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Abstract 

Soil organic carbon (SOC) has  primary importance in terms of soil physics, fertility and even 

of climate change control. An intensively cultivated Cambisol was studied in order to quantify 

SOC redistribution under subhumid climate. One hundred soil samples were taken from the 

representative points of the solum along the slopes from the depth of 20-300 cm with a mean 

1.2 % SOC content. They were measured by the simultaneous application of diffuse 

reflectance (240–1900 nm) and traditional physico-chemical methods in order to compare the 

results. On the basis of the results hierarchical cluster analyses were performed. The spatial 

pattern of the groups created were similar, and even though the classifications were not the 

same, diffuse reflectance has proven to be a suitable method for soil/sediment classification 

even within a given arable field. Both organic and inorganic carbon distribution was found a 

proper tool for estimations of past soil erosion process. Results show SOC enrichment on two 

sedimentary spots with different geomorphological positions. Soil organic matter compound 

also differs between the two spots due to selective deposition of the delivered organic matter. 

The components of low molecular weight reach the bottom of the slope and there can leach 

into the profile, while the more polymerised organic matter compounds are delivered and 

deposited even before, on a higher segment of the slope in an aggregated form. This spatial 

difference appears below the uppermost tilled soil layer as well; referring the lower efficiency 

of conventional ploughing tillage in spatial soil homogenisation. 

Keywords: Cambisol; Carbon sequestration; Diffuse reflectance; Intensive cultivation; 

Selective erosion; Soil organic matter compound 

 

1 Introduction 

Soil organic carbon (SOC) content is one of the most important qualifying property in soil 

description. Soil fertility is generally given as a function of some kind of SOC content. 

Increasing conservation of SOC content has become a symbol of sustainable agriculture. 

Since SOC has a pivotal role in structuring soil particles it has primary importance in soil 

physical properties such as porosity, aggregate stability and infiltration (Stavi and Lal, 2011). 

Lal (2004) estimated that global soils contain 2500 Gt carbon (1550 Gt SOC) in their 

uppermost 1 m thick horizon hence this is one of the largest terrestrial pool second only to the 

geologic stock. In native soils SOC content generally decreases with depth, while tillage 

homogenises SOC content in the uppermost horizon (Lee et al., 2009). 

Among uniform climatic, floristic and land use conditions, SOC content does not change 

significantly. Tillage operations on a native land considerably reduce SOC content until it is 

stabilised at a lower value controlled by the new circumstances (Häring et al., 2013a). On 

intensively cultivated arable fields the oxidation caused by soil tillage is considered to be an 

effective factor reducing SOC (Häring et al., 2013b), however, there are also data presented 

on SOC sequestration due to accelerated soil erosion and deposition generated by tillage (Lal, 

2004). Although their effects are closely correlated, tillage triggers chemical degradation 

while erosion controls spatial distribution of SOC (Polyakov and Lal, 2008). Small soil 

particles are especially prone to erosion while larger aggregates are less affected. Enrichment 

of the clay fraction and SOC related colloids in soil loss might reach 2.5 times (Farsang et al., 

2012; Nagy et al., 2012; Wang et al., 2010). There are also data reported on the erosion of 

selective soil organic matter (SOM) that proved differences in organic matter of the soil loss 

compared to the native SOM (Jakab et al., 2014). Even though soils have already lost 20–50 t 

C ha
-1

 due to soil erosion (Lal, 2003) there are still ambiguities concerning the fate of eroded 

organic carbon whether it sequestrates or mineralizes (Lal and Pimentel, 2008). 

In general SOC redistribution was investigated mainly by soil loss sampling and analysis 

from runoff plots at field or catena scale (Polyakov and Lal, 2008). There are also results on 

SOC erosion under simulated precipitation events at point scale (Zhang et al., 2011; 2013), 
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but up- or downscaling the results is still a problematic issue (Chaplot and Poesen, 2012). 

