Physics 101: Lecture 02

Forces: Equilibrium Examples

- Today's lecture will cover Textbook Sections 2.1-2.7

Phys 101 URL:

http://courses.physics.illinois.edu/phys101/
Read the course web page!

Physics 101: Lecture 2, Pg 1

Overview

- Last Lecture
\rightarrow Newton's Laws of Motion
» FIRST LAW: Inertia
» SECOND LAW: $\mathrm{F}_{\mathrm{net}}=\mathrm{ma}$
» THIRD LAW: Action/reaction pairs
\Rightarrow Gravity $\quad W=G \frac{M_{\text {Earth }} m}{r_{\text {Earth }}^{2}}=m\left(G \frac{M_{\text {Earth }}}{r_{\text {Earth }}^{2}}\right)$
$=m g \quad$ (near Earth's surface!)
- Today
\rightarrow Forces as Vectors
\rightarrow Free Body Diagrams to Determine F net
» Draw coordinate axes, each direction is independent.
» Identify/draw all force vectors
\Rightarrow Friction: kinetic $\mathbf{f}=\mu_{k} \mathbf{N}$; static $\mathbf{f} \leq \mu_{s} \mathbf{N}$
\rightarrow Contact Forces - Springs and Tension

Forces as Vectors

- Last lecture we calculated the force of gravity on a book (i.e. its WEIGHT):

Calculate the gravitational force on a 3 kg book held 1 meter above the surface of the earth.

$$
\begin{aligned}
\mathrm{W} & =\mathrm{GM}_{\text {Earrth }} \mathrm{m} / \mathrm{r}_{\text {Earth }}{ }^{2} \\
& =\left(6.7 \times 10^{-11} \mathrm{~m}^{3} /\left(\mathrm{kg} \mathrm{~s}^{2}\right)\left(6 \times 10^{24} \mathrm{~kg}\right)(3 \mathrm{~kg})\left(6.4 \times 10^{6}+1\right)^{2} \mathrm{~m}^{2}\right. \\
& =29.4 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}=29.4 \mathrm{~N}
\end{aligned}
$$

- We missed something: The direction!

Forces as Vectors

- A quantity which has both magnitude and direction is called a VECTOR; FORCES are VECTORS
- Usually drawn as an arrow pointing in the proper direction, where the length indicates the magnitude

$$
\begin{aligned}
\mathrm{W}_{2} & =2 \mathrm{~W}_{1} \\
& =\mathrm{W}_{1}+\mathrm{W}_{1}
\end{aligned}
$$

- This is an example of VECTOR ADDITION: to add vectors, you place them head to tail, and draw the RESULTANT from the start of the first to the end of the last

Physics 101: Lecture 2, Pg 4

Another Example of a Force: Tension

- Tension in an Ideal String, T:
\rightarrow Direction is parallel to string (only pulls)
\rightarrow Magnitude of tension is equal everywhere.
- Now we are ready to do some physics!

QUESTION:
We suspend a mass $m=5 \mathrm{~kg}$ from the ceiling using a string. What is the tension in the string?

Newton's 2 ${ }^{\text {nd }}$ Law and Equilibrium Systems

 We suspend a mass $m=5 \mathrm{~kg}$ from the ceiling using a string. What is the tension in the string?- Every single one of these problems is done the same way!
\rightarrow Step 1: Draw a simple picture (called a Free Body Diagram), and label your axes!

\Rightarrow Step 2: Identify and draw all force vectors Weight, W
- Step 3: Use your drawing to write down Newton's $2^{\text {nd }}$ law
$\mathrm{F}_{\text {Net }}=\mathrm{ma} \quad$ In equilibrium, everything is balanced! $\quad \mathrm{a}=0$
$-\mathrm{W}=0 \quad \mathrm{~T}=\mathrm{W}=\mathrm{mg}=(5 \mathrm{~kg}) *\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=49 \mathrm{~N}$

Checkpoint!

-What does scale 1 read?

- A) 225 N
B) 550 N
C) 1100 N

The magnitude of tension in a ideal string is equal everywhere.

Tension ACT

- Two boxes are connected by a string over a frictionless pulley. In equilibrium, box 2 is lower than box 1. Compare the weight of the two boxes.
A) Box 1 is heavier
B) Box 2 is heavier
C) They have the same weight

Step 1 - Draw!
Step 2 - Forces!
Step 3 - Newton's $2^{\text {nd }}$!

