Forecasting with Dynamic Panel Data Models

Laura Liu ${ }^{1}$ Hyungsik Roger Moon ${ }^{2}$ Frank Schorfheide ${ }^{3}$
${ }^{1}$ University of Pennsylvania
${ }^{2}$ University of Southern California
${ }^{3}$ University of Pennsylvania, CEPR, and NBER
Progress Report: March 2014

- Goal: develop methods to generate forecasts from a panel data model of the form

$$
\begin{equation*}
Y_{i t}=\beta^{\prime} X_{i t}+\lambda_{i}^{\prime} W_{t}+U_{i t}, \quad t=1, \ldots, T ; i=1, \ldots, N \tag{1}
\end{equation*}
$$

- Here $X_{i t}$ may contain lags of $Y_{i t}$.
- We consider a large N and small T environment.
- Empirical context:
- Monitoring of banking sector; stress tests: forecasts of capital-asset ratios, charge-offs, etc.
- Why large N ? Track individual banks or bank holding companies.
- Why small T ? Mergers; changes in regulatory environments; lack of variation in Y 's and X 's in normal times.
- Consider a simple dynamic panel data model:

$$
\begin{equation*}
Y_{i t}=\rho Y_{i t-1}+\lambda_{i}+U_{i t}, \tag{2}
\end{equation*}
$$

where $U_{i t} \sim \operatorname{iid}(0,1)$ and λ_{i} represents the unobserved individual heterogeneity.

- For a given ρ, the optimal forecast of $Y_{i T+1}$ at time T is

$$
\mathbb{E}\left(Y_{i T+1} \mid Y, \rho\right)=\rho Y_{i T}+\mathbb{E}\left(\lambda_{i} \mid Y, \rho\right) .
$$

- In the dynamic panel literature, the focus has been to find a consistent estimate of ρ in the presence of the incidental parameters λ_{i} to avoid the incidental parameter problems.
- Our interest is to have a good forecast that requires to use "good" estimates of both ρ and λ_{i} 's with small T panel.

Introduction

- Selection bias poses a challenge for short time span panel data:
- the usual panel data estimate of the fixed effects (QMLE) tends to over-predict (under-predict) the future capital-asset ratios for the banks with high (low) current capital-asset ratio.

Monte Carlo Illustration

Model: $Y_{i t}=\rho Y_{i, t-1}+\lambda_{i}+U_{i t}, \quad t=1, \ldots, T ; i=1, \ldots, N$.

$$
\begin{aligned}
\text { Design: } & T=3, N=1,000, \rho=0.8, \lambda_{i} \sim U[0,1], \\
& Y_{i 0} \sim N\left(\lambda_{i} /(1-\rho), 1 /\left(1-\rho^{2}\right)\right) .
\end{aligned}
$$

		Bottom 20		Middle 20		Top 20		All	
$\hat{\rho}$	$\hat{\lambda}_{i}$	MSE	Med	MSE	Med	MSE	Med	MSE	Med
No Shrinkage									
GMM (AB)	QMLE		0.97		0.02		-0.99		0.00
GMM (BB)	QMLE		0.97		0.05		-0.99		0.00

- Forecast errors:

$$
\begin{equation*}
\left(Y_{i, T+1}^{(s)}-\hat{Y}_{i, T+1}^{c,(s)}\left(\hat{\theta}_{0: T,<-i>}\right)\right)^{2} . \tag{3}
\end{equation*}
$$

- Relatively large selection bias for top and bottom groups.
- Our paper was inspired by work by Efron (2011). Consider the following question:
- Want to predict the US Masters golf tournament final scores (the average score after four rounds) after the first round.
- The first round score, Y_{i}, consists of true skill, λ_{i}, and (unpredicable) luck, U_{i}.
- If the scores Y_{i} are independent across i, the natural estimator of λ_{i} appears to be Y_{i}, the first round score.
- Question: "Can we estimate λ_{i} more precisely, by using the other players' scores of the first round, $\left(Y_{1}, \ldots, Y_{N}\right)$?"
- This question arises more generally in dynamic panel data models.

Introduction

- We employ an empirical Bayes approach to combine cross sectional and time series information together and thus obtain "better" forecasts for banks with extreme capital asset ratios.
- We estimate $\mathbb{E}\left(\lambda_{i} \mid Y, \rho\right)$ as the posterior mean of λ_{i}.
- Tweedie's formula and its use: e.g., Robbins (1951), Brown (2008), Brown and Greenshtein (2009), Efron (2011), Gu and Koenker (2013).
- Consistent estimation of ρ in dynamic panel data models with fixed effects when T is small:
- IV/GMM: e.g. Anderson and Hsiao (1982), Arellano and Bond (1991), Arellano and Bond (1995), Blundell and Bond (1998), and Alvarez and Arellano (2003).
- Bayesian: e.g. Lancaster (2002) - (informational) orthogonal parameterization.
- Bayesian inference in panel data models
- Correlated random effect models