Whereas there are estimations about carbon sequestration in buried horizons of lakes and 

reservoirs exceeding terrestrial carbon stocks by two orders of magnitude in Central Europe 

(Hofmann et al., 2013), still little is known about the deposition and burial processes at the 

field scale.  

A simple way of SOM analyses could be using extraction indexes derived from ultraviolet 

(UV) and visible (VIS) absorbance spectra (Chin et al., 1994; Her et al., 2008; Tan, 2003). 

The application of UV, VIS and near infrared (NIR) reflectance of the soil is also a 

widespread method for the survey of soil properties by remote sensing (Aichi et al., 2009; 

Conforti et al., 2013). This method is applicable only to establish the soil surface parameters 

(Gomez et al., 2008). Diffuse reflectance is a suitable method for the study of buried horizons 

as well (Viscarra Rossel et al., 2006). The UV-VIS-NIR spectra (200–2500 nm wavelength) 

include all the information on the soil material, the measurement being simple and 

inexpensive. Many studies report about the accuracy of predictions based on reflectance as for 

SOC, clay, carbonate content, pH etc. (Brodsky et al., 2011; Lee et al., 2009; Viscarra Rossel 

et al., 2009). These studies compared many soil samples from very different environmental 

circumstances using partial least squares regression method and resulted in relatively high R
2 

values. However, it is not clear if the determination of chemical properties based on diffuse 

reflectance works with very similar soil samples at slope scale.  

The aim of this study is to survey accelerated erosion and soil redistribution due to erosion 

triggered by tillage on an intensively cultivated arable land on Cambisol under subhumid 

climate, Hungary. The main questions are whether (I) the deposited part contains information 

of the origin of the sediment (II) the SOC enrichment measured in trapped soil losses in 

previous surveys (Farsang et al., 2012; Kuhn et al., 2012; Wang et al., 2010) still exist in the 

in situ buried horizons. An additional goal is (III) to compare the SOM compound of the tilled 

layer with those of the deposited and buried horizons in order to prove selective erosion 

processes and (IV) to test the prediction of physico-chemical properties based on diffuse 

reflectance in similar soil samples at slope scale. 

 

2 Material and methods 

2.1 Study area 

The investigated area is located at Ceglédbercel, SE of Budapest, Hungary (Figure 1). It is an 

intensively tilled arable field on sandy loess parent material. Soil cover varies among the 

differently eroded and deposited types of eutric calcaric Cambisol loamic and eutric calcaric 

ochric Regosol. The crest and the upper third of the slope is occupied by an orchard and have 

a very shallow solum. This part is separated from the lower one by a road and a ditch 

therefore it is excluded from the investigation. The slope steepness of the lower, studied part 

varies between 5 and 17 %, the average value is 12 %. The investigated part forms a valley 

with Regosol spots on the surface at the steepest points and 3 m deep deposition on the 

bottom. The area is 3.2 ha. The elevation is between 154 and 170 m a.s.l., mean annual 

temperature is 10.8 °C while annual precipitation is around 600 mm (Dövényi, 2011). 

Prevalent crops for the last decades are winter wheat, maize and sunflower. Conventional 

tillage with autumn mouldboard ploughing was applied with NW–SE tillage direction (Figure 

1). 

 

2.2 Field work 

Topography of the study site was surveyed by a Trimble 3300DR laser total station. The 

surface was measured along the mesh with 10 m distances. Boreholes were deepened using 

Edelman augers in order to reach the parent material along a net with 25 m distance. 

Altogether 46 drillings (Figure 1) were carried out during the summer of 2013 under 

Page 2 of 22

http://pedosphere.issas.ac.cn

Pedosphere

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly (PEDO
SPHERE)

3 

 

sunflower. Each drilling was described in detail, the depth of the parent material was 

recorded. Horizons were determined on the basis of field observations, such as colour, CaCO3 

(Soil Inorganic Carbon; SIC) and moisture content. All descriptions and predictions were 

applied using the Fieldbook for describing and sampling soils (Schoeneberger et al., 2012). 

