizes (d3.2 and d4.3) and specific surface 

213 area (SSA, m2/ml) of SC emulsions containing different oil contents.

214 CM treatment resulted in emulsions with largest droplet size (average of d4.3 value ~ 15 µm) 

215 comparing with CH and UHPH treatments (average of d4.3 value ~ 1.12 and 0.123 µm, 

216 respectively). In CM emulsions, droplets tend to coalesce after homogenization (Fig. 2 A 

217 (A)), as a result of high droplet sizes obtained in this type of equipment, as the energy input is 

218 not as high as pressure homogenizers (the more the energy input, the more the interfacial area 

219 that can be created) [3]. Droplets with larger sizes would cream more rapidly, coming close 

220 to each other in the cream layer, thereby promoting membranes disruption [25]. Low protein 

221 coverage (Fig. 2 A (B)) and high interfacial tension could be another reason for the high 

222 coalescence rate in CM emulsions. Droplet size (d3.2) of CM emulsions has been influenced 

223 by varying the oil content, as can be seen in Table 1. 

224 CH emulsions containing 10% oil showed larger droplet size which was significantly 

225 decreased when oil concentration increased to 20% after which the decrease was not 

226 significant. Droplet size distribution curves (Fig. 1 A-C) show that CH emulsions with 10% 

227 oil had a bimodal distribution with a first population of droplets at ~ 0.5 µm and a second 

228 population of droplets at ~ 2 µm. On the other hand, in emulsions containing 30% oil, the 
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229 first and second population of droplets were decreased to ~ 0.1 and 1 µm, respectively. 

230 CLSM images (Fig. 3 (D-F)) have shown a high degree of flocculation in all CH emulsions. 

231 This could be attributed to poor protein coverage in these emulsions [26]. These results are 

232 not in agreement with other research studies that had been done in our lab under the same 

233 conditions of pressure levels and oil concentrations, but using isolates of whey and soy 

234 proteins [5, 8] at a lower protein concentration (4%, w/v). This increment in biopolymer 

235 concentration in the aqueous phase to 5% (w/v) in the present study might have promoted 

236 depletion flocculation where droplet aggregation is promoted by the non-adsorbed protein 

237 remaining in the aqueous phase. 

238 UHPH emulsions slightly showed signs of flocculation and coalescence (Fig. 2 B (D-I)), 

239 which was more pronounced in emulsions containing 10% oil, which may explain the high 

240 creaming rate observed in these emulsions (Physical Stability section). 

241 Rheological behavior

242 Rheological behavior of emulsions (consistency coefficient (K) value and the flow behavior 

243 index (n)) is presented in Table 3.

244 CM emulsions showed low viscosities and Newtonian flow behavior due to low interaction 

245 between droplets. Increasing the oil concentration from 10 to 20 and 30% had a significant 

246 effect on viscosity of CM emulsions. 

247 CH emulsions exhibited a shear thinning behavior (viscosity decreases on shearing during the 

248 test due to deformation and breakdown of aggregates) with a flow behavior index below 1 

249 which was accompanied by a significant increment in viscosity with increased oil 

250 concentration from 10 to 30%. Although no change was observed in the flow behavior index 

251 when the oil concentration increased from 10 to 20%, this change became significant when 
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252 the oil concentration further increased to 30%. Increasing oil concentration increased 

253 emulsion viscosity as previously reported [27, 28]. Mewis and Wagner [29] attributed this 

254 viscosity increase to the strong inter-droplet interactions.

255 Applying UHPH homogenization pressures (200 and 300 MPa) at 10 and 20% oil 

256 concentration resulted in emulsions with similar viscosities to the CH emulsions, however 

257 viscosity increased dramatically when the same pressure was applied to emulsions containing 

258 30% oil with a complete change of the behavior to shear thinning. Floury et al. [13] reported 

259 a change in flow behavior of UHPH emulsions (1.5% whey protein) from highly fluid to 

260 highly thick with varying oil volume fractions (10-50%). Similar trend was found in our 

261 recent published work [8] using whey protein isolate to produce emulsions with oil 

262 concentrations between 10-50% (v/v) under homogenization pressures (100-200 MPa). It was 

263 reported that viscosity had increased and flow behavior changed from Newtonian to shear-

264 thinning when oil content increased from 10 to 50% in emulsions treated at 200 MPa. This 

265 increase in viscosity was more pronounced in emulsions containing 50% oil than those 

266 containing 30% oil. What distinguishes the latterly mentioned study using whey proteins 

267 from the present study is that it was not possible to produce SC emulsions containing 50% 

268 oil, as the emulsions completely gelled giving a mayonnaise-like structure (data not shown). 

