Case 1:16-cv-00176-UNA Document 1 Filed 03/21/16 Page 1 of 10 PagelD #: 1

IN THE UNITED STATES DISTRICT COURT
FOR THE DISTRICT OF DELAWARE

EMC CORPORATION,
Plaintiff,

V. C.A. No.

PURE STORAGE, INC., DEMAND FOR JURY TRIAL

Defendant.

N N N N N N N N N

COMPLAINT FOR INJUNCTIVE RELIEF AND
DAMAGES FOR PATENT INFRINGEMENT

Plaintiff EMC Corporation (“EMC”) alleges as follows against Defendant Pure Storage,
Inc. (“Pure Storage” or “Defendant”).

NATURE OF ACTION

1. This action arises from—and is necessary to remedy—Pure Storage’s continued
and willful infringement of EMC’s patented technology. Pure Storage infringes EMC’s United
States Patent No. 7,434,015 (“the ’015 patent”). The *015 patent covers critical technology used
in large-scale data storage; specifically, the 015 patent relates to data deduplication, which Pure
Storage has repeatedly and consistently described as mandatory, essential and critical to its
products and its business. Data deduplication, which substantially reduces the data that needs to
be stored, is so important to Pure Storage—its products and its business—that its senior
executives have stated that Pure Storage would never remove that feature and functionality
unless compelled to do so. For years, Pure Storage has incorporated data deduplication in its
products that is covered by and infringes EMC’s 015 patent.

2. On November 26, 2013, EMC sued Pure Storage, alleging that Pure Storage’s

FlashArray series 300 and 400 products infringed the *015 patent (C.A. No. 13-1985-RGA) (“the

Case 1:16-cv-00176-UNA Document 1 Filed 03/21/16 Page 2 of 10 PagelD #: 2

2013 Action”). In the 2013 Action, Pure Storage was found to infringe the 015 patent, and the
’015 patent also was found to be valid (despite Pure Storage’s effort to invalidate it). In the 2013
Action, a jury awarded EMC $14 Million in damages for Pure Storage’s infringement of the 015
patent. That damages award covered only a limited period of time. Specifically, the damages
award was only for sales of Pure Storage products from November 2013 to January 2016. In
addition, the damages award covered only a limited set of Pure Storage products. Specifically,
the damages award was only for sales of Pure Storage’s FlashArray series 300 and 400 products.
On March 17, 2016, after a jury verdict, the Court entered judgment in favor EMC on the 015
patent in the 2013 Action.

3. Thus, although significant, the damages award in the 2013 Action was based on
only a limited portion of sales of the FlashArray 300 and 400 models between November of 2013
and January of 2016. Additional Pure Storage products were not included in the 2013 Action.
The 2013 Action did not address—and the damages award did not cover—the extensive sales of
more recent Pure Storage products, including, but not limited to, Pure’s current flagship
“FlashArray//m” product. On information and belief, FlashArray//m sales already exceed in
volume the sales of the FlashArray 300 and 400 models already found to infringe the ’015
patent.

4, All versions of Pure Storage’s FlashArray have included the deduplication
technology found to infringe in the 2013 Action. Pure Storage’s FlashArray//m, for example,
infringes the ’015 patent. In fact, the FlashArray//m product contains deduplication technology

that is materially the same as the technology already found to infringe the ’015 patent.*

! The FlashArray//m product was released after the complaint was filed in the 2013 Action
and late in the discovery process. Accordingly, Pure Storage objected to its inclusion in

Case 1:16-cv-00176-UNA Document 1 Filed 03/21/16 Page 3 of 10 PagelD #: 3

Accordingly, with its past and continued sales of FlashArray//m, Pure Storage has infringed and
continues to infringe the 015 patent, and Pure Storage has no defense to liability. At a
minimum, EMC is entitled to significant compensatory damages for these sales. Moreover, Pure
Storage’s infringement has been willful and deliberate, and EMC is entitled to additional
remedies, including enhanced damages and attorneys’ fees.

5. Despite the fact that all of the Pure Storage products at issue in the 2013 Pure
Storage have been found to infringe the ’015 patent, Pure Storage has announced that it intends
to “continue to sell” infringing models of FlashArray, including FlashArray//m. See Exhibit A

(http://blog.purestorage.com/litigation-update/ (accessed March 21, 2016)). Pure Storage has

stated that it believes that it has alternative deduplication functionality that it may implement to
try to avoid “ongoing royalties.” As Pure Storage knows, however, its supposed alternative
designs still infringe the 015 patent.
PARTIES

6. Plaintiff EMC is a Massachusetts corporation with its principal executive offices
in Hopkinton, Massachusetts. EMC is a recognized leader in the information technology
industry, offering innovative products and services that enable its customers to store, manage,
protect, and analyze vast amounts of digital data in a trusted and cost-efficient way. EMC’s
extensive product offerings are used by customers around the world. Among the products EMC

offers to the industry are data storage systems based on flash memory.

that action, and EMC reserved its rights to seek its remedies regarding the product in a
subsequent case.

Case 1:16-cv-00176-UNA Document 1 Filed 03/21/16 Page 4 of 10 PagelD #: 4

7. Defendant Pure Storage is a Delaware corporation with headquarters in Mountain
View, California. Pure Storage manufactures and sells data storage systems based on flash
memory, in competition with EMC, under names such as “FlashArray.”

JURISDICTION AND VENUE

8. This is an action for patent infringement under the patent laws of the United
States, Title 35 of the United States Code. This Court has subject matter jurisdiction pursuant to
28 U.S.C. 88 1331 and 1338.

9. The Court has personal jurisdiction over Pure Storage because Pure Storage is
incorporated in Delaware and has conducted and continues to conduct business within this
judicial district.

10. Venue is proper in this judicial district under 28 U.S.C. 88 1391(b) and (c) and
1400(b).

FACTUAL BACKGROUND

11. On October 7, 2008, the U.S. Patent and Trademark Office issued the *015 patent,
entitled “Efficient Data Storage System.” Ming Benjamin Zhu, Kai Li, and R. Hugo Patterson,
who performed work for a company called Data Domain, Inc., invented the subject matter of the
015 patent, which relates to a novel method, device, and computer program product for
deduplicating data. EMC, through its acquisition of Data Domain, obtained title and substantial
rights in the *015 patent, including the right to bring this suit for injunctive relief and damages.
See D.I. 430, EMC Corp. v. Pure Storage, Inc., C.A. No. 13-1985-RGA (D. Del. Feb. 29, 2016)

12, In the 2013 Action, EMC accused data deduplication features in FlashArray’s
Purity Operating System, and the practice of methods relating to the use of those products, as

meeting the claim limitations of the asserted claims of the ’015 patent. On February 11, 2016,

Case 1:16-cv-00176-UNA Document 1 Filed 03/21/16 Page 5 of 10 PagelD #: 5

the Court found as a matter of law that the accused FlashArray products directly infringed claims
1, 7, and 16 of the 015 patent. D.l. 381, EMC Corp. v. Pure Storage, Inc., C.A. No. 13-1985-
RGA (D. Del. Feb. 11, 2016). Pure Storage subsequently stipulated to infringement of claims 2
and 15 of the ’015 patent, and further stipulated to inducement of infringement of all five
asserted claims.

13. In the 2013 Action, the jury rejected Pure Storage’s invalidity defenses, and the
’015 patent was held valid.

14. During trial in the 2013 Action, Pure Storage alleged that it had developed—but
not yet commercially released—certain purported non-infringing alternatives to the *015 patent.
Pure Storage has also stated publicly that it “do[es] not expect to pay any ongoing royalties to
EMC” because it has “alternatives ready to go for the software feature that the Court found to be

infringing EMC’s [’015 patent].” See Exhibit A (http://blog.purestorage.com/litigation-update/

(accessed March 16, 2016)). As Pure Storage knows—and as EMC showed at trial—Pure
Storage’s purported alternatives infringe the 015 patent.

