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Abstract

A new innovations state space modeling framework, incorporating Box-Cox transformations, Fourier

series with time varying coefficients and ARMA error correction, is introduced for forecasting complex

seasonal time series that cannot be handled using existing forecasting models. Such complex time

series include time series with multiple seasonal periods, high frequency seasonality, non-integer

seasonality and dual-calendar effects. Our new modelling framework provides an alternative to

existing exponential smoothing models, and is shown to have many advantages. The methods

for initialization and estimation, including likelihood evaluation, are presented, and analytical

expressions for point forecasts and interval predictions under the assumption of Gaussian errors are

derived, leading to a simple, comprehensible approach to forecasting complex seasonal time series.

Our trigonometric formulation is also presented as a means of decomposing complex seasonal time

series, which cannot be decomposed using any of the existing decomposition methods. The approach

is useful in a broad range of applications, and we illustrate its versatility in three empirical studies

where it demonstrates excellent forecasting performance over a range of prediction horizons. In

addition, we show that our trigonometric decomposition leads to the identification and extraction of

seasonal components, which are otherwise not apparent in the time series plot itself.

Keywords: exponential smoothing, Fourier series, prediction intervals, seasonality, state space

models, time series decomposition.
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1 Introduction

Many time series exhibit complex seasonal patterns. For example, Figure 1(a) shows the number

of retail banking call arrivals per 5-minute interval between 7:00am and 9:05pm each weekday.

There is a daily seasonal pattern with frequency 169 and a weekly seasonal pattern with frequency

169×5 = 845. If a longer series of data were available, there may also be an annual seasonal pattern.

Such multiple seasonal patterns are becoming more common with high frequency data recording.

Further examples where multiple seasonal patterns can occur include daily hospital admissions,

requests for cash at ATMs, electricity and water usage, and access to computer web sites.

Other time series (most commonly weekly data) have patterns with a non-integer frequency. Fig-

ure 1(b) shows the weekly United States finished motor gasoline products in thousands of barrels per

day. The time series clearly exhibits an annual seasonal pattern with frequency 365.25/7≈ 52.179.

In addition, some time series may have dual-calendar seasonal effects. Figure 1(c) shows the daily

electricity demand in Turkey over nine years, from 1 January 2000 to 31 December 2008. A clear

weekly seasonal pattern and an annual seasonal pattern can be observed in the time series. The

annual seasonality consists of two separate seasonal patterns with frequencies of 354.37 and 365.25,

following the Hijri and Gregorian calendars respectively. The Islamic Hijri calendar is based on lunar

cycles and is used for religious activities and related holidays. It is approximately 11 days shorter

than the Gregorian calendar. The Jewish, Hindu and Chinese calendars create similar effects that

can be observed in time series affected by cultural and social events (e.g., electricity demand, water

usage, and other related consumption data), and need to be accounted for in forecasting studies (Lin

& Liu 2002, Riazuddin & Khan 2005). Unlike the multiple periodicities seen with hourly and daily

data, these dual calendar effects involve non-nested seasonal periods.

Most existing time series models are designed to accommodate simple seasonal patterns with a small

integer-valued periodicity (such as 12 for monthly data or 4 for quarterly data). There are a few

models which attempt to deal with more complex seasonal patterns (e.g., Harvey & Koopman (1993),

Harvey et al. (1997), Pedregal & Young (2006), Taylor (2003b), Gould et al. (2008), Taylor & Snyder

(2009), Taylor (2009)), but none that is able to handle all of the complexities above.

In this paper we introduce a new innovations state space modeling framework based on a trigono-

metric formulation which is capable of tackling all of these seasonal complexities. Using the above

time series, we show that these trigonometric exponential smoothing models provide exceptional

De Livera and Hyndman: 12 December 2009 3



Forecasting time series with complex seasonal patterns using exponential smoothing

10
0

20
0

30
0

40
0

5 minute intervals 

N
um

be
r 

of
 c

al
l a

rr
iv

al
s

3 March 17 March 31 March 14 April 28 April 12 May

(a) Number of call arrivals handled on weekdays between 7am and 9:05pm from March 3, 2003, to
May 23, 2003 in a large North American commercial bank.
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(b) US finished motor gasoline products supplied (thousands of barrels per day), from February 1991
to July 2005.
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(c) Turkish electricity demand data from January 1, 2000, to December 31, 2008.

Figure 1: Examples of complex seasonality showing (a) multiple nested seasonal periods, (b) non-integer
seasonal periods and (c) multiple non-nested and non-integer seasonal periods.
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out-of-sample forecasting performances and offer an elegant decomposition of complex seasonal time

series.

In Section 2 we discuss the existing exponential smoothing models, their weaknesses and their

inadequacy in handling complex seasonal patterns, and present a modified, generalized modeling

framework in order to overcome these problems. We then introduce in Section 3 the new trigono-

metric innovations state space modeling framework, which is capable of handling complex seasonal

patterns, as well as the usual single seasonal patterns, in a straightforward manner with fewer

parameters. Section 4 describes both analytical and simulated prediction distributions, as well as

point and interval predictions for the models. Section 5 presents the methods used for initialization

and estimation, including the derivation of maximum likelihood estimators and the methodology

used in applying the models. In Section 6, we explain the trigonometric formulation as a way of

decomposing complex seasonal time series, which cannot be decomposed using any of the existing

decomposition techniques. The proposed models are then applied to the US gasoline products data,

the call center data and the Turkey electricity demand data in Section 7, and it is shown that these

new trigonometric exponential smoothing models provide outstanding forecasting performances over

a range of forecasting horizons, compared to the existing models. Furthermore, using these applica-

tions, we demonstrate the decomposition of complex seasonal time series using our trigonometric

approach. Some conclusions are drawn in Section 8.