269 Considerable increase in viscosity and change in flow behavior has been also reported in 

270 emulsions produced by the UHPH technology [4] using 4% whey protein isolate and 15-45% 

271 oil content and [14] using micellar casein at 2-3.5% and oil content of 10-30%. 

272 Emulsifying activity index (EAI)

273 Emulsifying property refers to the stable interface area per unit weight of protein, which 

274 represents the capability of proteins to adsorb at the oil-water interface. CM emulsions 

275 presented low EAI values. Applying low-pressure (CH treatment) increased significantly the 
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276 EAI; however, applying ultra high-pressures (200 and 300 MPa) resulted in lower EAI values 

277 (Table 3). Fernández-Ávila and Trujillo [6] also reported higher EAI values for emulsions 

278 treated by CH than UHPH treatment, which was attributed to the increase in surface area 

279 created during emulsification per unit mass in UHPH emulsions.

280 In our previous study [8] under the same conditions of CM, CH and UHPH but using whey 

281 protein isolate as emulsifier, it was reported that protein load (mg/m2) on the surface of the 

282 oil droplets was lower than CM and CH emulsions. However, the authors reported that when 

283 taking into account the SSA of droplets, which was significantly higher for UHPH compared 

284 with both CM and CH. The amount of surface protein per volume (millilitre) was much 

285 higher in UHPH emulsions (41 and 53.51 mg/mL at 100 and 200 MPa, respectively) than in 

286 CM and CH emulsions (23.30 and 25.80 mg/mL, respectively). This was attributed to the 

287 increased spreading and rearrangement of adsorbed protein molecules at the interface. What 

288 can be concluded is that, taking into consideration the SSA, UHPH treatment improved the 

289 emulsifying activity of SC. 

290 Cha et al. [30] reported an increase in the EAI in emulsions produced using 

291 myofibrillar proteins and lecithin as emulsifiers and high pressure homogenization at 

292 pressures ranging between 40 and 120 MPa, using emulsions produced by ultraturrax as a 

293 control. The elevated EAI was attributed by the authors to exposed hydrophobic groups, 

294 which enhanced the interactions between proteins and lipids and increased solubility which 

295 promoted proteins to diffuse at oil–water interface, thus improving the emulsifying 

296 properties.

297 CH emulsions presented higher EAI with an increase being significant when the oil 

298 concentration increased from 10 to 20% however; this increase was not statistically 

299 significant when oil concentration further increased to 30%. The EAI results correlated with 
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300 the droplet size and SSA results, presenting same trend. The EAI results were also in line 

301 with the TEM (Fig. 2 A) images. In this sense, the emulsions containing 10% oil presented a 

302 poor surface coverage (Fig. 2 A (C)), while emulsions with 30% oil presented oil droplets 

303 with high surface protein covering the droplets (Fig. 2 A (D)).  

304 Table 3 shows a significant increase in EAI value in UHPH emulsions with increasing the oil 

305 concentration from 10 to 20% oil (P <0.05). Fernández-Ávila and Trujillo [6] also reported 

306 similar results when oil content increased from 10 to 20% in UHPH emulsions stabilized by 

307 soy proteins. However, in our study, no further significant effect on the EAI was observed 

308 when oil concentration increased to 30%. This may indicate that the amount of SC started to 

309 become limited to cover the newly created O/W interface. Increasing the oil concentration, 

310 with a fixed protein amount, reduces the protein at the interface, thus suggesting the 

311 spreading of protein at an interface to form a thinner layer [31]. A similar trend was observed 

312 in emulsions stabilized by bovine serum albumin [32] when the oil volume fraction increased 

313 from 25 to 56%.  