Soil colour was determined using the Munsell soil chart, SIC content was predicted on the 

bases of HCl solution drop treatments. Soil samples were taken from each horizon of the 

representative drillings. Altogether 100 soil samples were collected.  

 

2.3 GIS support 

The soil surface and the predicted surface of the parent material were interpolated using the 

ordinary linear Kriging method (based on spherical semivariogram model) on the basis of the 

boring data with Baker Hughes JewelSuite™ 2013 geologic modelling software. The idea for 

using geological modelling software was to reckon the soil horizons as geological layers, so 

that the horizons with various depths could be modelled. Interpolating soil and parent material 

surfaces among the measured points the spatial variation of solum depth was also established 

with JewelSuite 2013, using the Kriging method mentioned above (Oliver and Webster, 

1990). 

ESRI ArcMap 10.1 and ArcScene 10.1 were used to create soil depth map, and to visualize 

the soil groups formed on the basis of the reflectance spectra and chemical analyses. 

 

2.4 Laboratory equipment used 

SOC and total nitrogen (TN) content were measured by a carbon-nitrogen analyzer (Tekmar 

Dohrman Apollo 9000N) after the elimination of inorganic carbon (Buurman et al. 1996). 

Samples were pre-treated with 19% HCl in order to eliminate SIC content. C/N ratio was 

calculated dividing the measured SOC content by TN content. Particle size distribution was 

determined by laser diffraction analyzer (Horiba LA-950) in a range of 0.2–2000 µm. 

Samples were disaggregated by 15 min. ultrasonic treatment combined with 0.5 mol sodium 

pyrophosphate application. SIC content was analyzed by the gas volumetric method of 

Scheibler (Pansu and Gautheyrou, 2006).  

SOC compounds were characterised by UV-VIS spectrophotometry (Shimadzu 3600) using 

0.5M NaOH solute sediment samples. E2/E3 index as a parameter for the degree of 

polymerisation (Tan, 2003) as well as Ultraviolet Absorbance Ratio Index (URI, 

UVA210/UVA254) as an indicator for functional group density (Her et al., 2008) were 

calculated and absorbance values at 280 nm referring to the aromaticity (Chin et al., 1994) 

were recorded to typify SOM compounds. To compare the results of the different methods, 

the whole absorbance spectra were recorded between the wavelengths of 800–180 nm. 

Diffuse reflectance was analyzed using the UV-VIS-NIR spectra. Reflectance values were 

detected by a Simadzu 3600 spectrophotometer equipped with the LISR-3100 integrating 

sphere. The recorded range was between 240–2400 nm wavelengths with a resolution of 0.5 

nm. Because of the noise caused by humidity in the 1900-2400 nm range, this part of the 

spectra was excluded from the further data processing (Bradák et al., 2014). 

Both pH in distilled water and in KCl were determined in a soil suspension 1:5 according to 

the Hungarian standard (Buurman et al. 1996). 

 

2.5 Data evaluation techniques applied 

Correlation between variables was established using regression analyses. Since the 

information of the whole reflectance spectra was too abundant to handle, data filtration was 

applied. Only each twentieth value (reflectance of each tenth nm) was included into the 

statistical processes. Hierarchical cluster analysis was used to classify the samples parallel on 

the basis of diffuse reflectance spectra and of the other measured parameters. Clustering is a 
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kind of coding, as a result of which a certain sampling location originally described with 

many parameters (runoff, chemical oxygen demand etc.) is now described with only one 

value, i.e. group code (cluster number). It is important to note that during clustering not the 

number of parameters but the number of sampling locations is decreased by grouping the 

similar ones. The main aim is to classify the similar sampling locations into the same 

category, however this similarity has to be measured by assigning a distance (metrics) to each 

sampling location which is placed in an N dimensional space. 

To verify the accuracy of the classification canonical discriminant analysis was applied. It 

shows to what an extent the planes separating the groups can be distinguished by building a 

predictive model for group membership. The model is composed of a discriminant function 

(for more than two groups a set of discriminant functions) based on linear combinations of the 

predictor variables that provide the most reliable discrimination between the groups. The 

functions are generated from a sample of cases for which the group membership is known; the 

functions can then be applied to new cases that have measurements for the predictor variables 

but their group membership is as yet unknown (Afifi et al., 2004). 

