## Formulas for gears calculation - internal gears

## Contens

> Internal spur gears with normal profile
> Internal spur gears with corrected profile

- Without center distance variation
- With center distance variation
> Internal helical gears with normal profile
> Internal helical gears with corrected profile
- Without center distance variation
- With center distance variation
$>$ Length of contact and contact radius $R_{a}$
> Interference
> Dimension over pins and balls

| Meaning of symbols |  |  |  |
| :---: | :---: | :---: | :---: |
| a | Center distance | m | Module |
| $\alpha$ | Pressure angle | Q | Dimension over pins or balls |
| $\beta$ | Helix angle | r | Radius |
| d | Diameter | $\mathrm{R}_{\mathrm{a}}$ | Radius to start of active profile |
| g | Length of contact | S | Tooth thickness on diameter d |
| $\mathrm{g}_{1}$ | Legth of recession | $\bar{s}_{\text {os }}$ | Chordal thickness |
| $\mathrm{g}_{2}$ | Length of approach | t | Pitch |
| $\mathrm{hf}_{\mathrm{f}}$ | Dedendum | w | Chordal thickness over z' teeth (spur gears) |
| $\mathrm{h}_{\mathrm{k}}$ | Addendum | W | Chordal thickness over z' teeth (helical gears) |
| $\mathrm{h}_{0}$ | Corrected addendum | z | Number of teeth |
| $\mathrm{h}_{\mathrm{r}}$ | Whole depth | X | Profile correction factor |
| I | Tooth space |  |  |
| Meaning of indices |  |  |  |
| b | Reffered to rolling diameter | n | Reffered to normal section |
| c | Referred to roll diameter of basic rack | 0 | Reffered to pitch diameter |
| f | Reffered to root diameter | q | Reffered to the diameter throug balls center |
| g | Reffered to base diameter | r | Reffered to balls |
| k | Refferred to outside diameter | s | Reffered to transverse section |
| i | Refferred to equivalent | w | Reffered to tool |

## Internal spur gears with normal profile

$d_{o}=m \cdot z$
$h_{r}=h_{k}+h_{f}$
$t_{o}=m \cdot \pi$
$d_{k}=d_{o}-2 h_{k}$
$d_{g}=d_{o} \cdot \cos \alpha_{o}$
$d_{f}=d_{o}+2 h_{f}$
$t_{g}=t_{o} \cdot \cos \alpha_{o}$
$S_{o}=\frac{m \cdot \pi}{2}$
$h_{k}=m$
$h_{f}=\frac{7}{6} \cdot m \quad$ or $\quad h_{f}=\frac{5}{4} \cdot m$


Fig.N ${ }^{1}$

## