Forecasting with Dynamic Panel Data Models

Laura Liu¹ Hyungsik Roger Moon² Frank Schorfheide³

¹University of Pennsylvania

²University of Southern California

³University of Pennsylvania, CEPR, and NBER

Progress Report: March 2014

• Goal: develop methods to generate forecasts from a panel data model of the form

$$Y_{it} = \beta' X_{it} + \lambda'_i W_t + U_{it}, \quad t = 1, \dots, T; i = 1, \dots, N.$$
 (1)

- Here X_{it} may contain lags of Y_{it}.
- We consider a large N and small T environment.
- Empirical context:
 - Monitoring of banking sector; stress tests: forecasts of capital-asset ratios, charge-offs, etc.
 - Why large N? Track individual banks or bank holding companies.
 - Why small *T*? Mergers; changes in regulatory environments; lack of variation in *Y*'s and *X*'s in normal times.

Dynamic Panel Model

• Consider a simple dynamic panel data model:

$$Y_{it} = \rho Y_{it-1} + \frac{\lambda_i}{\lambda_i} + U_{it}, \tag{2}$$

where $U_{it} \sim iid(0,1)$ and λ_i represents the unobserved individual heterogeneity.

• For a given ρ , the optimal forecast of Y_{iT+1} at time T is

 $\mathbb{E}(Y_{iT+1}|Y,\rho) = \rho Y_{iT} + \mathbb{E}(\lambda_i|Y,\rho).$

- In the dynamic panel literature, the focus has been to find a consistent estimate of ρ in the presence of the incidental parameters λ_i to avoid the incidental parameter problems.
- Our interest is to have a good forecast that requires to use "good" estimates of both ρ and λ_i 's with small T panel.

- Selection bias poses a challenge for short time span panel data:
- the usual panel data estimate of the fixed effects (QMLE) tends to over-predict (under-predict) the future capital-asset ratios for the banks with high (low) current capital-asset ratio.

Monte Carlo Illustration

Model:
$$Y_{it} = \rho Y_{i,t-1} + \lambda_i + U_{it}, \quad t = 1, ..., T; i = 1, ..., N.$$

Design:
$$T = 3$$
, $N = 1,000$, $\rho = 0.8$, $\lambda_i \sim U[0,1]$,
 $Y_{i0} \sim N(\lambda_i/(1-\rho), 1/(1-\rho^2))$.

		Bottom 20		Middle 20		Top 20		All		
$\hat{ ho}$	$\hat{\lambda}_i$	MSE	Med	MSE	Med	MSE	Med	MSE	Med	
No Shrinkage										
GMM (AB)	QMLE		0.97		0.02		-0.99		0.00	
GMM (BB)	QMLE		0.97		0.05		-0.99		0.00	

• Forecast errors:

$$\left(Y_{i,T+1}^{(s)} - \hat{Y}_{i,T+1}^{c,(s)}(\hat{\theta}_{0:T,<-i>})\right)^2.$$
(3)

• Relatively large selection bias for top and bottom groups.

Efron (2011)'s Motivation

- Our paper was inspired by work by Efron (2011). Consider the following question:
 - Want to predict the US Masters golf tournament final scores (the average score after four rounds) after the first round.
 - The first round score, Y_i , consists of true skill, λ_i , and (unpredicable) luck, U_i .
 - If the scores Y_i are independent across i, the natural estimator of λ_i appears to be Y_i, the first round score.
 - Question: "Can we estimate λ_i more precisely, by using the other players' scores of the first round, (Y₁,..., Y_N)?"
- This question arises more generally in dynamic panel data models.

Introduction

- We employ an empirical Bayes approach to combine cross sectional and time series information together and thus obtain "better" forecasts for banks with extreme capital asset ratios.
- We estimate $\mathbb{E}(\lambda_i | Y, \rho)$ as the posterior mean of λ_i .

Related Literature

- Tweedie's formula and its use: e.g., Robbins (1951), Brown (2008), Brown and Greenshtein (2009), Efron (2011), Gu and Koenker (2013).
- Consistent estimation of ρ in dynamic panel data models with fixed effects when ${\cal T}$ is small:
 - IV/GMM: e.g. Anderson and Hsiao (1982), Arellano and Bond (1991), Arellano and Bond (1995), Blundell and Bond (1998), and Alvarez and Arellano (2003).
 - Bayesian: e.g. Lancaster (2002) (informational) orthogonal parameterization.
- Bayesian inference in panel data models
- Correlated random effect models

PS: Maurice Tweedie = British medical physicist and statistician, born in 1919 and died in 1996.