2 Exponential smoothing models for seasonal data

2.1 Traditional models

Single seasonal exponential smoothing methods are among the most widely used forecasting pro-

cedures in practice (Snyder et al. 2002, Makridakis et al. 1982, Makridakis & Hibon 2000). These

methods have been shown to be optimal for a class of innovations state space models (Ord et al. 1997,

Hyndman et al. 2002), thus allowing a stochastic modelling framework for exponential smoothing

including likelihood calculation, prediction intervals, model selection, and so on. The single source of

error or innovations approach is known to be simple yet robust, and has been shown to have several

advantages over the multiple source of error models (Ord et al. 2005, Hyndman et al. 2008).

The most commonly employed seasonal models in the innovations state space modeling framework

include the underlying models for the well-known Holt-Winters’ additive and multiplicative seasonal

exponential smoothing methods. However, these models are inadequate for handling complex
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seasonal time series such as multiple seasonality, non-integer seasonality and dual-calender effects.

Taylor (2003b) extended the single seasonal Holt-Winters’ model to accommodate a second seasonal

component in order to handle time series with two seasonal patterns. This requires a large number

of values to be estimated for the initial seasonal components, especially when the frequencies of

the seasonal patterns are high, which may lead to over-parameterization. Gould et al. (2008)

attempted to reduce the over-parameterization of this model by dividing the longer seasonal length

into sub-seasonal cycles that have similar patterns. However, this model is relatively complex and can

only be used in modeling double seasonal patterns when one seasonality is a multiple of the other.

Using six years of British and French electricity demand data, Taylor (2009) illustrated that extended

additive seasonal versions of the above models to handle a third seasonal pattern can outperform

the double seasonal exponential smoothing models. However, none of these models can be used to

model complex seasonal patterns such as non-integer seasonality and calendar effects, or time series

with more than two non-nested seasonal patterns.

In addition, the non-linear versions of exponential smoothing models, although widely used, suffer

from some important weaknesses. Akram et al. (2009) showed that most non-linear seasonal

exponential smoothing models can be unstable, having infinite forecast variances beyond a certain

forecasting horizon. Of the multiplicative error models which do not have this flaw, Akram et al.

(2009) proved that sample paths will converge almost surely to zero even when the error distribution

is non-Gaussian. Furthermore, for non-linear exponential smoothing models, analytical results for

the prediction distributions are not available.

The models used for exponential smoothing assume that the error process is serially uncorrelated.

However, the assumption of an uncorrelated error process does not always hold. In an empirical

study, using the Holt-Winters’ method for multiplicative seasonality, Chatfield (1978) showed that

the error process is correlated and can be described by an AR(1) process. This was further illustrated

by Taylor (2003b) in a study of electricity demand forecasting using a double-seasonal Holt-Winters’

multiplicative method. Gardner (1985), Reid (1975), and Gilchrist (1976) have also mentioned this

issue of correlated errors, in improving the forecast accuracy.

2.2 Modified models

We now consider various modifications to the standard exponential smoothing models to enable them

to handle a wider variety of seasonal patterns, and to deal with the problems raised above.
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Extending non-linear exponential smoothing models to handle more than two seasonal patterns

may make these models unnecessarily complex, and the estimation and model selection procedure

may become cumbersome. Also, the problems with non-linear models that are noted above are

also a problem in any extended versions. Consequently, rather than allow non-linear forms, we

restrict attention to linear homoscedastic models but allow some types of non-linearity using Box-Cox

transformations (Box & Cox 1964). The notation y(ω)t is used to represent Box-Cox transformed

observations with the parameter ω, where yt is the observation at time t.

We can extend exponential smoothing models to accommodate T seasonal patterns as follows.

y(ω)t =







yωt −1
ω

; ω 6= 0

log yt ω= 0

y(ω)t = `t−1+φbt−1+
T
∑

i=1

s(i)t−mi
+ dt

`t = `t−1+φbt−1+αdt (1)

bt = φbt−1+ βdt

s(i)t = s(i)t−mi
+ γidt

dt =
p
∑

i=1

ϕidt−i +
q
∑

i=1

θiεt−i + εt ,

where m1, . . . , mT denote the seasonal periods, `t and bt represent the level and trend components

of the series at time t, respectively, s(i)t represents the ith seasonal component at time t, dt denotes

an ARMA(p, q) process and εt is a Gaussian white noise process with zero mean and constant

variance σ2. The smoothing parameters are given by α,β ,γi for i = 1, . . . , T , and φ is the dampening

parameter, which gives more control over trend extrapolation when the trend component is damped

(Hyndman et al. 2002, Taylor 2003a).

