Formal Languages \& Automata Theory

 Subject Code: CS501PCRegulations : R18-JNTUH

Class: III Year B.Tech CSE I Semester

Department of Computer Science and Engineering Bharat Institute of Engineering and Technology

Ibrahimpatnam-501510,Hyderabad

FORMAL LANGUAGES AND AUTOMATA THEORY (CS501PC) COURSE PLANNER

I. COURSE OVERVIEW:

Formal languages and automata theory deals with the concepts of automata, formal languages, grammar, computability and decidability. The reasons to study Formal Languages and Automata Theory are Automata Theory provides a simple, elegant view of the complex machine that we call a computer. Automata Theory possesses a high degree of permanence and stability, in contrast with the ever-changing paradigms of the technology, development, and management of computer systems. Further, parts of the Automata theory have direct bearing on practice, such as Automata on circuit design, compiler design, and search algorithms; Formal Languages and Grammars on compiler design; and Complexity on cryptography and optimization problems in manufacturing, business, and management. Last, but not least, research oriented students will make good use of the Automata theory studied in this course.

II. PREREQUISITE:

- A course on "Discrete Mathematics"
- A course on "Data Structures"

III. COURSE OBJECTIVES:

1 To provide introduction to some of the central ideas of theoretical computer science from the perspective of formal languages.
2 To introduce the fundamental concepts of formal languages, grammars and automata theory
3. Classify machines by their power to recognize languages.
4. Employ finite state machines to solve problems in computing.
5. To understand deterministic and non-deterministic machines.
6. To understand the differences between decidability and undecidability.

IV. COURSE OUTCOMES:

Course Outcomes	Description	Bloom's Taxonomy Levels
CO 1	Able to understand the concept of abstract machines and their power to recognize the languages.	L2:Understand
CO 2	Able to employ finite state machines for modeling and solving computing problems.	L3:Apply
CO 3	Able to design context free grammars for formal languages.	L6:Create
CO 4	Able to distinguish between decidability and undecidability.	L4: Analyze
CO 5	Able to gain proficiency with mathematical tools and formal methods.	L2:Understand

V. HOW PROGRAM OUTCOMES ARE ASSESSED:

Program Outcomes (PO)		$\begin{gathered} \text { Leve } \\ \text { I } \end{gathered}$	Proficiency assessed by
PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex	3	$\begin{gathered} \text { Lectures, } \\ \text { Assignments / Mid } \\ \text { Test } \end{gathered}$
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	Lectures, Assignments / Mid Test
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	$\begin{gathered} \text { Lectures, } \\ \text { Assignments / Mid } \\ \text { Test } \end{gathered}$
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	$\begin{gathered} \text { Lectures, } \\ \text { Assignments / Mid } \\ \text { Test } \end{gathered}$
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	1	$\begin{gathered} \text { Lectures, } \\ \text { Assignments / Mid } \\ \text { Test } \end{gathered}$
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	-	---
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	-	--
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	-	--
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	-	Personality development seminar
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and	1	Student Seminars

	write effective reports and design documentation, make effective presentations, and give and receive clear instructions.		
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	-	--
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2	Assignments / Mid
Test			

1: Slight (Low) 2: Moderate
3: Substantial $\quad-$: None
VI. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Program Specific Outcomes (PSO)		Level	$\begin{array}{c}\text { Proficiency } \\ \text { assessed by }\end{array}$		
PSO1	$\begin{array}{l}\text { Foundation of mathematical concepts: To use } \\ \text { mathematical methodologies to crack problem using } \\ \text { suitable mathematical analysis, data structure and suitable } \\ \text { algorithm. }\end{array}$	$\mathbf{3}$	$\begin{array}{c}\text { Assainment, } \\ \text { Mid Exam, } \\ \text { Extrenal } \\ \text { exam }\end{array}$		
PSO2	$\begin{array}{l}\text { Foundation of Computer System: The ability to interpret } \\ \text { the fundamental concepts and methodology of computer } \\ \text { systems. Students can understand the functionality of } \\ \text { hardware and software aspects of computer systems. }\end{array}$	$\mathbf{2}$	Assainment,		
Projects				$]$	Foundations of Software development: The ability to grasp the software development lifecycle and methodologies of software systems. Possess competent skills and knowledge of software design process. Familiarity and practical proficiency with a broad area of programming concepts and provide new ideas and innovations towards research.
:---					

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) - : None

VII. SYLLABUS:

UNIT - I
Introduction to Finite Automata: Structural Representations, Automata and Complexity, the Central Concepts of Automata Theory - Alphabets, Strings, Languages, Problems. Nondeterministic Finite Automata: Formal Definition, an application, Text Search, Finite Automata with Epsilon-Transitions.
Deterministic Finite Automata: Definition of DFA, How A DFA Process Strings, The language of DFA, Conversion of NFA with $€$-transitions to NFA without $€$-transitions. Conversion of NFA to DFA, Moore and Melay machines.

UNIT - II

Regular Expressions: Finite Automata and Regular Expressions, Applications of Regular Expressions, Algebraic Laws for Regular Expressions, Conversion of Finite Automata to Regular Expressions.
Pumping Lemma for Regular Languages, Statement of the pumping lemma, Applications of the Pumping Lemma.
Closure Properties of Regular Languages: Closure properties of Regular languages, Decision Properties of Regular Languages, Equivalence and Minimization of Automata.