- Introduction
- 2 Decision-theoretic Considerations
- Two Empirical Bayes Predictors:
 - Parametric Family of Distributions for λ_i
 - Nonparametric $p(\lambda_i)$ and Tweedie's Formula
- Simulations
- Empirical Application
- Conclusion.

• Simple model
$$Y_{it} = \lambda_i + \rho Y_{i,t-1} + U_{it}$$
.

•
$$\hat{Y}^{T+1} = [\hat{Y}_{1,T+1}, \dots, \hat{Y}_{N,T+1}]'$$
 is vector of forecasts.

• Compound *L*₂ loss function:

$$L_{N}(\hat{Y}^{T+1}, Y^{T+1}) = \frac{1}{N} \sum_{i=1}^{N} \left(\hat{Y}^{T+1} - Y^{T+1} \right)^{2}.$$
 (4)

• Expected compound loss:

$$\mathbb{E}_{(\rho,\lambda)}L_N\left(\hat{Y}^{T+1},Y^{T+1}\right)$$
(5)

$$= \mathbb{E}_{(\rho,\lambda)} \left[\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{(\rho,\lambda)} \left[\left(\hat{Y}_{i,\tau+1} - Y_{i,\tau+1} \right)^2 | Y^{0:T} \right] \right]$$
$$= \mathbb{E}_{(\rho,\lambda)} \left[\frac{1}{N} \sum_{i=1}^{N} \left(\hat{Y}_{i,\tau+1} - \lambda_i - \rho Y_{i\tau} \right)^2 \right] + 1$$

- Consider the class of additively separable forecasts $\hat{Y}_{i,T+1} = \hat{\lambda}_i + \hat{\rho} Y_{iT}$ where $\hat{\lambda}_i$ and $\hat{\rho}$ are estimators of λ_i and ρ .
- Decision space:

$$\mathcal{D} = \left\{ \left(\hat{\lambda}_1 + \hat{\rho} Y_{1T}, ..., \hat{\lambda}_N + \hat{\rho} Y_{NT} \right) \mid (\hat{\lambda}, \hat{\rho}) \in \mathcal{F}_{0:T} \right\}.$$
 (6)

 Find asymptotically optimal forecast in the class D that minimizes the expected compound loss (as N → ∞):

$$\mathbb{E}_{(\rho,\lambda)} \left[L_{N}(\hat{Y}_{opt}^{T+1}, Y^{T+1}) \right]$$

$$\leq \inf_{\hat{Y}_{i,T+1} \in \mathcal{D}} \mathbb{E}_{(\rho,\lambda)} \left[L_{N}(\hat{Y}^{T+1}, Y^{T+1}) \right] + o(1).$$
(7)

- Suppose ρ is known...
- Then forecast simplifies to $\hat{Y}_{i,T+1} = \hat{\lambda}_i + \rho Y_{iT}$.
- Finding an optimal forecast is equivalent to constructing an optimal estimator of λ :

$$\inf_{\hat{\lambda}} \mathbb{E}_{\lambda} \left[\frac{1}{N} \sum_{i=1}^{N} (\hat{\lambda}_{i} - \lambda_{i})^{2} \right].$$
(8)

- This estimator is constructed from $Z_{it} = Z_{it}(\rho) = Y_{it} \rho Y_{i,t-1}$.
- For T = 1 see Robbins (1951, 1956).

• Suppose
$$T = 1$$
 and $\hat{\lambda}_i = g(Z_{i1})$.

 Expected compound loss becomes integrated risk with empirical distribution of λ as prior:

$$\begin{split} \mathbb{E}_{\lambda} \left[\frac{1}{N} \sum_{i=1}^{N} (\hat{\lambda}_{i} - \lambda_{i})^{2} \right] &= \frac{1}{N} \sum_{i=1}^{N} \int \left(g(z) - \lambda_{i} \right)^{2} \phi(z - \lambda_{i}) dz \\ &= \int \left[\int \left(g(z) - \lambda \right)^{2} \phi(z - \lambda) dz \right] dG_{N}(\lambda_{i}) \\ &= \mathbb{E}_{G_{N}} \left[\left(g(Z) - \lambda_{i} \right)^{2} \right]. \end{split}$$

• Optimal estimator:

$$g_{G_N}^*(z) = \frac{\int \lambda_i \phi(z - \lambda_i) dG_N(\lambda_i)}{\int \phi(z - \lambda_i) dG_N(\lambda_i)}.$$
(9)

• To implement this estimator we need to generate an estimate of $G_N(\lambda_i)$ based on cross-sectional information.