The notation BATS(p, q, m1, m2, . . . , mT ) is used for these models. B stands for the Box-Cox trans-

formation, A stands for the ARMA residuals, T stands for the trend component in the model and

S stands for the seasonal components. The arguments indicate the ARMA parameters (p and q)

and the seasonal periods (m1, . . . , mT ). For example, BATS(0,0, m1) with φ = 1 and ω = 1 rep-

resents the underlying model for the well-known Holt-Winters’ additive single seasonal method.

The double seasonal Holt-Winters’ additive seasonal model described by Taylor (2003b) is given by

BATS(0, 0, m1, m2) with φ = 1 and ω = 1, and that with the residual AR(1) adjustment in the model

De Livera and Hyndman: 12 December 2009 7
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of Taylor (2003b, 2008) is given by BATS(1,0, m1, m2). The Holt-Winters’ additive triple seasonal

model with AR(1) adjustment in Taylor (2009) is given by BATS(1,0, m1, m2, m3).

The BATS model is the most obvious generalization of the traditional exponential smoothing models

to allow for multiple seasonal periods. However, it is not capable of handling non-integer seasonality,

and it suffers from a very large number of parameters that require estimation; the initial seasonal

component alone contains m1+m2+ · · ·+mT parameters. This becomes a huge number of values

when the frequencies of the seasonal patterns are high. For example, for the call center data shown

in Figure 1(a), 169+ 845= 1014 initial seasonal values must be estimated.

3 Trigonometric exponential smoothing models for seasonal data

Consequently, we introduce a new trigonometric representation of seasonal components based on

Fourier series. We could replace the equation for s(i)t in the BATS model with

s(i)t =
ki
∑

j=1

α
(i)
j,t cos(λ(i)j t) + β (i)j,t sin(λ(i)j t) (2a)

α
(i)
j,t = α

(i)
j,t−1+κ

(i)
1 dt (2b)

β
(i)
j,t = β

(i)
j,t−1+κ

(i)
2 dt , (2c)

where κ(i)1 and κ(i)2 are the smoothing parameters and λ(i)j = 2π j/mi . This is an extended, modified

single source of error version of a single seasonal multiple source of error representation suggested

by Hannon et al. (1970), and is equivalent to index seasonal approaches when ki = mi/2 for even

values of mi, and when ki = (mi − 1)/2 for odd values of mi. But most seasonal terms will require

much smaller values of ki , thus reducing the number of parameters to be estimated.

In the single seasonal multiple source of error setting (Harvey 1989), an alternative, but equivalent

formulation of representation (2) is preferred (Durbin & Koopman 2001), which can be obtained by

re-parameterizing the single seasonal multiple source of error version of (2) using

α
(i)
j,t = s(i)j,t cos(λ(i)j t)− s∗(i)j t sin(λ(i)j t)

and β
(i)
j,t = s(i)j,t sin(λ(i)j t) + s∗(i)j t cos(λ(i)j t).
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For our modified multiple seasonal single source of error formulation, it can be shown (see Ap-

pendix A) that the above re-parametrization leads to the following:

s(i)t =
ki
∑

j=1

s(i)j,t , (3)

where s(i)j,t = s(i)j,t−1 cosλ(i)j + s∗(i)j,t−1 sinλ(i)j +
h

κ
(i)
1 cos(λ(i)j t) + κ(i)2 sin(λ(i)j t)

i

dt

s∗(i)j t =−s j,t−1 sinλ(i)j + s∗(i)j,t−1 cosλ(i)j +
h

κ
(i)
2 cos(λ j t)−κ

(i)
1 sin(λ j t)

i

dt

This then gives rise to a heteroscedastic error process. However, to be consistent with the homoscedas-

tic nature of the traditional additive innovations state space models, the following representation is

employed in our models:

s(i)t =
ki
∑

j=1

s(i)j,t (4a)

s(i)j,t = s(i)j,t−1 cosλ(i)j + s∗(i)j,t−1 sinλ(i)j + γ
(i)
1 dt (4b)

s∗(i)j t =−s j,t−1 sinλ(i)j + s∗(i)j,t−1 cosλ(i)j + γ
(i)
2 dt . (4c)

In the single seasonal multiple source of error setting, (2) is equivalent to (4) (Proietti 2000). In

our multiple seasonal single source of error setting, the seasonal representations (2) and (4) are

equivalent only when the smoothing parameters are equal to zero. This then reduces to a standard

Fourier series representation when the initial state values s(i)j,0 and s∗(i)j,0 are set to Fourier series

coefficients for the ith seasonal component. Then, following Koopman & Lee (2005), it can be shown

that s∗(i)j t =
1
λ
(i)
j

ds(i)j,t

d t
. Thus s∗(i)j t is proportional to the rate of growth in s(i)j,t for each seasonal component.

Hence, in the representation (4), the term s(i)j,t could be defined as the stochastic level term of the ith

seasonal component and the term s∗(i)j t as a stochastic auxiliary variable describing the growth in the

level of the ith seasonal component that is needed to describe the change in the seasonal component

over time.