UNIT - III

Context-Free Grammars: Definition of Context-Free Grammars, Derivations Using a Grammar, Leftmost and Rightmost Derivations, the Language of a Grammar, Sentential Forms, Parse Tress, Applications of Context-Free Grammars, Ambiguity in Grammars and Languages.
Push Down Automata: Definition of the Pushdown Automaton, the Languages of a PDA, Equivalence of PDA's and CFG's, Acceptance by final state, Acceptance by empty stack, Deterministic Pushdown Automata. From CFG to PDA, From PDA to CFG.

UNIT - IV

Normal Forms for Context- Free Grammars: Eliminating useless symbols, Eliminating €Productions. Chomsky Normal form Griebech Normal form.
Pumping Lemma for Context-Free Languages: Statement of pumping lemma, Applications. Closure Properties of Context-Free Languages: Closure properties of CFL's, Decision Properties of CFL's
Turing Machines: Introduction to Turing Machine, Formal Description, Instantaneous description, The language of a Turing machine.

UNIT - V

Types of Turing machine: Turing machines and halting.
Undecidability: Undecidability, A Language that is Not Recursively Enumerable, An Undecidable Problem That is RE, Undecidable Problems about Turing Machines, Recursive languages, Properties of recursive languages, Post's Correspondence Problem, Modified Post Correspondence problem, Other Undecidable Problems, Counter machines.

TEXT BOOKS:

T1. Introduction to Automata Theory, Languages, and Computation, 3nd Edition, John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Pearson Education.
T2. Theory of Computer Science - Automata languages and computation, Mishra and Chandrashekaran, 2nd edition, PHI.

REFERENCE BOOKS:

1. Introduction to Languages and The Theory of Computation, John C Martin, TMH.
2. Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley.
3. A Text book on Automata Theory, P. K. Srimani, Nasir S. F. B, Cambridge University Press.
4. Introduction to the Theory of Computation, Michael Sipser, 3rd edition, Cengage Learning.
5. Introduction to Formal languages Automata Theory and Computation Kamala Krithivasan, Rama R, Pearson.
VIII. LESSON PLAN:

$\begin{array}{\|c\|} \hline \text { Lecture } \\ \text { No. } \\ \hline \end{array}$	Week	Topics to be covered	Course Learning Outcomes	Teaching Methodolo gies	$\begin{gathered} \text { Referen } \\ \text { ces } \end{gathered}$
1.	1	Unit-I: Introduction to Finite Automata: Introduction, Applications	Define Automata	Chalk \&Talk	T1, R2
2.		Structural representations, Automata and complexity	Define Automata		T1, R2
3.		The general Concepts of Automata Theory-Alphabets, Strings, Languages, Problems	Define String, Alphabet		T1, R2
4.		The general Concepts of Automata Theory-Alphabets, Strings, Languages, Problems cont'd	Define String, Alphabet		T1, R2
5.	2	Deterministic Finite Automaton (DFA), definition, How A DFA Process Strings, The language of DFA,	Construct DFA with example		T1, R2
6.		Tutorial Class: Solving Problems on DFA Acceptance	Construct DFA with example		T1, R2
7.		Non -Deterministic Finite Automaton (NFA), definition, Language recognizers	Construct NFA with example		T1, R2
8.		An Application of Finite Automata (FA): Text Search	List the applications of finite automata		T1, R2
9.	3	*Finite Automata (FA) with ε transitions	Define ε closure		T1, R2
10.		Conversion of NFA with $€$ transitions to NFA without $€$ transitions	Convert NFA with ε-moves to without ε moves		T1, R2
11.		NFA to DFA conversion	Convert to NFA to DFA		T1, R2
12.		Moore and Melay machines	Construct Moore and Melay machines		T1, R2
13.		MOCK TEST-1			
14.		Tutorial/Bridge Class \#I			

$\begin{array}{\|c} \text { Lecture } \\ \text { No. } \end{array}$	Week	Topics to be covered	Course Learning Outcomes	Teaching Methodolo gies	Referen ces
15.		Unit-II: Regular Expressions: Finite Automata and regular expressions, Applications of regular expressions	Define Regular Languages		T1, R2
16.		Algebraic Laws of Regular Expressions, Example Problems	Define Regular Languages	Chalk \&Talk	T1, R2
17.		*Finite Automata and Regular Expressions: Constructing Finite Automata for a given Regular Expression	Construct the Finite Automata for the Regular Expression		T1, R2
18.		Conversion of Finite Automata to Regular expressions (Arden's Method)	Construct the Regular Expression for the given Finite Automata		T1, R2
19.	5	Pumping Lemma for Regular Languages: Statement of the pumping lemma, Applications of pumping lemma	Define Pumping Lemma for Regular Languages		T1, R2
20.		Properties of Regular Languages: Pumping Lemma for Regular Languages, Applications of pumping lemma cont'd	Define Pumping Lemma for Regular Languages		T1, R2
21.	6	Tutorial Class: Problems solving on Pumping Lemma	Define Pumping Lemma for Regular Languages		T1, R2
22.		Closure Properties of Regular Languages: Closure properties of regular languages, Decision properties of regular languages	Explain about the closure properties of regular sets		T1, R2
23.		Equivalence and minimization of Automata: Equivalence between two FSM's	Show the equivalence of two FSMs		T1, R2
24.		Solving Problems on Equivalence between two FSM's	Show the equivalence of two FSMs		T1, R2