• Idea: Approximate $g^*_{G_N}(z)$ by $\hat{g}^*(z)$ such that

$$\mathbb{E}_{G_N}\left[(\hat{g}^*(z) - \lambda_i)^2\right] \le \mathbb{E}_{G_N}\left[(g^*_{G_N}(z) - \lambda_i)^2\right] + o(1). \tag{10}$$

- There are some results in the statistics literature, e.g., Zhang (2003), Brown and Greenshtein (2009), and Jiang and Zhang (2009).
- TO DO: extend THEORETICAL results to panel data application.
- FOR NOW: we consider two different implementations of the basic idea:
 - Treat *G_N* parametrically (indexed by finite-dimensional hyperparameter):

$$\lambda_i \sim Nig(0,\omega^2ig) \quad ext{or} \quad \lambda_i \sim Nig(\phi_0 + \phi_1 Y_{i0},\omega^2ig).$$

• Treat G_N nonparametrically: use some general density $p(\lambda_i | Y_{i0})$. Use cross-sectional information to estimate relevant features of G_N . • To fix ideas, we will consider the simple model:

$$Y_{it} = \rho Y_{i,t-1} + \lambda_i + U_{it}, \quad U_{it} | (Y_{i,t-1}, \lambda_i) \sim N(0,1),$$
(11)

- For now we will assume that λ_i is independent of Y_{i0} .
- Step 1: parametric Bayesian analysis with family of priors $\lambda_i | Y_{i0} \sim N(0, \omega^2)$.
- Step 2: treat $p(\lambda)$ nonparametrically realizing that the Bayes estimator of λ_i depends on $p(\lambda_i)$ only through the marginal distribution of $Z_i(\rho) = \frac{1}{T} \sum_{t=1}^{T} (Y_{it} - \rho Y_{i,t-1})$. Tweedie's Formula!.

Step 1: Parametric Analysis

- Y^t is $N \times 1$; Y is $N \times T$.
- X is $N \times T$, λ is $N \times 1$.
- Likelihood function:

$$p(\rho, \lambda | Y^{0:T})$$

$$\propto \prod_{i=1}^{N} p(Y_i^{1:T} | \rho, \lambda_i, Y_{i0}) p(\lambda_i)$$

$$\propto \exp\left\{-\frac{1}{2} \left(tr[(Y - X\rho - \lambda \iota_T')(Y - X\rho - \lambda \iota_T')'] + \omega^{-2} \lambda' \lambda\right)\right\}$$
(12)

Parametric Analysis: Posterior Distribution

• Posterior of $\lambda | \rho$:

$$\lambda_i | (\rho, Y^{0:T}) \sim N(\mu_{\lambda_i}(\rho), \sigma_{\lambda}^2), \ i = 1, \dots, N.$$
(13)

where

$$\mu_{\lambda}(\rho) = \sigma_{\lambda}^{2}(Y - X\rho)\iota_{T}$$

$$\sigma_{\lambda}^{2} = (T + \omega^{-2})^{-1}.$$

Parametric Analysis: Forecasting

• The one-step-ahead predictive density for $Y_{i,T+1}$ is given by

$$p(Y_{i,\tau+1}|Y^{0:\tau},\rho) = \int p(Y_{i,\tau+1}|Y_{i\tau},\rho,\lambda_i)p(\lambda_i|\rho,Y^{0:\tau})d\lambda_i.$$
(14)

• The mean of this predictive density can be written as

$$\mathbb{E}[Y_{i,T+1}|Y^{0:T},\rho] = \rho Y_{iT} + \mathbb{E}[\lambda_i|Y^{0:T},\rho].$$
(15)

• Define the MLE of λ_i conditional on ρ as

$$Z_{i}(\rho) = \frac{1}{T} \sum_{i=1}^{T} (Y_{iT} - \rho Y_{i,T-1}).$$
(16)

• Then the posterior mean of λ_i can be decomposed as follows:

$$\mathbb{E}[\lambda_i|Y^{0:T},\rho] = \underbrace{Z_i(\rho)}_{\mathsf{MLE}} - \underbrace{\frac{1}{(1+\omega^2 T)}Z_i(\rho)}_{\mathsf{Bayes Correction}}.$$
(17)