314 Physical stability of emulsions

315 Figure 4 (A–F) shows the backscattering (BS) profiles for all emulsions containing 5% of SC 

316 prepared with CM, CH and UHPH at 200 MPa. UHPH emulsions have shown longer stability 

317 (Fig. 4 E,F) as compared to CM (Fig. 4 A,B) and CH emulsions (Fig. 4 C,D). For instance, 

318 the same extent of creaming appears about 17 days after UHPH treatment at 200 MPa vs. 2 

319 days after conventional homogenization (CH) and 5 hours after colloid mill (CM). 

320 Backscattering results have shown a drop of BS at the bottom of all samples, due to 

321 clarification of the mixture in the following order: CM > CH > UHPH emulsions. On the 

322 other hand, there was an increase in BS at the top of samples, associated to creaming (particle 

323 migration) with a creaming rate in the following order: CM > CH > UHPH emulsions.
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324 Physical stability was also assessed in the emulsions, measuring the d4.3 value at the top or at 

325 the bottom of the emulsion tubes stored at room temperature for 9 days and under the same 

326 conditions for comparison. Physical stability was determined in the homogenized emulsions 

327 (conventional and UHPH), but not in the CM emulsions where oily or creamy phases were 

328 clearly separated from the aqueous phases 2 hours after preparation. 

329 CM emulsions containing the lowest oil concentration (10%) showed the highest creaming 

330 rate (Fig. 4 A). However, increasing the oil concentration improved creaming stability (Fig. 4 

331 B). The explanation for this low creaming stability of CM emulsions containing 10% oil 

332 could be the large droplet size (Table 2) and the high probability of coalescence, as discussed 

333 before in the Particle Size Distribution section.

334 CH emulsions had higher creaming stability than CM emulsions; however, they were not as 

335 stable as UHPH emulsions (Table 3 and Fig. 4 C-F). Oil-phase concentration played an 

336 important role in the creaming stability of CH emulsions (higher oil concentration slowed 

337 down the creaming rate). Even d4.3 value obtained at the top or the bottom of the CH 

338 emulsions (Table 3) showed significant differences after 9 days of storage during 9 days, 

339 regardless of the oil concentration, Figure (4 D) shows clearly the slow change of 

340 backscattering in CH emulsions containing 30% oil in comparison to their counterpart of 

341 emulsions containing 10% oil (Fig. 4 C). This could be due to the increase in packing fraction 

342 of oil droplets [33], which enhanced emulsion viscosity and lowered the creaming rate. High 

343 creaming stability with increasing oil content was also reported in CH emulsions stabilized 

344 by whey protein isolate [8] when oil content increased from 10 to 30 and 50%, and in non-

345 heated soy protein isolate (SPI) [5] when soybean oil content increased from 10 to 20%, 

346 owing to high consistency. The later study reported that these emulsions also exhibited 

347 greater thickness of SPI at the droplets surface and the absence of clusters of protein 
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348 aggregates. Higher oil content results in multiplied number of droplets [34], improving the 

349 resistance of emulsions to flow, and increasing the apparent viscosity [35]. 

350 UHPH emulsions displayed better creaming stability; the emulsions remained turbid with no 

351 visual separation during 18 days (Fig. 4 E,F) comparing to CM (Fig. 4 A,B) and CH (Fig. 4 

352 C,D) emulsions. High-pressure homogenization reduces droplet size resulting in emulsions 

353 that are, according to Stokes law, higher stable towards creaming [36]. On the other hand, 

354 smaller size and the rigid interfacial layers, as a result strong interactions between adsorbed 

355 proteins at the interface due to the unfolding and exposure of hydrophobic sites of proteins, 

356 increase emulsion density, embedding droplets migration. San Martín-González et al. [14] 

357 observed that high-pressure homogenization (300 MPa), regardless of oil and casein 

358 concentration, reduced creaming index to zero during 10 days of storage. The authors 

359 attributed this high stability to increased availability of caseins due to extensive disruption.