$\begin{array}{\|c} \text { Lecture } \\ \text { No. } \\ \hline \end{array}$	Week	Topics to be covered	Course Learning Outcomes	Teaching Methodolo gies	Referen ces
25.	7	Tutorial Class: Revising Properties of Regular Languages	Explain about the closure properties of regular sets		T1, R2
26.		Equivalence and minimization of Automata: Minimization of FSM	Reduce the number of states in FSM	Chalk \&Talk	T1, R2
27.		Equivalence and minimization of Automata: Minimization of FSM cont'd	Reduce the number of states in FSM		T1, R2
28.		More Problems on Minimization of FSM	Reduce the number of states in FSM		T1, R2
29.		Tutorial/Bridge Class \#II			
30.	8	Unit-III: Context-Free Grammars (CFG): Definition of Context-Free Grammars, Examples	Define CFG	Chalk \&Talk	T1, R2
31.		Derivations using a Grammar, Leftmost and Rightmost Derivations	Define Rightmost derivation and leftmost derivation with example		T1, R2
32.		The language of a Grammar, Sentential Forms, Parse Tress	Derive languages, sentential forms and derivation trees of CFGs		T1, R2
I-Mid Examinations(Week-9)					
33.	10	Applications of Context-Free Grammars	List the applications of CFG	Chalk \&Talk	T1, R2
34.		Ambiguity in context-free grammars and Languages	Define the ambiguity in CFG		T1, R2
35.		*Removing Ambiguity in CFG	Define the ambiguity in CFG		T1, R2
36.		Push Down Automata (PDA): Definition of the Push Down	Define PDA		T1, R2

$\begin{array}{\|c\|} \hline \text { Lecture } \\ \text { No. } \end{array}$	Week	Topics to be covered	Course Learning Outcomes	Teaching Methodolo gies	Referen ces
		Automata			
37.	11	The Languages of a PDA: The Languages of a PDA, Equivalence of PDA's and CFG's, Acceptance by final state, Acceptance by empty state and its equivalence.	Explain acceptance of PDA by final state and empty stack.	Chalk \&Talk	T1, R2
38.		Deterministic Pushdown Automata (DPDA): Introduction to DCFL and DPDA	Define DPDA and DCFL		T1, R2
39.		Equivalence of PDA's and CFG's: CFG to PDA	Construct PDA for CFG		T1, R2
40.		Equivalence of PDA's and CFG's: PDA to CFG	Construct CFG for PDA		T1, R2
41.	12	The Languages of a PDA: *Construction of PDA for CFL (Design of PDA)	Construct PDA for CFL		T1, R2
42.		Tutorial/Bridge Class \#III			
43.		Unit-IV: Normal Forms for Context-Free Grammars: Eliminating useless symbols, Eliminating €-Productions, Chomsky Normal Form	Define CNF	Chalk \&Talk	T1, R2
44.		Normal Forms for Context-Free Grammars: Greiback Normal Norm	Define GNF		T1, R2
45.	13	Pumping Lemma for Context Free Languages: Statement of pumping lemma, Applications	Discuss the Pumping lemma for Context Free Languages		T1, R2
46.		Closure Properties of ContextFree Languages: Closure Properties of CFL	Explain about Closure Properties of CFL		T1, R2
47.		Decision Properties of CFL's	Explain about Decision Properties of CFL's		T1, R2

Lecture No.	Week	Topics to be covered	Course Learning Outcomes	Teaching Methodolo gies	Referen ces
48.		Turing Machines: Introduction to Turing Machines, Formal Description, Instantaneous description, The language of a Turing machine	Define TM		T1, R2
49.		Tutorial/Bridge Class \#IV			
50.		Unit-V: Types of Turing machine: Turing machines and halting,	Explain Types of Turing machines	Chalk \&Talk	T1, R2
51.	14	*Computable functions, Design of TM for functions	Construct TM for computable functions		T1, R2
52.		*Linear Bound Automata (LBA), Context Sensitive Language	Define LBA and CSL		T1, R2
53.		Undecidability: Undecidability A Language that is Not Recursively Enumerable	Define undecidability of REL		T1, R2
54.	15	*Chomsky hierarchy of languages	Explain Chomsky Hierarchy of languages		T1, R2
55.		*LR(0) items and DFA	Construct LR(0) items and DFA		T1, R2
56.		An Undecidable problem that is RE, Undecidable Problems about Turing Machines	Define undecidability of TM		T1, R2
57.		Recursive languages, Properties of recursive languages,	DefineRecursiv e languages and properties		
58.	16	Post's Correspondence problem, Modified Post Correspondence problem	Define Post's Correspondenc e problem		T1, R2
59.		Other Undecidable problems, Counter machines	Define Other Undecidable problems		T1, R2
60.		*Intractable problems: The Classes P and NP	Define P and NP classes		T1, R2

Lecture No.	Week	Topics to be covered	Course Learning Outcomes	Teaching Methodolo gies	Referen ces
61.		*NP complete problems, NP hard problems	Define NPComplete and NP-hard problems		T1, R2
62.		*NP complete problems, NP hard problems cont'd	Define NPComplete and NP-hard problems	Chalk \&Talk	T1, R2
63.		Tutorial/bridge class \#V			
II Mid Examinations (Week 18)					

* Topics beyond Syllabus

NPTEI Web Course:

1. NPTEL Web Course:
http://nptel.ac.in/courses/106103070/
2. NPTEL Video Course:
http://nptel.ac.in/courses/111103016/
https://nptel.ac.in/courses/106106049/

