

Design of a Cold Formed Steel Structure

May 30, 2018

Who Are We?

Burak Bağırgan

Özgenur Baştuğ

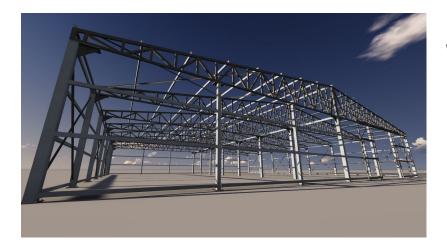
Utku Gürler

Can Özkan

Agenda

01	Introduction to Cold Formed Steel Preliminary Design	 What is cold formed steel and where is it used? What are the advantages? Architectural Design Lab Experiment
02	Cost Schedule Resources	 Cost Estimation Schedule Resources Used in the Project
03	Structural Frame Design Modelling of the Structural System	 Modelling the frames with SAP2000 C and U sections & section properties Structural modelling process
04	Earthquake, Dead & Live Load Calculations Capacity Calculations	 Load calculations Dynamic properties (taken from SAP2000) Demand / shear Capacity calculations
05	Anchorage Design	Outer Hold-down Inner Hold-down

Cold Formed Steel Villa Project


The project aims to design a two-storey villa at a seismic belt. According to the project info the land is provided and the team only needs to design the superstructure.

Project Constraints:

- 1. Cost
- 2. Time
- 3. Seismic belt

What is Cold Formed Steel?

- Cold formed steel (CFS) is a type of steel which is made by rolling or pressing at relatively cold temperatures.
- CFS members are produced using structural quality sheet steel.
- No heat is required for its formation and various thicknesses of steel frames are available for various uses.
- Cold-formed steel is generally used in the constructions of residential buildings not exceeding 3 or 4 floors.

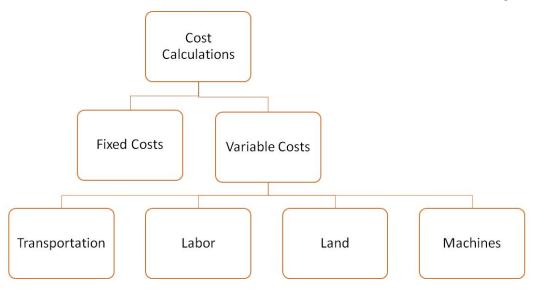
- The use of CFS in construction began in the 1850s.
- First documented use of CFS: around 1925.
- In 1920s and 1930s, limited acceptance due to lack of adequate design standard.

CFS Around the World

- CFS is highly used in the USA,
 Scandinavian Countries, Western
 Europe, Japan and Australia.
- In the USA, CFS usage is 25% and in Japan this rate is 15%
- The usage of CFS in Turkey is believed to be limited to 0.5%

Advantages

- Sustainability
- Durability
- Compactness
- Lightness
- High strength and stiffness
- Ease of fabrication and application
- Elimination of delays
- Economical transportation and handling


Disadvantages

- Thinner steel members
- Prone to local buckling
- High unit price
- Low fire

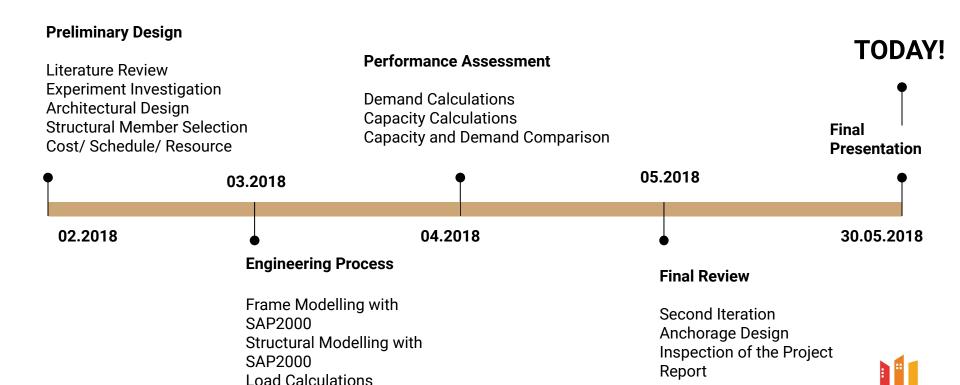
resistance

Cost Analysis

• Cost of the projects for similar existing projects are utilized.