360 Although the changes in d4.3 value between top and bottom of emulsions with 10% oil 

361 showed no significant differences, Turbiscan was able to detect such slight creaming in 

362 emulsions with 10% oil (Fig. 4 E) comparing to no creaming in those containing 30% oil 

363 (Fig. 4 F). This may be attributed to large droplet size in these emulsions due the flocculation 

364 or coalescence observed, as explained in the Droplet Size Distribution section. These results 

365 are in line with what was reported in a previous study [5], UHPH emulsions showed no 

366 creaming after more than 5 months of cold storage. 

367 Oxidative stability   

368 Table 4 shows the hydroperoxide and TBARS (µg malondialdehyde/mL) contents of CM, 

369 CH and UHPH emulsions stabilized by SC using different oil concentrations.

370 CM emulsions presented generally higher hydroperoxides and TBARS values than other 
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371 emulsions especially those containing 10% and 30% oil content. There were no significant 

372 differences for hydroperoxides at day 1 between CM, CH and UHPH emulsions. The high 

373 hydroperoxide and TBARS indicates the progression to a secondary state of oxidation in 

374 these emulsions. This high sensitivity of CM emulsions to oxidation may be attributed to 

375 exposure of oil droplets to the oxidation factors due to poor protein coverage at the interface 

376 and the high coalescence rate between oil droplets (Fig. 2 A (A)). Similar trend was also 

377 observed in our previous study [8] using whey protein isolate. Oil concentration significantly 

378 affected the oxidative stability of CM emulsions. As can be seen from Table 4, all emulsions 

379 presented similar level of hydroperoxides and TBARS contents at day 1 of storage, except for 

380 significant amount in emulsions containing 10% oil. As the storage time progressed to 10 

381 days, emulsions containing 10% oil presented the highest hydroperoxide content. Emulsions 

382 containing 20% oil showed the lowest amount of TBARS after 10 days, contrary to 

383 emulsions containing 10 and 30 %.

384 CH emulsions containing 10 and 20% oil presented lower amount of hydroperoxides which 

385 has significantly increased after 10 days of storage, being higher in hydroperoxides in 

386 emulsions containing 20% oil. On the other hand, the TBARS content has been decreased or 

387 maintained the same in these samples after 10 days of storage with no significant differences 

388 (day 10 – day 1). No significant changes were found in hydroperoxide content of CH 

389 emulsions at first or last day of storage. There was an increase in TBARS levels in emulsions 

390 containing 30% oil, unlike emulsions containing 10 and 20% oil, being significant when 

391 comparing to emulsions with 10% oil. Therefore, it can be concluded that increasing the oil 

392 content in CH emulsion systems more than 20% oil may facilitate lipid oxidation and bring it 

393 from primary to secondary oxidation. 

394 UHPH emulsions showed no differences in hydroperoxides neither at first nor last day of 
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395 storage. Lower oxidative stability was observed in emulsions containing 10% oil; however, 

396 UHPH emulsions (20% oil) showed the best oxidative stability; the increase in TBARS 

397 content was not significant after 10 days of storage, it had even decreased significantly in 

398 emulsions containing 20% oil and treated at 200 MPa. This may indicate the sensitivity of 

399 emulsions containing 10% oil to oxidation. Results obtained by Fernández Ávila and Trujillo 

400 [6] indicated more protein coverage at the interface of CH and UHPH emulsions stabilized 

401 with non-heated SPI containing 20% (v/v) oil than those containing 10% (v/v) oil. The 

402 possible reasons for the high oxidation rate in emulsions with low oil content (10%), 

403 especially those treated at 300 MPa, could be the following: 1) the creaming observed in 

404 these emulsions, which makes the lipids closer to the ambient and favors oxidation [28]; 2) 

405 the increase in the amount of free radicals as a reason of the proportional increase in the 

406 aqueous phase fraction, as well as the water soluble prooxidants [37]; 3) the low viscosity of 

407 these emulsions, in comparison to emulsions with high oil content (30%). It has been 

408 proposed that elevated viscosity can affect oxidation by reducing the diffusion of potential 

409 pro-oxidative molecules, such as ferrous ions or lipid hydroperoxides [38-40]. 

410 Improved oxidative stability was found by other researchers when oil volume fraction 

411 increased from 10 to 20% [5, 6] 5 to 40% [28], or from 5 to 30% [37]. In a recent study [8], 

412 we reported that increasing the oil content in UHPH emulsions stabilized by whey proteins 

413 from 10 to 30% oil resulted in improved oxidative stability, which is in line with what has 

414 been found in the present study. However, additional increase in oil concentration to 50% 

415 caused poor emulsion stability to oxidation. 