Parametric Analysis: Estimate Hyperparameters

• We will estimate the common parameters, e.g. ρ , jointly with the hyperparameter ω that serves as an index for $p(\lambda)$ using the cross-sectional information:

$$(\hat{\omega}, \hat{\rho}) = \operatorname{argmax} \ln p(Y^{1:T} | Y^0, \rho, \omega),$$
(18)

where

$$\ln p(Y^{1:T}|Y^0,\rho,\omega) = \ln \int p(Y^{1:T}|Y^0,\rho,\lambda,\omega) p(\rho,\lambda|\omega,Y^0) d(\rho,\lambda).$$

 The posterior mean predictor with data-driven hyperparameter choice becomes (now making the dependence on ω explicit):

$$\mathbb{E}[\lambda_i|Y^{0:T},\hat{\rho},\hat{\omega}] = Z_i(\hat{\rho}) - \frac{1}{(1+\hat{\omega}^2 T)} Z_i(\hat{\rho}).$$
(19)

- Note: we could replace $\hat{\rho}$ by the posterior mean $\mathbb{E}[\rho|Y^{0:T}, \hat{\omega}]$.
- Generalization: condition on Y_{i0} : $\lambda_i \sim N(\phi_0 + \phi_1 Y_{i0}, \omega^2)$.

Step 2: Tweedie's Formula

• Replace $p(\lambda|\omega)$ by more general family of distributions $p(\lambda)$.

• Recall
$$Z_i(\rho) = \frac{1}{T}(Y_i - X_i\rho)\iota_T$$
.

- Our simple model implies that $Z_i(\rho)|\rho \sim N(\lambda_i, 1/T)$.
- Under our distributional assumptions we obtain

$$q(Z_i(\rho)|\lambda_i) = (2\pi/T)^{-1/2} \exp\left\{-\frac{T}{2}(Z_i(\rho) - \lambda_i)^2\right\}.$$
 (20)

• Write the Gaussian density using the following exponential-family representation:

$$q(Z_i(\rho)|\lambda_i) = \exp\left\{\lambda_i T Z_i(\rho) - \psi(\lambda_i)\right\} q_0(Z_i(\rho)).$$
(21)

where

$$\psi(\lambda_i) = \frac{T}{2}\lambda_i^2$$
 and $q_0(Z_i(\rho)) = (2\pi/T)^{-1/2}\exp\left\{-\frac{T}{2}Z_i^2(\rho)\right\}$

Tweedie's Formula

• Posterior of λ conditional on ρ :

$$p(\lambda|Y^{0:T},\rho) = \prod_{i=1}^{N} \frac{\exp\left\{\lambda_{i} T Z_{i}(\rho) - \psi(\lambda_{i})\right\} p(\lambda_{i})}{\int \exp\left\{\lambda_{i} T Z_{i}(\rho) - \psi(\lambda_{i})\right\} p(\lambda_{i}) d\lambda_{i}}$$
(22)

• Now focus on the posterior of λ_i and write

$$p(\lambda_i|Y^{0:T},\rho) = \exp\left\{\lambda_i T Z_i(\rho) - \chi(Z_i(\rho))\right\} p(\lambda_i) \exp\{-\psi(\lambda_i)\}.$$

where

$$\chi(Z_i) = \ln \int \exp \left\{ \lambda_i T Z_i(\rho) - \psi(\lambda_i) \right\} p(\lambda_i) d\lambda_i.$$

• Since the posterior density integrates to one, we obtain

$$0 = \frac{\partial}{\partial Z_i} \int \exp \{\lambda_i T Z_i - \chi(Z_i)\} p(\lambda_i) \exp\{-\psi(\lambda_i)\} d\lambda_i$$
$$= T \int \lambda_i p(\lambda_i | Y^{0:T}, \rho) d\lambda_i - \chi'(Z_i).$$

Tweedie's Formula

• Tweedie's formula:

$$\mathbb{E}[\lambda_i|Y^{0:T},\rho] = \frac{1}{T}\chi'(Z_i(\rho)).$$
(23)

• Using the definition of $q_0(Z_i)$ we can write

$$\chi(Z_i) = \ln \int q(Z_i|\lambda_i)p(\lambda_i)d\lambda_i + \frac{1}{2}\ln(2\pi/T) + \frac{T}{2}Z_i^2.$$

This leads to

$$\mathbb{E}[\lambda_i|Y^{0:T},\rho] = \underbrace{Z_i(\rho)}_{\mathsf{MLE}} + \underbrace{\frac{1}{T} \frac{\partial \ln q(Z_i)}{\partial Z_i}}_{\mathsf{Bayes \ Correction}} \Big|_{Z_i = Z_i(\rho)}.$$
(24)

- NOTE: we only need to estimate the marginal density of Z_i. We do not need to estimate p(λ_i)!
- Generalization: condition on Y_{i0} .