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{Net}}=\mathrm{ma} \\
& \text { 1) } T-\mathrm{m}_{1} \mathrm{~g}=0 \\
& \text { 2) } T-\mathrm{m}_{2} \mathrm{~g}=0
\end{aligned}
$$

Another Force Example: Springs

- Force exerted by a spring is directly proportional to its displacement x (stretched or compressed).

$$
\mathrm{F}_{\text {spring }}=-\mathrm{kx}
$$

- Example: When a 5 kg mass is suspended from a spring, the spring stretches $x_{1}=8 \mathrm{~cm}$. If it is hung by two identical springs, they will stretch $\mathrm{x}_{2}=$
A) 4 cm
B) 8 cm
C) 16 cm

1 Spring
$\mathrm{S}_{1}-\mathrm{W}=0$
$\mathrm{S}_{1}=\mathrm{W}$
$\mathrm{kx}_{1}=\mathrm{mg}$
$\mathrm{k}=\mathrm{mg} / \mathrm{x}_{1}=612.5 \mathrm{~N} / \mathrm{m}$

2 Springs

$$
S_{1}+S_{2}-W=0
$$

$$
\mathrm{kx}_{2}+\mathrm{kx}_{2}=2 \mathrm{kx}_{2}=\mathrm{W}=\mathrm{mg}
$$

$$
\mathrm{x}_{2}=\mathrm{mg} /(2 \mathrm{k})=(5 \mathrm{~kg}) *\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) /
$$

So: $x_{2}=4 \mathrm{~cm}$.

$$
(2 * 612.5 \mathrm{~N})
$$

2 Dimensional Equilibrium!

Calculate force of hand to keep a book sliding at constant speed (i.e. $a=0$), if the mass of the book is $1 \mathrm{Kg}, \mu_{\mathrm{s}}=.84$ and $\mu_{\mathrm{k}}=.75$

We do exactly the same thing as before, except in both x and y directions!

Step 1 - Draw!
Step 2 - Forces!
Step 3 - Newton's $2^{\text {nd }}\left(\mathrm{F}_{\text {Net }}=\mathrm{ma}\right)$!
Treat x and y independently!

This is what we want!

Calculate force of hand to keep the book sliding at a constant speed (i.e. $a=0$), if the mass of the book is $1 \mathrm{Kg}, \mu_{\mathrm{s}}=.84$ and $\mu_{\mathrm{k}}=.75$.

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{Net}, \mathrm{y}}=\mathrm{N}-\mathrm{W}=0 \\
& \mathrm{~F}_{\mathrm{Net}, \mathrm{x}}=\mathrm{H}-\mathrm{f}=0
\end{aligned}
$$

$$
\mathrm{H}=\mathrm{f}
$$

- Magnitude of frictional force is proportional to the normal force and always opposes motion!

$$
\begin{aligned}
& \Rightarrow \mathrm{f}_{\text {kinetic }}=\mu_{\mathrm{k}} \mathrm{~N} \\
& \Rightarrow \mathrm{f}_{\text {static }} \leq \mu_{\mathrm{s}} \mathrm{~N}
\end{aligned}
$$

μ_{k} coeffifient of Kinetic (sliding) friction
μ_{s} coefficient of Static (stationary) friction

$$
\begin{aligned}
\mathrm{H}=\mathrm{f}=\mu_{\mathrm{k}} \mathrm{~N}=\mu_{\mathrm{k}} \mathrm{~W} & =\mu_{\mathrm{k}} \mathrm{mg} \\
& =(0.75) *(1 \mathrm{~kg}) *\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
\mathrm{H} & =7.35 \mathrm{~N}
\end{aligned}
$$

Forces in 2 Dimensions: Ramp

Calculate tension in the rope necessary to keep the 5 kg block from sliding down a frictionless incline of 20 degrees.
Step 1 - Draw!
You should draw axes parallel and perpendicular to motion!
Step 2 - Forces!

Weight is not in x or y direction! Need to DECOMPOSE it!

Vector Decomposition

Now: Step 3 -Newton's $2^{\text {nd }}$!

Split W into COMPONENTS parallel to axes

Note that

$$
\vec{W}=\overrightarrow{W_{y}}+\overrightarrow{W_{x}}
$$

Using Trig: $\quad \mathrm{W}_{\mathrm{x}}=\mathrm{W} \sin \theta$
$\mathrm{W}_{\mathrm{v}}=\mathrm{W} \cos \theta$
Physićs 101: Lecture 2, Pg 13

Calculate force necessary to keep the 5 kg block from

 sliding down a frictionless incline of 20 degrees.