Replacing the seasonal component s(i)t in (1) with that given by (4), a new class of exponential

smoothing models, termed trigonometric exponential smoothing models, is obtained. The notation

TBATS(p, q, {m1, k1}, {m2, k2}, . . . , {mT , kT }) is used for these trigonometric models. These models

require the estimation of 2(k1+ k2+ · · ·+ kT ) initial seasonal values, which is expected to greatly

reduce the number of parameters required compared to BATS models. The use of trigonometric

functions also allows the modelling of non-integer seasonal frequencies.
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4 Point forecasts, prediction distributions and interval predic-

tions

The BATS and TBATS models can be written in the following linear innovations state space form:

y(ω)t = w ′x t−1+ εt (5a)

x t = F x t−1+ gεt , (5b)

where w ′ is a row vector, g is a column vector, F is a matrix and x t is the unobserved state vector at

time t.

To obtain the matrices in (5a), we first define s̃ (i)t = (s
(i)
1,t , s(i)2,t , . . . , s(i)ki ,t

), s̃∗(i)t = (s∗(i)1,t , s∗(i)2,t , . . . , s∗(i)ki ,t
),

s (i)t = (s̃
(i)
t , s̃∗(i)t )′; let 1r = (1,1, . . . , 1) and 0r = (0,0, . . . , 0) be row vectors of length r; let γ(i)1 =

γ
(i)
1 1ki

, γ(i)2 = γ
(i)
2 1ki

, γ(i) = (γ(i)1 ,γ(i)2 )
′, ϕ = (ϕ1,ϕ2, . . . ,ϕp) and θ = (θ1,θ2, . . . ,θp); let Ou,v be a

u× v matrix of zeros, let Iu,v be a u× v rectangular diagonal matrix with element 1 on the diagonal,

and let a(i) = (1ki
,0ki
)′. We shall also need the matrices

B =













γ(1)ϕ
...

γ(T )ϕ













, C =













γ(1)θ
...

γ(T )θ













, Ai =







C (i) S(i)

−S(i) C (i)






, Ãi =







0mi−1 1

Imi−1 0′mi−1






,

and A =
⊕T

i=1 Ai, where C (i) and S(i) are ki × ki diagonal matrices with elements cos(λ(i)j ) and

sin(λ(i)j ), respectively, for j = 1,2, . . . , ki and i = 1, . . . , T , and where
⊕

denotes the direct sum of

the matrices. Let τ= 2
∑T

i=1 ki .

Then the TBATS model can be written in the form (5a) with

x t =
�

`t , bt , s (1)t
′
, . . . , s (T )t

′
, dt , dt−1, . . . , dt−p+1,εt ,εt−1, . . . ,εt−q+1

�′

w =
�

1,φ, a(1)
′
, . . . , a(T )

′
,ϕ,θ

�′

g =
�

α,β ,γ(1)
′
, . . . ,γ(T )

′
, 1,0p−1, 1,0q−1

�′
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and

F =





































1 φ 0τ αϕ αθ

0 φ 0τ βϕ βθ

0′τ 0′τ A B C

0 0 0τ ϕ θ

0′p−1 0′p−1 Op−1,τ Ip−1,p Op−1,q

0 0 0τ 0p 0q

0′q−1 0′q−1 Oq−1,τ Oq−1,p Iq−1,q





































.

These matrices are for the TBATS model when all of the components are present in the model. When

a component is omitted, the corresponding terms in the matrices must be omitted.

The state space form of the BATS model can be obtained by letting s (i)t = (s
(i)
t , s(i)t−1, . . . , s(i)t−(mi−1))

′,

a(i) = (0mi−1, 1)′, γ(i) = (γi ,0mi−1)′, A =
⊕T

i=1 Ãi, and by replacing 2ki with mi in the matrices

presented above for the TBATS models.

Let ϑ be a vector of all parameters to be estimated in the model, consisting of the smoothing

parameters and the Box-Cox parameter, and let n be the length of the time series, h the length of the

forecast horizon, and yn+h|n ≡ yn+h | xn,ϑ the prediction distribution of a future value of the series

given the model, its estimated smoothing parameters and the state vector at the last observation.

A Gaussian assumption for the errors implies that y(ω)n+h|n is also normally distributed, with mean

E(y(ω)n+h|n) and variance V(y(ω)n+h|n) given by the equations (Hyndman et al. 2005):

E(y(ω)n+h|n) = w ′Fh−1xn (6a)

V(y(ω)n+h|n) =











σ2 if h= 1;

σ2

�

1+
h−1
∑

j=1

c2
j

�

if h≥ 2;
(6b)

where c j = w ′F j−1g . Point forecasts and forecast intervals may be obtained using the inverse

Box-Cox transformation. Point forecasts obtained this way are equal to the median of the conditional

probability density of yn+h|n. Forecast intervals retain the required probability coverage under

back-transformation because the Box-Cox transformation is monotonic.
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5 Estimation and model selection

5.1 Maximum likelihood estimation

The Box-Cox parameter and smoothing parameters, ϑ, and the initial states, x0, can be estimated

from the observed data y = (y1, . . . , yn) by maximizing the likelihood. If εt ∼ N(0,σ2) and x0 and ϑ

are known, then y(ω)t ∼ N(w ′x t−1,σ2). Thus,

p(y(ω)t | x0,ϑ) =
n
∏

t=1

p(y(ω)t | x t−1,ϑ) =
n
∏

t=1

p(εt) =
1

(2πσ2)
n
2

exp

 

−1

2σ2

n
∑

t=1

ε2
t

!

and so

p(yt | x0,ϑ) = p(y(ω)t | x0,ϑ)

�

�

�

�

�

det

�

∂ y(ω)t

∂ y

�

�

�

�

�

�

= p(y(ω)t | x0,ϑ)
n
∏

t=1

yω−1
t

=
1

(2πσ2)
n
2

exp

 

−1

2σ2

n
∑

t=1

ε2
t

!

n
∏

t=1

yω−1
t .