NPTEL Online Courses and Certification

https://swayam.gov.in/nd1_noc19_cs79/preview

IX. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

	Program Outcomes (PO)												Program Specific Outcomes (PSO)		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	-	-	-	-	-	-	1	-	1	2	2	2
CO2	3	3	2	2	1	-	-	-	-	1	-	2	3	2	2
CO3	3	3	3	1	1	-	-	-	-	1	-	2	3	1	1
CO4	3	3	2	2	1	-	-	-	-	1	-	2	3	2	2
CO5	3	3	2	2	1	-	-	-	-	1	-	2	3	2	2
AVG	2.8	2.8	2	1.75	1	-	-	-	-	1		1.8	2.8	1.8	1.8

X. QUESTION BANK: (JNTUH)

S. No.	Questions	Blooms Taxonomy Level
UNIT - I		
Short Answer Questions		
1.	Explain transition diagram, transition table with example.	Understand
2.	Define transition function of DFA.	Remember
3.	Define ε-transitions.	Remember
4.	Construct a DFA to accept even number of 0's.	Apply
5.	Define Kleene closure and positive closure.	Remember
6.	Construct a DFA to accept empty language.	Apply
7.	Explain power of an alphabet (Σ^{*})?	Understand
8.	Write transition diagram for DFA accepting string ending with 00 defined over an alphabet $\sum=\{0,1\}$	Apply
9.	Write transition diagram for DFA to accept exactly one a defined over an alphabet $\sum=\{\mathrm{a}, \mathrm{b}\}$	Apply
10.	Define NFA with an example.	Remember
11.	Explain the different Operations on the languages.	Understand
13.	Define Moore Machines.	Remember
14.	Define Mealy Machines.	Remember
15.	Write DFA for odd number of 1's.	Apply
16.	Write NFA for $(0+1)^{*} 101(0+1)^{*}$.	Apply
17.	Write DFA for (0+1)* $10(0+1)^{*}$.	Apply
18.	Define ε - closure.	Remember
19.	Write NFA for $(0+1)^{*} 001(0+1)^{*}$.	Apply
20.	Write DFA for $(0+1) * 00(0+1)^{*}$.	Apply
21	Define FSM and its structure with an example.	Remember
22	Give any two comparisions between NFA and DFA	Remember
Long Answer Questions		
1.	Construct a DFA to accept set of all strings ending with 010. Define language over an alphabet $\sum=\{0,1\}$ and write for the above DFA .	Apply
2.	Construct a Moore machine to accept the following language. $\mathrm{L}=\{\mathrm{w} \mid \mathrm{w} \bmod 3=0\}$ on $\sum=\{0,1,2\}$	Apply
3.	Write any six differences between DFA and NFA	Apply
4.	Write NFA with ε to NFA conversion with an example.	Understand
5.	Construct NFA for $(0+1)^{*}(00+11)(0+1)^{*}$ and Convert to DFA.	Apply
6.	$\begin{aligned} & \text { Design DFA for the following languages shown below } \\ & =\{\text { ab } b\} \\ & \text { a. } L=\{\mathrm{w} / \mathrm{w} \text { does not contain the substring } \mathrm{ab}\} \\ & \text { b. } L=\{\mathrm{w} / \mathrm{w} \text { contains neither the substring ab nor ba }\} \\ & \text { c. } \mathrm{L}=\{\mathrm{w} / \mathrm{w} \text { is any string that doesn't contain exactly two } \mathrm{a}\} \\ & \text { d. } \mathrm{L}=\{\mathrm{w} / \mathrm{w} \text { is any string except a and } \mathrm{b}\} \end{aligned}$	Apply

7.	Illustrate given 2 FA's are equivalent or not with an example.	Apply
8.	Construct Mealy machine for $(0+1) *(00+11)$ and convert to Moore machine.	Apply
9.	Convert NFA with $\varepsilon-a^{*} b^{*}$ to NFA.	Understand
10.	Construct NFA for $(0+1)^{*} 101$ and Convert to DFA.	Apply
11.	Construct a mealy machine that takes binary number as input and produces 2's complement of that number as output.Assume the string is read LSB to MSB and end carry is discarded.	Understand
12.	Explain with the following example the Minimize the DFA .	Understand
13.	Construct a DFA, the language recognized by the Automaton being L $\left\{a^{n} b / n \square 0\right\}$. Draw the transition table.	Apply
14.	Construct the Minimized DFA	Apply
15.	Construct the DFA that accepts/recognizes the language $L(M)=$ $w \square\{a, b, c\}^{*}$ and w contains the pattern $\left.a b a c\right\}$. Draw the transition table.	Apply
16.	Construct NFA for given NFA with G-moves	Apply
17.	Differentiate between DFA and NFA with an example.	Understand
18.	Construct a finite automaton accepting all strings over $\{0,1\}$ having even number of 0 's and even number of 1's.	Apply
19.	Construct a Moore Machine to determine the residue mod 5 for each binary string treated as integer. Sketch the transition table.	Apply
20.	Construct the Moore Machine for the given Mealy machine	Understand
UNIT - II		
Short Answer Questions		
1.	Define Regular Languages.	Remember
2.	Define Pumping Lemma for Regular Languages.	Remember