PS: Maurice Tweedie $=$ British medical physicist and statistician, born in 1919 and died in 1996.
(1) Introduction
(2) Decision-theoretic Considerations
(Two Empirical Bayes Predictors:

- Parametric Family of Distributions for λ_{i}
- Nonparametric $p\left(\lambda_{i}\right)$ and Tweedie's Formula
- Simulations
© Empirical Application
- Conclusion.
- Simple model $Y_{i t}=\lambda_{i}+\rho Y_{i, t-1}+U_{i t}$.
- $\hat{Y}^{T+1}=\left[\hat{Y}_{1, T+1}, \ldots, \hat{Y}_{N, T+1}\right]^{\prime}$ is vector of forecasts.
- Compound L_{2} loss function:

$$
\begin{equation*}
L_{N}\left(\hat{Y}^{T+1}, Y^{T+1}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(\hat{Y}^{T+1}-Y^{T+1}\right)^{2} \tag{4}
\end{equation*}
$$

- Expected compound loss:

$$
\begin{align*}
& \mathbb{E}_{(\rho, \lambda)} L_{N}\left(\hat{Y}^{T+1}, Y^{T+1}\right) \tag{5}\\
& \quad=\mathbb{E}_{(\rho, \lambda)}\left[\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{(\rho, \lambda)}\left[\left(\hat{Y}_{i, T+1}-Y_{i, T+1}\right)^{2} \mid Y^{0: T}\right]\right] \\
& \quad=\mathbb{E}_{(\rho, \lambda)}\left[\frac{1}{N} \sum_{i=1}^{N}\left(\hat{Y}_{i, T+1}-\lambda_{i}-\rho Y_{i T}\right)^{2}\right]+1
\end{align*}
$$

- Consider the class of additively separable forecasts $\hat{Y}_{i, T+1}=\hat{\lambda}_{i}+\hat{\rho} Y_{i T}$ where $\hat{\lambda}_{i}$ and $\hat{\rho}$ are estimators of λ_{i} and ρ.
- Decision space:

$$
\begin{equation*}
\mathcal{D}=\left\{\left(\hat{\lambda}_{1}+\hat{\rho} Y_{1 T}, \ldots, \hat{\lambda}_{N}+\hat{\rho} Y_{N T}\right) \mid(\hat{\lambda}, \hat{\rho}) \in \mathcal{F}_{0: T}\right\} . \tag{6}
\end{equation*}
$$

- Find asymptotically optimal forecast in the class \mathcal{D} that minimizes the expected compound loss (as $N \longrightarrow \infty$):

$$
\begin{align*}
& \mathbb{E}_{(\rho, \lambda)}\left[L_{N}\left(\hat{Y}_{\text {opt }}^{T+1}, Y^{T+1}\right)\right] \tag{7}\\
& \quad \leq \inf _{\hat{Y}_{i, T+1} \in \mathcal{D}} \mathbb{E}_{(\rho, \lambda)}\left[L_{N}\left(\hat{Y}^{T+1}, Y^{T+1}\right)\right]+o(1) .
\end{align*}
$$

- Suppose ρ is known...
- Then forecast simplifies to $\hat{Y}_{i, T+1}=\hat{\lambda}_{i}+\rho Y_{i T}$.
- Finding an optimal forecast is equivalent to constructing an optimal estimator of λ :

$$
\begin{equation*}
\inf _{\hat{\lambda}} \mathbb{E}_{\lambda}\left[\frac{1}{N} \sum_{i=1}^{N}\left(\hat{\lambda}_{i}-\lambda_{i}\right)^{2}\right] . \tag{8}
\end{equation*}
$$

- This estimator is constructed from $Z_{i t}=Z_{i t}(\rho)=Y_{i t}-\rho Y_{i, t-1}$.
- For $T=1$ see Robbins $(1951,1956)$.
- Suppose $T=1$ and $\hat{\lambda}_{i}=g\left(Z_{i 1}\right)$.
- Expected compound loss becomes integrated risk with empirical distribution of λ as prior:

$$
\begin{aligned}
\mathbb{E}_{\lambda}\left[\frac{1}{N} \sum_{i=1}^{N}\left(\hat{\lambda}_{i}-\lambda_{i}\right)^{2}\right] & =\frac{1}{N} \sum_{i=1}^{N} \int\left(g(z)-\lambda_{i}\right)^{2} \phi\left(z-\lambda_{i}\right) d z \\
& =\int\left[\int(g(z)-\lambda)^{2} \phi(z-\lambda) d z\right] d G_{N}\left(\lambda_{i}\right) \\
& =\mathbb{E}_{G_{N}}\left[\left(g(Z)-\lambda_{i}\right)^{2}\right] .
\end{aligned}
$$

- Optimal estimator:

$$
\begin{equation*}
g_{G_{N}}^{*}(z)=\frac{\int \lambda_{i} \phi\left(z-\lambda_{i}\right) d G_{N}\left(\lambda_{i}\right)}{\int \phi\left(z-\lambda_{i}\right) d G_{N}\left(\lambda_{i}\right)} . \tag{9}
\end{equation*}
$$

- To implement this estimator we need to generate an estimate of $G_{N}\left(\lambda_{i}\right)$ based on cross-sectional information.
- Idea: Approximate $g_{G_{N}}^{*}(z)$ by $\hat{g}^{*}(z)$ such that

$$
\begin{equation*}
\mathbb{E}_{G_{N}}\left[\left(\hat{g}^{*}(z)-\lambda_{i}\right)^{2}\right] \leq \mathbb{E}_{G_{N}}\left[\left(g_{G_{N}}^{*}(z)-\lambda_{i}\right)^{2}\right]+o(1) \tag{10}
\end{equation*}
$$

- There are some results in the statistics literature, e.g., Zhang (2003), Brown and Greenshtein (2009), and Jiang and Zhang (2009).
- TO DO: extend THEORETICAL results to panel data application.
- FOR NOW: we consider two different implementations of the basic idea:
- Treat G_{N} parametrically (indexed by finite-dimensional hyperparameter):

$$
\lambda_{i} \sim N\left(0, \omega^{2}\right) \quad \text { or } \quad \lambda_{i} \sim N\left(\phi_{0}+\phi_{1} Y_{i 0}, \omega^{2}\right)
$$

- Treat G_{N} nonparametrically: use some general density $p\left(\lambda_{i} \mid Y_{i 0}\right)$. Use cross-sectional information to estimate relevant features of G_{N}.

Next Steps

- To fix ideas, we will consider the simple model:

$$
\begin{equation*}
Y_{i t}=\rho Y_{i, t-1}+\lambda_{i}+U_{i t}, \quad U_{i t} \mid\left(Y_{i, t-1}, \lambda_{i}\right) \sim N(0,1), \tag{11}
\end{equation*}
$$

- For now we will assume that λ_{i} is independent of $Y_{i 0}$.
- Step 1: parametric Bayesian analysis with family of priors $\lambda_{i} \mid Y_{i 0} \sim N\left(0, \omega^{2}\right)$.
- Step 2: treat $p(\lambda)$ nonparametrically - realizing that the Bayes estimator of λ_{i} depends on $p\left(\lambda_{i}\right)$ only through the marginal distribution of $Z_{i}(\rho)=\frac{1}{T} \sum_{t=1}^{T}\left(Y_{i t}-\rho Y_{i, t-1}\right)$. Tweedie's Formula!.

Step 1: Parametric Analysis

- Y^{t} is $N \times 1 ; Y$ is $N \times T$.
- X is $N \times T, \lambda$ is $N \times 1$.
- Likelihood function:

$$
\begin{aligned}
& p\left(\rho, \lambda \mid Y^{0: T}\right) \\
& \propto \prod_{i=1}^{N} p\left(Y_{i}^{1: T} \mid \rho, \lambda_{i}, Y_{i 0}\right) p\left(\lambda_{i}\right) \\
& \quad \propto \exp \left\{-\frac{1}{2}\left(\operatorname{tr}\left[\left(Y-X \rho-\lambda \iota_{T}^{\prime}\right)\left(Y-X \rho-\lambda \iota_{T}^{\prime}\right)^{\prime}\right]+\omega^{-2} \lambda^{\prime} \lambda\right)\right\}
\end{aligned}
$$

- Posterior of $\lambda \mid \rho$:

$$
\begin{equation*}
\lambda_{i} \mid\left(\rho, Y^{0: T}\right) \sim N\left(\mu_{\lambda_{i}}(\rho), \sigma_{\lambda}^{2}\right), i=1, \ldots, N . \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
\mu_{\lambda}(\rho) & =\sigma_{\lambda}^{2}(Y-X \rho) \iota_{T} \\
\sigma_{\lambda}^{2} & =\left(T+\omega^{-2}\right)^{-1} .
\end{aligned}
$$

- The one-step-ahead predictive density for $Y_{i, T+1}$ is given by

$$
\begin{equation*}
p\left(Y_{i, T+1} \mid Y^{0: T}, \rho\right)=\int p\left(Y_{i, T+1} \mid Y_{i T}, \rho, \lambda_{i}\right) p\left(\lambda_{i} \mid \rho, Y^{0: T}\right) d \lambda_{i} . \tag{14}
\end{equation*}
$$

- The mean of this predictive density can be written as

$$
\begin{equation*}
\mathbb{E}\left[Y_{i, T+1} \mid Y^{0: T}, \rho\right]=\rho Y_{i T}+\mathbb{E}\left[\lambda_{i} \mid Y^{0: T}, \rho\right] . \tag{15}
\end{equation*}
$$

- Define the MLE of λ_{i} conditional on ρ as

$$
\begin{equation*}
Z_{i}(\rho)=\frac{1}{T} \sum_{i=1}^{T}\left(Y_{i T}-\rho Y_{i, T-1}\right) \tag{16}
\end{equation*}
$$