Therefore, the log likelihood is given by

L =
−n

2
log(2πσ2)−

∑n
t=1 ε

2
t

2σ2 + (ω− 1)
n
∑

t=1

log yt . (7)

The maximum likelihood estimate of the error variance is obtained by letting the partial derivative of

L with respect to σ2 be equal to zero, giving

σ̂2 = n−1
n
∑

t=1

ε2
t (8)

Then, substituting (8) into (7), multiplying by −2, and omitting constant terms, we obtain

L ∗(ϑ, x0) = n log

� n
∑

t=1

ε2
t

�

− 2(ω− 1)
n
∑

t=1

log yt . (9)

This quantity can be minimized to obtain maximum likelihood estimates.

To start the optimization, we need some initial estimates of x0 and ϑ. If a Box-Cox transformation is

required for the data, an initial value for the Box-Cox parameter ω has to be approximated first. This

could be done by inspection of the data under different transformations or simply by letting ω= 0

to start with. (We found this choice led to better model selection and forecasting than other initial

values for ω.)
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Let m∗ = bmax(m1, . . . , mT )c. Then we compute a 2× m∗ moving average through the first few

seasons of transformed data. Denote this by { ft} (t = m∗/2+1, m∗/2+2, . . . ), and let zt = y(ω)t − ft .

For TBATS models, the seasonal component is then approximated using

zt ≈
T
∑

i=1

ki
∑

j=1

a(i)j cos(λ(i)j t) + b(i)j sin(λ(i)j t), (10)

where â(i)j and b̂(i)j are estimated by regressing zt against the trigonometric terms. The initial seasonal

states for the ith seasonal component can then be set to â(i)j and b̂(i)j . For BATS models, we follow the

same procedure but replace ki with mi/2 for even frequencies and (mi − 1)/2 for odd frequencies in

equation (10), in order to obtain â(i)j and b̂(i)j . Using these values, we define the initial seasonal state

estimates as ẑ(i)t =
∑ki

j=1

h

â(i)j cos(λ(i)j t) + b̂(i)j sin(λ(i)j t)
i

.

The initial level and trend components can be approximated by computing a linear regression on the

first m∗ deseasonalized values, against a time variable t = 1, . . . , m∗. Then set the initial level to be

the intercept of this regression and let the initial trend be equal to the slope. For BATS models with

T = 1, this is equivalent to the procedure proposed by Hyndman et al. (2002).

These initial state values can then be optimized along with the Box-Cox parameter and the smoothing

parameters. In practice, the initial seasonal states can only be optimized when there are a small

number of values. For this reason, when handling high frequency data, the initial seasonal values can

not be optimized in the BATS model. One of the advantages of the TBATS model is that there are

fewer initial seasonal values, and hence the initial seasonal states may be optimized.

For the BATS model, the seasonal values are constrained when optimizing, so that each seasonal

component sums to zero. For both models, using the matrices and vectors D, g and w from equation

(5a), the smoothing parameters are restricted to the forecastibility region given by Hyndman et al.

(2007). Restricting the parameters in this way, rather than restricting them to the usual parameter

region of [0,1], serves two purposes. First, it guarantees stable forecasts. Second, if the usual

parameter region lies within the forecastibility region, then restricting the parameters to the usual

region may lead to inferior forecasts as the maximum likelihood parameters may lie outside that

region. In addition, ARMA coefficients are restricted to the causality and invertibility regions.

5.2 Model selection

In this paper, the AIC =L ∗(ϑ̂, x̂0)+2K is used for choosing between the models, where K is the total

number of parameters in ϑ plus the number of free states in x0, and ϑ̂ and x̂0 denote the estimates
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of ϑ and x0. When one of the smoothing parameters takes the boundary value 0, the value of K is

reduced by one as the model simplifies to a special case. For example, if β = 0, then bt = b0 for all t.

Similarly, when either φ = 1 or ω= 1, the value of K is reduced by one in each instance to account

for the resulting simplified model.

In an empirical study, Billah et al. (2005) indicated that information criterion approaches, such as

the AIC, provide the best basis for automated model selection, relative to other methods such as the

prediction-validation method. Alternative information criteria such as the AICc or BIC (Burnham &

Anderson 2002) may also be used.

Selecting the number of harmonics ki in the trigonometric models

The forecasts from the TBATS model depend on the number of harmonics ki used for the ith seasonal

component. It would be impractical to consider all possible combinations when searching for the

optimal ki combination. Instead, the following procedure was used to obtain the number of harmonics

for the applications in this paper. In practice we have found that this approach leads to good models

and further computational effort rarely leads to much improvement.