Tweedie's Formula: Implementation

- First we find a consistent estimate of ρ , say $\hat{\rho}$.
- Second, compute QMLE for λ :

$$Z_{i}(\hat{\rho}) = \frac{1}{T} \sum_{t=1}^{T} (Y_{it} - \hat{\rho} Y_{it-1}).$$
(25)

• Third, nonparametric correction based on Tweedie's formula:

$$\hat{\lambda}_{i} = Z_{i}\left(\hat{\rho}\right) + \frac{1}{T} \frac{1}{\hat{q}(Z_{i}(\hat{\rho}))} \frac{\partial \hat{q}\left(z\right)}{\partial z}|_{z=Z_{i}(\hat{\rho})},$$
(26)

where $\hat{p}(z)$ is a nonparametric density estimate of Z_i .

Tweedie's Formula: Implementation – $\hat{\rho}$

Arellano & Bover (95) ("GMM (AB)"):

- Moment conditions based on Orthogonal Forward Demeaning: $\mathbb{E} \left(W'_{it} U^*_{it} \right) = 0, \text{ where}$ $W_{it} = \left(Y_{i0}, \cdots, Y_{i,t-1} \right), U^*_{it} = \sqrt{\frac{T-t}{T-t+1}} \left[U_{it} - \frac{U_{i,t+1} + \cdots + U_{iT}}{T-t} \right],$ $t = 1, \cdots, T-1.$
- Under homoskedasticity, one-step estimator as it's already an asymptotically efficient GMM estimator.
- Better finite sample properties than Arellano and Bond (91) estimator based on the first difference when ρ is close to 1.

Blundell & Bond (98) ("GMM (BB)"):

- Moment conditions: $\mathbb{E}\left(W'_{it}\Delta U_{it}\right) = 0$ $\mathbb{E}\left(\Delta Y_{i,t-1}\left(\lambda_{i} + U_{it}\right)\right) = 0$ where $W_{it} = (Y_{i0}, \cdots, Y_{i,t-2})$, $t = 2, \cdots, T$.
- Two-step estimator.
- Need $\mathbb{E}\left(\Delta Y_{i,t-1}\lambda_i\right) = 0$ or $\mathbb{E}\left(\lambda_i\left(Y_{i0} - \frac{\lambda_i}{1-\rho}\right)\right) = 0$. Stationary initial condition.
- Better dealing with weak IV problem when ρ is close to 1 when the initial condition is stationary.

Tweedie's Formula: Implementation – $\hat{q}(Z)$

• Lindsey's method:

$$\hat{q}_{Lindsey}(z) = \exp\left\{\sum_{j=0}^{J}\gamma_j z^j
ight\}$$

Estimate γ_i 's by Poisson regression.

• Kernel smoothing:

$$\hat{q}_{kernel}(z) = rac{1}{Nh}\sum_{i=1}^{N} K\left(rac{Z_i - z}{h}
ight)$$

• Note: in the application we use densities that are conditional on Y_{i0} .

A Small Simulation Experiment

- Model: $Y_{it} = \lambda_i + \rho Y_{i,t-1} + U_{it}$ where $U_{it} \sim iidN(0,1)$.
- $\lambda_i | Y_{i0} \sim iidU[0,1].$
- Y_{i0} distribution:

Design 1 :
$$Y_{i0}|(\lambda_i, \rho) \sim N\left(\frac{\lambda_i}{1-\rho}, \frac{1}{1-\rho^2}\right).$$
 (27)

Design 2 :
$$Y_{i0}|(\lambda_i, \rho) \sim N(0, 0.1^2)$$
. (28)

- Autoregressive coefficient: $\rho = 0.8$.
- *N* = 1,000, *T* = 3.

Simulation: Performance Statistics

• Forecast errors:

$$\left(Y_{i,T+1}^{(s)} - \hat{Y}_{i,T+1}^{c,(s)}(\hat{\theta}_{0:T,<-i>})\right)^2.$$
⁽²⁹⁾

- We consider four different groups of observations:
 - Bottom: 20 smallest Y_{iT} 's (out of 1,000)
 - Middle: 20 Y_{iT}'s around the median
 - Top: 20 largest Y_{iT}'s
 - All: all Y_{iT}'s
- We compute mean-squared forecast errors and median forecast errors.