- Then the posterior mean of λ_{i} can be decomposed as follows:

$$
\begin{equation*}
\mathbb{E}\left[\lambda_{i} \mid Y^{0: T}, \rho\right]=\underbrace{Z_{i}(\rho)}_{\text {MLE }}-\underbrace{\frac{1}{\left(1+\omega^{2} T\right)} Z_{i}(\rho)}_{\text {Bayes Correction }} . \tag{17}
\end{equation*}
$$

- We will estimate the common parameters, e.g. ρ, jointly with the hyperparameter ω that serves as an index for $p(\lambda)$ using the cross-sectional information:

$$
\begin{equation*}
(\hat{\omega}, \hat{\rho})=\operatorname{argmax} \ln p\left(Y^{1: T} \mid Y^{0}, \rho, \omega\right) \tag{18}
\end{equation*}
$$

where

$$
\ln p\left(Y^{1: T} \mid Y^{0}, \rho, \omega\right)=\ln \int p\left(Y^{1: T} \mid Y^{0}, \rho, \lambda, \omega\right) p\left(\rho, \lambda \mid \omega, Y^{0}\right) d(\rho, \lambda)
$$

- The posterior mean predictor with data-driven hyperparameter choice becomes (now making the dependence on ω explicit):

$$
\begin{equation*}
\mathbb{E}\left[\lambda_{i} \mid Y^{0: T}, \hat{\rho}, \hat{\omega}\right]=Z_{i}(\hat{\rho})-\frac{1}{\left(1+\hat{\omega}^{2} T\right)} Z_{i}(\hat{\rho}) \tag{19}
\end{equation*}
$$

- Note: we could replace $\hat{\rho}$ by the posterior mean $\mathbb{E}\left[\rho \mid Y^{0: T}, \hat{\omega}\right]$.
- Generalization: condition on $Y_{i 0}: \lambda_{i} \sim N\left(\phi_{0}+\phi_{1} Y_{i 0}, \omega^{2}\right)$.
- Replace $p(\lambda \mid \omega)$ by more general family of distributions $p(\lambda)$.
- Recall $Z_{i}(\rho)=\frac{1}{T}\left(Y_{i}-X_{i} \rho\right) \iota_{T}$.
- Our simple model implies that $Z_{i}(\rho) \mid \rho \sim N\left(\lambda_{i}, 1 / T\right)$.
- Under our distributional assumptions we obtain

$$
\begin{equation*}
q\left(Z_{i}(\rho) \mid \lambda_{i}\right)=(2 \pi / T)^{-1 / 2} \exp \left\{-\frac{T}{2}\left(Z_{i}(\rho)-\lambda_{i}\right)^{2}\right\} \tag{20}
\end{equation*}
$$

- Write the Gaussian density using the following exponential-family representation:

$$
\begin{equation*}
q\left(Z_{i}(\rho) \mid \lambda_{i}\right)=\exp \left\{\lambda_{i} T Z_{i}(\rho)-\psi\left(\lambda_{i}\right)\right\} q_{0}\left(Z_{i}(\rho)\right) \tag{21}
\end{equation*}
$$

where

$$
\psi\left(\lambda_{i}\right)=\frac{T}{2} \lambda_{i}^{2} \quad \text { and } \quad q_{0}\left(Z_{i}(\rho)\right)=(2 \pi / T)^{-1 / 2} \exp \left\{-\frac{T}{2} Z_{i}^{2}(\rho)\right\}
$$

- Posterior of λ conditional on ρ :

$$
\begin{equation*}
p\left(\lambda \mid Y^{0: T}, \rho\right)=\prod_{i=1}^{N} \frac{\exp \left\{\lambda_{i} T Z_{i}(\rho)-\psi\left(\lambda_{i}\right)\right\} p\left(\lambda_{i}\right)}{\int \exp \left\{\lambda_{i} T Z_{i}(\rho)-\psi\left(\lambda_{i}\right)\right\} p\left(\lambda_{i}\right) d \lambda_{i}} \tag{22}
\end{equation*}
$$

- Now focus on the posterior of λ_{i} and write

$$
p\left(\lambda_{i} \mid Y^{0: T}, \rho\right)=\exp \left\{\lambda_{i} T Z_{i}(\rho)-\chi\left(Z_{i}(\rho)\right)\right\} p\left(\lambda_{i}\right) \exp \left\{-\psi\left(\lambda_{i}\right)\right\}
$$

where

$$
\chi\left(Z_{i}\right)=\ln \int \exp \left\{\lambda_{i} T Z_{i}(\rho)-\psi\left(\lambda_{i}\right)\right\} p\left(\lambda_{i}\right) d \lambda_{i}
$$

- Since the posterior density integrates to one, we obtain

$$
\begin{aligned}
0 & =\frac{\partial}{\partial Z_{i}} \int \exp \left\{\lambda_{i} T Z_{i}-\chi\left(Z_{i}\right)\right\} p\left(\lambda_{i}\right) \exp \left\{-\psi\left(\lambda_{i}\right)\right\} d \lambda_{i} \\
& =T \int \lambda_{i} p\left(\lambda_{i} \mid Y^{0: T}, \rho\right) d \lambda_{i}-\chi^{\prime}\left(Z_{i}\right)
\end{aligned}
$$

