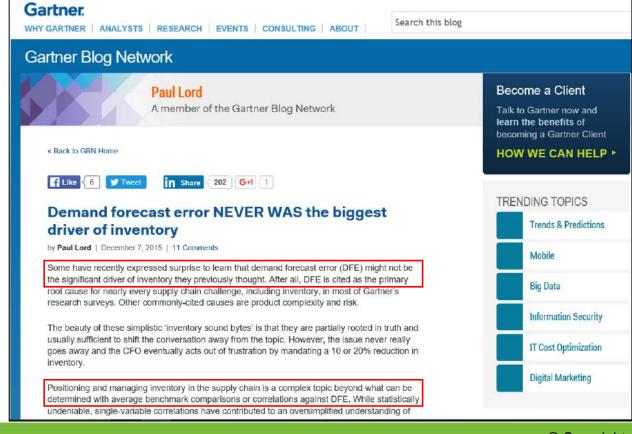


Empirical Approaches to Prioritizing Enterprise Process Improvements

Forecast Accuracy Myopia & the Need to Heed Inventory Optimization

Initially Presented At:


May 17th, 2016

Paul Lord blog)

Theater Topic Inspiration

- Thorough Assessment of Received RFI/RFP Constructs and Observations of Engaged
 Organization Priorities
- Realizations Following Significant Number of Empirical Study Results Quantifying Demand Planning and Inventory Optimization
- Burgeoning Marketplace Awareness of Forecast Accuracy Myopia (such as the following

25%

7%

Did You Know?

60% Proportion of Supply Chain Planning Improvement Initiatives & Related Requirements Observed focus Exclusively (or Predominantly) on Demand Planning

Percentage of Detailed Operational Improvements in Planning Achievable via Demand Planning Process Improvements (as distinct from high-level SI&OP benefits)

20% Estimate of Organizations Using at least Basic Statistical & Cost Methods to Determine Inventory Policy (versus Traditional, Singleechelon Safety Stock or Rules-driven approaches)

> Proportion of Organizations Applying Advanced Demand Planning Algorithmically-Integrated via a Holistic-Model with Inventory Optimization

> > Source: GAINSystems Surveys

Presentation Objectives

- Key Presentation Objectives
 - Describe an objective means to derive prioritization of solution needs
 - Provide a quantitative (non-subjective) method to weight importance of certain factors
 - *Not* to diminish the value of SI&OP but to emphasize other proven-key areas
- Introduce a Means of Measuring Incremental Impacts of Key Process
 Improvements in a Quantitatively-rigorous Fashion: Across a statistically-significantly
 sample of items and time horizon
- Determine Key Measures of Performance
 - Inventory (Turns)
 - 'First-pass' Fill Rate (prior to Expediting or Substitution)
 - Activity Cost (frequency/cost of replenishment)
- Process/Algorithmic Improvements to *Measure Independent Value-add of*
 - Sophisticated/'Advanced' Forecast Modeling: automatic selection from <u>40 models</u>
 - Comprehensive Inventory Policy Optimization considering planning error (demand & supply), <u>stocking and stockout costs</u>, & profitability <u>across echelons</u>

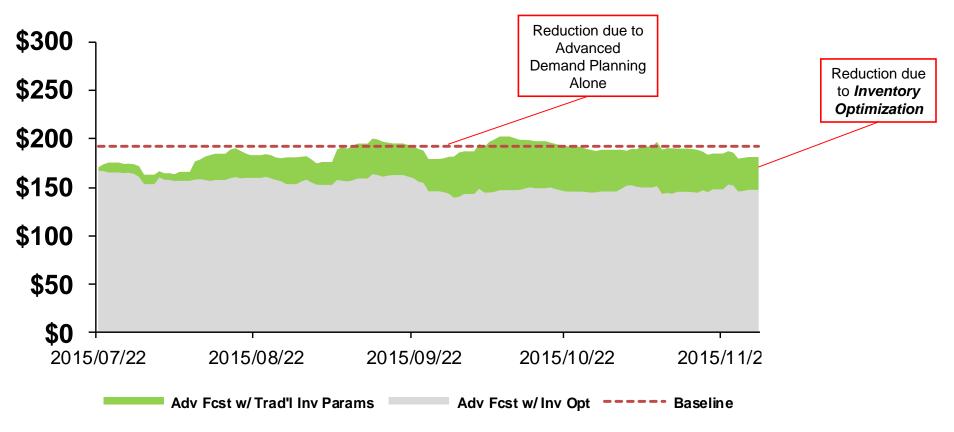
Simulation Scenarios

The following scenarios were analyzed and evaluated based on inventory reduction and service level improvement