416 Conclusion

417 Ultra high pressure homogenization technology is capable of producing submicron emulsions 

418 with up to 30% (v/v) oil content using SC (5%, w/v) as emulsifier with a high physical and 
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419 oxidative stability compared to conventional treatments. Using high oil concentrations (20 

420 and 30%) enhanced physical and creaming stability of all emulsions. Oxidative stability is oil 

421 concentration and homogenization treatment dependent. While increasing oil concentration, 

422 especially in emulsions containing 20% oil, produced the most stable emulsions in case of 

423 CM and UHPH emulsions, increasing oil concentration to 30% adversely affected lipid 

424 oxidation of CH emulsions during storage. To sum up, findings of the present study suggest 

425 the advantages of using UHPH technology to produce submicron emulsions with high 

426 physical and oxidative stability which might be used as carriers for bioactive ingredients with 

427 high sensitivity to oxidation.
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550 Table 1. Mean ± SD values of temperature measured before (T1) and at the outlet (T2) of the high-
551 pressure valve for emulsions containing different oil concentrations (10, 20 and 30%) treated by ultra 
552 high-pressure homogenization at 200 and 300 MPa (Tin = 25°C).

553

Oil content (%) Pressure (MPa) T1 (ᵒC) T2 (ᵒC)

200 41.00 ± 2.29ab 84.31 ± 3.01d

10
300 43.70 ± 2.52a 105.5 ± 3.28b

200 42.70 ± 0.58a 86.00 ± 3.00d

20
300 40.50 ± 5.50ab 107.5 ± 0.50b

200 44.00 ± 3.60a 93.50 ± 3.77c

30
300 47.82 ± 3.82a 117.2 ± 5.80a
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554 Table 2. Mean ± SD of particle size distribution indices (d3.2 and d4.3) and specific surface area 
555 (SSA, m2/ml) of emulsions containing sunflower and olive oils (10, 20 and 30%) and prepared by 
556 colloidal mill (CM), conventional homogenization (CH, 15 MPa) and ultra high-pressure 
557 homogenization (UHPH) at 200 and 300 MPa with 5% of sodium caseinate.

558

559 a-d Different letters in the same column indicate significant differences (P < 0.05) 
560 between treatments.

561

Particle size distribution

Pressure (MPa) Oil content 
(%) d3.2 

(µm)
d4.3 
(µm) 

Specific surface 
area 

SSA (m2/ml)
10 6.358 ± 0.643a 18.06 ± 4.194a 0.915 ± 0.154a

20 5.410 ± 0.303ab 13.40 ± 2.776a 1.117 ± 0.068aCM
30 5.232 ± 0.417b 12.73 ± 2.693a 1.152 ± 0.091a

10 0.614 ± 0.042c 1.315 ± 0.234b 9.841 ± 0.617a

20 0.521 ± 0.036c 0.961 ± 0.122c 11.56 ± 0.825bCH
30 0.547 ± 0.106c 1.076 ± 0.104b 11.40 ± 2.376b

10 0.110 ± 0.007d 0.131 ± 0.009d 54.91 ± 3.15c

20 0.102 ± 0.004d 0.126 ± 0.005d 59.21 ± 1.80cUHPH (200MPa)
30 0.108 ± 0.008d 0.130 ± 0.010d 55.70 ± 4.060c

10 0.093 ± 0.007d 0.111 ± 0.006d 65.16 ± 4.10c

20 0.105 ± 0.014d 0.119 ± 0.007d 57.06 ± 6.991cUHPH (300MPa)
30 0.103 ± 0.014d 0.121 ± 0.017d 59.48 ± 7.992c
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562 Table 3. Mean ± SD of rheological characteristics (flow and consistency indices), emulsifying activity index (EAI, m2/g) and creaming stability 
563 (d4,3 values at the top or at the bottom of samples stored at room temperature for 9 days under the same conditions for comparison) of emulsions 
564 containing sunflower and olive oils (10, 20 and 30%) and prepared by colloidal mill (CM), conventional homogenization (CH, 15 MPa) and 
565 ultra high-pressure homogenization at 200 and 300 MPa with 5% of sodium caseinate.