Accurate cost estimation is hard.

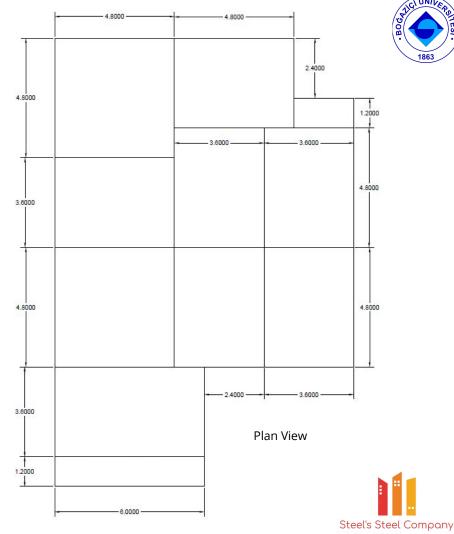
• It has comparatively low cost variance.


Estimated Cost: 500,000TL

Steel's Steel Company

Schedule

Resources



Architectural Design

- Cold-formed steel panel dimensions: 1.2m x 2.4m (most common dimensions)
- Design constraints:
 - Avoidance of excessive span lengths
 - Comfortable and practical residential housing system

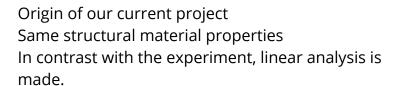
Common properties of CFS shear panels.

Common properties	Panel height (mm)	Panel width (mm)	Sheathing thickness (mm)	Screw type (mm)
	2400	1200	12.5	4.2 * 16 flat
				head screws

Sheathing board and cold-formed steel properties.

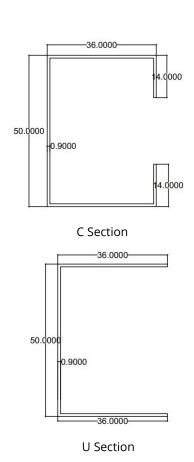
Properties	Modulus of elasticity, E (MPa)	Weight per unit volume (kg/m³)	Poisson's ratio
Board type 1	3053 in short direction 2404 in long direction	640	0.167
Board type 2	4009	880	-
CFS	203,395	7849	0.3

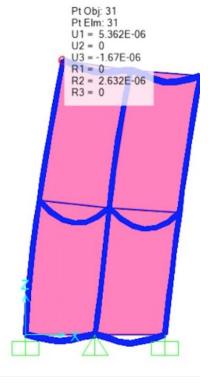
St37 grade steel | | nominal yield strength fy = 227.5 MPa nominal tensile strength ft = 310.3 MPa