- Tweedie's formula:

$$
\begin{equation*}
\mathbb{E}\left[\lambda_{i} \mid Y^{0: T}, \rho\right]=\frac{1}{T} \chi^{\prime}\left(Z_{i}(\rho)\right) \tag{23}
\end{equation*}
$$

- Using the definition of $q_{0}\left(Z_{i}\right)$ we can write

$$
\chi\left(Z_{i}\right)=\ln \int q\left(Z_{i} \mid \lambda_{i}\right) p\left(\lambda_{i}\right) d \lambda_{i}+\frac{1}{2} \ln (2 \pi / T)+\frac{T}{2} Z_{i}^{2} .
$$

- This leads to

$$
\begin{equation*}
\mathbb{E}\left[\lambda_{i} \mid Y^{0: T}, \rho\right]=\underbrace{Z_{i}(\rho)}_{\text {MLE }}+\left.\underbrace{\frac{1}{T} \frac{\partial \ln q\left(Z_{i}\right)}{\partial Z_{i}}}_{\text {Bayes Correction }}\right|_{z_{i}=z_{i}(\rho)} . \tag{24}
\end{equation*}
$$

- NOTE: we only need to estimate the marginal density of Z_{i}. We do not need to estimate $p\left(\lambda_{i}\right)$!
- Generalization: condition on $Y_{i 0}$.
- First we find a consistent estimate of ρ, say $\hat{\rho}$.
- Second, compute QMLE for λ :

$$
\begin{equation*}
Z_{i}(\hat{\rho})=\frac{1}{T} \sum_{t=1}^{T}\left(Y_{i t}-\hat{\rho} Y_{i t-1}\right) \tag{25}
\end{equation*}
$$

- Third, nonparametric correction based on Tweedie's formula:

$$
\begin{equation*}
\hat{\lambda}_{i}=Z_{i}(\hat{\rho})+\left.\frac{1}{T} \frac{1}{\hat{q}\left(Z_{i}(\hat{\rho})\right)} \frac{\partial \hat{q}(z)}{\partial z}\right|_{z=Z_{i}(\hat{\rho})}, \tag{26}
\end{equation*}
$$

where $\hat{p}(z)$ is a nonparametric density estimate of Z_{i}.

Tweedie's Formula: Implementation - $\hat{\rho}$

Arellano \& Bover (95) ("GMM (AB)"):

- Moment conditions based on

Orthogonal Forward Demeaning:
$\mathbb{E}\left(W_{i t}^{\prime} U_{i t}^{*}\right)=0$, where
$W_{i t}=\left(Y_{i 0}, \cdots, Y_{i, t-1}\right), U_{i t}^{*}=$
$\sqrt{\frac{T-t}{T-t+1}}\left[U_{i t}-\frac{U_{i, t+1}+\cdots+U_{i T}}{T-t}\right]$,
$t=1, \cdots, T-1$.

- Under homoskedasticity, one-step estimator as it's already an asymptotically efficient GMM estimator.
- Better finite sample properties than Arellano and Bond (91) estimator based on the first difference when ρ is close to 1 .

Blundell \& Bond (98) ("GMM (BB)"):

- Moment conditions:
$\mathbb{E}\left(W_{i t}^{\prime} \Delta U_{i t}\right)=0$
$\mathbb{E}\left(\Delta Y_{i, t-1}\left(\lambda_{i}+U_{i t}\right)\right)=0$ where $W_{i t}=\left(Y_{i 0}, \cdots, Y_{i, t-2}\right)$, $t=2, \cdots, T$.
- Two-step estimator.
- Need $\mathbb{E}\left(\Delta Y_{i, t-1} \lambda_{i}\right)=0$ or $\mathbb{E}\left(\lambda_{i}\left(Y_{i 0}-\frac{\lambda_{i}}{1-\rho}\right)\right)=0$. Stationary initial condition.
- Better dealing with weak IV problem when ρ is close to 1 when the initial condition is stationary.
- Lindsey's method:

$$
\hat{q}_{\text {Lindsey }}(z)=\exp \left\{\sum_{j=0}^{J} \gamma_{j} z^{j}\right\}
$$

Estimate γ_{i} 's by Poisson regression.

- Kernel smoothing:

$$
\hat{q}_{\text {kernel }}(z)=\frac{1}{N h} \sum_{i=1}^{N} K\left(\frac{Z_{i}-z}{h}\right)
$$

- Note: in the application we use densities that are conditional on $Y_{i 0}$.

A Small Simulation Experiment

- Model: $Y_{i t}=\lambda_{i}+\rho Y_{i, t-1}+U_{i t}$ where $U_{i t} \sim i i d N(0,1)$.
- $\lambda_{i} \mid Y_{i 0} \sim i i d U[0,1]$.
- $Y_{i 0}$ distribution:

Design $1: \quad Y_{i 0} \left\lvert\,\left(\lambda_{i}, \rho\right) \sim N\left(\frac{\lambda_{i}}{1-\rho}, \frac{1}{1-\rho^{2}}\right)\right.$.
Design 2 : $Y_{i 0} \mid\left(\lambda_{i}, \rho\right) \sim N\left(0,0.1^{2}\right)$.