566 a-f Different small letters in the same column indicate significant differences (P < 0.05) between treatments. 

567 *A-C Different capital letters in the same column indicate significant differences (P < 0.05) between CH and UHPH emulsions with 30% oil content. This group of samples were compared 

568 separately from rest of the samples due to the high variation in viscosity.

569 **Sign and bold font size indicate that the differences between the d4,3 at the top or at the bottom of emulsions are significant (Wilcoxon statistic test P < 0.05) per level of pressure and protein 

570 concentration.

571 * ND means not determined

Rheological behavior & emulsifying activity Emulsions creaming stability after 9 days

Treatment Oil content (%) Consistency coefficient
(K, mPa × s)

Flow behavior 
index (n)

Emulsifying activity 
index

(EAI,m2/g)

D4.3 (µm)
(TOP)

D4.3 (µm)
(BOTTOM) P value

10 0.005 ± 0.001h 0.988 ± 0.009a 6.76 ± 0.37f

20 0.012 ± 0.001g 0.986 ± 0.025a 15.50 ± 4.00eCM
30 0.024 ± 0.002f 1.003 ± 0.008a 28.20 ± 6.18cd

ND ND ND

10 0.010 ± 0.002g 0.858 ± 0.019ab 55.00 ± 4.36b 1.07 ± 0.10a 0.41 ± 0.26a 0.0022**
20 0.044 ± 0.012de 0.754 ± 0.038bc 133.14 ± 17.81a 1.11 ± 0.27a 0.27 ± 0.12a 0.0022**CH
30 0.209 ± 0.104C* 0.608 ± 0.068c 217.41 ± 10.00a 1.14 ± 0.23a 0.38 ± 0.19a 0.0022**
10 0.005 ± 0.001h 0.998 ± 0.017a 8.93 ± 1.40f 0.12 ± 0.01b 0.12 ± 0.01a 0.9654
20 0.038 ± 0.009e 0.885 ± 0.089ab 26.90 ± 1.61cd 0.14 ± 0.02b 0.14 ± 0.02a 0.9740

UHPH
(200MPa)

30 1.937 ± 0.148B* 0.339 ± 0.052d 38.76 ± 4.41bc 0.12 ± 0.01b 0.12 ± 0.01a 0.8442
10 0.005 ± 0.001h 1.011 ± 0.008a 6.49 ± 0.98f 0.10 ± 0.01b 0.11 ± 0.01a 0.3745
20 0.049 ± 0.009d 0.850 ± 0.044ab 20.55 ± 3.47de 0.12 ± 0.02b 0.12 ± 0.02a 0.7338

UHPH
(300MPa)

30 4.283 ± 1.022A* 0.252 ± 0.039d 27.31 ± 5.42cd 0.11 ± 0.01b 0.11 ± 0.01a 0.8593
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572 Table 4. Mean ± SD of hydroperoxides (milliequivalents /kg) and TBA reactive substances (µg malondialdehyde/mL) of O/W emulsions 
573 containing sunflower and olive oils (10, 20 and 30%) and prepared by colloidal mill (CM), conventional homogenization (CH, 15 MPa) and 
574 ultra high-pressure homogenization (UHPH) at 200 and 300 MPa with 5% of sodium caseinate.

575 a-h Different letters in the same column indicate significant differences (P < 0.05) between treatments.

576
577

578

Hydroperoxides (Milliequivalents /kg) TBARS (µg Malondialdehyde/mL)
Pressure
(MPa)

Oil 
content 

(%) Day 1 Day 10
Diference

(Day 10 – Day 1) Day 1 Day 10
Diference

(Day 10 – Day 
1)

10 0.482 ± 0.297a 2.322 ± 0.218a 1.840 ± 0.079a 0.217 ± 0.054a 0.239 ± 0.055a 0.022 ± 0.017c