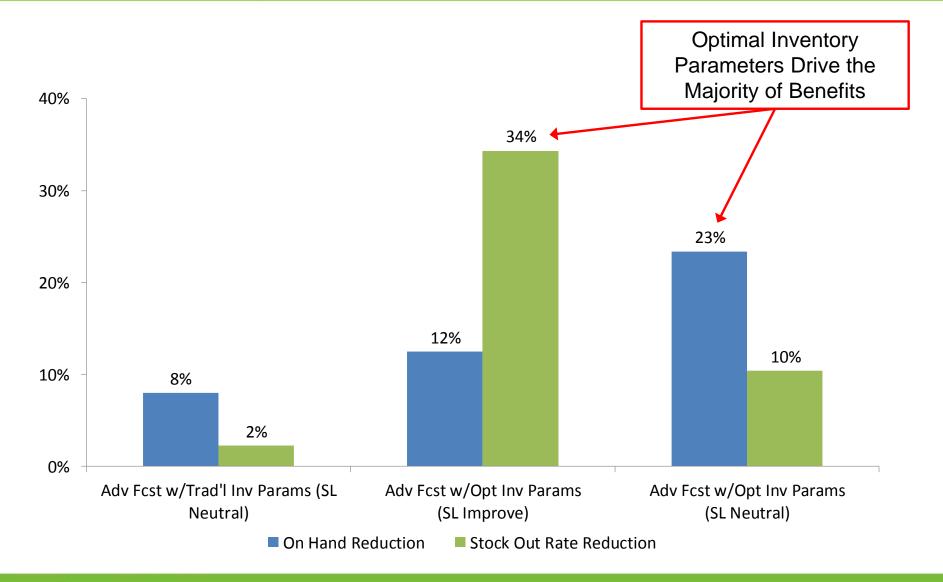
Scenario	Forecasting Method	Inventory Parameters	Service Level Target
Baseline	Traditional (Moving Average)	Traditional	N/A: Result (not Input)
Adv Fcst w/Trad'l Inv Params	Advanced	Traditional	N/A: Result (not Input)
Adv Fcst w Opt Inv Params (SL Neutral)	Advanced	Optimal	Neutral
Adv Fcst w/Opt Inv Params (SL Improve)	Advanced	Optimal	Improvement

Empirical 'Black-Box' Simulation Process Overview

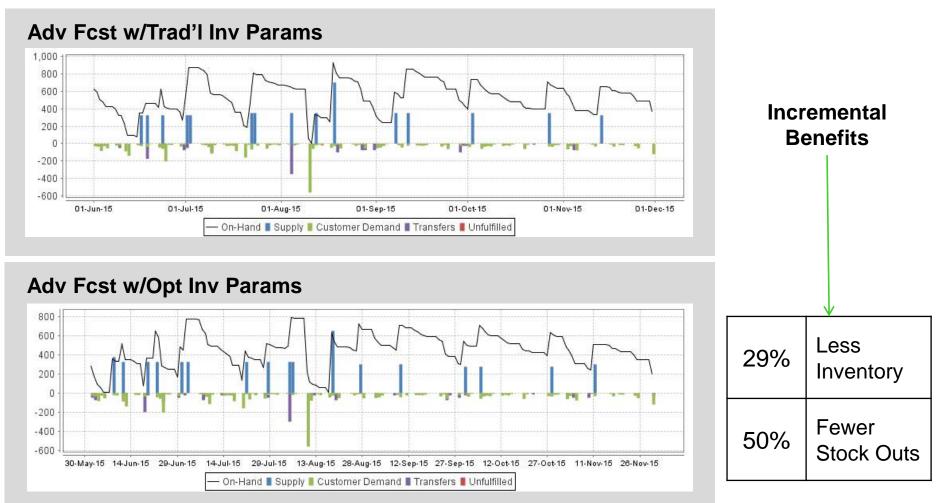
- Process
 - Demand from periods prior to the simulation date is used for forecasting each day iterated
 - The records demand fulfillment and activities occurring during the specified interval without intervention or expediting
 - Includes distribution 'parents' and BOM materials for multi-echelon measurement
- Test Sample and Parameters (results are typical of dozens tested)
 - Statistically-significant sample size (1,000 after eliminating new/unprecedented items) selected randomly but matched 'demographically' for Inventory Turns and Service Level to the Population
 - Extended (6-month) horizon to cover multiple replenishment cycles (lead times) and peak season