- Autoregressive coefficient: $\rho=0.8$.
- $N=1,000, T=3$.
- Forecast errors:

$$
\begin{equation*}
\left(Y_{i, T+1}^{(s)}-\hat{Y}_{i, T+1}^{c,(s)}\left(\hat{\theta}_{0: T,<-i>}\right)\right)^{2} . \tag{29}
\end{equation*}
$$

- We consider four different groups of observations:
- Bottom: 20 smallest $Y_{i T}$'s (out of 1,000)
- Middle: $20 Y_{i T}$'s around the median
- Top: 20 largest $Y_{i T}$'s
- All: all $Y_{i \text { T }}$'s
- We compute mean-squared forecast errors and median forecast errors.

Monte Carlo: Design 1

Model: $Y_{i t}=\rho Y_{i, t-1}+\lambda_{i}+U_{i t}, \quad t=1, \ldots, T ; i=1, \ldots, N$.

$$
\begin{aligned}
\text { Design: } & T=3, N=1,000, \rho=0.8, \lambda_{i} \sim U[0,1], \\
& Y_{i 0} \sim N\left(\lambda_{i} /(1-\rho), 1 /\left(1-\rho^{2}\right)\right) .
\end{aligned}
$$

		Bottom 20				Middle 20		Top 20		
All										
$\hat{\rho}$	$\hat{\lambda}_{i}$	MSE	Med	MSE	Med	MSE	Med	MSE	Med	
	No Shrinkage									
GMM (AB)	QMLE	2.12	0.97	1.21	0.02	2.22	-0.99	1.34	0.00	
GMM (BB)	QMLE	2.14	0.97	1.19	0.05	2.20	-0.99	1.33	0.00	

- $A B$ and $B B$ estimators perform very similarly.
- Relatively large selection bias for top and bottom groups.

Model: $Y_{i t}=\rho Y_{i, t-1}+\lambda_{i}+U_{i t}, \quad t=1, \ldots, T ; i=1, \ldots, N$.

$$
\begin{aligned}
\text { Design: } & T=3, N=1,000, \rho=0.8, \lambda_{i} \sim U[0,1], \\
& Y_{i 0} \sim N\left(\lambda_{i} /(1-\rho), 1 /\left(1-\rho^{2}\right)\right) .
\end{aligned}
$$

		Bottom 20		Middle 20		Top 20		All		
$\hat{\rho}$	$\hat{\lambda}_{i}$	MSE	Med	MSE	Med	MSE	Med	MSE	Med	
		No Shrinkage								
GMM (AB)	QMLE	2.12	0.97	1.21	0.02	2.22	-0.99	1.34	0.00	
		Tweedie's Formula								
GMM (AB)	Lindsey	1.28	-0.06	1.05	0.05	1.35	-0.08	1.10	0.00	
GMM (AB)	Kernel	1.33	0.00	1.04	0.02	1.45	-0.05	1.10	0.00	

- Tweedie's formula is able to correct selection bias.

Model: $Y_{i t}=\rho Y_{i, t-1}+\lambda_{i}+U_{i t}, \quad t=1, \ldots, T ; i=1, \ldots, N$.

$$
\begin{aligned}
\text { Design: } & T=3, N=1,000, \rho=0.8, \lambda_{i} \sim U[0,1], \\
& Y_{i 0} \sim N\left(\lambda_{i} /(1-\rho), 1 /\left(1-\rho^{2}\right)\right) .
\end{aligned}
$$

$\hat{\rho}$	$\hat{\lambda}_{i}$	Bottom 20		Middle 20		Top 20		All	
		MSE	Med	MSE	Med	MSE	Med	MSE	Med
No Shrinkage									
GMM (AB)	QMLE	2.12	0.97	1.21	0.02	2.22	-0.99	1.34	0.0
Tweedie's Formula									
GMM (AB)	Lindsey	1.28	-0.06	1.05	0.05	1.35	-0.08	1.10	0.00
GMM (AB)	Kernel	1.33	0.00	1.04	0.02	1.45	-0.05	1.10	0.00

Empirical Bayes Forecast with Parametric Model

Max of Marg. LH	1.05	0.07	1.01	0.04	1.12	-0.11	1.05	0.00

- The parametric Bayes model works even better.

Model: $Y_{i t}=\rho Y_{i, t-1}+\lambda_{i}+U_{i t}, \quad t=1, \ldots, T ; i=1, \ldots, N$.
Design: $T=3, N=1,000, \rho=0.8, \lambda_{i} \sim U[0,1], Y_{i 0} \sim N\left(0,0.1^{2}\right)$.