Using the first few seasons, we use multiple linear regression applied to (10) to find the trigonometric

coefficients. Starting with a single harmonic, we gradually add harmonics, testing the significance of

each one using F -tests. Let k∗i be the number of significant harmonics (with p < 0.001 ) for the ith

seasonal component. We then fit the required model to the data with ki = k∗i , and compute the AIC.

Considering one seasonal component at a time, we repeatedly fit the model to the estimation sample,

gradually increasing ki but holding all other harmonics constant for each i, until the minimum AIC is

achieved.

Selecting the ARMA orders p and q for the models

In selecting a model, suitable values for the ARMA orders p and q must also be found. We do this

using a two-step procedure. First, a suitable model with no ARMA component is selected. Then

the automatic ARIMA algorithm of Hyndman & Khandakar (2008) is applied to the residuals from

this model in order to determine the appropriate orders p and q (we assume the residuals are

stationary). The selected model is then fitted again but with an ARMA(p, q) error component. The

ARMA component is only retained if the resulting model has lower AIC than the model with no ARMA

component.
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6 Decomposition of complex seasonal time series

Decomposing a time series into constituent latent subseries is a vital aspect in practical, retrospective

time series analysis such as deseasonalisation, analyzing seasonal effects and isolating latent, quasi-

cyclical components (West & Harrison 1997, Pole et al. 1994). None of the existing decomposition

methods are capable of handling all of the seasonal complexities described in this paper, such as

multiple seasonality, non-integer seasonality, and dual-calendar effects. Our trigonometric formulation

offers an elegant way of decomposing complex seasonal time series into trend, seasonal and irregular

components. In particular, it leads to the identification and extraction of one or more seasonal

components, which may not be apparent in the time series plots themselves.

Using our trigonometric models for multiple seasonal time series, the overall seasonal component

can be decomposed into several individual seasonal components with different frequencies. Each of

these individual seasonal components are obtained by s(i)t of the model and the trend component

is obtained by `t . Extracting the trend and seasonal components then leaves behind a covariance

stationary irregular component, denoted by dt in the model.

In decomposing time series, TBATS approach has several important advantages over BATS. First, sea-

sonal components obtained from BATS model are not normalized. Although normalized components

may not be necessary if one is only interested in the forecasts and the prediction intervals, when

the seasonal component is to be analyzed separately or used for seasonal adjustment, normalized

seasonal components are required (Archibald & Koehler 2003, Hyndman et al. 2008). Thus, BATS

models have to be modified, so that the seasonal components are normalized for each time period,

before using them for time series decomposition. In contrast, the trigonometric terms in TBATS

models do not require normalization, and so are more appropriate for decomposition.

Second, in estimating the seasonal components using BATS, a large number of parameters are

required, which often leads to noisy seasonal components. In contrast, a smoother seasonal decom-

position is expected from TBATS where the smoothness of the seasonal component is controlled by

the number of harmonics used.

In addition, BATS model cannot be used to decompose time series with non-integer seasonality and

dual calendar effects.
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7 Empirical analysis

7.1 Application to weekly US gasoline data

Figure 1(b) shows the number of barrels of motor gasoline product supplied in the United States,

in thousands of barrels per day, from February 1991 to July 2005. These data were part of the

Transportation competition. (See www.forecastingprinciples.com/files/T_competition_new.

pdf for details.) The data are observed weekly and show a strong annual seasonal pattern. The

length of seasonality of the time series is m1 = 365.25/7 ≈ 52.179. The time series exhibits an

upward additive trend and an additive seasonal pattern; that is, a pattern for which the variation

does not change with the level of the time series.

The data consist of 745 observations and were split into two segments: an estimation sample

period (484 observations) and test sample (261 observations). The estimation sample was used to

estimate the initial values, select the appropriate number of harmonics, and estimate the smoothing

parameters. Following the procedure for finding the number of harmonics to start with, it was found

that only one harmonic was highly significant. Hence, starting with k∗1 = 1, the initial values were

estimated using the heuristic method. The model was then fitted to the whole estimation sample of

484 values and optimized to minimize equation (9). The values of the AIC decreased until k1 = 7,

then started to increase.

In order to investigate the out-of-sample performance, we computed the Root Mean Square Error

(RMSE), defined as

RMSE=

√

√

√

√

1

p− h+ 1

n+p−h
∑

t=n
(yt+h− ŷt+h|t)

2, (11)

where p = 261 is the length of the test sample, n = 484 is the length of the estimation sample

and h is the length of the forecast horizon. Further analysis showed that changing the value of k1

from 7 generated worse out of sample results, indicating that the use of the AIC as the criterion for

this model selection procedure is a reasonable choice. Hence, the TBATS(0, 0, {365.25/7, 7}) model

with ω = φ = 1 was fitted. As a second step, ARMA models were fitted to the residuals with p, q

combinations up to p = q = 5, and it was discovered that the TBATS(0,1, {365.25/7,7}) model

minimizes the AIC.
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The BATS model was considered next, with m1 = 52, and, following the above procedure, it was

discovered that the BATS(0,1,52) model with ω = φ = 1 minimized the AIC. Figure 2 shows the

out-of-sample RMSEs obtained for the two models, and it can be seen that the trigonometric model

clearly performs better for all lead times.