6.	```Construct Leftmost Derivation. , Rightmost Derivation, Derivation Tree for the following grammar \(\mathrm{S} \rightarrow \mathrm{aB} / \mathrm{bA}\) \(\mathrm{A} \rightarrow \mathrm{a} / \mathrm{aS} / \mathrm{bAA}\) \(\mathrm{B} \rightarrow \mathrm{b} / \mathrm{bS} / \mathrm{aBB}\) For the string aaabbabbba .```	Apply
7.	Explain the properties, applications of Context Free Languages	Understand
8.	Construct right linear and left linear grammars for given Regular Expression.	Apply
9.	Construct a Transition System M accepting L(G) for a given Regular Grammar G.	Apply
10.	Discuss the properties of Context free Language. Explain the pumping lemma with an example.	Understand
11.	Write regular expressions for the given Finite Automata	Apply
12.	$\underset{(0+11) 0^{*} 1}{\text { Construct a NFA with } € \text { equivalent to the regular expression } 10+}$	Apply
13.	Construct Leftmost Derivation. , Rightmost Derivation, Derivation Tree for the following grammar $G=(V, T, P, S)$ with $\begin{aligned} & N=\{E\}, S=E, T=\left\{i d,+,{ }^{*}(,)\right\} \\ & \mathrm{E} \rightarrow \mathrm{E}+\mathrm{E} \\ & \mathrm{E} \rightarrow \mathrm{E}^{*} \mathrm{E} \\ & \mathrm{E} \rightarrow(\mathrm{E}) \\ & \mathrm{E} \rightarrow \text { id } \end{aligned}$ Obtain id+id*id in right most derivation, left most derivation	Apply
14.	Write a CFG that generates equal number of a's and b's.	Apply
15.	Convert G = ($\{\mathrm{S}\},\{\mathrm{a}\},\{\mathrm{S} \rightarrow \mathrm{aS} / \mathrm{a}\},\{\mathrm{S}\}$) into FA	Understand
16.	Construct a Regular expression for the set all strings of 0's and 1's with at least two consecutive 0 's	Apply
17.	Construct context free grammar which generates palindrome strings $\Sigma=\{\mathrm{a}, \mathrm{~b}\}$	Apply
18.	Construct equivalent NFA with ϵ for the given regular expression $0^{*}(1(0+1))^{*}$.	Apply
19.	Construct the right linear grammar for the following	Apply
20.	Write 12 identity rules for regular expressions	Apply

		5
UNIT - III		
Short Answer Questions		
1.	Define Greibach normal form.	Remember
2.	Define nullable Variable.	Remember
3.	Write the minimized CFG for the following grammar $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{ABCa} \mid \mathrm{bD} \\ & \mathrm{~A} \rightarrow \mathrm{BC} \mid \mathrm{b} \\ & \mathrm{~B} \rightarrow \mathrm{~b} \mid \varepsilon \\ & \mathrm{C} \rightarrow \mathrm{D} \mid \varepsilon \\ & \mathrm{D} \rightarrow \mathrm{~d} \end{aligned}$	Remember
4.	Convert the grammar to CNF - S $\rightarrow \mathrm{bA} / \mathrm{aB} \mathrm{A} \rightarrow \mathrm{aS} / \mathrm{a} \mathrm{B} \rightarrow \mathrm{bS} / \mathrm{b}$.	Understand
5.	Explain the elimination of UNIT production.	Understand
6.	Explain the elimination of useless symbols in productions.	Understand
7.	Define CNF.	Remember
8.	Write the minimization of CFG $-\mathrm{A} \rightarrow \mathrm{a} \quad \mathrm{B} \rightarrow \mathrm{aa}$ S \rightarrow a S/A	Understand
9.	Define the ambiguity in CFG.	Remember
10.	What is the use of CNF and GNF.	
11.	Write the minimization of CFG - S \rightarrow aSlb S $1 \rightarrow \mathrm{aS} 1 \mathrm{~b} / \varepsilon$.	Understand
12.	Write the minimization of CFG - S $\rightarrow \mathrm{A} \mathrm{A} \rightarrow \mathrm{aA} / \varepsilon$.	Understand
13.	Write the minimization of CFG - $\mathrm{A} \rightarrow \mathrm{a}$. $\mathrm{S} \rightarrow \mathrm{AB} / \mathrm{a}$	Understand
14.	Write the minimization of $\mathrm{CFG}-\mathrm{S} \rightarrow \mathrm{aS} / \mathrm{A} / \mathrm{C} \mathrm{A} \rightarrow \mathrm{aB} \rightarrow \mathrm{a}$ $\mathrm{C} \rightarrow \mathrm{aCb}$.	Understand
15.	Write the minimization of CFG $-\mathrm{S} \rightarrow \mathrm{AbA} \mathrm{A} \rightarrow \mathrm{Aa} / \varepsilon$.	Understand
16.	Write the minimization of CFG - S $\rightarrow \mathrm{aSaS} \rightarrow \mathrm{bSb} \mathrm{S} \rightarrow \mathrm{a} / \mathrm{b} / \varepsilon$.	Understand
17.	Write the minimization of $\mathrm{CFG}-\mathrm{S} \rightarrow \mathrm{A} 0 / \mathrm{B} \quad \mathrm{A} \rightarrow 0 / 12 / \mathrm{B}$ $\mathrm{B} \rightarrow \mathrm{A} / 11$.	Understand
18.	Convert the grammar to CNF - $\mathrm{S} \rightarrow \mathrm{aSa} / \mathrm{aa} \mathrm{S} \rightarrow \mathrm{bSb} / \mathrm{bb} \mathrm{S} \rightarrow \mathrm{a} / \mathrm{b}$.	Understand
19.	Convert the grammar to CNF - $\mathrm{S} \rightarrow \mathrm{aAbB}$ A $\rightarrow \mathrm{aA} / \mathrm{a} \mathrm{B} \rightarrow \mathrm{bB} / \mathrm{a}$.	Understand
20.	Define PDA.	Remember
21.	Define NPDA.	Remember
22.	Differentiate between deterministic and nondeterministic PDA.	Understand
23.	Define the language of DPDA.	Remember
24.	List the steps to convert CFG to PDA.	Remember
25.	Explain - acceptance of PDF by final state.	Understand
26.	Explain - acceptance of PDF by empty stack.	Understand
27.	Convert the following PDA to CFG $\delta(\mathrm{q} 0, \mathrm{~b}, \mathrm{z} 0)=\{\mathrm{q} 0, \mathrm{zz} 0)$	Apply
28.	Convert the following PDA to CFG (q0, b, z) =(q0,zz)	Apply
29.	Convert the following PDA to CFG $\delta(\mathrm{q} 0, \epsilon, \mathrm{z} 0)=(\mathrm{q} 0, \epsilon)$	Apply
30.	Convert the following PDA to CFG $\delta(\mathrm{q} 0, \mathrm{a}, \mathrm{z})=(\mathrm{q} 1, \mathrm{z})$	Apply
31.	Convert the following PDA to CFG $\delta(\mathrm{q} 1, \mathrm{~b}, \mathrm{z})=(\mathrm{q} 1, \mathrm{c})$	Apply
32.	Convert the following PDA to CFG $\delta(\mathrm{q} 1, \mathrm{a}, \mathrm{z} 0)=(\mathrm{q} 0, \mathrm{z} 0)$	Apply
33.	Convert the following PDA to CFG $\delta(\mathrm{q} 0,0, \mathrm{z} 0)=\{\mathrm{q} 0, \mathrm{xz} 0)$	Apply
34.	Convert the following PDA to CFG $\delta(\mathrm{q} 0,0, \mathrm{x})=(\mathrm{q} 0, \mathrm{xx})$	Apply