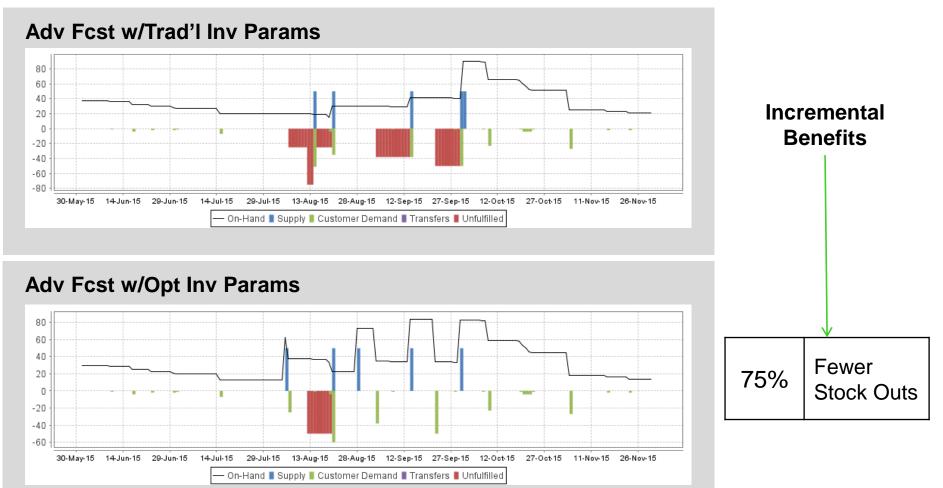
Simulation Results: On Hand Evolution


• For a service level neutral scenario, the following shows the opportunity for inventory reduction due to inventory optimization

Simulated On Hand Evolution for Mature, Active SKULs (\$ thousands)


GAINS Empirical Simulation Summary

Inventory Reduction Example


 Traditional inventory parameters fail to recognize that inventory coverage above-andbeyond a 100% observed Service Level provides no incremental benefit

Service Level Improvement Example

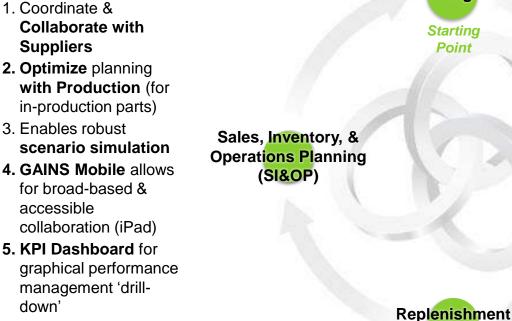
 An optimal inventory policy approach is required to achieve a high Service Level in a lumpy demand pattern environment while maintaining efficient inventory levels

You Probably Already Knew...

98% Proportion of Organizations that would Benefit from Empirically-driven Prioritization of Operational Improvements

60% Reduction in Elapsed Time versus Subjectively Debating Supply Chain Improvement Priorities when Shifting to an Empirical Methodology

40% Proportion of audience likely leaving with more questions than were answered...


We'd thoroughly enjoy continuing these discussions and how these concepts could apply in your organization at <u>Booth 718</u>

Source: Unabashed Speculation

The GAINS Solution Overview: Single & **Multi-Echelon Planning**

- 1. Auto-selects the optimal forecast model over lead time given historical patterns
- 2. Synchronizes top-down/bottom-up changes in various units-of-measure (supporting SI&OP)
- 3. Automatically applies Leading Indicator Analysis to predict changes not yet reflected in history

Demand Planning/Forecasting

Starting Point

> Inventory/Stocking/Source Policy Optimization

- 1. Determines the **optimal** Service Level and stock **policy** for each SKUL
- 2. Automatically & dynamically determines the Order **Quantity &** Buffer/Service Stock minimizing total costs
- 3. Determines the **optimal** source for each SKUL

1. Provides automated &/or exception-based, profit-prioritized purchase recommendations

Optimization

- 2. Recommends optimal and feasible transfers and re-distribution across the network
- 3. Automatic order-minimum-adherence, price break, substitute, & alternate suppliers decisions

down'