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Introduction

@ Goal: develop methods to generate forecasts from a panel data
model of the form

Yie=B'Xe + NiW, + U, t=1,....T;i=1,...,N. (1)
@ Here X may contain lags of Yj.
@ We consider a large N and small T environment.
@ Empirical context:

e Monitoring of banking sector; stress tests: forecasts of capital-asset
ratios, charge-offs, etc.

o Why large N? Track individual banks or bank holding companies.

o Why small T? Mergers; changes in regulatory environments; lack of
variation in Y's and X's in normal times.
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Dynamic Panel Model

@ Consider a simple dynamic panel data model:
Yie = pYie-1 + Ai + U, (2)

where U;; ~ iid (0,1) and \; represents the unobserved individual
heterogeneity.

e For a given p, the optimal forecast of Y741 at time T is
E(Yir41Y,p) = pYir + E(N|Y, ).

@ In the dynamic panel literature, the focus has been to find a
consistent estimate of p in the presence of the incidental parameters
A; to avoid the incidental parameter problems.

@ Our interest is to have a good forecast that requires to use “good”

estimates of both p and \;'s with small T panel.
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Introduction

@ Selection bias poses a challenge for short time span panel data:
o the usual panel data estimate of the fixed effects (QMLE) tends to

over-predict (under-predict) the future capital-asset ratios for the
banks with high (low) current capital-asset ratio.
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Monte Carlo lllustration

Model: Yie = pYie_1+ N+ Up, t=1,.... T;i=1,... N.

Design: T =3, N=1,000, p =0.8, \; ~ U[0,1],
Yio ~ N(Ai/(1=p),1/(1—p)).

Bottom 20 Middle 20 Top 20 All
D by MSE Med MSE Med MSE Med MSE Med
No Shrinkage
GMM (AB) QMLE 0.97 0.02 -0.99 0.00
GMM (BB) QMLE 0.97 0.05 -0.99 0.00

@ Forecast errors:
NV ONERIONY) 2
iIT+1 i,T+1( 0:T7<fi>) .

o Relatively large selection bias for top and bottom groups.
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Efron (2011)'s Motivation

@ Our paper was inspired by work by Efron (2011). Consider the
following question:

e Want to predict the US Masters golf tournament final scores (the
average score after four rounds) after the first round.

o The first round score, Y;, consists of true skill, A;, and (unpredicable)
luck, U;.

o If the scores Y; are independent across i, the natural estimator of \;
appears to be Yj, the first round score.

o Question: “Can we estimate \; more precisely, by using the other
players' scores of the first round, (Yi,..., Ya)?"

@ This question arises more generally in dynamic panel data models.
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Introduction

@ We employ an empirical Bayes approach to combine cross sectional
and time series information together and thus obtain "better”
forecasts for banks with extreme capital asset ratios.

o We estimate E(\;|Y, p) as the posterior mean of A;.

L. Liu, H.R. Moon, and F. Schorfheide Panel Forecasting



Related Literature

@ Tweedie's formula and its use: e.g., Robbins (1951), Brown (2008),
Brown and Greenshtein (2009), Efron (2011), Gu and Koenker
(2013).

o Consistent estimation of p in dynamic panel data models with fixed
effects when T is small:

o IV/GMM: e.g. Anderson and Hsiao (1982), Arellano and Bond
(1991), Arellano and Bond (1995), Blundell and Bond (1998), and
Alvarez and Arellano (2003).

o Bayesian: e.g. Lancaster (2002) - (informational) orthogonal
parameterization.

@ Bayesian inference in panel data models

@ Correlated random effect models

PS: Maurice Tweedie = British medical physicist and statistician, born in
1919 and died in 1996.
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Decision-Theoretic Considerations

o Simple model Yt = Xj +pYi—1 + Us.
o YT+ = [\A/LTH, R \A/N)TH]’ is vector of forecasts.

@ Compound L, loss function:

N
LN(\’}T+17 YT+1) _ %Z (\’}T+1 _ YT+1)2. (4)
i=1

@ Expected compound loss:

E,nLn (\A/Hly YTH) (5)
1< . 2
Epn m ZE(,},A) [(YI,T+1 - Yi,T+1) IYO'T}
i=1
N

E(p’)\) +1

%Z (Vi,T+l —Ai— pYiT)2
i—1
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Decision-Theoretic Considerations

o Consider the class of additively separable forecasts
Yi 741 = Ai + pYiT where A; and p are estimators of A; and p.