$\hat{\rho}$	$\hat{\lambda}_{i}$	Bottom 20		Middle 20		Top 20		All	
		MSE	Med	MSE	Med	MSE	Med	MSE	Med
No Shrinkage									
GMM (AB)	QMLE	4.75	0.70	1.97	0.24	13.57	-0.10	3.13	0.25
GMM (BB)	QMLE	3.97	1.68	1.11	-0.14	5.28	-2.04	1.68	-0.18

- Under this design the $\mathrm{GMM}(\mathrm{BB})$ estimator is preferable.
- Relatively large selection bias for top and bottom groups.

Model: $Y_{i t}=\rho Y_{i, t-1}+\lambda_{i}+U_{i t}, \quad t=1, \ldots, T ; i=1, \ldots, N$.
Design: $T=3, N=1,000, \rho=0.8, \lambda_{i} \sim U[0,1], Y_{i 0} \sim N\left(0,0.1^{2}\right)$.

$\hat{\rho}$	$\hat{\lambda}_{i}$	Bottom 20		Middle 20		Top 20		All	
		MSE	Med	MSE	Med	MSE	Med	MSE	Med
No Shrinkage									
GMM (BB)	QMLE	3.97	1.68	1.11	-0.14	5.28	-2.04	1.68	-0.18
Tweedie's Formula									
GMM (BB)	Lindsey	1.55	0.25	1.12	-0.14	1.63	-0.53	1.14	-0.18
GMM (BB)	Kernel	1.62	0.11	1.14	-0.13	1.91	-0.41	1.20	-0.18

- Tweedie's formula is able to correct selection bias.

Model: $Y_{i t}=\rho Y_{i, t-1}+\lambda_{i}+U_{i t}, \quad t=1, \ldots, T ; i=1, \ldots, N$.
Design: $T=3, N=1,000, \rho=0.8, \lambda_{i} \sim U[0,1], Y_{i 0} \sim N\left(0,0.1^{2}\right)$.

$\hat{\rho} \quad \hat{\lambda}_{i}$		Bottom 20		Middle 20		Top 20		All	
		MSE	Med	MSE	Med	MSE	Med	MSE	Med
No Shrinkage									
GMM (BB)	QMLE	3.97	1.68	1.11	-0.14	5.28	-2.04	1.68	-0.18
Tweedie's Formula									
GMM (BB)	Lindsey	1.55	0.25	1.12	-0.14	1.63	-0.53	1.14	-0.18
GMM (BB)	Kernel	1.62	0.11	1.14	-0.13	1.91	-0.41	1.20	-0.18
Empirical Bayes Forecast with Parametric Model									
Max of M	g. LH	1.09	0.02	1.08	0.04	1.13	-0.03	1.08	0.00

- The parametric Bayes model works even better.

Application

- In the aftermath of the 2007-09 global financial crisis bank stress tests have become an important tool used by central banks and other regulators to conduct macroprudential regulation and supervision.
- Stress tests come in many flavors, one of them is to predict the evolution of bank balance sheets conditional on economic conditions.
- Bank-level forecasts can then be aggregated into industry-wide losses and revenues.
- Initially, we tried to focus on forecasts of charge-offs and revenues which can be mapped into forecasts of capital-asset ratios.
- However, charge-offs have very non-Gaussian features and for now we switched to direct forecasts of capital-asset ratios.
- Stress tests condition on extreme counterfactual economic conditions, whereas in our forecast exercise we condition on actual economic conditions.

Application

- We follow Covas, Rump, and Zakrajsek (CRZ, 2013) in terms of capital-asset ratio definitions.
- Regulators pay attention to the so-called tier-1-common ratio:

$$
\mathrm{T1CR}_{i t}=\frac{E_{i t}-\text { Deductions }_{i t}}{\mathrm{RWA}_{i t}} .
$$

- Tier-1 common equity is the highest quality component of bank capital. The denominator RWA is the Basel I risk-weighted assets.
- CRZ decompose the evolution of equity as

$$
\begin{aligned}
E_{i t}= & E_{i, t-1}+(1-\tau)\left[\sum_{j} \text { PPNR }_{i t}^{j} \times \text { Assets }_{i t}^{j}\right. \\
& \left.-\sum_{l} \mathrm{NCO}_{i t}^{\prime} \times \text { Loans }_{i t}^{\prime}\right]- \text { Equity Payouts }_{i t}
\end{aligned}
$$

where PPNR are net revenues and NCO are net charge-offs.

- Bank balance sheet data are available through the Call Reports at quarterly frequency from the Federal Reserve Bank of Chicago.
- We multiply T1CR by 100 and take logs.
- We will relate T1CR to local economic conditions, e.g., house prices and unemployment. Thus, we will focus on small banks (assets less than 1 billion \$).
- We use the Summary of Deposits data from the Federal Deposit Insurance Corporation to determine the local market for each bank.
- Currently: local market = state.
- We collect
- state-level housing price index (all transactions, not seasonally adjusted) from the Federal Housing Finance Agency;
- state-level unemployment rate (monthly data averaged to quarterly freq, seasonally adjusted) from the Bureau of Labor Statistics.
- Basic panel data model

$$
\begin{align*}
\ln \left(100 \cdot{\left.\mathrm{~T} 1 \mathrm{CR}_{i t}\right)=}=\right. & \lambda_{i}+\beta_{1} \ln \left(100 \cdot \mathrm{T1CR}_{i, t-1}\right) \tag{30}\\
& +\beta_{2} \mathrm{UR}_{i t}+\beta_{3} \ln \mathrm{HPI}_{i t}+U_{i t}
\end{align*}
$$