35.	Convert the following PDA to CFG $\delta(\mathrm{q} 0,1, \mathrm{x})=(\mathrm{q} 1, \mathrm{\epsilon})$	Apply
36.	Convert the following PDA to CFG $\delta(\mathrm{q} 1,1, \mathrm{x})=(\mathrm{q} 1, \epsilon)$	Apply
37.	Convert the following PDA to CFG $\delta(\mathrm{q} 1, \epsilon, \mathrm{x})=(\mathrm{q} 1, \mathrm{\epsilon})$	Apply
38.	Convert the following PDA to CFG $\delta(\mathrm{q} 1, \epsilon, \mathrm{z} 0)=(\mathrm{q} 1, \epsilon)$	Apply
39.	Convert the following PDA to CFG $\delta(\mathrm{q} 1, \epsilon, \mathrm{z})=(\mathrm{q} 0, \epsilon)$	Apply
40.	Convert the following CFG to PDA S $\mathrm{ABC} \mid \mathrm{BbB}$	Apply
41.	Convert the following CFG to PDAA $\rightarrow \mathrm{aA}\|\mathrm{BaC}\| a \mathrm{aa}$	Apply
42.	Convert the following CFG to PDA $\mathrm{B} \rightarrow \mathrm{bBb}\|\mathrm{a}\| \mathrm{D}$	Apply
43.	Convert the following CFG to PDA $\mathrm{C} \rightarrow \mathrm{CA} \mid \mathrm{AC}$	Apply
44.	Convert the following CFG to PDA S \rightarrow a S/A	Apply
Long Answer Questions		
1.	Write a short notes on Chomsky Normal Form and Griebach Normal Form.	Apply
2.	Show that the following grammar is ambiguous with respect to the string aaabbabbba. $\begin{aligned} & S \rightarrow a B \mid b A \\ & A \rightarrow a S\|b A A\| a \\ & B \rightarrow b S\|a B B\| b \end{aligned}$	Understand
3.	Use the following grammar : $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{ABC} \mid \mathrm{BbB} \\ & \mathrm{~A} \rightarrow \mathrm{aA}\|\mathrm{BaC}\| \mathrm{aaa} \\ & \mathrm{~B} \rightarrow \mathrm{bBb}\|\mathrm{a}\| \mathrm{D} \\ & \mathrm{C} \rightarrow \mathrm{CA} \mid \mathrm{AC} \\ & \mathrm{D} \rightarrow \varepsilon \end{aligned}$ Eliminate e-productions. Eliminate any unit productions in the resulting grammar. Eliminate any useless symbols in the resulting grammar. Convert the resulting grammar into Chomsky Normal Form	Apply
4.	Illustrate the construction of Griebach normal form with an example.	Apply
5.	Show that the following CFG ambiguous. $\mathrm{S} \rightarrow \mathrm{iCtS}\|\mathrm{iCtSeS}\| \mathrm{a} \mathrm{C} \rightarrow \mathrm{b}$	Apply
6.	Discuss the Pumping lemma for Context Free Languages concept with example $\left\{a^{4} b^{n} c^{4}\right.$ where $\left.n>=0\right\}$	Understand
7.	Write the simplified CFG productions in $\mathrm{S} \rightarrow \mathrm{aS1b}$ S1 \rightarrow a Slb/ $€$	Apply
8.	Convert the following CFG into GNF. $\mathrm{S} \rightarrow \mathrm{AA} / \mathrm{a} \quad \mathrm{~A} \rightarrow \mathrm{SS} / \mathrm{b}$	Understand
9.	Explain unit production? Explain the procedure to eliminate unit production.	Understand
10.	Explain the procedure to eliminate ϵ-productions in grammar.	Understand
11.	$\begin{aligned} & \text { Convert the following grammar into GNF } \\ & \text { G=(\{A1,A2,A3\},\{a,b\},P,A) } \\ & \text { A1->A2A3 } \\ & \text { A2->A3A1/b } \\ & \text { A3->A1A2/a } \\ & \hline \end{aligned}$	Understand