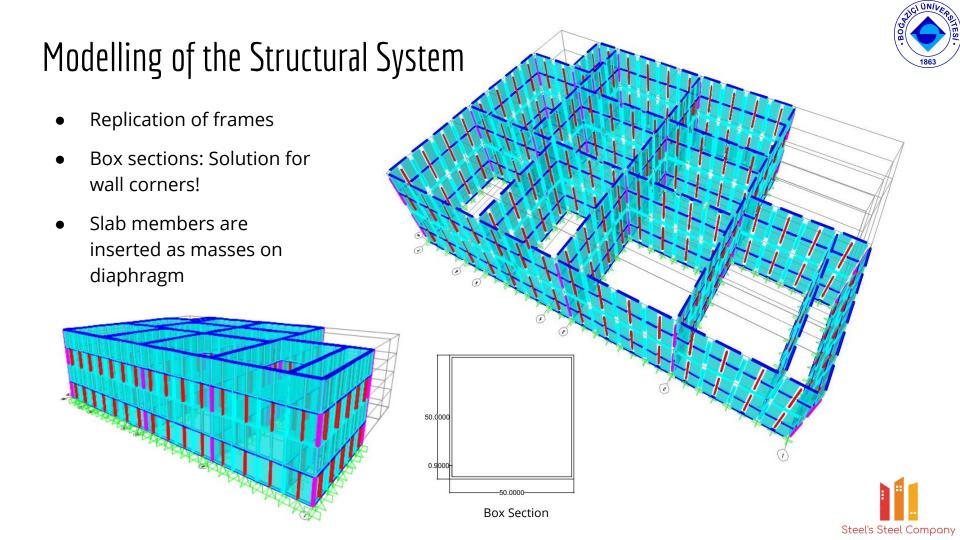
Lab Experiments

Lab experiments on cold formed steel made by Assoc.Dr.Serdar Soyöz and Burak Karabulut.

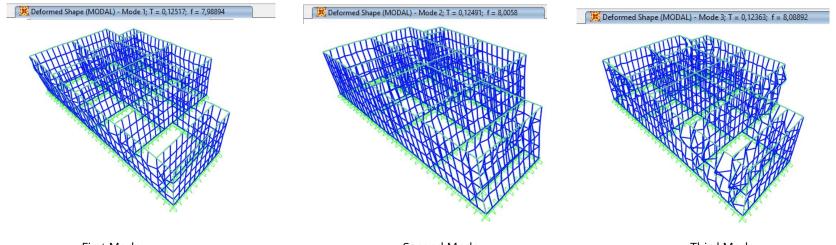



Steel's Steel Company

Structural frame modelled as:


- 1.2 x 2.4 m panel dimensions, taken from the standards
- C section outer studs, C section mid-stud, U section lateral members
- 4 boards attached to the frame from 9 points
- Shear loads are not allowed on frame, shear is carried by the sheathing material only.

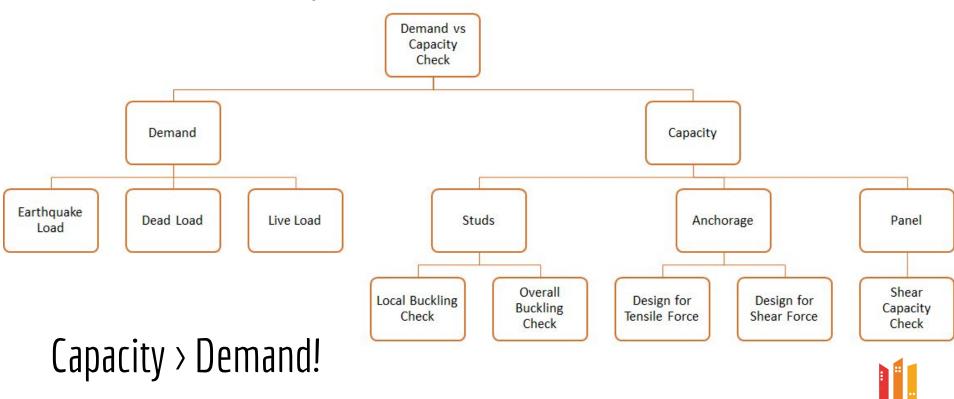
Lateral displacement under force F = 0.02 kN, thickness t = 25mm



Modal Analysis

 Modal analysis uses the overall mass and stiffness of the structure to find the various periods at which the structure will naturally resonate.

Period T = 0.12


It is also used to for detecting connection errors in a SAP2000 model.

Steel's Steel Company

Performance Assessment

Load Calculations

Dead Load Calculations

- → Board Weight (with rock wool)
- → C-Section
- → U-Section
- → Slab Weight

Live Load Calculations

Load calculations are made according to TS498 and Earthquake Code (2007).

• The live load for residential buildings is taken as 2 kN/m² from the code.