@ Decision space:
D= { Gt oot oY) [ BA) € For ) (0

@ Find asymptotically optimal forecast in the class D that minimizes
the expected compound loss (as N — o0):

E(on) [Ln(Yope 1, YT (7
< inf B [Lv(YTL Y] +o(1).
Yi,r11€D
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Decision-Theoretic Considerations

@ Suppose p is known...

@ Then forecast simplifies to \A’,-_,TH = :\,- +pYiT.

Finding an optimal forecast is equivalent to constructing an optimal
estimator of A:

1.
ir}\f Ex lN > (i )\,-)2] . (8)

i=1

This estimator is constructed from Zi; = Zix(p) = Yie — pYit—1.

@ For T =1 see Robbins (1951, 1956).
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Decision-Theoretic Considerations

o Suppose T =1and \; = g(Zn).

@ Expected compound loss becomes integrated risk with empirical
distribution of A as prior:

1O )
NZO\;—A:‘)}

w2 [ (60 - 3ot - 2

_ / [ / (g(2) = \)?(z — N)dz| dGn ()
= E[(g(2) = X))

@ Optimal estimator:

f¢ (z—A dGN( )

@ To implement this estimator we need to generate an estimate of
Gn();) based on cross-sectional information.

g86,(2) = (9)
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Decision-Theoretic Considerations

o Idea: Approximate g¢, (z) by &*(z) such that
Ec, [(&*(2) = X)?] < Eq, [(86,(2) = M)?] + o(1). (10)
@ There are some results in the statistics literature, e.g., Zhang (2003),

Brown and Greenshtein (2009), and Jiang and Zhang (2009).
@ TO DO: extend THEORETICAL results to panel data application.

o FOR NOW: we consider two different implementations of the basic
idea:
o Treat Gy parametrically (indexed by finite-dimensional
hyperparameter):

Ai ~ N(O,wQ) or i~ N(¢o+ ¢1Yi07w2)-

o Treat Gy nonparametrically: use some general density p(Ai|Yio).
Use cross-sectional information to estimate relevant features of Gy.
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To fix ideas, we will consider the simple model:

Yie = pYie—1+ i+ U,  Ui|(Yie—1, M) ~ N(0,1), (11)

For now we will assume that ); is independent of Yjg.

Step 1: parametric Bayesian analysis with family of priors
)\," Y,'o ~ N(O,wz).

Step 2: treat p(\) nonparametrically — realizing that the Bayes
estimator of \; depends on p(\;) only through the marginal
distribution of Z;(p) = % ZtT:1(Yit — pYit—1). Tweedie's Formulal.
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Step 1: Parametric Analysis

e YlisNx1, YisNxT.
@ XisNxT,\Nis Nx1.

@ Likelihood function:
p(p, A YOT) (12)

N
X HP(YII:T|p7 )‘iv Y,'o)[)()\,‘)

i=1

o eXP{—; (tr[(y_Xp_/\L/T)(Y—Xp—/\L/T)/} _|_w_2/\/)\)}
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Parametric Analysis: Posterior Distribution

@ Posterior of \|p:

Nl (p, YOT) ~ N(px(p), 03), i =1,...,N. (13)
where
pap) = ox(Y = Xplr

o2 = (T+w?)™L
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Parametric Analysis: Forecasting

@ The one-step-ahead predictive density for Y; 71 is given by

p(YiTi1|YOT, p) = /P(Y/,T+1|Yinp, A)p(Nilps YOT)dA.

(14)

@ The mean of this predictive density can be written as

ELY; 71| YOT, gl = pYir + B[N YOT ). (15)
@ Define the MLE of \; conditional on p as

1T

Zi(p) = 7;(\//7*/)\/;1—1)- (16)
@ Then the posterior mean of A\; can be decomposed as follows:

BMY® 7.0 = Z00) o 200) (17)

MLE ~——~———
Bayes Correction
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Parametric Analysis: Estimate Hyperparameters

@ We will estimate the common parameters, e.g. p, jointly with the
hyperparameter w that serves as an index for p(\) using the
cross-sectional information:

(d),,ﬁ) = argmax Inp(YET|Y? p,w), (18)
where

Inp(YET Y0 p,w) = In/p( YETIYO oo\, w)p(p, Aw, YO)d(p, \).