This result can be explained by some of the advantages the trigonometric representation has over the

traditional seasonal representation. First, the BATS model cannot handle the non-integer frequency,

and hence it had to be rounded off to the nearest integer. Second, the BATS model may be over-

parameterized, as 52 initial seasonal values have to be estimated for the model. Third, these initial

values cannot be optimized along with the smoothing parameters, due to the high dimensionality of

the optimization space. These problems are overcome in the trigonometric formulation, which allows

for non-integer frequencies and requires fewer initial values to be estimated for the initial seasonal

component, hence allowing them to be optimized.

Decomposition of the Gasoline time series obtained using the fitted TBATS model is shown in Figure 3.

The vertical bars at the right side of each plot are of equal heights but plotted on different scales;

thus providing a comparison of the size of each component. The trigonometric formulation in TBATS

models allows for more randomness to be eliminated from the seasonal component, yet allowing for

those influential bumps to be revealed.
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Figure 2: Out-of-sample results for the US gasoline data using BATS(0,1,52) and
TBATS(0, 1, {365.25/7, 7}).
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Figure 3: Trigonometric decomposition of the US gasoline data.

7.2 Application to call center data

The call center data shown in Figure 1(a) consist of 10,140 observations, that is 12 weeks of data

starting from 3 March 2003 (Weinberg et al. 2007). They contain a daily seasonal pattern with

frequency 169 and a weekly seasonal pattern with frequency 169 ∗ 5 = 845. The fitting sample

consists of 7,605 observations (9 weeks). The trend appears to be close to zero, and hence the growth

rate bt was omitted from the models.

The model selection procedure led to the model TBATS(3,1, {169,29}, {845,15}) with ω = φ = 1

and β = b0 = 0. The BATS model, with m1 = 169 and m2 = 845, was then considered. The model

selection procedure led to the BATS(3,0,169,845) model with ω = 0.317, φ = 1 and β = b0 = 0

was chosen. (Other BATS models with ω= 1 were also tried, but their forecasting performance was

worse.)

Figure 4 compares the post-sample forecasting accuracies of the selected BATS and TBATS models,

and it can be seen that the TBATS model, which requires the estimation of 102 values, provides much

greater forecasting accuracy than the BATS model, which requires the estimation of 1025 values, for

all forecast horizons.
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Figure 4: Out-of-sample results for the call center data using BATS(3,0,169,845) and
TBATS(3, 1, {169, 29}, {845,15})

The decomposition obtained from TBATS is shown in Figure 5, which clearly exhibits strong daily

and weekly seasonal components. The weekly seasonal pattern seems to be evolving rapidly with

time while the daily seasonal pattern stays relatively more constant. As is seen from the time series

plot itself, the trend component is very small in magnitude compared to the seasonal components.

7.3 Application to the Turkey electricity demand data

The Turkey electricity demand data shown in Figure 1(c) have a number of important features that

should be reflected in the model structure. Three seasonal components with frequencies m1 = 7,

m2 = 354.37 and m3 = 365.25 exist in the series. The sharp drops seen in the seasonal component

with period 354.37 are due to the Seker and Kurban religious holidays, which follow the Hijri

calendar, while those seen in the seasonal component with frequency 365.25 are due to national

holidays which follow the Gregorian calendar.

In this study, the data, which cover a period of 9 years, are split into two parts: a fitting sample of

n= 2191 observations (6 years) and a post-sample period of p = 1096 observations (3 years). The

order selection procedure was followed and the TBATS(3, 2, {7, 3}, {354.37, 23}, {365.25, 3}) model

with ω= 0.00165 and φ = 1 was selected.

None of the existing exponential smoothing models can handle this time series; however, the BATS

model was applied with the frequencies rounded off to the nearest integer (i.e., m1 = 7, m2 =
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Figure 5: Trigonometric decomposition of the call center data.

354, m3 = 365), which is expected to affect the accuracy of the forecasts. In addition, this model

requires the estimation of 354+ 365+ 7= 726 values for the seasonal component alone.

Figure 6 shows the exceptional post-sample forecasting performance of the TBATS model compared

to the BATS model.

The decomposition of the series obtained by using the chosen TBATS model, is shown in Figure 7.

The first panel shows the transformed observations and the second shows the trend component. The

third panel shows the weekly seasonal component which does not seem to have much variation

with time. The fourth panel shows the overall annual component, which is composed of a seasonal

component based on the Hijri calendar with frequency 354.37 and a seasonal component based on

the Gregorian calendar with frequency 365.25, which are shown separately in the fifth and the sixth

panels respectively.

The rather wiggly seasonal components has probably occurred due to the use of a large number of

harmonics in each seasonal component. This is necessary to capture the sharp drops seen in the

time series plot. If we assume that the stochastic seasonal component is augmented by deterministic

holiday effects, we can reduce the number of harmonics required by using dummy variables in

handling those sharp drops which occur due to holidays. Table 1 gives the dates of the holidays

from the Hijri and Gregorian calendars. Seker is a three-day festival when sweets are eaten to
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Figure 6: Out-of-sample results for the Turkey electricity demand data using BATS(0,0,7,354,365)
and TBATS(3, 2, {7,3}, {354.37, 23}, {365.25, 3})
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Figure 7: Trigonometric decomposition of the Turkey electricity demand data.
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celebrate the end of the fast of Ramadan. Kurban is a four-day festival when sacrificial sheep

are slaughtered and their meat distributed to the poor. In addition, there are national holidays

which follow the Gregorian calendar as shown in the table. Using a trend component, a seasonal

component and holiday dummy variables, regression was performed on the transformed y(ω)t values.