Total Dead Load: 620.89 kN

Total Live Load: 725.26 kN

	· 1	Usage	7	Calculation Value
	ROOFS Lateral or inclined up to 1/20	Slabs	STAIRCASES (Including landing and staircase entrance)	kN/m²
1		Loft rooms		1,5
2	Occasionaly used roofs	Housing, terrace room and corridors, offices, shops at the residences up to 50 m2, hospital rooms		2

Earthquake Load Calculations:

Base Shear Force

$$V_{\rm t} = \frac{WA(T_1)}{R_{\rm a}(T_1)} \ge 0.10 A_{\rm o} I W$$

- W: total weight of the building
- A(T): spectral acceleration coefficient
- R_a: earthquake load reduction coefficient

Spectral Acceleration Coefficient

$$A(T) = A_0 I S(T)$$

- \blacksquare A_0 : effective ground acceleration coefficient
- I: building importance coefficient
- S(T): spectrum coefficient

Earthquake Load Calculations:

Seismic Zone	A_{o}
1	0.40
2	0.30
3	0.20
4	0.10

Purpose of Occupancy or Type of Building	Importance Factor (I)
4. Other buildings	
Buildings other than above defined buildings. (Residential and office	1.0
buildings, hotels, building-like industrial structures, etc.)	

Local Site Class according to Table 6.2	$T_{\rm A}$ (second)	T_{B} (second)
Z1	0.10	0.30
Z2	0.15	0.40
Z3	0.15	0.60
Z4	0.20	0.90

$$S(T) = 1 + 1.5 \frac{T}{T_A}$$

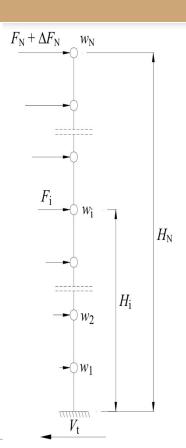
$$S(T) = 2.5$$

$$S(T) = 2.5 \left(\frac{T_B}{T}\right)^{0.8}$$

$$(0 \le T \le T_A)$$

$$(T_A < T \le T_B)$$

$$(T_B < T)$$


Earthquake Load Calculations:

o Total Earthquake Load: 320.61 kN

Distribution of earthquake load to each storey

$$V_{\rm t} = \Delta F_{\rm N} + \sum_{\rm i=1}^{\rm N} F_{\rm i}$$
 $F_{\rm i} = (V_{\rm t} - \Delta F_{\rm N}) \frac{w_{\rm i} H_{\rm i}}{\sum\limits_{\rm i=1}^{\rm N} w_{\rm j} H_{\rm j}}$

$$\Delta F_{\rm N} = 0.0075 \ N \ V_{\rm t}$$

lext	m		lext	KN	KN	KN
721	0	negative x d	LinStatic	-11,054	0,0003697	0,0
721	1,2	negative x d	LinStatic	-11,024	0,0003697	0,0
775	0	x direction	LinStatic	-10,666	-0,0002732	0,0
775	1,2	x direction	LinStatic	-10,637	-0,0002732	0,0
1126	0	x direction	LinStatic	-9,986	-0,0007981	0,00
1126	1,2	x direction	LinStatic	-9,956	-0,0007981	0,00
1025	0	negative y d	LinStatic	-9,14	-5,73E-12	-0,0
1025	1,2	negative y d	LinStatic	-9,11	-5,73E-12	-0,0
18		negative x d	LinStatic	-,044	1,505E-12	0,0
18	1	r ga ve d	LinStatic	,014	1,505E-12	0,0
1076		gative d.	Li Stalic	-,984	-3,712E-12	-0,0
1076	1,2	negative y d	LinStatic	-8,954	-3,712E-12	-0,0
1019	0	negative x d	LinStatic	-8,894	9,15E-20	0,0
1019	1,2	negative x d	LinStatic	-8,864	9,15E-20	0,0
025	culatê	rdgat vrs 3.	cinStatir o	assig	19.0045-12	-0,0
ozu II	Luiale	Mgath A. C.	17 HEROCK	เดวจะรั	14,124F12	-0,(
1019	1,2	negative x d	LinStatic	-8,864	9,15E-20	0,0
1019		9PJ=0	mode	-8,894	9,15E-20	0,0
1076	1,2	negative y d	LinStatic	-8,954	-3,712E-12	-0,0
1076	0	negative y d	LinStatic	-8,984	-3,712E-12	-0,0
18	1,2	negative x d	LinStatic	-9,014	1,505E-12	0,0
18		negative x d	LinStatic	-9,044	1,505E-12	
1025	1,2	negative y d	LinStatic	-9,11	-5,73E-12	

Station

OutputCase

CaseType

- modeled, their weight must be assigned to the model!
- Dead and live loads on slabs were distributed onto beams using tributary area method.
- 1.2D+1.0Q+1.0Ex+0.3Ey & 1.2D+1.0Q+1.0Ey+0.3Ex load cases are used.