@ The posterior mean predictor with data-driven hyperparameter
choice becomes (now making the dependence on w explicit):

ﬁz’ (). (19)

]E[Al| YO:Ta pAv d}] =7 (ﬁ) -
o Note: we could replace p by the posterior mean E[p| Y% T &].

e Generalization: condition on Yip: \; ~ N(¢o + ¢1 Yio, w?).
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Step 2: Tweedie's Formula

@ Replace p(A|w) by more general family of distributions p(\).
@ Recall Z,'(p) = %(Y, — X,'p)LT.
@ Our simple model implies that Z;(p)|p ~ N(\;,1/T).

@ Under our distributional assumptions we obtain

Az = @n/ ) oo {320 - NP | @)

@ Write the Gaussian density using the following exponential-family
representation:

q(Zi(p)IAi) = exp{Ni TZi(p) — ¥ (Ni)} go(Zi(p))- (21)

where
VO =3 et a(Z(0) = (/)M e { - L 2200) |
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Tweedie's Formula

@ Posterior of A\ conditional on p:

exp {\i TZi(p ) Y(Ai)}p(N)
pOAIY®T, H L Tep N TZi(p) — 900)} POV)dA (22)

@ Now focus on the posterior of A\; and write
p(AIYOT, p) = exp (N TZi(p) — x(Zi(p))} P(N) exp{—1(A)}-

where
W(Z) =1n / exp (N TZi(p) — ¥(A)} (M)A

@ Since the posterior density integrates to one, we obtain

" aaz,- exp (N TZ; = X(Z1)} p(N) exp{ —:(A)}d;

. / NP YO, 0)dA — Y (Z):
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Tweedie's Formula

@ Tweedie's formula:
. 1
BN YT, p] = 2 (Zi(p))- (23)

@ Using the definition of go(Z;) we can write

W(2) =i [ aZ NP + 5 n2n/T) + 5 22

@ This leads to
) 10l Z;
B YOT, g = Zip)r ~ 2 ndl%) .
NI T 0Z; Z=Z(p)

~———
MLE Bayes Correction

(24)

@ NOTE: we only need to estimate the marginal density of Z;. We do
not need to estimate p(\;)!

@ Generalization: condition on Y.
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Tweedie's Formula: Implementation

o First we find a consistent estimate of p, say p.

@ Second, compute QMLE for A:
1T
Z(p) = = ;(Yn — pYie1). (25)

@ Third, nonparametric correction based on Tweedie's formula:
N . 1 1 094(2)
T 4(Z(p)) 0z

where p(z) is a nonparametric density estimate of Z;.

‘Z:Zf(ﬁ)’ (26)
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Tweedie's Formula: Implementation — p

Arellano & Bover (95) (“GMM (AB)"): Blundell & Bond (98) (“GMM (BB)"):

@ Moment conditions based on @ Moment conditions:

Orthogonal Forward Demeaning:
E (W, U;) =0, where
Wi = (Yio, -+, Yie-1), U} =

it

Tt [y. _ Uit ++Uir
T—t+1 [t T—t '

t=1,---,T—1.

@ Under homoskedasticity, one-step
estimator as it's already an
asymptotically efficient GMM
estimator.

@ Better finite sample properties than
Arellano and Bond (91) estimator
based on the first difference when p
is close to 1.
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E (W AU) = 0

E (Ayi,t—l (N + Uir)) =0
where W, = (YiO, R Yi,t—2)y
t=2,---,T.

@ Two-step estimator.

@ Need E (AY,-,t,l)\,-) =0or

E ()\,- (Y,-o — li"p)) = 0. Stationary
initial condition.

Better dealing with weak IV problem
when p is close to 1 when the initial
condition is stationary.