15. In addition to continuing to sell the FlashArray products found as a matter of law
to infringe the 015 patent, Pure Storage currently sells and offers to sell other products that
infringe the *015 patent. For example, in 2015, Pure Storage released its FlashArray//m product.
As explained in more detail below, on information and belief, all models of Pure Storage’s
FlashArray//m, including but not limited to //m10, //m20, //m50, and //m70, incorporate the same
or similar features found to infringe the ’015 patent. See, e.g,

https://www.purestorage.com/content/dam/purestorage/pdf/datasheets/PureStorage FlashArraym

-Brochure.pdf at 5 (“always-on inline deduplication”); http://blog.purestorage.com/in-memory-

database-meets-mighty-performance-storage-flasharraym-is-certified-for-sap-hana/

Case 1:16-cv-00176-UNA Document 1 Filed 03/21/16 Page 6 of 10 PagelD #: 6

(“FlashArray//m brings the following essentials to complete the promise of in-memory databases

. both inline compression and deduplication”); https://www.purestorage.com/products/flash-

array-m.html (“FlashArray//m is powered by software natively built to capitalize on flash: Purity
Operating Environment is the software heart of the FlashArray”).

CLAIM FOR RELIEF
Infringement of U.S. Patent No. 7,434,015

16. EMC hereby realleges and incorporates herein the allegations set forth in
Paragraphs 1-13 of this Complaint.

17. EMC has title and substantial rights in the *015 patent, including the right to bring
this suit for injunctive relief and damages. A copy of the ’015 patent is attached hereto as
Exhibit B.

18. EMC is informed and believes, and on that basis alleges, that Pure Storage has
been and is directly infringing the *015 patent under at least 35 U.S.C § 271(a) by making, using,
selling, and/or offering for sale systems, methods, and/or products that incorporate the
deduplication inventions claimed in the 015 patent, including, but not limited to, by making,
using, selling, and/or offering to sell FlashArray//m, in addition to other Pure Storage products
introduced subsequent to the FlashArray 300 and 400 models that were accused in the 2013
Action, sold under other names, that contain the same or similar infringing deduplication
functionality. EMC also alleges that Pure Storage directly infringes and will directly infringe the
’015 patent by making and using code relating to Pure Storage’s purported alternative ways of
performing deduplication, including, but not limited to, the purported alternatives that Pure
identified in the 2013 Action, including at trial. The deduplication products, code, features, and
methods accused of infringing the 015 patent are hereinafter referred to as the Accused

Instrumentalities.

Case 1:16-cv-00176-UNA Document 1 Filed 03/21/16 Page 7 of 10 PagelD #: 7

19. EMC is informed and believes, and on that basis alleges, that Pure Storage’s
FlashArray//m product includes the same or substantially the same deduplication technology as
the FlashArray 300 and 400 models that were found to infringe in the 2013 Action.

20. EMC is informed and believes, and on that basis alleges, that Pure Storage’s
infringement is literal or, in the alternative, that Pure Storage infringes under the doctrine of
equivalents.

21. The ’015 patent claims methods, devices, and computer program products for
storing data. EMC is informed and believes, and on that basis alleges, that Pure Storage
infringes at least claims 1, 2, 7, 15, and 16 of the *015 patent. For example, claim 1 recites:

1. A method for storing data comprising:

[a] receiving a data stream comprising a plurality of data segments;

[b] assigning an identifier to one of the plurality of data segments; and

[c] determining whether one of the plurality of data segments has been
stored previously using a summary, wherein the summary is a space
efficient, probabilistic summary of segment information.

22. Upon information and belief, for example and without limitation, the Accused

Instrumentalities practice the limitations of claim 1 at least by:

a. receiving a stream of data sectors from one or more sources;
b. assigning a hash value to one or more of the received data sectors;
C. determining whether the received data sector has been stored previously

using, inter alia, a “Successful Dedupe” table, a “Recent” table, or other
data structure that records the hash values of data sectors that have been
previously stored.

23. The Accused Instrumentalities practice the limitations of other claims of the

’015 patent for the same or similar reasons.

Case 1:16-cv-00176-UNA Document 1 Filed 03/21/16 Page 8 of 10 PagelD #: 8

24. EMC is informed and believes, and on that basis alleges, that Pure Storage has
induced infringement, at least because it instructs its customers on the use of its products, and
that Pure Storage has continued such instruction with knowledge of the *015 patent and the
infringement of that patent, and with the intent to cause infringement, thereby continuing to
induce infringement of the ’015 patent. Such instruction is provided, for example, in user
guides, installation and support guides, and other documentation; in marketing videos; and
through Pure Storage’s support services. Pure Storage has represented to customers that
deduplication is “essential.” (http://blog.purestorage.com/reflections-on-a-puritan-new-year/).
Pure Storage has caused its customers to use the Accused Instrumentalities in a manner that
infringes the 015 patent.

25. EMC is informed and believes, and on that basis alleges, that Pure Storage has
contributed and is continuing to contribute to the infringement of the *015 patent by selling or
offering to sell the Accused Instrumentalities to its customers with knowledge that those
products are especially made or especially adapted for use in the infringement of the *015 patent.
Those products, which are not staple articles of commerce suitable for substantial noninfringing
uses, constitute at a minimum apparatuses for use in practicing a patented process of the '015
patent.

26. EMC alleges that since at least the filing of the Complaint in the 2013 Action,
Pure Storage’s infringement of the ’015 patent has been willful and deliberate. Pure has known
about the 015 patent since November of 2013 and has, at a minimum, acted with reckless
disregard of a substantial risk of infringement of EMC’s valid patent.

217. Pure Storage’s infringement has left EMC with no adequate remedy at law and

has caused, is causing, and if not enjoined will continue to cause irreparable damage to EMC.

Case 1:16-cv-00176-UNA Document 1 Filed 03/21/16 Page 9 of 10 PagelD #: 9

28. Pure Storage, by way of its infringing activity, has caused and continues to cause
EMC to suffer damages in an amount to be determined at trial.

PRAYER FOR RELIEF

Wherefore, EMC respectfully requests that judgment be entered in its favor and prays
that the Court grant the following relief:

A. A judgment in favor of EMC that Pure Storage has infringed, directly and
indirectly, literally and/or under the doctrine of equivalents, claims of the *015 patent;

B. A judgment declaring that Pure Storage’s infringement of the ’015 patent has
been willful and deliberate;

C. An order preliminarily and permanently enjoining Pure Storage, together with its
officers, agents, employees, attorneys, dealers, distributors, sales representatives, and all others
acting in concert or privity with it, from making, using, selling, offering for sale, or importing the
Accused Instrumentalities, or any colorable imitation thereof, and from otherwise infringing the
claims of the "015 patent;

D. An order requiring Pure Storage to provide a pre-judgment accounting and to pay
supplemental damages to EMC, including without limitation, pre-judgment and post- judgment
interest;

E. An award to EMC of the damages, including enhanced damages, to which EMC
is entitled under 35 U.S.C. § 284 for Pure Storage’s past infringement and any continuing or
future infringement up until the date Pure Storage is finally and permanently enjoined from
further infringement;

F. An award to EMC of equitable relief requiring Pure Storage to destroy all

infringing products in inventory, including but not limited to the Accused Products wherever

Case 1:16-cv-00176-UNA Document 1 Filed 03/21/16 Page 10 of 10 PagelD #: 10

they may be stored or maintained, and to recall from the marketplace all such infringing
products, including but not limited to any infringing products in the possession or control of
dealers, distributors, or customers;

G. An award to EMC of its attorneys’ fees and costs in this action, including on the
basis that this is an exceptional case under 35 U.S.C. § 285;

H. Such other relief that the Court deems just and proper.

JURY DEMAND

EMC demands a trial by jury on all issues triable to a jury.
MORRIS, NICHOLS, ARSHT & TUNNELL LLP

/s/ Jack B. Blumenfeld

OF COUNSEL.: Jack B. Blumenfeld (#1014)
Jeremy A. Tigan (#5239)
Josh A. Krevitt 1201 North Market Street
Paul E. Torchia P.O. Box 1347
GIBSON, DUNN & CRUTCHER LLP Wilmington, DE 19899
200 Park Avenue (302) 658-9200
New York, NY 10166-0193 jblumenfeld@mnat.com
(212) 351-2490 jtigan@mnat.com
Stuart M. Rosenberg Attorneys for Plaintiff EMC Corporation

GIBSON, DUNN & CRUTCHER LLP
1881 Page Mill Road

Palo Alto, CA 94304-1211

(650) 849-5389

Paul T. Dacier
Krishnendu Gupta
William R. Clark
Thomas A. Brown
EMC CORPORATION
176 South Street
Hopkinton, MA 01748

March 21, 2016

10

Case 1:16-cv-00176-UNA Document 1-1 Filed 03/21/16 Page 1 of 18 PagelD #: 11

EXHIBIT A

Case 1:16-cv-00176-UNA Document 1-1 Filed 03/21/16 Page 2 of 18 PagelD #: 12

Blog > Company

Litigation Update

03.15.2016 Posted by Joe FitzGerald

Posted In: Company, Competition

In November 2013, EMC sued Pure in federal court in Delaware, claiming that Pure infringed
five patents involving various data storage technologies. Last week, the case went to trial — and
the case wrapped up this afternoon.