After the verification of the cluster groups the role of each parameter should be analyzed in 

determining the formation of the cluster groups. Using Wilks’ distribution a Wilks’ 

quotient is assigned to every parameter. The value of λ is the ratio of the sum of squares 

within the group to the total sum of squares. It is a number between 0 and 1. If λ=1, the mean 

of the discriminant scores is the same in all groups and there is no inter-group variability. In 

this case the given parameter did not affect the formation of the cluster groups (Afifi et al., 

2004). If λ=0, then that particular parameter affected the formation of the cluster groups the 

most. The lower the quotient value is, the more it determines the formation of the cluster 

groups (Hatvani et al., 2011). 

To analyse the parameters within the created clusters a simple statistical method was used 

such as box and whiskers plots. The boxes show the interquartile range and the black line in 

the box is the median. Two upright lines represent the data within the 1.5 interquartile range. 

The data between 1.5 and 3 times the interquartile range are indicated with a circle (outliers), 

and the ones with values higher than 3 times the interquartile range are considered to be 

extreme and indicated with an asterisk (Norusis, 1993). 

 

3 Results and discussion 

3.1 Variations in the depth of humic horizon 

Many authors found correlation between soil depth and redistribution processes (Jakab et al. 

2010; Kirkels et al. 2014; Niu et al. 2015; Vona et al. 2006; Wiaux et al. 2014). The depth of 

humic horizon varies along the slope sections between 0 cm and 300 cm. On the steepest parts 

loess is on the surface, however, due to tillage operations some organic matter is continuously 

mixed into the tilled layer. There is a weak correlation between profile depth and slope 

steepness (Figure 2), although the deeper profiles tend to occur on the flatter parts.  

Spatial distribution of solum depth was estimated by interpolating surfaces among the 

measured points (Figure 3). Result pattern suggests that solum depth is rather a function of 

geomorphologic position than that of slope steepness. The deepest profiles are found at the 

slope bottom (Figure 1) even of an ephemeral gully. Poesen et al. (2003) pointed out that soil 

loss due to ephemeral gullies hardly depends on time, consequently temporary soil deposition 

occurs at the valley bottoms. Presumably due to these temporary circumstances gully erosion 

is less effective to deliver sediments than sheet and tillage erosion is (Gong et al., 2011). 

Under forest sheet erosion is negligible comparing to accelerated erosion. Before forest 

clearance in the early 18th century a relatively homogeneous soil depth (around 1 m) ruled the 

district (Stefanovits, 1971), the redistribution took place during the last 300 years as it is 

typical in Central Europe (Dotterweich et al., 2013). Within this period some spots eroded 
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down to the parent material, which means at least 1 m soil loss and 3 mm year
-1

 erosion rate 

on the average. This value is in accordance with average soil loss reported by Vona et al. 

(2006), Jakab et al. (2010) on arable fields with loess as parent material. At the deposition 

spots more than 2 m thick sediment covers the original surface, which means that most of the 

delivered soil remained within the field, resulting in reduced net soil loss. As the short time 

since forest cut was not enough to trace changes due to pedological processes (Schaetzl and 

Anderson, 2005), the spatial variability of soils is considered to be the combined result of 

erosion and deposition.  

 

3.2 Results of reflectance spectra 

Hierarchical cluster analysis of the reflectance spectra was carried out. The samples were 

classified into four groups. The results of the canonical discriminant analysis have proven the 

reliability of the classification: the four groups are definitely divided at least along two 

functions (dimensions) (Figure 4). 

Spatial distribution of the groups reflects their geomorphologic position (Figure 4), that 

supports the findings of Wiaux et al. (2014) concerning SOM and secondary minerals. 

Accordingly the infiltrated data (reflectance values at only each tenth nm) contain enough 

information for proper soil sample classification.  

Group 1 (red) includes soils with high loess content, high SIC volume and low SOC content. 