Model: $Y_{it} = \rho Y_{i,t-1} + \lambda_i + U_{it}$,	$t = 1, \ldots, T; i = 1, \ldots, N.$
Design: $T = 3$, $N = 1,000$,	$ ho=$ 0.8, $\lambda_i\sim U[0,1]$,

$$Y_{i0} \sim Nig(\lambda_i/(1-
ho),1/(1-
ho^2)ig).$$

		Bottom 20		Midd	Middle 20		Top 20		All	
$\hat{ ho}$	$\hat{\lambda}_i$	MSE	Med	MSE	Med	MSE	Med	MSE	Med	
No Shrinkage										
GMM (AB)	QMLE	2.12	0.97	1.21	0.02	2.22	-0.99	1.34	0.00	
GMM (BB)	QMLE	2.14	0.97	1.19	0.05	2.20	-0.99	1.33	0.00	

- AB and BB estimators perform very similarly.
- Relatively large selection bias for top and bottom groups.

Model:
$$Y_{it} = \rho Y_{i,t-1} + \lambda_i + U_{it}, \quad t = 1, ..., T; i = 1, ..., N.$$

Design:
$$T = 3$$
, $N = 1,000$, $\rho = 0.8$, $\lambda_i \sim U[0,1]$,
 $Y_{i0} \sim N(\lambda_i/(1-\rho), 1/(1-\rho^2))$.

		Botto	om 20	Midd	le 20	Top 20		All	
$\hat{ ho}$	$\hat{\lambda}_i$	MSE	Med	MSE	Med	MSE	Med	MSE	Med
			No S	Shrinkag	ge				
GMM (AB)	QMLE	2.12	0.97	1.21	0.02	2.22	-0.99	1.34	0.00
			Tweed	ie's Fori	nula				
GMM (AB)	Lindsey	1.28	-0.06	1.05	0.05	1.35	-0.08	1.10	0.00
GMM (AB)	Kernel	1.33	0.00	1.04	0.02	1.45	-0.05	1.10	0.00

• Tweedie's formula is able to correct selection bias.

Model:
$$Y_{it} = \rho Y_{i,t-1} + \lambda_i + U_{it}, \quad t = 1, ..., T; i = 1, ..., N.$$

Design:
$$T = 3$$
, $N = 1,000$, $\rho = 0.8$, $\lambda_i \sim U[0,1]$,
 $Y_{i0} \sim N(\lambda_i/(1-\rho), 1/(1-\rho^2))$.

		Botto	om 20	Midd	le 20	Тор	o 20	A		
$\hat{ ho}$	$\hat{\lambda}_i$	MSE	Med	MSE	Med	MSE	Med	MSE	Med	
		No Shrinkage								
GMM (AB)	QMLE	2.12	0.97	1.21	0.02	2.22	-0.99	1.34	0.00	
Tweedie's Formula										
GMM (AB)	Lindsey	1.28	-0.06	1.05	0.05	1.35	-0.08	1.10	0.00	
GMM (AB)	Kernel	1.33	0.00	1.04	0.02	1.45	-0.05	1.10	0.00	
	Empirical Bayes Forecast with Parametric Model									
Max of Ma	1.05	0.07	1.01	0.04	1.12	-0.11	1.05	0.00		

• The parametric Bayes model works even better.

Model:
$$Y_{it} = \rho Y_{i,t-1} + \lambda_i + U_{it}, \quad t = 1, ..., T; i = 1, ..., N.$$

Design: T = 3, N = 1,000, $\rho = 0.8$, $\lambda_i \sim U[0,1]$, $Y_{i0} \sim N(0,0.1^2)$.

		Botto	m 20	Mide	Middle 20		Top 20		All	
$\hat{ ho}$	$\hat{\lambda}_i$	MSE	Med	MSE	Med	MSE	Med	MSE	Med	
No Shrinkage										
GMM (AB)	QMLE	4.75	0.70	1.97	0.24	13.57	-0.10	3.13	0.25	
GMM (BB)	QMLE	3.97	1.68	1.11	-0.14	5.28	-2.04	1.68	-0.18	

- Under this design the GMM(BB) estimator is preferable.
- Relatively large selection bias for top and bottom groups.

Model:
$$Y_{it} = \rho Y_{i,t-1} + \lambda_i + U_{it}, \quad t = 1, ..., T; i = 1, ..., N.$$

Design: T = 3, N = 1,000, $\rho = 0.8$, $\lambda_i \sim U[0,1]$, $Y_{i0} \sim N(0,0.1^2)$.