Before the trial started, EMC dropped one patent from the case, and the judge in a pre-trial
summary judgment ruling found that we didn’t infringe another. In the same ruling, the judge
hearing the case found that Pure infringed certain claims of one of EMC’s patents related to de-
duplication technology.

The seven-day trial, therefore, focused on two questions:

e Whether we infringed two EMC patents dealing with de-duplication and RAID storage.
o Whether the de-duplication patent that the judge found we infringed was actually valid.

The jury’s verdict was split.

e The jury found that Pure did not infringe either of the two patents they were asked to
consider.

e However, the jury also found to be valid the one patent that we were found to have
infringed by the judge.

The jury awarded EMC damages of $14 million. EMC had originally sought more than $80
million.

Our view has been and remains that EMC’s litigious approach to competition primarily reflects
efforts to stabilize its storage business as customers around the world abandon the kind of disk-
based storage systems EMC pioneered in favor of flash-based storage from innovative
companies like Pure. As the trial proceedings made clear, EMC built its own flash-based storage
products via acquisition, rather than organic innovation.

http://blog.purestorage.com/litigation-update/ 3/21/2016

Case 1:16-cv-00176-UNA Document 1-1 Filed 03/21/16 Page 3 of 18 PagelD #: 13

We are gratified that the jury agreed with our view of the facts on most of the issues at trial,
although we are disappointed with the one ruling not in our favor on one of EMC’s de-
duplication patents. We continue to believe that both the facts and the law are on our side on that
issue — and we are considering our options for appealing that aspect of the decision.

It is important to note this ruling will not disrupt Pure, our customers or our partners:

o We will continue to sell the same set of products and services that drove 150% top-line
growth in our fiscal year ended January 31, 2016.

e We do not expect to pay any ongoing royalties to EMC.

e We have alternatives ready to go for the software feature that the Court found to be
infringing EMC’s de-dupe patent.

e Pure has sufficient financial resources such that the proposed damages — if upheld on
appeal — will not slow us down.

As Pure CEO Scott Dietzen wrote in a blog post in 2013, Pure welcomes marketplace
competition. Competition drives innovation and customer value. Competition makes our
products better and makes us into a better company, more attuned to customer and partner needs.
Competition also fuels market growth. We look forward to continuing to compete with EMC in
the public marketplace.

http://blog.purestorage.com/litigation-update/ 3/21/2016

Case 1:16-cv-00176-UNA Document 1-1 Filed 03/21/16 Page 4 of 18 PagelD #: 14

EXHIBIT B

case tbraoprroromA Becement 3 | RAARARAN AN A RKE

a2 United States Patent
Zhu et al.

US007434015B2
(10) Patent No.: US 7,434,015 B2
(45) Date of Patent: Oct. 7, 2008
(58) Field of Classification Search 711/162,
711/118

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,765,173 A * 6/1998 Caneetal. 707/204
6,269,431 B1* 7/2001 Dunham 711162
6,366,987 B1* 4/2002 Tzelnicetal. 711/162
6,449,697 B1* 9/2002 Beardsley etal. 711/137
6,549,992 B1* 4/2003 Armangauetal. 711/162
6,754,765 B1* 6/2004 Changetal. 711/103
2003/0093647 Al* 5/2003 Mogietal.ccccceeeenn. 712/1
2003/0110411 Al* 6/2003 Hararietal.c.ccco....... 714/8
2003/0204605 Al* 10/2003 Hudsonetal. 709/228

* cited by examiner

Primary Examiner—DBrian R Peugh
(74) Attorney, Agent, or Firm—Van Pelt, Yi & James LLP

(57) ABSTRACT

A system and method are disclosed for providing efficient
data storage. A data stream comprising a plurality of data
segments is received. The system determines whether one of
the plurality of data segments has been stored previously
using a summary in a low latency memory; in the event that
the data segment is determined not to have been stored pre-
viously, assigning an identifier to the data segment.

16 Claims, 7 Drawing Sheets

400
Compute an 1D k

(54) EFFICIENT DATA STORAGE SYSTEM
(76) Inventors: Ming Benjamin Zhu, 2929 Campus Dr.,
Suite 250, San Mateo, CA (US) 94403;
Kai Li, 2929 Campus Dr., Suite 250, San
Mateo, CA (US) 94403; R. Hugo
Patterson, 2929 Campus Dr., Suite 250,
San Mateo, CA (US) 94403
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
(21) Appl. No.: 11/974,961
(22) Filed: Oct. 16, 2007
(65) Prior Publication Data
US 2008/0133835 Al Jun. 5, 2008
Related U.S. Application Data
(63) Continuation of application No. 11/403,153, filed on
Apr. 11, 2006, now Pat. No. 7,305,532, which is a
continuation of application No. 10/325,479, filed on
Dec. 20, 2002, now Pat. No. 7,065,619.
(51) Imt.ClL
GO6F 12/00 (2006.01)
(52) US.CL ..ot 711/162; 711/118
414
Return ID

Is data in cache?
N
N § hash in metadata
summary?
Y
Is ID in metadata index?
Y
N Is cache full?
Y /

402

404

406

407

408

[Drop least used group from !

cache

cache

/ 410

Add related group of ID's tiJ
412

!

Return 1D

Case 1:16-cv-00176-UNA Document 1-1 Filed 03/21/16 Page 6 of 18 PagelD #: 16

U.S. Patent Oct. 7, 2008 Sheet 1 of 7 US 7,434,015 B2

(w]
-
A o
| -
Pt 4
1))
— 2 2 5 g
— p a
©
()
J
] §
(o} P '-_
o o ﬂ:
] & A
g o X
S L
(U ——
m al
A A D_

Case 1:16-cv-00176-UNA Document 1-1 Filed 03/21/16 Page 7 of 18 PagelD #: 17

U.S. Patent Oct. 7, 2008 Sheet 2 of 7 US 7,434,015 B2
Segmented Data Stream
't 200
ID Generator
Metadata
Sequence
3 205
Segment Redundancy [ummary
Check Engine AN
g 2og\ CACHE | LLMemory 330
4
214 216 ~218
Receiving | | Receiving | | Receiving
Container | | Container | | Container
y 4 ¥ 4 - 204
Segment Database
208 208 210 212 220
Segment || Segment || Segment {{ Segment || Metadata
Container | | Container | | Container | | Container Index

FIG. 2

Case 1:16-cv-00176-UNA Document 1-1 Filed 03/21/16 Page 8 of 18 PagelD #: 18

US 7,434,015 B2

Sheet 3 of 7

Oct. 7, 2008

U.S. Patent

€ 'Old
POE~ 20E~ 00€~
ele(ejeq Bjeq wng 3oayoH
Juswibag |juswbag |juswibeg| dweig s |
18810 | 8215 Wweawbag | | wewbag | Q] Jauieluo)
uonoeg
elepelony lapeap

Case 1:16-cv-00176-UNA Document 1-1 Filed 03/21/16 Page 9 of 18 PagelD #: 19

U.S. Patent Oct. 7, 2008 Sheet 4 of 7 US 7,434,015 B2

400
F Compute an 1D r

|

402

Return ID Is data in cache?
404
s hash in metadata
summary?
406
N . .
A e “Is 1D in metadata index?
407
N

Y 408
¥ —
Drop least used group from]
cache

i
410

Add related group of ID's to
cache

Y
] Return 1D

Fig. 4A

Case 1:16-cv-00176-UNA Document 1-1 Filed 03/21/16 Page 10 of 18 PagelD #: 20

U.S. Patent Oct. 7, 2008 Sheet 5 of 7 US 7,434,015 B2

(ﬂ

B 420
f Read stream 1D

422
Lookup receiving container using
stream D

l

424
Add segment to container data

container metadata

428

426
Add segment metadata to

Insert related group of ID's to
cache

430
—

Update metadata summary

t] 412
Retum ID !
|

[e

Fig. 4B

Case 1:16-cv-00176-UNA Document 1-1 Filed 03/21/16 Page 11 of 18 PagelD #: 21

U.S. Patent Oct. 7, 2008 Sheet 6 of 7 US 7,434,015 B2

Append segment to
container

Is container full?

'

504
Write container to disk
y
506
Send container metadata to index /
508
/

Start new container for segment data

Fig. 5

Case 1:16-cv-00176-UNA Document 1-1 Filed 03/21/16 Page 12 of 18 PagelD #: 22

U.S. Patent Oct. 7, 2008 Sheet 7 of 7 US 7,434,015 B2
lojojojofo o{ojo]o]| ---
FIG. 6A

P yait. 3
ojo] — Jo]/Jo] --- Jo]/Jo] — JoJ/Jo] —
FIG. 6B
Vi il s e N
ofof/Jo] - Jo]/Jo]/]—1]1/ o]/]o] —

N N N
a, a, q,

Case 1:16-cv-00176-UNA Document 1-1 Filed 03/21/16 Page 13 of 18 PagelD #: 23

US 7,434,015 B2

1
EFFICIENT DATA STORAGE SYSTEM

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 11/403,153, entitled EFFICIENT DATA STOR-
AGE SYSTEM filed Apr. 11, 2006, now U.S. Pat. No. 7,305,
532 which is incorporated herein by reference for all
purposes, which is a continuation of Issued U.S. patent appli-
cation Ser. No. 10/325,479, entitled EFFICIENT DATA
STORAGE SYSTEM filed Dec. 20, 2002, now U.S. Pat. No.
7,065,619, which is incorporated herein by reference for all
purposes.

FIELD OF THE INVENTION

The present invention relates generally to data storage sys-
tems. More specifically, a data storage system that efficiently
eliminates redundancy is disclosed.

BACKGROUND OF THE INVENTION

Enterprises as well as individuals are becoming increas-
ingly dependent on computers. As more and more data are
generated, the need for efficient and reliable data backup
storage systems is increasing. There are a variety of systems
in existence today, utilizing both local and network storage
for backup.

FIG. 1 is a block diagram illustrating a typical network
backup system. Data are generated from a variety of sources,
for instance data sources 100, 102 and 104. During the backup
operation, the data sources stream their data contents to
backup server 106. The backup server receives the data
streams, optionally processes the data streams, and sends the
data to backup devices such as tape 108 and data organizer
110. Data organizer 110 processes the data received and
writes the data to a storage device 112, which can be a single
disk or a disk array. The data organizer can be a device
separate from the backup server or a part of the backup server.

During a backup operation, the data from the data sources
are copied to the backup devices. Commonly, there is a sub-
stantial amount of data from each of the data sources that
remains the same between two consecutive backups, and
sometimes there are several copies of the same data. Thus, the
system would be more efficient if unchanged data are not
replicated.

There have been attempts to prevent redundant copying of
data that stay the same between backups. One approach is to
divide the data streams from the data sources into segments
and store the segments in a hash table on disk. During subse-
quent backup operations, the data streams are again seg-
mented and the segments are looked up in the hash table to
determine whether a data segment was already stored previ-
ously. If an identical segment is found, the data segment is not
stored again; otherwise, the new data segment is stored. Other
alternative approaches including storing the segments in a
binary tree and determining whether an incoming segment
should be stored by searching in the binary tree.

While such an approach achieves some efficiency gains by
not copying the same data twice, it incurs significant disk
input/output (I/O) overhead as a result of constantly accessing
the disk to search for the data segments. Also, the searching
techniques employed in the existing systems often involve
searching for the ID in a database, which becomes less effi-
cient as the size of the database grows. It would be desirable
to have a backup system that would reduce the disk I/O

20

25

30

35

40

45

50

55

60

65

2

overhead and increase search efficiency, while eliminating
the unnecessary data replication.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be readily understood by the
following detailed description in conjunction with the accom-
panying drawings, wherein like reference numerals designate
like structural elements, and in which:

FIG. 1 is a block diagram illustrating a typical network
backup system.

FIG. 2 is a block diagram illustrating a storage system
embodiment according to the present invention.

FIG. 3 illustrates the data layout of a container embodiment
according to the present invention.

FIG. 4A and FIG. 4B are flowcharts illustrating the han-
dling of an incoming segment in a storage system embodi-
ment in accordance with the present invention.

FIG. 5 is a flowchart illustrating the details of adding a new
segment to the receiving container step shown in FIG. 4B.

FIG. 6A-FIG. 6C illustrate the operations of a Bloom filter.

DETAILED DESCRIPTION

It should be appreciated that the present invention can be
implemented in numerous ways, including as a process, an
apparatus, a system, or a computer readable medium such as
a computer readable storage medium or a computer network
wherein program instructions are sent over optical or elec-
tronic communication links. It should be noted that the order
of'the steps of disclosed processes may be altered within the
scope of the invention.

A detailed description of one or more preferred embodi-
ments of the invention is provided below along with accom-
panying figures that illustrate by way of example the prin-
ciples of the invention. While the invention is described in
connection with such embodiments, it should be understood
that the invention is not limited to any embodiment. On the
contrary, the scope of the invention is limited only by the
appended claims and the invention encompasses numerous
alternatives, modifications and equivalents. For the purpose
of example, numerous specific details are set forth in the
following description in order to provide a thorough under-
standing of the present invention. The present invention may
be practiced according to the claims without some or all of
these specific details. For the purpose of clarity, technical
material that is known in the technical fields related to the
invention has not been described in detail so that the present
invention is not unnecessarily obscured.

An improved storage system that eliminates redundant
copying of identical data during a backup operation is dis-
closed. The system receives a segmented input data stream
and produces segment 1D’s for the segments. Checks are
performed on the data segments to determine whether the
same segments have previously been stored to a segment
database of the system, thereby avoiding redundant copying.
Preliminary checking techniques are used to lower the latency
associated with the checking and increase search efficiency.
In one embodiment, metadata information about segments
that are likely to be encountered soon are stored in a metadata
cache and used in the preliminary check. In one embodiment,
asummary is used in the preliminary check. In some embodi-
ments, the cache and summary techniques are combined.

FIG. 2 is a block diagram illustrating a storage system
embodiment according to the present invention. One or more
data streams from a backup server or other data source are
divided into segments (also referred to as blocks), and the

Case 1:16-cv-00176-UNA Document 1-1 Filed 03/21/16 Page 14 of 18 PagelD #: 24

US 7,434,015 B2

3

segmented data streams are received by an ID generator 200.
The size of the segments varies depending on the implemen-
tation. In some embodiments, the segments have a fixed size.
In some embodiments, the segments have variable sizes. In
some embodiments, the data stream is broken into a number
of parallel streams where the streams may have different
segment sizes.

If the data stream is not segmented at the source of the data
stream, then the stream may be separated into segments such
that the segments can be readily matched with segments from
previous or future streams according to the techniques dis-
closed in Finding Similar Files in A Large File System (Udi
Manber, Technical Report TR 93-33, University of Arizona,
October 1993.)

A segment ID is generated by ID generator 200 and
assigned to each of the segments received. The location of the
ID generator is implementation dependent. In the embodi-
ment shown, the IDs are generated before the segments are
sent to the segment redundancy check engine. In some
embodiments, the IDs are generated sometime after the seg-
ments have been processed by the segment redundancy check
engine. In certain embodiments, the IDs are generated when
the segments are ready to be stored to segment database 204.
The methods used to generate the ID are also implementation
dependent. In some embodiments, the 1D is the segment data
itself. In some embodiments, a digital signature (also referred
to as a cryptographic hash or a fingerprint), is generated from
the result of a hash function computed using the segment data.
In some embodiments, a cryptographic hash function such as
the MDS5 algorithm is used. In one embodiment, the ID is a
Rabin fingerprint. In some embodiments, the 1D is a sequen-
tial number assigned by the system.

In this embodiment, the segment data stream sent to seg-
ment redundancy check engine 202 includes both the segment
data and the segment IDs. In other embodiments, the segment
IDs are not sent to the segment redundancy check engine. The
segment redundancy check engine is designed to efficiently
determine whether segments are already stored by the system
while reducing latency. The segment redundancy check
engine reduces the amount of time required for most redun-
dancy checks by performing certain preliminary checks to
determine whether the segment has been stored previously,
using operations that are carried out in quickly accessible
memory.

Segment redundancy check engine 202 accesses a cache
203 that stores segment information for fast preliminary
checks. In various embodiments, the segment information
includes segment ID’s, segment metadata, segment data, or
combinations thereof. Cache 203 is typically implemented
using memory that is quickly accessible, such as various
kinds of dynamic random access memory, as well as various
forms of non-volatile memory. Such memory or any other
similarly quickly accessible memory is referred to as low
latency memory. In general, low latency memory is any type
of memory or cache that can generally be read more quickly
or has better throughput than the large memory that stores the
entire segment database. In the embodiment shown, the seg-
ment redundancy check engine also accesses a summary 205
that is implemented in memory, used to determine whether a
segment has been stored previously.

If the preliminary checks do not conclusively determine
whether the segment has already been stored, then a lookup is
done in segment database 204 to confirm whether the segment
has been stored previously. Segment database 204 is typically
stored in a relatively high latency memory. A relatively high
latency memory refers to various types of storage that cannot
be addressed as quickly as the quickly accessible memory of

20

25

30

35

40

45

50

55

60

65

4

the system, for example, hard disk, optical storage, devices
over a network, etc. There are diftferent causes for a storage to
have high latency. For example, the storage has a small
throughput due to the bus speed of'its interface; or the storage
is large in size and thus accessing specific items involves
searching a large amount of data; or the storage is connected
to the rest of the system via a network; or the storage is
accessed often and a queue may develop or other problems
may occur.

For the purpose of example, the segment databases in
embodiments discussed in the rest of this specification are
stored on hard disk, although it should be understood that
other types of high latency memory can be used. Data seg-
ments and their associated metadata are stored in segment
database 204. The segment database is content addressable,
which is to say that given the content of a data segment, a
lookup can be done in the segment database to confirm
whether the segment has been stored previously. In the
embodiment shown, segment database 204 includes a seg-
ment metadata index and multiple segment containers 206-
212 that each stores multiple segments along with segment
metadata. The segment metadata index provides a way to
quickly look up the storage location of a segment. In different
embodiments, the metadata index may be implemented as a
hash table, a tree, a list, a combination thereof, etc. Only a
small number of segment containers are illustrated for the
purpose of example; an actual system would have a large
number of such containers. In the embodiment shown, there
are a number of receiving containers 214-218 that reside in
memory and serve as buffers to store the newly received
segments before they are written to segment containers on
disk. Again, the number of receiving containers are different
in different embodiments, although in many cases there is one
receiving container per segment stream.

The containers are the basic storage units used in the seg-
ment database. A container is a relatively large chunk of data
storage space (as much as 8 MB or more in some embodi-
ments) used mainly to store data segments and segment meta-
data. In the embodiment shown, two types of containers,
receiving and storage, are used. Each receiving container is
used to store data segments and their metadata received from
asingle data source. Data segments from the same data source
are added in the corresponding receiving container sequen-
tially, and the metadata section of the receiving container is
updated accordingly. The receiving containers are kept in
memory so that new segments can be efficiently processed.

In this embodiment, once a receiving container is filled
with data, it is written to disk as a whole. The storage units for
containers on disk in the segment database are referred to as
segment containers. A segment container may be read in its
entirety, one section at a time, or in byte ranges within a
section. The disk I/O performance is improved by using
receiving containers to buffer data read from the stream and
segment containers to write data to the segment database in
large chunks. In certain embodiments, there is a container
manager that is responsible for functions such as allocating,
deleting, reading, writing and reliably storing the containers.
The size of the containers are the same in the embodiment
shown; they are different sizes in other embodiments. Gen-
erally, the receiving container and the segment container use
the same data format. FIG. 3 illustrates the data layout of a
container embodiment according to the present invention.
300 is the header portion of the container, which includes
information related to the container such as container Id, time
stamp, checksum, error correction codes, etc. 304 is the data
section that stores the segment data. In some embodiments,
the data segments are stored in compressed form. In one

Case 1:16-cv-00176-UNA Document 1-1 Filed 03/21/16 Page 15 of 18 PagelD #: 25

US 7,434,015 B2

5

embodiment, a variation of Ziv-Lempel compression algo-
rithm is used. In other embodiments, different compression
techniques are applied to the data segments. 302 is the meta-
data section that stores the metadata associated with the cor-
responding segment data, such as the segment ID, segment
size, and offset from the start of the container so that the
segment can be accessed. In various embodiments, the meta-
data section may be implemented as an array, a list, a tree, a
table, etc.

Returning to FIG. 2, metadata index 220 is used to confirm
whether the data segment has already been stored. The meta-
data stored in the index is content dependent, in other words,
the metadata are generated based on the content of a data
segment and can be used to locate a data segment in the
database if the data segment has been stored previously. In
different embodiments, different types of metadata are used
in the cache. In the embodiment shown, the metadata index is
implemented as a hash table that is organized in buckets. The
buckets store the segment ID’s and other associated metadata,
such as the ID of the container that stores the segment. To add
new segment information, a hash function is applied to the
segment ID to determine in which bucket the ID should be
stored, and then the segment ID and its associated informa-
tion is stored to the bucket. To look up a segment ID, the
segment 1D is hashed and the bucket corresponding to the
hash value is located. A search is performed on all the seg-
ment ID’s stored in the bucket to determine whether the
segment ID already exists.

Typically, a storage system will store a very large number
of segments and therefore a very large number of segment
ID’s are stored in the metadata index. Cache 203 stores only
a small subset of the segment for fast preliminary determina-
tion of whether a received segment has already been stored.
The segment redundancy check engine checks the complete
metadata index stored on disk to confirm whether the data has
been stored previously, if a segment cannot be found in cache
203 or if the result of the summary check is inconclusive.

The nature of the determination that is made from checking
the cache and the summary should be noted. The cache can
positively (that is, conclusively) determine that the segment is
has previously been stored, because it is found in the cache. If
the segment is not in the cache, then there is no positive
determination that the segment is not in the larger high latency
database that holds all the segments. The summary can posi-
tively determine that the segment has not been stored. How-
ever, if the summary includes the segment, that is not a posi-
tive determination that the segment has been stored, since
other segments or combinations of other segments can cause
false hits in the summary. So, after checking the cache and the
summary, the result is one of three possibilities:

1. The summary positively determines that the segment is

new.

2. The cache positively determines that the segment was

previously stored.

3. Neither the summary nor the cache makes a positive

determination.

If neither the summary nor the cache makes a positive
determination, then the larger high latency database must be
searched to make a positive determination.

Different types of segment information are stored in cache
203 in various embodiments, including segment ID’s, seg-
ment data, segment metadata, or combinations thereof. In
some embodiments, the segment containers are cached and
used in the preliminary check. In some embodiments, the
metadata information of the segments are cached, and the
preliminary checking is performed using the metadata infor-
mation. For instance, the metadata information may include a

20

25

30

35

40

45

50

55

60

65

6

short ID assigned to a data segment and a signature of the data
segment, where the short ID is not likely to be unique. The
preliminary check then involves looking up the short ID, and
then the signature of a segment in the cache to determine
whether the segment has been stored previously. Embodi-
ments using segment ID in the cache are discussed for the
purpose of example hereafter; it should be noted that other
types of segment information can be used in the cache as well.
The metadata are organized in the cache to allow for fast
lookups. In various embodiments, the metadata may be stored
in a hash table, a tree, a binary tree, a list, etc.

Accessing the segment metadata index on the hard disk is
relatively expensive in terms of time. For that reason, it is
important that the segment ID’s of the segments most likely to
be encountered in the data stream are in the cache and that
space in the cache is not wasted on segment ID’s that are not
likely to be encountered.

In the embodiment shown, the groups of segment ID’s that
are transferred to and from the cache correspond to the groups
of segments that are stored in segment containers. In other
embodiments, segment ID’s may be grouped independently
of how the segments themselves are stored. To decrease the
likelihood of cache misses, segment 1D’s are preferably
grouped in some manner wherein when one segment ID in the
group of segment ID’s is encountered in the incoming data
stream, other segment ID’s in the group of segment ID’s are
likely to be encountered soon.

An important consideration in increasing the likelihood of
cache hits is that the segments corresponding to each group of
segment ID’s be related, that is, that they generally are
received closely together. In many systems, the incoming data
stream may include segments from a number of sources that
are interleaved. Data from a single source is likely to be
related, but consecutive segments in an interleaved stream are
not necessarily interleaved in the same manner if their respec-
tive sources are independent. In one embodiment, the sources
provide stream with identifiers that are used to separate the
interleaved stream into substreams corresponding to seg-
ments from a single source. Segments from each substream
are stored in a different receiving container so that related
segments are stored in the same place. In addition, the seg-
ment ID’s for each receiving container are therefore related
and comprise a useful group to be transferred to and from the
cache together. Again it should be noted that the segment ID
groups described in this example correspond to groups of
segments stored in a container but in other embodiments,
groups of segment ID’s may be defined without any corre-
spondence to how segments themselves are stored. Addition-
ally, other related groups of segment information may be used
instead of segment ID’s.

In this embodiment, when the cache is full, the group of
segment [D’s that is the least recently used group of container
segment ID’s is dropped from the cache to make room for a
new group of segment ID’s from a newly accessed container.
The next time segment ID’s that are the same as the ones from
the container that includes the dropped group of segment ID’s
are encountered in the data stream, the segment redundancy
check engine will not find the segment 1D’s in the cache, and
will then check the metadata index for the information. In
some embodiments, the segment ID’s can be dropped indi-
vidually from the cache as opposed to being dropped in a
group. In some embodiments, the cached segment ID’s are
stored in a first in first out (FIFO) queue, and the dropped
segments are the segments that are stored to the queue the
earliest.

In the embodiment shown, accessing segment [D’s from a
segment container will prompt the system to transfer all of the

Case 1:16-cv-00176-UNA Document 1-1 Filed 03/21/16 Page 16 of 18 PagelD #: 26

US 7,434,015 B2

7

segment ID’s from that container to the cache, and the least
recently used group of segment ID’s will be dropped from the
cache. In some embodiments, one or more segment ID’s are
dropped from the cache and the ID’s are not grouped. The
segment ID’s in the updated cache are more likely to be
related to the segment ID’s of the incoming data stream,
therefore cache hits are more likely and the I/O overhead
associated with checking the metadata index is reduced. The
system maintains a least recently used list that tracks when a
segment ID’s group was accessed. The list is used to replace
the data that has not been accessed for the longest time with
newly accessed data.

In some embodiments, the output of the segment redun-
dancy check engine is a sequence of ID’s that is stored and
used later for reconstructing the data stream when the system
performs a read operation. In various embodiments, the
sequence of ID’s may be segment ID’s, a set of sequential
numbers assigned to the data segments, or other types of
segment metadata. The sequence of ID’s can be used in com-
bination with the segments stored in the segment containers to
recreate the data stream. Thus, the ID sequence is a highly
compressed representation of the incoming data stream that
can be uncompressed by retrieving each of the segments in
the segment database that are identified by the ID’s. There are
different ways to retrieve the segments using the ID sequence,
such as using the ID information to look up the segments in
the metadata cache, or finding the segment metadata in the
metadata index and using the segment container and infor-
mation in the metadata index to locate the segment itself.

FIG. 4A and FIG. 4B are flowcharts illustrating the han-
dling of an incoming segment in a storage system embodi-
ment in accordance with the present invention. In this
embodiment, the segment ID’s are stored in the cache. Thus,
a segment ID is looked up in the cache to determine whether
the segment has been stored previously. It should be noted
that in other embodiments, other types of segment informa-
tion can be stored in the cache for lookups instead of the
segment [D’s. At the beginning, a segment ID is generated for
a data segment (400). In other embodiments, this step may be
implemented elsewhere in the flowchart or omitted entirely.
The segment redundancy check engine then performs a first
preliminary check to determine whether the segment has been
stored by looking up the segment ID in the engine’s cache
(402). This step should eliminate a good portion of data
segments that are repeated. The cache stores the groups of
selected segment information in memory, allowing for fast
lookups of segment information as well as fast read opera-
tions.

If the segment ID is found in the metadata cache, the
segment ID is returned to the segment redundancy check
engine, and the segment is discarded (414). If, however, the
segment ID is not found in the metadata cache, the segment
redundancy check engine proceeds to perform a second pre-
liminary check using a summary (404). A summary is a space
efficient, probabilistic way of summarizing the segment data-
base. It is designed to use a small amount of memory to
summarize which segments are in the segment database. The
details of the summary operations are described later in FIG.
6. In this embodiment, a hash of the segment information is
used to determine whether the segment is in the summary.

In this embodiment, when the hash is not found in the
summary, it means that the segment does not exist in the
segment database, the segment is new and control is trans-
ferred to point A in FIG. 4B. On the other hand, if the hash is
found in the summary, it does not necessarily mean that the
segment data exists in the segment database. In other words,
the summary accurately determines when the segment does

20

25

30

35

40

45

50

55

60

65

8

not exist in the segment database and does not give false
negatives; however, it may give false positives with some
small probability. Thus, further action should be taken to
ascertain whether the segment indeed exists in the segment
database. In this embodiment, a confirmation step is used to
positively determine whether the segment exists in the data-
base. In the embodiment shown, looking up the segment ID in
the metadata index confirms whether the ID and its corre-
sponding data segment have already been stored (406).

If the ID is found in the metadata index, the cache is
updated by reading a group of related metadata or segment
data into the cache. If the cache is full (407), then the least
recently used ID’s or group of ID’s are dropped from the
cache (408). If the cache is not full, then control is transferred
to (410). A related group of ID’s are then added to the cache
(410). The segment ID is returned to the segment redundancy
check engine (412) and the segment data are discarded.

If the hash is not found in the summary, or if the ID is not
found in the metadata index, then the data segment and the ID
are new and various data structures in the system should be
updated to reflect the addition of the new data. Control is
transferred to point A in FIG. 4B. A stream 1D is extracted
from the incoming data (FIG. 4B, 420), and the receiving
container corresponding to the stream is located using the
stream 1D (422). The segment is then added to the receiving
container (424). The segment metadata are added to the con-
tainer’s metadata section (426), and the group of related
segment ID’s are added to the cache if needed (428). The
summary is also updated accordingly (430). The segment ID
is returned to the segment redundancy check engine to be
added to the segment ID sequence (412).

The preliminary checking steps provide ways to more effi-
ciently determine whether a data segment has been stored
previously. The checking in metadata cache and the checking
in summary can be independent of each other. In some
embodiments, step 404 occurs prior to step 402. In certain
embodiments, one of the two preliminary checking steps is
implemented.

FIG. 5 is a flowchart illustrating the details of adding a new
segment to the receiving container step (FIG. 4B 424). First,
is determined whether the receiving container is full (500). If
it is not full, the segment is appended to the container’s data
section (502). If it is full, the receiving container is written to
disk (504) and its metadata are added to the metadata index
(506). A new receiving container is then created to receive
future segment data (508). The in-memory receiving con-
tainer buffers the segment data and reduces the 1/O overhead.

The summary used in FIG. 4A step 404 is a space efficient,
probabilistic summary of the database designed to use mini-
mal amount of memory to summarize the data segments in the
database. In one embodiment, the summary is generated from
the segment ID’s. In other embodiments, the summary is
generated using the segment data. In certain embodiments,
the summary is generated from other metadata associated
with the segment.

In one embodiment, the summary is implemented using a
summary vector. One example of such a summary vector is a
“Bloom filter.” FIG. 6 A-FIG. 6C illustrate the operations of a
Bloom filter. A Bloom filter uses a summary vector of m bits
to summarize the information about n data items. The sum-
mary vector is updated when a new data item is received.

Initially, all the bits in the summary vector are set to 0, as
shown in FIG. 6A. A set of k independent hash functions hl,
h2, ... hk are applied to the segment. Different parameters of
the segment can be used by the hash in different embodi-
ments, including the data segment itself, parts of the data
segment, metadata of the data segment, etc. In this embodi-

Case 1:16-cv-00176-UNA Document 1-1 Filed 03/21/16 Page 17 of 18 PagelD #: 27

US 7,434,015 B2

9

ment, a segment 1D, a, is used; and the results are hl(a)=pl,
h2(a)=p2, . . . hk(a)=pk, where pl-pk are numbers within a
range between 1 to m. In the embodiment shown, k equals 3.