Tweedie's Formula: Implementation — §(Z)

@ Lindsey's method:

qudsey = exp E i Z

Estimate ;'s by Poisson regression.

o Kernel smoothing:

qkernel N h Z K < >

@ Note: in the application we use densities that are conditional on Y.
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A Small Simulation Experiment

e Model: Yjy = \j + pYj -1 + Ui where U ~ iidN(0, 1).
o \|Yio ~ iidU[0, 1].
@ Yo distribution:
: Ai 1
Design 1 = Yiol(Ai,p) ~ N 1=, 5 ) (27)
Design 2 Yio|(Ai, p) ~ N (0, 0.1%). (28)
@ Autoregressive coefficient: p = 0.8.

e N=1,000, T =3.
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Simulation: Performance Statistics

@ Forecast errors:

O C,(s N 2
(Yi(,?ﬂ - Yi,llg+)1(002Tv<—i>)) : (29)

@ We consider four different groups of observations:
Bottom: 20 smallest Yjr's (out of 1,000)

o Middle: 20 Y;r's around the median

o Top: 20 largest Yir's

o All all Yir's

@ We compute mean-squared forecast errors and median forecast
errors.
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Monte Carlo: Design 1

Model: Yie = pYie_1+ N+ Up, t=1,.... T;i=1,... N.

Design: T =3, N=1,000, p =0.8, \; ~ U[0,1],
Yio ~ N(Ai/(1=p),1/(1—p)).

Bottom 20 Middle 20 Top 20 All
D by MSE Med MSE Med MSE Med MSE Med
No Shrinkage
GMM (AB) QMLE 212 097 121 002 222 -099 1.34 0.00
GMM (BB) QMLE 214 0.97 119 0.05 220 -0.99 133 0.00

@ AB and BB estimators perform very similarly.

@ Relatively large selection bias for top and bottom groups.
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Monte Carlo: Design 1

Model: Yi = pYie1 + A+ Up, t=1,... Tii=1,...,N.
Design: T =3, N=1,000, p =0.8, \; ~ U[0,1],
Yio ~ N(Ai/(1 = p),1/(1 = p?)).
Bottom 20 Middle 20 Top 20 All
p 3\,- MSE Med MSE Med MSE Med MSE Med

No Shrinkage
GMM (AB) QMLE 212 097 121 0.02 222 -099 134 0.00
Tweedie's Formula
GMM (AB) Lindsey 128 -0.06 1.05 0.05 1.35 -0.08 1.10 0.00
GMM (AB) Kernel 1.33 000 104 002 145 -0.05 1.10 0.00

@ Tweedie's formula is able to correct selection bias.
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Monte Carlo: Design 1

Model: Yi = pYie1 + A+ Up, t=1,... Tii=1,...,N.
Design: T =3, N=1,000, p =0.8, \; ~ U[0,1],
Yio ~ N(Ai/(1 = p),1/(1 = p?)).
Bottom 20 Middle 20 Top 20 All
p 3\,- MSE Med MSE Med MSE Med MSE Med

No Shrinkage
GMM (AB) QMLE 212 097 121 002 222 -099 134 0.00
Tweedie's Formula
GMM (AB) Lindsey 128 -0.06 1.05 0.05 1.35 -0.08 1.10 0.00
GMM (AB) Kernel 133 000 104 002 145 -0.05 1.10 0.00
Empirical Bayes Forecast with Parametric Model
Max of Marg. LH 1.05 0.07 1.01 004 112 -0.11 1.05 0.00

@ The parametric Bayes model works even better.
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Monte Carlo: Design 2

Model: Yy = pYit1+ XN+ Up, t=1,...,T;i=1,..., N.
Design: T =3, N =1,000, p=0.8, \; ~ U[0,1], Yjo ~ N(0,0.1%).

Bottom 20 Middle 20 Top 20 All
D N MSE Med MSE Med MSE Med MSE Med
No Shrinkage
GMM (AB) QMLE 475 0.70 197 024 1357 -0.10 3.13 0.25
GMM (BB) QMLE 397 168 111 -0.14 528 -2.04 168 -0.18

@ Under this design the GMM(BB) estimator is preferable.