12.	Write simplified CFG productions from the following grammar A->aBb/bBa B->aB/bB/є	Apply		
13.	Convert the following grammar into GNF S->ABA/AB/BA/AA/B A->aA/a B->bB/b	Understand		
UNIT - IV			\quad	Short Answer Questions
:---				

	machine for the string 111222333.	
10.	Define Linear bounded automata and explain its model?	Apply
11.	Explain the power and limitations of Turing machine.	Create
12.	$\begin{aligned} & \begin{array}{l} \text { Construct } \\ \mathrm{L}=\left\{\mathrm{a}^{n} \mathrm{~b}^{\mathrm{n}} \mathrm{n} / \mathrm{n}>=1\right\} \end{array} \end{aligned}$	Apply
13.	Construct a Transition diagram for Turing Machine to implement addition of two unary numbers $(\mathrm{X}+\mathrm{Y})$.	Apply
14.	Construct a Linear Bounded automata for a language where $\mathrm{L}=\left\{\mathrm{a}^{\left.\mathrm{n}_{\mathrm{b}} \mathrm{n} / \mathrm{n}>=1\right\}}\right.$	Apply
15.	Explain the types of Turing machines.	Apply
16.	Write briefly about the following a)Church's Hypothesis b)Counter machine	Apply
17.	Construct a Transition table for Turing Machine to accept the following language. $\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} 0^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}$	Apply
UNI		
Sho	wer Questions	
1.	Define Chomsky hierarchy of languages.	Knowledge
2.	Define Universal Turing Machine	Knowledge
3.	Define Context sensitive language.	Knowledge
4.	Define decidability.	Knowledge
5.	Define P problems.	Knowledge
6.	Define Universal Turing Machines	Knowledge
7.	Give examples for Undecidable Problems	Understand
8.	Define Turing Machine halting problem.	Knowledge
9.	Define Turing Reducibility	Knowledge
10.	Define Post's Correspondence Problem.	Knowledge
11.	Define Type 0 grammars .	Knowledge
12.	Define Type 1 grammars .	Knowledge
13.	Define Type 2 grammars .	Knowledge
14.	Define Type 3 grammars .	Knowledge
15.	Define NP problems.	Knowledge
16.	Define NP complete problems	Knowledge
17.	Define NP Hard problems	Knowledge
18.	Define undecidability problem.	Knowledge
19.	Define turing Reducibility.	Knowledge
20.	List the types of grammars.	Knowledge
Long Answer Questions		
1.	Explain the concept of decidable and undecidability problems about Turing Machines.	Understand
2.	Write briefly about Chomsky hierarchy of languages..	Apply
3.	Explain individually classes P and NP	Understand

XI. OBJECTIVE QUESTIONS:

UNIT -I

Muiltile Choice Questions

1. The prefix of abc is \qquad
a. c
b. b
c. bc
d. \mathbf{a}
2. Which of the following is not a prefix of abc?
a.e
b. a
c. ab
d. be
3. Which of the following is not a suffix of abc ?
a.e b.c c.bc d.ab
4. Which of the following is not a proper prefix of doghouse?
a.dog b.d c.do d.doghouse
5.If then the number of possible strings of length ' n ' is
a.n b.n $* n$

$$
\text { c. } \mathrm{n} \mathrm{n} \quad \mathrm{~d} .2 \mathrm{n}
$$

Fill in the Blanks

1. Language is a set of strings.
2. String is a finite sequence of symbols.
3. The basic limitation of FSM is that it can't remember arbitrary large amount of information
4. Application of Finite automata is Lexical analyzer

5. An FSM can be used to add two given integers. This is false

UNIT -II

Muiltile Choice Questions

1. In case of regular sets the question ' is the intersection of two languages a language of the same type ?' is \qquad
a. Decidable
b. Un decidable
c. trivially decidable d. Can't say
2. In case of regular sets the question ' is L1 n L2 = F ? ' is \qquad
a.Decidable
b.Undecidable
c.trivially decidable
d.Can't say
3. Let r and s are regular expressions denoting the languages R and S. Then ($r+s$) denotes _ _ a.RS b.R* c.RUS diR+
4. Let $\mathrm{r}, \mathrm{s}, \mathrm{t}$ are regular expressions. $\left(\mathrm{r}^{*}\right)^{*}=$ \qquad ar be* c.F d.can't say
5. Let $\mathrm{r}, \mathrm{s}, \mathrm{t}$ are regular expressions. $\mathrm{r}(\mathrm{s}+\mathrm{t})=$ \qquad
ar s
br t
cars - rt
d.rs $+\mathbf{r} \mathbf{t}$

Fill in the Blanks

1. Let $\mathrm{r}, \mathrm{s}, \mathrm{t}$ are regular expressions. $(\mathrm{r}+\mathrm{s}) \mathrm{t}=\underline{\mathbf{r t}+\mathbf{s t}}$
2. In NFA for $r=e$ the minimum number of states are $\mathbf{1}$
3. $(\mathrm{e}+00)^{*}=(\mathbf{0 0})^{*}$
4. $1+01=(\mathbf{e}+\mathbf{0}) \mathbf{1}$
5. 'The regular sets are closed under union' is true