20 0.421 ± 0.305a 0.833 ± 0.417b 0.412 ± 0.112bc 0.107 ± 0.008cd 0.146 ± 0.008bcde 0.039 ± 0.014bcCM
30 0.197 ± 0.087a 0.578 ± 0.112bc 0.381 ± 0.025bc 0.155 ± 0.010abc 0.218 ± 0.019ab 0.062 ± 0.013ab

10 0.320 ± 0.033a 0.542 ± 0.189bc 0.222 ± 0.156bc 0.174 ± 0.006abc 0.144 ± 0.003bcde – 0.030 ± 0.005e

20 0.198 ± 0.062a 0.703 ± 0.077b 0.505 ± 0.016b 0.065 ± 0.003d 0.070 ± 0.002e 0.005 ± 0.004cdeCH
30 0.603 ± 0.399a 0.493 ± 0.334bc – 0.109 ± 0.099bc 0.154 ± 0.012abc 0.172 ± 0.008abc 0.017 ± 0.008cd

10 0.655 ± 0.514a 0.248 ± 0.065bc – 0.406 ± 0.449c 0.141 ± 0.005bc 0.182 ± 0.009abc 0.040 ± 0.012bc

20 0.280 ± 0.212a 0.181 ± 0.037bc – 0.099 ± 0.175bc 0.107 ± 0.004cd 0.091 ± 0.004de – 0.015 ± 0.008deUHPH 
200MPa

30 0.237 ± 0.075a 0.106 ± 0.073bc – 0.131 ± 0.013bc 0.187 ± 0.008ab 0.200 ± 0.011ab 0.013 ± 0.016cd

10 0.602 ± 0.108a 0.225 ± 0.099bc – 0.377 ± 0.062bc 0.148 ± 0.008abc 0.239 ± 0.014a 0.091 ± 0.020a

20 0.032 ± 0.003a 0.023 ± 0.004c – 0.008 ± 0.001bc 0.108 ± 0.013cd 0.114 ± 0.011cde 0.005 ± 0.013cdeUHPH
300MPa 30 0.108 ± 0.025a 0.097 ± 0.031bc – 0.011 ± 0.040bc 0.132 ± 0.011bcd 0.155 ± 0.010bcd 0.023 ± 0.005c
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Figure 1.

 Droplet size distribution curves measured by light scattering of O/W emulsions containing 5% 
of sodium caseinate and sunflower and olive oils at (a) 10, (b) 20 and (c) 30%, and prepared by 
colloidal mill (CM), conventional homogenization (15 MPa) and ultra high-pressure 
homogenization at 200 and 300 MPa.

Page 26 of 31

URL: http://mc.manuscriptcentral.com/ijds  Email: LDIS-peerreview@journals.tandf.co.uk

Journal of Dispersion Science and Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

27

 (A)

(B)
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Figure 2. 

(A) TEM images of O/W emulsions containing sunflower and olive oils at 10% (A,C) and 
30% (B,D) and prepared by (A,B; ×4000 and ×50000, respectively) colloidal mill (CM), and 
by (C,D; ×100000) conventional homogenization (15 MPa) with 5% of sodium caseinate. 
Arrows indicate the coalescence between droplets in image (A) and difference in the protein 
amounts on the interface of oil droplets in images (B, C and D).
(B) TEM images (×50000) of O/W emulsions containing sunflower and olive oils (10, 20 
and 30%) and 5% of sodium caseinate, prepared by (A-C) conventional homogenization (15 
MPa) and (D-I) by ultra high-pressure homogenization at 200 MPa (D-F) and 300 MPa (G-I). 
Arrows indicate flocculation and coalescence between oil droplets.
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Figure 3. 
Confocal laser scanning microscope images of O/W emulsions containing sunflower and 
olive oils (10, 20 and 30%) and 5% of sodium caseinate, and prepared by (A-C) colloidal 
mill (CM) and (D-F) conventional homogenization (15 MPa).
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Figure 4. Changes in backscattering profiles of O/W emulsions containing sunflower and 
olive oils (10 and 30%) and 5% of sodium caseinate and prepared by (A,B) colloidal mill 
(CM), conventional homogenization (15 MPa) (C,D), and by ultra high-pressure 
homogenization (UHPH) at 200 (E,F), as a function of sample height with storage time (5 h 
for CM emulsions and 18 days for both CH and UHPH emulsions).
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