- $U_{i t} \sim \operatorname{iid} N\left(0, \sigma^{2}\right)$.
- Parametric prior for λ_{i} :

$$
\begin{equation*}
\lambda_{i} \mid\left({\mathrm{T} 1 \mathrm{CR}_{i 0}}, \phi, \omega^{2}\right) \sim \operatorname{iid} N\left(\phi_{0}+\phi_{1} \ln \left(100 \cdot \mathrm{~T}_{1} \mathrm{CR}_{i 0}\right), \omega^{2}\right) \tag{31}
\end{equation*}
$$

- Sample period: $t=0$ corresponds to 2008:Q1, $t=T$ is 2009:Q4.
- Forecast period: $t=T+1$ is 2010:Q1.
- Sample size is $N=6,066$.

Note: capital asset ratios are averaged across time for each bank and across banks within the same state.

Parameter Estimates

Parameter	Max of Marg. LH	GMM(AB)	GMM(BB)
$\ln \left(100 \cdot \mathrm{T1CR}_{i, t-1}\right)$	0.0497	0.0456	0.0385
$\ln \mathrm{HPI} \mathrm{I}_{i t}$	0.0172	0.2784	0.4548
$\mathrm{UR}_{i, t}$	-0.0095	-0.0066	-0.0061
$\hat{\sigma}^{2}$	0.2223	0.2219	0.2221
$\hat{\phi}_{0}$	2.2644		
$\hat{\phi}_{1}$	0.0910		
$\hat{\omega}^{2}$	0.0650		

Shrinkage Effects: Estimates of $Z_{i}(\hat{\rho})$ (blue, dashed) and $\hat{\lambda}_{i}$ (red, solid)

- The empirical Bayes procedures induce a substantial amount of shrinkage: $\hat{\lambda}_{i}$ densities are much more concentrated than $Z_{i}(\hat{\rho})$ densities.

Implicit Bias Correction: Parametric Bayesian Model

- The empirical Bayes procedures induces a bias correction for the bottom and top groups.

		Bottom 2\%			Middle 2\%		Top 2\%		All		
$\hat{\beta}$	$\hat{\lambda}_{i}$	MSE	Med	MSE	Med	MSE	Med	MSE	Med		
No Shrinkage											
GMM (AB)	QMLE	0.48	0.28	0.22	0.02	0.60	-0.34	0.25	-0.01		
GMM (BB)	QMLE	0.47	0.25	0.23	0.02	0.58	-0.32	0.26	0.00		

- GMM (BB) and GMM(AB) estimators perform similarly.
- Relatively large selection bias for top and bottom groups.

$\hat{\beta}$	$\hat{\lambda}_{i}$	Bottom 2\%		Middle 2\%		Top 2\%		All	
		MSE	Med	MSE	Med	MSE	Med	MSE	Med
No Shrinkage									
GMM (AB)	QMLE	0.48	0.28	0.22	0.02	0.60	-0.34	0.25	-0.01
Tweedie's Formula									
GMM (AB)	Lindsey	0.32	-0.04	0.19	-0.02	0.53	-0.22	0.22	-0.03
GMM (AB)	Kernel	0.39	-0.02	0.20	0.01	0.58	-0.24	0.24	-0.03

- Tweedie's formula is able to correct the selection bias.

$\begin{array}{cc}\hat{\beta} & \hat{\lambda}_{i}\end{array}$		Bottom 2\%		Mid	2\%	Top 2\%		All	
		MSE	Med	MSE	Med	MSE	Med	MSE	Med
No Shrinkage									
GMM (AB)	QMLE	0.48	0.28	0.22	0.02	0.60	-0.34	0.25	-0.01
Tweedie's Formula									
GMM (AB)	Lindsey	0.32	-0.04	0.19	-0.02	0.53	-0.22	0.22	-0.03
GMM (AB)	Kernel	0.39	-0.02	0.20	0.01	0.58	-0.24	0.24	-0.03
Empirical Bayes Forecast with Parametric Model									
Max of Mars	g. LH	0.34	0.03	0.19	-0.04	0.49	-0.19	0.22	-0.05

- Similar performance of parametric approach and Tweedie's formula.
- To forecast dynamic panel data model, it's important to have a "good" estimates of the individual effects λ_{i}.
- "Selection" bias: repeated positive shocks $\left(U_{i t}\right)$ lead to overestimation of their corresponding λ_{i} 's, especially when T is small.
- Shrinkage estimators can offset the selection bias and improve the forecasts:
- Empirical Bayes estimator of parametric model; essentially a random effects model.
- Plug-in predictor based on Tweedie's formula
- Both methods lead to improvements in forecast accuracy in simulations and in an application to capital-asset ratio forecasts.
- Work in progress... Many extensions.