UNIT -III

Muiltile Choice Questions

1. Regular grammars also known as \qquad grammar
a.Type 0
b.Type 1
c. Type 2
d.Type3
2. \quad _ _ _ grammar is also known as Type 3 grammar.
a.un restricted b.context free c.context sensitive d.regular grammar
3. Which of the following is related to regular grammar ?
aright linear b.left linear c.Right linear \& left linear d.CFG

a.Type 0 .
b. Type 1
c. Type 2 d.Type $0,1 \& 2$
4. Let $\mathrm{L} 1=(\mathrm{a}+\mathrm{b}) * \mathrm{a}$ LL $=\mathrm{b}^{*}(\mathrm{a}+\mathrm{b})$, L 1 intersection $\mathrm{L} 2=$ \qquad
$\mathrm{a} .(\mathrm{a}+\mathrm{b}) * \mathrm{ab} \quad \mathrm{b} . \mathrm{ab}(\mathrm{a}+\mathrm{b}) * \quad \mathrm{c} . \mathrm{a}(\mathrm{a}+\mathrm{b}) * \mathrm{~b} \quad$ dib($\mathbf{a}+\mathrm{b}) * \mathbf{a}$

Fill in the Blanks

1. Let $A=\{0,1\} L=A *$ Let $R=\{0 n 1 n, n>0\}$ then LUR regular
2. Pumping lemma is generally used for proving a given grammar is not regular
3. The logic of pumping lemma is a good example of the pigeon hole principle
4. In CFG each production is of the form Where A is a variable and is string of Symbols from *(VUT) (V, T are variables and terminals)
5. CFG is not closed under complementation

UNIT -IV

Muiltile Choice Questions

1. Turing machine can be used to
a.Accept languages
b. Compute functions
c. $\mathbf{a} \& \mathrm{~b}$
d.none
2. Any turing machine is more powerful than FSM because \qquad
a.Tape movement is confined to one direction
b.It has no finite state control

c.It has the capability to remember arbitrary long input symbols
 d.TM is not powerful than FSM

3. In which of the following the head movement is in both directions
a.TM b.FSM
c.LBA
d.a\& c
4.A turing machine is
a.Recursively enumerable language b.RL c.CFL d.CSL
4. Any Turning machine with m symbols and n states can be simulated by another TM with just 2 s symbols and less than
a. 8 mn states
b. $4 \mathrm{mn}+8$ states
c. $8 \mathrm{mn}+4$ states
d.mn states

Fill in the Blanks

1. The format: A->aB refers to Greibach Normal Form
2. Greibach Normal Form does not have left recursions.
3. Every grammar in Chomsky Normal Form is context free
4. Let G be a grammar. When the production in G satisfy certain restrictions, then G is said to be in normal form
5. Let G be a grammar: S->AB|e, A->a, B->b, Is the given grammar in CNF(True/False) True.

UNIT -V

Muiltile Choice Questions

1.PCP having no solution is called
a. undecidability of PCP b.decidability of PCP c.Semi-decidability of PCP d None
2. Which of the following is type- 2 grammar?
a.A $\rightarrow \alpha$ where A is terminal b. $\mathbf{A} \rightarrow \boldsymbol{\alpha}$ where \mathbf{A} is Variablec.Both d.None
3. A recursive language is also called
a) Decidable b) Undecidable c) Both (a) and (b) d) None of these
4. The complement of recursive language is
a) Also recursive b) Regular c) Both (a) and (b) d) None of these
5. Recursively enumerable language are closed under
a) Concatenation b) Intersection c) Union d) All of these

Fill in the Blanks

1. Recursive languages are Accepted by turing machine
2. Halting problem \& Boolean Satisfiability problem are unsolvable?
3. The value of n if turing machine is defined using n -tuples: $\underline{\mathbf{7}}$
4. If d is not defined on the current state and the current tape symbol, then the machine halts
5. A language L is said to be decidable if there is a turing machine M such that $L(M)=L$ and M halts at every point.

XII WEBSITES:

1. www.ieee.org
2. www.acm.org/dl
3. www.cs.vu.nl
4. www.cs.unm.edu
5. www.people.westminstercolleg.edu
6. http://nptel.ac.in/courses/106103070/(webcourse)
7. http://nptel.ac.in/courses/106106049/(VideoLectures)
8. http://nptel.ac.in/courses/106104028/(VideoLectures)

XIII EXPERT DETAILS:

1. Dr.Dr. DigantaGoswami, IIT Guwahati
2. Prof.S omenathBiswas, IIT Kanpur

XIV JOURNALS:

1. IEEE transactions on Computer Science
2. IEEE transactions on Fuzzy Systems
3. IEEE transactions on Neural Networks
4. IEEE Computer magazine
5. IEEE transaction in software engineering

XV LIST OF TOPICS FOR STUDENT SEMINARS:

1. Languages of context free grammars
2. Finite automata over free groups
3. OntheRegularityoflanguagesgeneratedbycontextfreeevolutionarygrammars
4. Computer studies of Turing machine problems

XVI CASE STUDIES / SMALL PROJECTS

1. Church's Hypothesis
2. P and NP problems
3. NP complete and NP hard problems
4. Universal Turing machine
5. Counter machines