According to these loadings,

Maximum demand for axial load:

5.53 kN

Maximum demand for shear load:

6.41 kN

Flexural Buckling

Torsional–Flexural Buckling

 $F_{\rm e} = \frac{\pi^2 E}{(KL/r)^2}$ $KL = 2 \times \text{spacing of screws}$ $\lambda_{\rm c} = \sqrt{\frac{F_{\rm y}}{F_{\rm c}}}$ $F_{\rm n} = (0.658^{\lambda_{\rm c}^2}) F_{\rm v}$

$$F_{e} = \frac{1}{2\beta} \left[(\sigma_{ex} + \sigma_{t}) - \sqrt{(\sigma_{ex} + \sigma_{t})^{2} - 4\beta\sigma_{ex}\sigma_{t}} \right] \qquad \sigma_{t} = \frac{1}{Ar_{0}^{2}} \left[GJ + \frac{\pi^{2}EC_{W}}{(KL)^{2}} \right]$$

$$\lambda_{c} = \sqrt{\frac{F_{y}}{F_{e}}} \qquad \beta = 1 - \left(\frac{x_{0}}{r_{0}}\right)^{2}$$

$$F_{n} = (0.658^{\lambda_{c}^{2}})F_{y} \qquad \sigma_{ex} = \frac{\pi^{2}E}{(KL/r_{x})^{2}}$$

$$F_{\rm n} = (0.658^{\lambda_{\rm c}^2}) F_{\rm y}$$
 $\sigma_{\rm ex} = \frac{\pi^2 E}{(KL/r_{\rm x})}$

Overall Column Buckling

→ Flexural Buckling

→ Torsional-Flexural Buckling

Sheathing Parameters from AISI

pecification	($\bar{2}_{o}$	$\bar{\nu}$
Sheathing(2)	k	kN	length/length
3/8 in. (9.5 mm) to 5/8 in. (15.9 mm) thick gypsum	24.0	107.0	0.008
Lignocellulosic board Fiberboard (regular or impregnated)	12.0 7.2	53.4 32.0	0.009 0.007
Fiberboard (heavy impregnated)	14.4	64.1	0.010

$$\sigma_{\rm CR} = \sigma_{\rm ey} + \bar{Q}_{\rm a} \qquad \bar{Q} = \bar{Q}_{\rm o} \left(2 - \frac{s}{s'} \right)$$

$$\sigma_{\rm ey} = \frac{\pi^2 E}{(KL/r_y)^2}$$

$$\sigma_{\text{ex}} = \frac{\pi^2 E}{(KL/r_x)^2} \qquad \sigma_{\text{t}} = \frac{1}{Ar_0^2} \left(GJ + \frac{\pi^2 EC_W}{L^2} \right) \qquad \bar{Q}_{\text{t}} = \frac{\bar{Q}d^2}{4Ar_0^2}$$

$$\sigma_{\text{tQ}} = \sigma_{\text{t}} + \bar{Q}_{\text{t}} \qquad \sigma_{\text{CR}} = \frac{1}{2\beta} \left[(\sigma_{\text{ex}} + \sigma_{\text{tQ}}) \right]$$

$$\lambda_{\rm c} = \sqrt{\frac{F_{\rm y}}{F_{\rm e}}} \qquad F_{\rm n} = (0.658^{\lambda_{\rm c}^2}) F_{\rm y} \frac{-\sqrt{(\sigma_{\rm ex} + \sigma_{\rm tQ})^2 - 4\beta \sigma_{\rm ex} \sigma_{\rm tQ}}}{}$$