The bits at positions p1, p2, . . . pk are then set to 1 in the
summary vector as shown in FIG. 6B, as a is added to the
metadata index. Other inputs are hashed and the bits in the
summary vector are set in a similar fashion. For instance, the
hash functions are applied to a different ID, b, to obtain results
h1(b)=p'1,h2(b)=p'2,...hk(b)=p'k. The bits at positions p' 1,
p'2,...pkaresetto 1 inthe summary vector as shown in FI1G.
6C. To determine whether an input ID x has already been
added to the metadata index, first the hash functions are
applied to x to obtain a new set of results h1(x)=ql,
h2(x)=q2, . . . hk(x)=gk. Then, the bit positions in the sum-
mary vector that correspond to ql, q2, . . . gk are checked. If
any of the bit positions is 0, then it is positively determined
that x has never been updated in the summary vector and is not
in the metadata index. If, however, all the bit positions are 1 as
shown in FIG. 6C, it only indicates that x may already be in
the database since the bit positions may have been setto 1 by
a combination of two or more other IDs. Thus, further check-
ing is needed to confirm whether the ID has indeed been
stored previously. In some embodiments, the confirmation is
performed by looking up the ID in the metadata index.

There are many applicable hash functions used in different
embodiments, and the number of hash function used is imple-
mentation dependent. For example, the data bits of the ID can
be divided into chunks and the results of the hash functions
are the individual chunks. In one embodiment, a 160 bit long
1D is divided into five chunks of 32 bits each by a set of 5 hash
functions. In some embodiments, a group of log,m bits are
selected from a single large hash. An improved system and
method have been disclosed for efficiently storing data. The
system receives a segmented input data stream and produces
segment ID’s. The system performs checks based on segment
ID’s to determine whether the same segments have previ-
ously been stored, thereby avoiding redundant copying. Pre-
liminary checking techniques including caching and sum-
mary are used to efficiently determine the redundancy and
minimize the latency associated with the checking.

Although the foregoing invention has been described in
some detail for purposes of clarity of understanding, it will be
apparent that certain changes and modifications may be prac-
ticed within the scope of the appended claims. It should be
noted that there are many alternative ways of implementing
both the process and apparatus of the present invention.
Accordingly, the present embodiments are to be considered as
illustrative and not restrictive, and the invention is not to be
limited to the details given herein, but may be modified within
the scope and equivalents of the appended claims.

What is claimed is:

1. A method for storing data comprising:

receiving a data stream comprising a plurality of data seg-

ments;

assigning an identifier to one of the plurality of data seg-

ments; and

determining whether one of the plurality of data segments

has been stored previously using a summary, wherein
the summary is a space efficient, probabilistic summary
of segment information.

2. A method for storing data as recited in claim 1 wherein
the identifier is derived from the content of the one of the
plurality of data segments.

3. A method for storing data as recited in claim 1 wherein
the identifier is not derived from the content of the one of the
plurality of data segments.

20

25

30

35

40

45

50

55

65

10

4. A method for storing data as recited in claim 1 wherein
the identifier is a digital signature.

5. A method for storing data as recited in claim 1 further
comprising storing the one of the plurality of data segments.

6. A method for storing data as recited in claim 1 wherein
the determination can positively determine that the one of'the
plurality of data segments has not been stored previously, but
cannot positively determine that the one of the plurality of
data segments has been stored previously.

7. A method for storing data as recited in claim 1 further
comprising:
confirming whether the one of the plurality of data seg-
ments has been stored previously using a relatively high
latency memory.

8. A method for storing data as recited in claim 1 further
comprising:

confirming whether the one of the plurality of data seg-

ments has been stored previously by checking in a cache.

9. A method for storing data as recited in claim 1 further
comprising
confirming whether the one of the plurality of data seg-
ments has been stored previously, wherein confirming
whether the data segment has been stored previously
includes checking a cache; and

in the event that checking a cache results in a cache miss,
confirming whether the one of the plurality of data seg-
ments has been stored previously further includes
checking in a segment database.

10. A method for storing data as recited in claim 1 further
comprising:

confirming whether the one of the plurality of data seg-

ments has been stored previously, wherein confirming
whether the one of the plurality of data segments has
been stored previously includes checking a cache; and
in the event that checking a cache results in a cache miss,
confirming whether the one of the plurality of data seg-
ments has been stored previously further includes
checking in a segment database, wherein the segment
database is stored in relatively high latency memory.

11. A method for storing data as recited in claim 1 further
comprising generating segment information for each of the
one of the plurality of data segments.

12. A method for storing data as recited in claim 1 further
comprising generating segment information for each of the
plurality of data segments, wherein the segment information
includes a digital signature.

13. A method for storing data as recited in claim 1 further
comprising generating segment information for each of the
plurality of data segments; wherein the segment information
includes a short identifier that is not likely to be unique.

14. A method for storing data as recited in claim 1 wherein
the summary is a Bloom filter.

15. A data storage device comprising:

an input interface adapted to receive a data stream com-
prising a plurality of data segments; and

a segment redundancy check engine configured to receive
a data stream comprising a plurality of data segments,
assign an identifier to one of the plurality of data seg-
ments, and determine whether one of the plurality of
data segments has been stored previously using a sum-
mary, wherein the summary is a space efficient, proba-
bilistic summary of segment information.

Case 1:16-cv-00176-UNA Document 1-1 Filed 03/21/16 Page 18 of 18 PagelD #: 28

US 7,434,015 B2

11 12
16. A computer program product for storing data, the com- determining whether one of the plurality of data segments
puter program product being embodied in a computer read- has been stored previously using a summary, wherein
able storage medium and comprising computer instructions the summary is a space efficient, probabilistic summary
for: of segment information.
receiving a data stream comprising a plurality of data seg- 5

ments;
assigning an identifier to one of the plurality of data seg-
ments; and ® ok % % %

1S 44 (Rov. 12112) Case 1:16-cv-00176-UNA @ﬁym@é@EﬁI%@ym Page 1 of 2 PagelD #: 29

The JS 44 civil cover sheet and the information contained herein neither replace nor supplement the filing and service of pleadings or other papers as required by law, except as
provided by local rules of court. This form, approved by the Judicial Conference of the United States in September 1974, is required for the use of the Clerk of Court for the
purpose of initiating the civil docket sheet. (SEE INSTRUCTIONS ON NEXT PAGE OF THIS FORM.)

I. (@) PLAINTIFFS
EMC CORPORATION

(b) County of Residence of First Listed Plaintiff
(EXCEPT IN U.S. PLAINTIFF CASES)

DEFENDANTS
PURE STORAGE,

(C) Attorneys (Firm Name, Address, and Telephone Number)

Jack B. Blumenfeld

Morris, Nichols, Arsht & Tunnell LLP
1201 North Market Street; P.O. Box 1347; Wilmington, DE 19899

NOTE:

Attorneys (If Known)

INC.

County of Residence of First Listed Defendant

(IN'U.S. PLAINTIFF CASES ONLY)

IN LAND CONDEMNATION CASES, USE THE LOCATION OF
THE TRACT OF LAND INVOLVED.

I1. BASIS OF JURISDICTION (Place an “X” in One Box Only)

(For Diversity Cases Only)

I1l. CITIZENSHIP OF PRINCIPAL PARTIES (Place an “X” in One Box for Plaintiff

and One Box for Defendant)