		Botto	m 20	Mide	lle 20	Тор	o 20	All	
$\hat{ ho}$	$\hat{\lambda}_i$	MSE	Med	MSE	Med	MSE	Med	MSE	Med
			No Shrinkage						
GMM (BB)	QMLE	3.97	1.68	1.11	-0.14	5.28	-2.04	1.68	-0.18
			Twee	die's Fo	rmula				
GMM (BB)	Lindsey	1.55	0.25	1.12	-0.14	1.63	-0.53	1.14	-0.18
GMM (BB)	Kernel	1.62	0.11	1.14	-0.13	1.91	-0.41	1.20	-0.18

• Tweedie's formula is able to correct selection bias.

Model:
$$Y_{it} = \rho Y_{i,t-1} + \lambda_i + U_{it}, \quad t = 1, ..., T; i = 1, ..., N.$$

Design: T = 3, N = 1,000, $\rho = 0.8$, $\lambda_i \sim U[0,1]$, $Y_{i0} \sim N(0,0.1^2)$.

		Botto	om 20	Mido	lle 20	Тор	o 20	A	dl 🛛
$\hat{ ho}$	$\hat{\lambda}_i$	MSE	Med	MSE	Med	MSE	Med	MSE	Med
	No Shrinkage								
GMM (BB)	QMLE	3.97	1.68	1.11	-0.14	5.28	-2.04	1.68	-0.18
Tweedie's Formula									
GMM (BB)	Lindsey	1.55	0.25	1.12	-0.14	1.63	-0.53	1.14	-0.18
GMM (BB)	Kernel	1.62	0.11	1.14	-0.13	1.91	-0.41	1.20	-0.18
Empirical Bayes Forecast with Parametric Model									
Max of Ma	irg. LH	1.09	0.02	1.08	0.04	1.13	-0.03	1.08	0.00

• The parametric Bayes model works even better.

Application

- In the aftermath of the 2007-09 global financial crisis bank stress tests have become an important tool used by central banks and other regulators to conduct macroprudential regulation and supervision.
- Stress tests come in many flavors, one of them is to predict the evolution of bank balance sheets conditional on economic conditions.
- Bank-level forecasts can then be aggregated into industry-wide losses and revenues.
- Initially, we tried to focus on forecasts of charge-offs and revenues which can be mapped into forecasts of capital-asset ratios.
- However, charge-offs have very non-Gaussian features and for now we switched to direct forecasts of capital-asset ratios.
- Stress tests condition on extreme counterfactual economic conditions, whereas in our forecast exercise we condition on actual economic conditions.

Application

- We follow Covas, Rump, and Zakrajsek (CRZ, 2013) in terms of capital-asset ratio definitions.
- Regulators pay attention to the so-called tier-1-common ratio:

$$\mathsf{T1CR}_{it} = \frac{E_{it} - \mathsf{Deductions}_{it}}{\mathsf{RWA}_{it}}.$$

- Tier-1 common equity is the highest quality component of bank capital. The denominator RWA is the Basel I risk-weighted assets.
- CRZ decompose the evolution of equity as

$$E_{it} = E_{i,t-1} + (1-\tau) \left[\sum_{j} PPNR_{it}^{j} \times Assets_{it}^{j} - \sum_{l} NCO_{it}^{l} \times Loans_{it}^{l} \right] - Equity Payouts_{it}$$

where PPNR are net revenues and NCO are net charge-offs.

Data Sources

- Bank balance sheet data are available through the Call Reports at quarterly frequency from the Federal Reserve Bank of Chicago.
- We multiply T1CR by 100 and take logs.
- We will relate T1CR to local economic conditions, e.g., house prices and unemployment. Thus, we will focus on small banks (assets less than 1 billion \$).
- We use the Summary of Deposits data from the Federal Deposit Insurance Corporation to determine the local market for each bank.
- Currently: local market = state.
- We collect
 - state-level housing price index (all transactions, not seasonally adjusted) from the Federal Housing Finance Agency;
 - state-level unemployment rate (monthly data averaged to quarterly freq, seasonally adjusted) from the Bureau of Labor Statistics.