Local Column Buckling

Flexu	ral Buckling				Torsional-Flex	xural Buckling	
	K * L (mm)	600			β	0,305	0
Annual V Asia	K*L/rx	29,28			σ ex (Mpa)	2341,826	
	Fe (Mpa)	2341,826			σ t (Mpa)	486,312	
Around X-Axis	Fy (Mpa)	227,5			Fe (Mpa)	421,862	
	λς	0,312			Fy (Mpa)	227,5	3
	Fn (Mpa)	218,435	<1.5	Fn = (0.658^(\lambda c^2)) * Fy	λc	0,734	<1.5
	2 27 51-51-5 2				Fn (Mpa)	181,533	
	K* L (mm)	600				1801149-0004	
	K*L/ry	42,03					
Annual V Ania	Fe (Mpa)	1136,135					
Around Y-Axis	Fy (Mpa)	227,5					
	λc	0,447	<1.5				
	Fn (Mpa)	209,210					

Overall Column Buckling

σCR Calculation (Flexural)								σCR Calculat	ion (Torsional	- Flexural)	
	σ ex (Mpa)	146,364			7	β	0,305				
	Qo (N)	107000			8	σ ex (Mpa)	146,364				
	s (mm)	300			A V A	σt (Mpa)	40,117				
Around X-Axis	s' (mm)	300		Around X-Axis	Qt	249,195	- 1				
	Q (N)	107000	1			σ tQ (Mpa)	289,312				
	Qa (Mpa)	816,1709				σCR (Mpa)	104,887	governs			
	σCR (Mpa)	962,535				- 890 40	20-	-			
	σ ey (Mpa)	71,008									
	Qo (N)	107000									
	s (mm)	300									
Around Y-Axis	s' (mm)	300									
No contraction of the	Q (N)	107000									
	Qa (Mpa)	816,1709									
	σCR (Mpa)	887,179									
			USE SMAL	LER GCR	as Fe (Fe = σCR)						
	λς	1,473	<1.5								
	Fn (Mpa)	91,773	GOVERNS								

Nominal & Allowed Load Calculations

	Nominal	Axial Load	Allowable Axial Loa	
(Cross sect. Area)	Ag (mm2)	131,1	2	
(Effective Area Coeff.)	k	0,8		
(Effective Area)	Ae (mm2)	104,88		
50 50 50	W 20	20 0	фс	0,85
(Nominal Stress)	Fn (Mpa)	91,773		30400
(Nominal Axial Load)	Pn(N)	9625,153	Pn (N)	8181,380
(Nominal Axial Load)	Pn (kN)	9,625	Pn (kN)	8,181

Shear Capacity of Frame

$$V_{\rm c} = \phi v_{\rm c} \sum l_{\rm i}$$

Design Method		Earthquake
ASD	Ω	2,5
LRFD	Ф	0,6

- Characteristic strength of sheathing is taken as **5 kN/m**.
- **2** sheathings with **1.2m** width at each side are used in each frame.
- Shear capacity of each frame is found to be **7.2 kN**.

• LRFD method is used to calculate the design strength.

$$P_u = \phi_c P_n$$

• Effective area is calculated by a multiplier method previously used by MIT.

Anchorage - Outer Hold-down

(M12 > 80 mm)

0005

Tensile Capacity

- → Steel Failure Capacity
- → Pull-out Failure Capacity
- → Concrete Cone Failure

- → Directly calculated due to ETAG 0005 → 28.06 kN > 25.87 kN
 - → Directly calculated due to ETAG 0005 Not decisive
- Calculated due to formulas given in _____ 26.37 kN > 25.87 kN ETAG 001 & values given in ETAG

Shear Capacity

- → Steel Failure Capacity
- → Pull-out Failure Capacity

Directly calculated due to ETAG 0005 21.92 kN > 8.8 kN

Directly calculated due to ETAG 0005 — 52.74 kN > 8.8 kN

Anchorage - <u>Inner</u> Hold-down

(M10 > 65 mm)

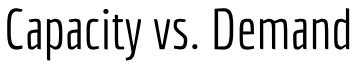
0005

Tensile Capacity

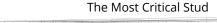
- → Steel Failure Capacity
- → Pull-out Failure Capacity
- → Concrete Cone Failure