They can be found mainly on the surface of the steepest segments along the slopes where the 

solum is shallow and loess is close to the surface. Additional members are at the lowest part 

of the deeper profiles also close to the parent material. 

Both Groups 2 and 3 contain samples with high SOC content, but while Group 2 (blue) is 

generally located in the uppermost 1 m thick layer, Group 3 (green) can be found in the 

deeper parts and in some spots on the surface as well. Group 4 (purple) contains only four 

samples of pure loess without SOC and with SIC content higher than 20%. 

 

3.3 Results of physico-chemical analyses 

3.3.1 SOC correlation with other parameters 

Although SOC is generally reported to migrate attached to fine particles (Centeri, 2006; Fuchs 

et al., 2010; Wang et al., 2010; Zhang et al. 2013) no correlation was found between these 

two parameters (Figure 5a). Accordingly, SOC is transported and deposited independently 

from the clay component. A weak relationship could be recorded between SOC amount and 

SOM compound (Figure 5b–d). Increasing SOC volume raises C/N ratio, that suggests the 

dominance of lower average molecular weighted, less stable SOM in case of higher SOC 

content (Figure 5c), although C/N ratio varies within a wide range compared to the results of 

Watteau et al. (2012). On the other hand aromatic character increases with SOC volume 

(Figure 5d). In fact, these relations are stronger in case of low SOC content, whereas in the 

higher range the linkage is getting weaker, that means higher SOC content increases the 

variability of SOM. This could be the result of selective SOM erosion and/or inhibited SOM 

formation. In this case the latter is more probable because the formation of high molecular 

weighted polymerised SOM is impossible on the continuously eroding Regosol spots. 

Nevertheless, the persistence of SOM can be strongly affected by other physical and 

biological circumstances as well (Berhe et al., 2012; Berhe and Kleber, 2013). 

 

3.3.2 Clusters on the basis of physico-chemical parameters 

A parallel hierarchical cluster analysis of the same samples was carried out on the basis of 14 

soil parameters (Table 1). Four groups were created again, and the classification was tested by 

canonical discriminant analysis that shows an adequate distribution (Figure 6), although in 

this case four samples were reclassified. Result shows that the groups again are separate units 
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and have the same spatial distribution as the diffuse reflectance related classification had 

before. The size of the groups has changed compared to the former classification. In this case 

Group 1(red) contains the same samples as it did in the reflectance case with high SIC 

content. This group has changed the less. On the depositional surfaces Group 2 (blue) 

members with the highest SOC content can be found again; however, some samples from the 

former Group 2 moved to Group 4 (purple). Group 3 represents samples of medium TOC 

content while this group contains just some part of the former Group 3 (green) which was 

divided among the newly formed groups of No. 2, 3, and 4. The former Group 4 (pure loess) 

was merged into Group 1, accordingly Group 4 is a new class including samples of the 

deepest positions of the deposited profiles, i.e. from the former Group 1 (containing no SIC 

and minimal SOC). 

Even though the two classifications yielded different results, both of them describe very 

similar main tendencies, consequently total reflectance spectra can be comparable with 

findings based on the series of  physico-chemical measurements. There has been a wealth of 

studies to identify special wavelengths within reflectance spectra suitable for tracing certain 

soil components such as iron and clay minerals (Viscarra et al., 2009), SOC (Minasny et al., 

2011; Viscarra et al., 2006) and SIC (Ge et al., 2014). Nevertheless, because of the 

polydispersal nature of the system, soils can only be described on the basis of a wider 

spectrum that can reflect to the interactions. In this way the whole filtered spectrum should be 

handled as one complex parameter that summarizes the results of each individual physical or 

chemical measurement. On the other hand even if the filtered spectrum (i.e. reflectance value 

of only each tenth nm) is enough to classify the soil samples the issue of data filtration 

methods (range and the starting nm of the filtration) still has ambiguities. 

In order to determine the most effective parameters in classification Wilks' λ was calculated 

(Table 1).  

Carbon content has a primary importance in classification. Inorganic, organic and total carbon 

content respectively determine the way of group formation. The rest of the variables have a 

minor influence on classification, although group forming factors of similar importance still 

can be found in the second stage (0.5<λ<0.61). From textural point of view sand and silt 

content are important since they represent the main particle sizes in the examined soils. SOM 

compound parameters do not seem to be an important classifying factor, although C/N ratio 

and the reflectance value at 280 nm have a definitely stronger influence than URI and E2/E3. 

pH in KCl is a more informative qualifier in this case than that in distilled water, however, 

there is no exchangeable acidity in the investigated soil. The rest of parameters do not have 

influence on classification at all. 

Differences among the groups concerning the measured parameters are presented using 

boxplots (Figure 7). SIC content can be a highly suitable parameter to follow erosion and 

deposition processes on the study site as SIC was leached from the original topsoil/solum and 

can only appear there again as a result of soil redistribution due to erosion and tillage 

processes (De Alba et al., 2004). Even if it was the main parameter for the classification, only 

Group 1 has significantly higher SIC content, groups 2, 3 and 4 has a similar low value with 

decreasing SD values (Figure 7a). Group 4 has the lowest SOC value again while Group 2 has 

far the highest one (Figure 7b). Many previous studies presented results on SOC enrichment 

in soil loss (Lal, 2005; Wang et al. 2010). Our survey testified to higher SOC value found in 

the subsurface depositional horizon, consequently selective SOC erosion and deposition exist 

in spite of the equalizing effect of intensive tillage operations. SOC maximum is near to the 

surface that could be the result of carbon mineralisation in the underlying layers as it was 

reported by Olson et al. (2012) or its enrichment in the depositional parts. The four groups 

have highly different SC values as a result of the mixture of organic and inorganic carbon 

distribution (Figure 7c). Only the sand content of Group 4 differs significantly from the other 
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groups (Figure 7d), which can be attributed to the appearance of a carbon-free sand layer 

(Figure 7g) between the solum and the loess. The origin of this sand is unknown but it 

highlights the importance of spatial diversity in data extrapolation. 

Boxplot of absorbance at 280 nm is very similar to that of SOC, as the level of aromaticity is 

a direct function of SOC content (Figure 7e). This suggests a constant ratio of humic 

substances within SOM independently from transportation and deposition processes. These 

results contradict to those reported by Farsang et al. (2012) according to which recent 

deposition was trapped, while our results refer to deposits buried a long time ago. SOC 

enrichment and SOM compound variations in soil loss strongly depend on initial soil moisture 

content, precipitation parameters, aggregates and crusting (Kuhn et al., 2012; Yamashita et 

al., 2006), consequently results gained from different scales can be compared only with 

difficulties (Chaplot and Poesen, 2012).  

When comparing average values of silt content by group the same phenomenon is observed as 

in the case of SOC and absorbance at 280 nm. Consequently silt and SOC are closely 

interrelated (Figure 7f). SOC association with silt instead of clay emphasizes the role of 

aggregation, because delivered aggregated soil particles contain SOM and have sizes different 

from the disaggregated soil loss. Differences between groups 2 and 3 are mainly related to 

SOC content and SOM compound. Group 3 has a higher sand content and a lower SOC 

volume, absorbance at 280 nm and C/N ratio (Figure 7d, b, e and h). Aromaticity established 

by the measured absorbance at 280 nm and C/N ratio (Figure 7e, h) seem to be in close 

correlation that suggests an inverse relationship between aromaticity and polymerisation, 

although these parameters estimated by URI (Figure 7i) do not prove this trend. 

 

3.4 Modelled spatial distribution 

Spatial distribution of the measured parameters was interpolated using Jewel (Figure 8).  

A number of studies report about the homogenising effect of persistent tillage operations 

(Dimassi et al., 2014; Lee et al., 2009; Zhang, 2013,) on the surface of the study site of 

various appearance (Figure 8). Low SIC values can be found only on the flatter sedimentary 

surfaces, while the highest ones are associated with the steeper surfaces. Although as a result 

of the forest clearance both accelerated and tillage erosion have redistributed SIC content, 

surface diversity suggests that SIC spread is not that effective. Concerning vertical 

distribution, the lowest values are on the sedimentary surfaces at 1–2 m depth that is 

presumed to be the original, leached soil profile before intensive processes of deposition. 

Lowest SOC content of the surface can be found on the steepest spots, while the highest 

values are on the sedimentary surfaces similar to the spatial pattern reported by Navas et al. 

(2009). The maximum SOC values on the surface are higher than those within the buried in 

situ topsoil probably due to SOC mineralisation in the buried layer or selective SOC 

deposition at the bottom of the slope. According to the results of Wang et al. (2014) and SOC 

reduction with depth as a rule in the studied area refers to the latter. SOC tends to increase at 

two morphological spots: "A" at the surface in the middle of the ephemeral gully, and "B" at 

the surface on the lower end of the ephemeral gully.  

Higher N content is associated also with the deposition surfaces, hence TN seems to be a 

function of SOC content. Even though C/N ratio varies considerably depending on spatial 

position. Kahle et al. (2013) and Marchetti et al. (2012) reported much lower C/N values with 

the decrease of the depth of solum. Spatial changes in polymerisation of SOM have 

ambiguities. Polymerisation values on the basis of C/N ratio are the inverse to those obtained 

by E2/E3, although the latter has a spatial pattern without horizontal differentiation while C/N 

varies with depth. Inverse C/N value to the photometric indexes was reported in previous 

studies. Jakab et al. (2014) suppose that in some cases there is no direct correlation between 

C/N ratio and the degree of SOM polymerisation.  
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Spatial pattern of the SOM with higher aromaticity (based on URI) is similar to that of 

modelled on the basis of E2/E3, also showing the lack of horizontal variation (Figure 8/3 and 

8/7). The lowest and the highest values were found right on the locations of SOC maximums 

"A" and "B", which suggests the selectivity of SOM deposition.  

High molecular weighted, polimerised SOM is typical along the whole solum of location "A" 

in the upper part of the valley, while in the lower third and at the bottom of the steepest part 

(location "B") low molecular weighted SOM of higher functional group density dominates the 

whole profile. The SOM quality on spots of most intensive erosion (Regosol spots) could be 

the result of locally reduced biological and crop (root and stem) production and of a very 

rapid soil loss. Since these fulvic acid type SOM components are the most mobile ones they 

could be delivered by runoff to the bottom where infiltrating water leaches them down into 

the whole profile as that was presumed by Navas et al. (2009). This low molecular weighted 

SOM surplus could trigger SOC enrichment in this part of the study area. Another SOC 

increase was observed a little higher on the valley bottom at location "B". Since SOM is much 

more polymerised here this could be the deposition part of the aggregate transported SOM as 

presented by Kuhn et al. (2012). Here the aggregates are deposited exclusively, while runoff 

takes the components of lower molecular weight away to the bottom, consequently no intense 

infiltration is presumed (without SIC sedimentation or leaching into the profile). This 

phenomenon causes different morphological types of sedimentation and crusting at locations 

"A" and "B" (Figure 9). The deposited aggregates created a better structured sediment cover 

on "A" located higher, while on "B" the more mobile elementary particles built a sealed, 

unstructured sediment cover. 

 

4 Conclusions 

The differences measured in SC content and SOM compound are the results of erosion and 

deposition. Although the highest SOC values were measured in the depositional profiles no 

direct linkage between geomorphic position and solum depth was found. On the other hand 

selective SOM sedimentation was observed: the aggregate delivered high molecular weighted 

SOC was deposited on a higher surface while the most soluble SOM components reached the 

bottom and leached into the profile there. Consequently the delivery and deposition processes 

of soil carbon erosion are also selective. Different SOM compounds are transported to 

different distances and deposited at different geomorpological positions even though tillage 

continuously homogenize the tilled layer. The long term autumn ploughing based 

conventional tillage seems to have less importance in topsoil homogenisation than it was 

believed before. From the soil conservational point of view special care has to be taken to the 

sedimentation processes since the mobile part of SOM can be transferred easily from the field. 