Model Specification

- Basic panel data model $ln(100 \cdot T1CR_{it}) = \lambda_i + \beta_1 ln(100 \cdot T1CR_{i,t-1}) + \beta_2 UR_{it} + \beta_3 ln HPI_{it} + U_{it}$ (30)
- $U_{it} \sim iidN(0, \sigma^2)$.
- Parametric prior for λ_i :

 $\lambda_i | (\mathsf{T1CR}_{i0}, \phi, \omega^2) \sim iidN(\phi_0 + \phi_1 \ln(100 \cdot \mathsf{T1CR}_{i0}), \omega^2)$ (31)

- Sample period: t = 0 corresponds to 2008:Q1, t = T is 2009:Q4.
- Forecast period: t = T + 1 is 2010:Q1.
- Sample size is N = 6,066.

T1CR Data versus Unemployment and House Prices

Note: capital asset ratios are averaged across time for each bank and across banks within the same state.

Parameter	Max of	GMM(AB)	GMM(BB)
	Marg. LH		
$\ln(100 \cdot T1CR_{i,t-1})$	0.0497	0.0456	0.0385
In HPI _{it}	0.0172	0.2784	0.4548
${\displaystyle \bigcup_{\hat{\sigma}^2}} {\displaystyle \bigcup_{i,t}}$	-0.0095	-0.0066	-0.0061
$\hat{\sigma}^2$	0.2223	0.2219	0.2221
$\hat{\phi}_0$	2.2644		
$\hat{\phi}_1 \\ \hat{\omega}^2$	0.0910		
$\hat{\omega}^2$	0.0650		

Shrinkage Effects: Estimates of $Z_i(\hat{\rho})$ (blue, dashed) and $\hat{\lambda}_i$ (red, solid)

 The empirical Bayes procedures induce a substantial amount of shrinkage: λ_i densities are much more concentrated than Z_i(ρ̂) densities.

Implicit Bias Correction: Parametric Bayesian Model

 The empirical Bayes procedures induces a bias correction for the bottom and top groups.

		Botto	Bottom 2%		Middle 2%		Top 2%		All	
\hat{eta}	$\hat{\lambda}_i$	MSE	Med	MSE	Med	MSE	Med	MSE	Med	
No Shrinkage										
GMM (AB)	QMLE	0.48	0.28	0.22	0.02	0.60	-0.34	0.25	-0.01	
GMM (BB)	QMLE	0.47	0.25	0.23	0.02	0.58	-0.32	0.26	0.00	

- GMM(BB) and GMM(AB) estimators perform similarly.
- Relatively large selection bias for top and bottom groups.

		Botto	m 2%	Midd	le 2%	Тор	2%	All	
\hat{eta}	$\hat{\lambda}_i$	MSE	Med	MSE	Med	MSE	Med	MSE	Med
		No Shrinkage							
GMM (AB)	QMLE	0.48	0.28	0.22	0.02	0.60	-0.34	0.25	-0.01
			Tweed	lie's For	mula				
GMM (AB)	Lindsey	0.32	-0.04	0.19	-0.02	0.53	-0.22	0.22	-0.03
GMM (AB)	Kernel	0.39	-0.02	0.20	0.01	0.58	-0.24	0.24	-0.03

• Tweedie's formula is able to correct the selection bias.

		Botto	m 2%	Midd	le 2%	Тор	2%	A	
\hat{eta}	$\hat{\lambda}_i$	MSE	Med	MSE	Med	MSE	Med	MSE	Med
		No Shrinkage							
GMM (AB)	QMLE	0.48	0.28	0.22	0.02	0.60	-0.34	0.25	-0.01
Tweedie's Formula									
GMM (AB)	Lindsey	0.32	-0.04	0.19	-0.02	0.53	-0.22	0.22	-0.03
GMM (AB)	Kernel	0.39	-0.02	0.20	0.01	0.58	-0.24	0.24	-0.03
Empirical Bayes Forecast with Parametric Model									
Max of Ma	irg. LH	0.34	0.03	0.19	-0.04	0.49	-0.19	0.22	-0.05

• Similar performance of parametric approach and Tweedie's formula.

Conclusions

- To forecast dynamic panel data model, it's important to have a "good" estimates of the individual effects λ_i.
- "Selection" bias: repeated positive shocks (U_{it}) lead to overestimation of their corresponding λ_i's, especially when T is small.
- Shrinkage estimators can offset the selection bias and improve the forecasts:
 - Empirical Bayes estimator of parametric model; essentially a random effects model.
 - Plug-in predictor based on Tweedie's formula
- Both methods lead to improvements in forecast accuracy in simulations and in an application to capital-asset ratio forecasts.
- Work in progress... Many extensions.