[448 Education

555 Prison Condition

560 Civil Detainee -
Conditions of
Confinement

O 1 U.S. Government X 3 Federal Question PTF DEF PTF DEF
Plaintiff (U.S. Government Not a Party) Citizen of This State a1 O 1 Incorporated or Principal Place 04 04
of Business In This State
[2 U.S. Government O 4 Diversity Citizen of Another State a2 O 2 Incorporated and Principal Place as as
Defendant (Indicate Citizenship of Parties in Item I11) of Business In Another State
Citizen or Subject of a a3 O 3 Foreign Nation a6 0O6
Foreign Country
IV. NATURE OF SUIT (Place an “X” in One Box Only)
| CONTRACT TORTS FORFEITURE/PENALTY BANKRUPTCY OTHER STATUTES]
3 110 Insurance PERSONAL INJURY PERSONAL INJURY |3 625 Drug Related Seizure 3 422 Appeal 28 USC 158 3 375 False Claims Act
3 120 Marine 3 310 Airplane 3 365 Personal Injury - of Property 21 USC 881 |3 423 Withdrawal 3 400 State Reapportionment
[130 Miller Act [315 Airplane Product Product Liability 3 690 Other 28 USC 157 3 410 Antitrust
O 140 Negotiable Instrument Liability O 367 Health Care/ O 430 Banks and Banking
3 150 Recovery of Overpayment | (3 320 Assault, Libel & Pharmaceutical PROPERTY RIGHTS 3 450 Commerce
& Enforcement of Judgment Slander Personal Injury 3 820 Copyrights 3 460 Deportation
[151 Medicare Act [330 Federal Employers’ Product Liability X 830 Patent [470 Racketeer Influenced and
O 152 Recovery of Defaulted Liability O 368 Asbestos Personal 3 840 Trademark Corrupt Organizations
Student Loans O 340 Marine Injury Product [480 Consumer Credit
(Excludes Veterans) 3 345 Marine Product Liability LABOR SOCIAL SECURITY 3 490 Cable/Sat TV
[153 Recovery of Overpayment Liability PERSONAL PROPERTY |3 710 Fair Labor Standards [861 HIA (1395ff) [850 Securities/Commodities/
of Veteran’s Benefits 3 350 Motor Vehicle 3 370 Other Fraud Act 3 862 Black Lung (923) Exchange
[160 Stockholders” Suits 3 355 Motor Vehicle 3 371 Truth in Lending O 720 Labor/Management [863 DIWC/DIWW (405(g)) | @ 890 Other Statutory Actions
3 190 Other Contract Product Liability 3 380 Other Personal Relations 3 864 SSID Title XVI O 891 Agricultural Acts
[195 Contract Product Liability | 360 Other Personal Property Damage 3 740 Railway Labor Act 3 865 RSI (405(g)) [893 Environmental Matters
3 196 Franchise Injury 3 385 Property Damage 3 751 Family and Medical 3 895 Freedom of Information
3 362 Personal Injury - Product Liability Leave Act Act
Medical Malpractice 3 790 Other Labor Litigation O 896 Arbitration
| REAL PROPERTY CIVIL RIGHTS PRISONER PETITIONS |3 791 Employee Retirement FEDERAL TAX SUITS 3 899 Administrative Procedure
3 210 Land Condemnation 3 440 Other Civil Rights Habeas Corpus: Income Security Act 3 870 Taxes (U.S. Plaintiff Act/Review or Appeal of
[220 Foreclosure 3 441 Voting [463 Alien Detainee or Defendant) Agency Decision
[230 Rent Lease & Ejectment 3 442 Employment O 510 Motions to Vacate [871 IRS—Third Party [950 Constitutionality of
3 240 Torts to Land O 443 Housing/ Sentence 26 USC 7609 State Statutes
[245 Tort Product Liability Accommodations O 530 General
3 290 All Other Real Property 0 445 Amer. w/Disabilities - | O 535 Death Penalty IMMIGRATION
Employment Other: O 462 Naturalization Application
3 446 Amer. w/Disabilities - | O 540 Mandamus & Other | 465 Other Immigration
Other 3 550 Civil Rights Actions
a
)

V. ORIGIN (Place an “X’” in One Box Only)

X 1 Original
Proceeding

[2 Removed from
State Court

@ 3 Remanded from
Appellate Court

04

Reinstated or [5 Transferred from (3 6 Multidistrict
Reopened Another District Litigation
(specify)

VI. CAUSE OF ACTION

35U.S.C.§271

Cite the U.S. Civil Statute under which you are filing (Do not cite jurisdictional statutes unless diversity):

Brief description of cause:
Patent Infringement

(0 CHECK IF THIS IS A CLASS ACTION

VIlI. REQUESTED IN DEMAND $ CHECK YES only if demanded in complaint:

COMPLAINT: UNDER RULE 23, F.R.Cv.P. JURY DEMAND: X Yes (I No
VIIl. RELATED CASE(S)) o
IF ANY (See instructions): JUDGE Andrews DOCKET NUMBER 13-1985
DATE SIGNATURE OF ATTORNEY OF RECORD
03/21/2016 /sl Jack B. Blumenfeld
FOR OFFICE USE ONLY
RECEIPT # AMOUNT APPLYING IFP JUDGE MAG. JUDGE

18 44 Reverse (Rev.G@5€ 1:16-cv-00176-UNA Document 1-2 Filed 03/21/16 Page 2 of 2 PagelD #: 30

INSTRUCTIONS FOR ATTORNEYS COMPLETING CIVIL COVER SHEET FORM JS 44
Authority For Civil Cover Sheet

The JS 44 civil cover sheet and the information contained herein neither replaces nor supplements the filings and service of pleading or other papers as
required by law, except as provided by local rules of court. This form, approved by the Judicial Conference of the United States in September 1974, is
required for the use of the Clerk of Court for the purpose of initiating the civil docket sheet. Consequently, a civil cover sheet is submitted to the Clerk of
Court for each civil complaint filed. The attorney filing a case should complete the form as follows:

l.(@) Plaintiffs-Defendants. Enter names (last, first, middle initial) of plaintiff and defendant. If the plaintiff or defendant is a government agency, use
only the full name or standard abbreviations. If the plaintiff or defendant is an official within a government agency, identify first the agency and
then the official, giving both name and title.

(b) County of Residence. For each civil case filed, except U.S. plaintiff cases, enter the name of the county where the first listed plaintiff resides at the
time of filing. In U.S. plaintiff cases, enter the name of the county in which the first listed defendant resides at the time of filing. (NOTE: In land
condemnation cases, the county of residence of the "defendant" is the location of the tract of land involved.)

(c) Attorneys. Enter the firm name, address, telephone number, and attorney of record. If there are several attorneys, list them on an attachment, noting
in this section "(see attachment)".

1. Jurisdiction. The basis of jurisdiction is set forth under Rule 8(a), F.R.Cv.P., which requires that jurisdictions be shown in pleadings. Place an "X"
in one of the boxes. If there is more than one basis of jurisdiction, precedence is given in the order shown below.
United States plaintiff. (1) Jurisdiction based on 28 U.S.C. 1345 and 1348. Suits by agencies and officers of the United States are included here.
United States defendant. (2) When the plaintiff is suing the United States, its officers or agencies, place an "X" in this box.
Federal question. (3) This refers to suits under 28 U.S.C. 1331, where jurisdiction arises under the Constitution of the United States, an amendment
to the Constitution, an act of Congress or a treaty of the United States. In cases where the U.S. is a party, the U.S. plaintiff or defendant code takes
precedence, and box 1 or 2 should be marked.
Diversity of citizenship. (4) This refers to suits under 28 U.S.C. 1332, where parties are citizens of different states. When Box 4 is checked, the
citizenship of the different parties must be checked. (See Section III below; NOTE: federal question actions take precedence over diversity
cases.)

I1l. Residence (citizenship) of Principal Parties. This section of the JS 44 is to be completed if diversity of citizenship was indicated above. Mark this
section for each principal party.

V. Nature of Suit. Place an "X" in the appropriate box. If the nature of suit cannot be determined, be sure the cause of action, in Section VI below, is
sufficient to enable the deputy clerk or the statistical clerk(s) in the Administrative Office to determine the nature of suit. If the cause fits more than
one nature of suit, select the most definitive.

V. Origin. Place an "X" in one of the six boxes.
Original Proceedings. (1) Cases which originate in the United States district courts.
Removed from State Court. (2) Proceedings initiated in state courts may be removed to the district courts under Title 28 U.S.C., Section 1441.
When the petition for removal is granted, check this box.
Remanded from Appellate Court. (3) Check this box for cases remanded to the district court for further action. Use the date of remand as the filing
date.
Reinstated or Reopened. (4) Check this box for cases reinstated or reopened in the district court. Use the reopening date as the filing date.
Transferred from Another District. (5) For cases transferred under Title 28 U.S.C. Section 1404(a). Do not use this for within district transfers or
multidistrict litigation transfers.
Multidistrict Litigation. (6) Check this box when a multidistrict case is transferred into the district under authority of Title 28 U.S.C. Section 1407.
When this box is checked, do not check (5) above.

VI. Cause of Action. Report the civil statute directly related to the cause of action and give a brief description of the cause. Do not cite jurisdictional
statutes unless diversity. Example: U.S. Civil Statute: 47 USC 553 Brief Description: Unauthorized reception of cable service

VII. Requested in Complaint. Class Action. Place an "X" in this box if you are filing a class action under Rule 23, F.R.Cv.P.
Demand. In this space enter the actual dollar amount being demanded or indicate other demand, such as a preliminary injunction.

Jury Demand. Check the appropriate box to indicate whether or not a jury is being demanded.

VIIl. Related Cases. This section of the JS 44 is used to reference related pending cases, if any. If there are related pending cases, insert the docket
numbers and the corresponding judge names for such cases.

Date and Attorney Signature. Date and sign the civil cover sheet.

	Exhibit A
	Exhibit B