For this reason grassed waterways within fields should be an effective tool for soil carbon 

conservation as well. 

The filtered total reflectance spectra provide information sufficient for sample classification, 

and the results are comparable with those derived from the summary of single physico-

chemical parameters. The method is suitable to distinguish between soil samples with similar 

SOC content and SOM compound. Using this method one recorded spectrum contains all the 

results of the separate traditional measurements. On the other hand ambiguities still exist as to 

derive a single quantitative parameter from the reflectance spectra to describe separate soil 

properties. 

Estimations based on classification and spatial modelling did not support the same findings. 

Classification (sum effects of each parameter) underlined the horizontal dissection among 

horizons while spatial modelling emphasized the vertical pattern of the separate variables. In 

order to clarify the role of selective SOC and SOM deposition in the carbon cycle more 

samples should be analysed and additional statistical methods are to be involved. 
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Table 1 Wilks' λ values of the examined parameters (lower values refer to a more dominant 

role in classification) 

 

                                                
1
 difference between ph in distilled water and KCl 

 Wilks' Lambda 

Soil Inorganic Carbon 0.18 

Soil Carbon 0.31 

Soil Organic Carbon 0.35 

Sand (2-0.02 mm) content 0.53 

Reflectance at 280 nm  0.58 

Silt (0.02-0.002 mm) content  0.58 

pH in KCl 0.59 

Carbon / Nitrogen ratio 0.60 

Total Nitrogen content 0.71 

Ultraviolet Ratio Index 0.74 

pH in distilled water 0.75 

Clay (<0.002 mm) content 0.76 

pH difference
1
 0.82 

E2/E3  0.85 
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Figure 1 Location of the study site with 2.5 m contour lines. Dots indicate boreholes, arrow 

indicates slope direction  
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Figure 2 Relationship between slope steepness and solum depth on the study site (n=41)  

67x57mm (600 x 600 DPI)  
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Figure 3 Slope steepness and solum depth on the examined slope section (numbers refer to 

surface steepness at the borehole)  

241x343mm (300 x 300 DPI)  
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Figure 4 Canonical discriminant analysis of the soil samples classified into four groups on the 

basis of their reflectance spectra and the spatial location of the groups n=100 (8× vertical 

distortion)  

37x21mm (300 x 300 DPI)  

 

 

Page 17 of 22

http://pedosphere.issas.ac.cn

Pedosphere

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly (PEDO
SPHERE)

  

 

 

Figure 5 SOC relations to other (a: Clay (<0.002 mm) content; b: Total Nitrogen; c: Carbon / 

Nitrogen ratio and d: Absorption at 280 nm) measured parameters n=100  

132x116mm (600 x 600 DPI)  
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Figure 6 Canonical discriminant analysis of the soil samples classified into four groups on the 

basis of their chemical properties and the spatial location of the groups n=100 (8× vertical 

distortion)  

37x21mm (300 x 300 DPI)  
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Figure 7 Chemical and physical parameter boxplots of the four groups classified by cluster 

analysis (a: SIC content; b: SOC content; c: Soil Carbon content; d: Sand (2-0.02 mm) content e: 

Absorbance at 280 nm; f: Silt (0.02-0.002 mm) content; g: pH(KCl); h: Carbon / Nitrogen ratio; 

i: Ultraviolet Ratio Index)  
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Figure 8 Modelled spatial distribution of the measured parameters (1 Carbon / Nitrogen ratio; 2 

SIC content; 3 E2/E3 value; 4 Soil Carbon content; 5 Total Nitrogen content; 6 SOC content 

[SOC maximum highlighted by locations "A" and "B"]; 7 Ultraviolet Ratio Index value; towers 

represent the investigated boreholes)  
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Figure 9 Deposited sediment in aggregated form at location ("A") and created by individual 

particles at location ("B")  
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