The term
∑3

i=1

∑ki
j=1 a(i)j cos(λ(i)j t) + b(i)j sin(λ(i)j t) was used in capturing the multiple seasonality

with k1 = 3, k2 = k3 = 1. The estimated holiday effect was then removed from the series and the

remainder was decomposed using TBATS to achieve the decomposition shown in Figure 8.

Religious holidays
Year Seker holiday Kurban holiday National holidays

2000 08 Jan–10 Jan 16 Mar–19 Mar 01 Jan, 23 Apr, 19 May, 30 Aug, 29 Oct
27 Dec–29 Dec

2001 16 Dec–18 Dec 05 Mar–08 Mar 01 Jan, 23 Apr, 19 May, 30 Aug, 29 Oct
2002 05 Dec–07 Dec 22 Feb–25 Feb 01 Jan, 23 Apr, 19 May, 30 Aug, 29 Oct
2003 25 Nov–27 Nov 11 Feb–14 Feb 01 Jan, 23 Apr, 19 May, 30 Aug, 29 Oct
2004 14 Nov–16 Nov 01 Feb–04 Feb 01 Jan, 23 Apr, 19 May, 30 Aug, 29 Oct
2005 03 Nov–05 Nov 20 Jan–23 Jan 01 Jan, 23 Apr, 19 May, 30 Aug, 29 Oct
2006 23 Oct–25 Oct 10 Jan–13 Jan 01 Jan, 23 Apr, 19 May, 30 Aug, 29 Oct

31 Dec

Table 1: The dates of Turkish holidays between 1 January 2000 to 31 December 2006.

The fourth panel shows the overall annual component, which comprises the Hijri seasonal effect

(fifth panel) and the Gregorian seasonal effect (sixth panel). It is seen that this now provides a much

smoother seasonal decomposition and only one harmonic is required for each seasonal component

(i.e., k2 = k3 = 1) in capturing seasonal calendar effects. This analysis demonstrates the capability of

our trigonometric decomposition in extracting those seasonal components which are otherwise not

apparent in graphical displays. Existing decomposition techniques are unable to handle such complex

seasonalities.

In forecasting complex seasonal time series with such deterministic effects, both BATS and TBATS

models may be extended to accommodate regressor variables, allowing additional information to be

included in the models.
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Figure 8: Trigonometric decomposition of the regressed Turkey electricity demand data.

8 Concluding remarks

A new state space modeling framework, based on the innovations approach, is developed for

forecasting time series with complex seasonal patterns which cannot be forecast using any current

forecasting approaches. The new approach not only offers an alternative to both linear and non-linear

traditional exponential smoothing models, but also has many advantages and provides additional

options, some of which are not seen in any of the existing forecasting approaches. The new approach

is also capable of decomposing and forecasting time series with multiple seasonality, high frequency

seasonality, non-integer seasonality and dual calendar effects.

The superiority of the new modeling framework in handling such seasonal patterns is illustrated in

three empirical studies, where it is shown to greatly improve the out-of-sample forecasting accuracy.

It is also shown that our trigonometric approach offers an elegant way of decomposing complex

seasonal time series, which cannot be decomposed using any of the existing methods. Table 2

demonstrates that the trigonometric approach requires substantially fewer values to be estimated
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than traditional seasonal exponential smoothing models in all three applications. Moreover, these

models also overcome the weaknesses of the existing exponential smoothing models, such as the

instability of non-linear models and correlated errors.

Table 2: Number of estimated parameters for each model in each application.

Data Model No.parameters

Gasoline data BATS(0, 1,52) 59
TBATS(0,1, {365.25/7,7}) 22

Call center data BATS(3, 0,169, 845) 1025
TBATS(3,1, {169,29}, {845, 15}) 102

Electricity demand data BATS(0, 0,7, 354,365) 734
TBATS(3,2, {7,3}, {354.37,23}, {365.25, 3}) 79
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Appendix A

Equation (2) can be written in the following form:

st =
k
∑

j=1

(cosλ j t, sinλ j t)
′x j,t (12)

x j,t = x j,t−1+κt , (13)

where x j,t = (α j,t ,β j,t)′ and κt = (k1εt , k2εt)′. We re-parameterize using

x j,t = A j,t s j,t ,

where s j ,t = (s j,t , s∗j,t)
′ and A j,t =







cos(λ j t) − sin(λ j t)

sin(λ j t) cos(λ j t)






. Then, substituting this into equation

(13), we obtain

A j,t s j,t = A j,t−1s j,t−1+κt

s j,t = A−1
j,t A j,t−1s j,t−1+ A−1

j,t κt ,

where A−1
j,t =







cos(λ j t) sin(λ j t)

− sin(λ j t) cos(λ j t)






. Using well-known trigonometric identities, A−1

j,t A j,t−1 =







cos(λ j) sin(λ j)

− sin(λ j) cos(λ j)






, and so we obtain the required result (3).
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