@ Relatively large selection bias for top and bottom groups.
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Monte Carlo: Design 2

Model: Yie = pYie_1+ N+ Up, t=1,.... T;i=1,... N.

Design: T =3, N =1,000, p=0.8, \; ~ U[0,1], Yjo ~ N(0,0.1%).

Bottom 20 Middle 20 Top 20 All
D Y MSE Med MSE Med MSE Med MSE Med
No Shrinkage
GMM (BB) QMLE 397 168 1.11 -0.14 528 -2.04 168 -0.18
Tweedie's Formula
GMM (BB) Lindsey 155 0.25 1.12 -0.14 163 -0.53 114 -0.18
GMM (BB) Kernel 162 011 114 -0.13 191 -041 120 -0.18

@ Tweedie's formula is able to correct selection bias.
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Monte Carlo: Design 2

Model: Yie = pYie_1+ N+ Up, t=1,.... T;i=1,... N.

*

Design: T =3, N =1,000, p=0.8, \; ~ U[0,1], Yjo ~ N(0,0.1%).

Bottom 20 Middle 20 Top 20 All
D N MSE Med MSE Med MSE Med MSE Med
No Shrinkage
GMM (BB) QMLE 397 168 111 -0.14 528 -2.04 168 -0.18
Tweedie's Formula
GMM (BB) Lindsey 155 0.25 1.12 -0.14 163 -0.53 114 -0.18
GMM (BB) Kernel 162 011 114 -0.13 191 -041 120 -0.18
Empirical Bayes Forecast with Parametric Model
Max of Marg. LH 1.09 002 108 0.04 113 -0.03 1.08 0.00

@ The parametric Bayes model works even better.
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Application

@ In the aftermath of the 2007-09 global financial crisis bank stress
tests have become an important tool used by central banks and other
regulators to conduct macroprudential regulation and supervision.

@ Stress tests come in many flavors, one of them is to predict the
evolution of bank balance sheets conditional on economic conditions.

@ Bank-level forecasts can then be aggregated into industry-wide
losses and revenues.

@ Initially, we tried to focus on forecasts of charge-offs and revenues
which can be mapped into forecasts of capital-asset ratios.

@ However, charge-offs have very non-Gaussian features and for now
we switched to direct forecasts of capital-asset ratios.

@ Stress tests condition on extreme counterfactual economic
conditions, whereas in our forecast exercise we condition on actual
economic conditions.
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Application

e We follow Covas, Rump, and Zakrajsek (CRZ, 2013) in terms of
capital-asset ratio definitions.

@ Regulators pay attention to the so-called tier-1-common ratio:

E;; — Deductions;;

T1CR; = RWA
it

@ Tier-1 common equity is the highest quality component of bank
capital. The denominator RWA is the Basel | risk-weighted assets.

@ CRZ decompose the evolution of equity as

Eix = Eia+(1-7) [Z PPNR/, x Assets/,
J

— Z NCO!, x Loansf-t] — Equity Payouts;,
]

where PPNR are net revenues and NCO are net charge-offs.
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@ Bank balance sheet data are available through the Call Reports at
quarterly frequency from the Federal Reserve Bank of Chicago.

@ We multiply T1CR by 100 and take logs.

@ We will relate T1CR to local economic conditions, e.g., house prices
and unemployment. Thus, we will focus on small banks (assets less
than 1 billion $).

@ We use the Summary of Deposits data from the Federal Deposit
Insurance Corporation to determine the local market for each bank.

@ Currently: local market = state.

o We collect
o state-level housing price index (all transactions, not seasonally
adjusted) from the Federal Housing Finance Agency;
o state-level unemployment rate (monthly data averaged to quarterly
freq, seasonally adjusted) from the Bureau of Labor Statistics.

L. Liu, H.R. Moon, and F. Schorfheide Panel Forecasting



Model Specification

@ Basic panel data model
In(100 - TICR;) = A;+ 51In(100 - T1CR;:—1) (30)
+B2URj + B3 In HPl; + Uy
o Ui ~ iidN(0,0?).

Parametric prior for A;:
Mi|(T1CRjo, ¢, w?) ~ iidN (¢o + ¢1In(100 - TLCRj),w?)  (31)

Sample period: t = 0 corresponds to 2008:Q1, t = T is 2009:Q4.