Now: Step 3 - Newton's $2^{\text {nd }}$!
x direction:

$$
\mathrm{F}_{\text {net }, \mathrm{x}}=\mathrm{ma}_{\mathrm{x}}
$$

System is in equilibrium ($\mathrm{a}=0$)!

$$
\begin{aligned}
& \mathrm{F}_{\text {net, } \mathrm{x}}=0 \\
& \begin{aligned}
& \mathrm{W}_{\mathrm{x}}-\mathrm{T}=0 \\
& \mathrm{~T}=\mathrm{W}_{\mathrm{x}}=\mathrm{W} \sin \theta \\
&=\mathrm{mg} \sin \theta \\
&=(5 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \sin \left(20^{\circ}\right) \\
& \mathrm{T}=16.8 \mathrm{~N}
\end{aligned} \\
& \text { Physics 101: Lecture 2, Pg 14 }
\end{aligned}
$$

Normal Force ACT

What is the normal force of the ramp on the block?
A) $N>m g$
B) $N=m g$
C) $\mathrm{N}<\mathrm{mg}$
y direction:

$$
\mathrm{F}_{\text {net, } \mathrm{y}}=\mathrm{ma}_{\mathrm{y}}
$$

Equilibrium ($\mathrm{a}=0$) !

$$
\begin{aligned}
& F_{\text {net, } \mathrm{y}}=0 \\
& \mathrm{~N}-\mathrm{W}_{\mathrm{y}}=0
\end{aligned}
$$

Summary

- Contact Force: Tension
\Rightarrow Force parallel to string
\Rightarrow Always Pulls, tension equal everywhere
- Contact Force: Spring
\Rightarrow Can push or pull, force proportional to displacement $\Rightarrow \mathrm{F}=\mathrm{kx}$
- Contact Force: Friction
\rightarrow Static and kinetic
\rightarrow Magnitude of frictional force is proportional to N
- Two Dimensional Examples
\Rightarrow Choose coordinate system; choose wisely!
\rightarrow Analyze each direction independently Physics 101: Lecture 2, Pg 16

Force at Angle Example

- A person is pushing a 15 kg block across a floor with $\mu_{\mathrm{k}}=0.4$ at a constant speed. If she is pushing down at an angle of 25 degrees, what is the magnitude of her force on the block?

$$
\begin{aligned}
& \mathrm{X} \text { - direction: } \mathrm{F}_{\mathrm{Net}, \mathrm{x}}=m \mathrm{~m}_{\mathrm{x}} \\
& \mathrm{P}_{\mathrm{x}}-\mathrm{f}=\mathrm{P} \cos (\theta)-\mathrm{f}=0 \\
& \mathrm{P} \cos (\theta)-\mu \mathrm{N}=0 \\
& \mathrm{~N}=\mathrm{P} \cos (\theta) / \mu
\end{aligned}
$$

y - direction: $F_{\text {Net, }}=m a_{y}$
$\mathrm{N}-\mathrm{W}-\mathrm{P}_{\mathrm{y}}=\mathrm{N}-\mathrm{W}-\mathrm{P} \sin (\theta)=0$
$\mathrm{N}-\mathrm{mg}-\mathrm{P} \sin (\theta)=0$

Combine:

$$
\begin{aligned}
& (P \cos (\theta) / \mu)-m g-P \sin (\theta)=0 \\
& P(\cos (\theta) / \mu-\sin (\theta))=m g \\
& P=m g /(\cos (\theta) / \mu-\sin (\theta))
\end{aligned}
$$

$$
\mathrm{P}=80 \mathrm{~N}
$$

Normal

Tension Example:

- Determine the force exerted by the hand to suspend the 45 kg mass as shown in the picture.
A) 220 N
B) 440 N
C) 660 N
D) 880 N
E) 1100 N

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{Net}}=\mathrm{ma} \\
& \mathrm{~T}+\mathrm{T}-\mathrm{W}=0
\end{aligned}
$$

-Remember the magnitude of the tension is the same everywhere along the rope!

Tension ACT II

- Determine the force exerted by the ceiling to suspend pulley holding the 45 kg mass as shown in the picture.

$$
\begin{aligned}
& \begin{array}{llll}
\text { A) } 220 \mathrm{~N} & \text { B) } 440 \mathrm{~N} & \text { C) } 660 \mathrm{~N} \\
\begin{array}{lll}
\text { D) } 880 \mathrm{~N} & \text { E) } 1100 \mathrm{~N}
\end{array} \\
\begin{array}{c}
\mathrm{c}=\mathrm{m} \mathrm{a}
\end{array} \\
\mathrm{~F}_{\mathrm{c}}-\mathrm{T}-\mathrm{T}-\mathrm{T}=0
\end{array}
\end{aligned}
$$

-Remember the magnitude of the tension is the same everywhere along the rope!