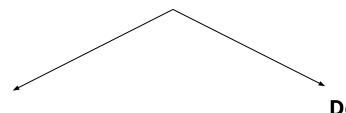
→ Directly calculated due to ETAG 0005 → 17.33 kN > 16.33 kN

→ Directly calculated due to ETAG 0005 — → Not decisive


Calculated due to formulas given in _____ 17.71 kN > 16.33 kN ETAG 001 & values given in ETAG

Shear Capacity


- → Steel Failure Capacity
- → Pull-out Failure Capacity


Directly calculated due to ETAG 0005 — 17.71 kN > 8.8 kN

Capacity Values

Stud: 8.18 kN

Panel: 7.2 kN

Anchorage: 26.37 kN (M12)

& 17.33 kN (M10)

Demand Values

Stud: 5.33 kN

Panel: 6.41 kN

Anchorage: 25.87 kN (M12)

& 16.33 kN (M10)

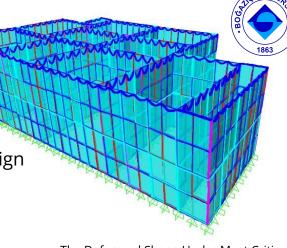
Capacity > Demand!

Iteration

 It must be noted that these results were the consequence of a continuous iteration process.

- The aim of the iteration was:
 - To reach a more economical design

	First Iteration	Last Iteration
Capacity (kN)	20,82	8,18
Demand (kN)	7,3	5,33
Web (mm)	99	50



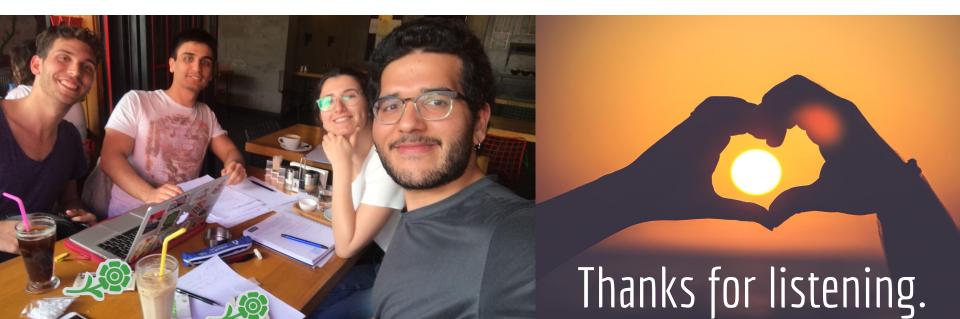
Conclusion

 CFS is a relatively new application in Turkey and computer aided design of CFS is rather ambiguous.

 It was challenging to model and analyze a cold formed steel model, especially with limited software and application.

- Turkish Code did not even have CFS steel category until the latest release, it was treated as regular steel and modified with multipliers!
- Contemporary calculations are usually done by hand.
- New automated analysis methods are needed to streamline the CFS design process!

The Deformed Shape Under Most Critical Loading Case


References

- Cold-Formed Steel Design: AISI Manual. American Iron and Steel Institute, 2009.
- Design of Cold-Formed Steel Structures. ECCS, 2012.
- Karabulut, B., and S. Soyoz. "Experimental and Analytical Studies on Different Configurations of Cold-Formed Steel Structures." Journal of Constructional Steel Research, vol. 133, 2017, pp. 535–546., doi:10.1016/j.jcsr.2017.02.027.
- North American Standard for Cold-Formed Steel Framing: Lateral Design. American Iron and Steel Institute, 2009.
- TS 498 Yapı Elemanlarının Boyutlandırılmasında Alınacak Yüklerin Hesap Değerleri. Türk Standartları Enstitüsü, 1997.
- Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik. Resmi Gazete, 2007.
- "Cold-Formed Steel Design"; Wei-Wen Yu and Roger A. LaBoube
- "Design of Cold-formed Steel Structures"; Dan Dubina, Viorel Ungureanu, Raffaele Landolfo
- ETA-13/005: Torque-controlled expansion anchor for use in non cracked concrete, 2013.

Special thanks to our advisor Assoc.Prof. Serdar Soyöz for supporting us during our project.