Forecast period: t = T + 1 is 2010:Q1.

Sample size is N = 6, 066.
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log(100 - T1CR) Data

27?‘H‘H‘H‘H:M‘M‘H‘H:%
SIS O I O o

T T T
08:Q1 08:Q2 08:Q3 08:Q4 09:Q1 09:Q2 09:Q3 09:Q4 10:Q1
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CR Data versus mployment and House Prices

10g(100T1CR)

24 26 28 30 32 34 36
Il

24 26 28 30 32 34 36

4 6 8 10 12 14 54 56 58 60 62 64

Unemployment Rate log(HPI)

Note: capital asset ratios are averaged across time for each bank and across banks

within the same state.
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Parameter Estimates

Parameter Max of GMM(AB) GMM(BB)
Marg. LH

In(100 - T1ICR;+—1) 0.0497 0.0456 0.0385

In HPI; 0.0172 0.2784 0.4548

UR; -0.0095 -0.0066 -0.0061

52 0.2223 0.2219 0.2221

b0 2.2644

b1 0.0910

o2 0.0650
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Shrinkage Effects: Estimates of Z;(5) (blue, dashed) and

~

A; (red, solid)

Parametric GMM(AB)/Tweedie GMM(BB)/Tweedie
8 ' ' 8 ' ' ' 8 ' '
6 6 6

@ The empirical Bayes procedures induce a substantial amount of
shrinkage: \; densities are much more concentrated than Z;(p)
densities.
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Implicit Bias Correction: Parametric Bayesian Model

Bottom Middle Top
6 6 ‘ ‘ 6 ‘
5 5 5
4 4 4
3 3 3
2 p . 2 \
1 ' 1 1 .. 5

i I .

00 '2 4 01 2’ 3 4 = 4 5

@ The empirical Bayes procedures induces a bias correction for the
bottom and top groups.
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Forecast Results

Bottom 2%  Middle 2% Top 2% All
B Y MSE Med MSE Med MSE Med MSE Med
No Shrinkage
GMM (AB) QMLE 048 028 022 002 060 -034 025 -001
GMM (BB) QMLE 047 025 023 002 058 -032 026 0.00

o GMM(BB) and GMM(AB) estimators perform similarly.

@ Relatively large selection bias for top and bottom groups.
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Forecast Results

Bottom 2% Middle 2% Top 2% All
8 i MSE Med MSE Med MSE Med MSE Med
No Shrinkage
GMM (AB) QMLE 048 028 022 002 060 -034 025 -0.01
Tweedie's Formula
GMM (AB) Lindsey 0.32 -0.04 0.19 -0.02 053 -022 0.22 -0.03
GMM (AB) Kernel 0.39 -0.02 020 0.01 058 -024 024 -0.03

@ Tweedie's formula is able to correct the selection bias.
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Forecast Results

Bottom 2% Middle 2% Top 2% All
B by MSE Med MSE Med MSE Med MSE Med
No Shrinkage
GMM (AB) QMLE 048 028 022 002 060 -034 025 -0.01
Tweedie's Formula
GMM (AB) Lindsey 0.32 -0.04 0.19 -0.02 053 -022 0.22 -0.03
GMM (AB) Kernel 039 -0.02 020 0.01 058 -0.24 0.24 -0.03
Empirical Bayes Forecast with Parametric Model
Max of Marg. LH 0.34 0.03 019 -004 049 -0.19 022 -0.05

o Similar performance of parametric approach and Tweedie's formula.

L. Liu, H.R. Moon, and F. Schorfheide Panel Forecasting



Conclusions

To forecast dynamic panel data model, it's important to have a
“good” estimates of the individual effects A;.

“Selection” bias: repeated positive shocks (Uj) lead to
overestimation of their corresponding \;'s, especially when T is
small.

Shrinkage estimators can offset the selection bias and improve the
forecasts:

o Empirical Bayes estimator of parametric model; essentially a random
effects model.

o Plug-in predictor based on Tweedie's formula

Both methods lead to improvements in forecast accuracy in
simulations and in an application to capital-asset ratio forecasts.

Work in progress... Many extensions.
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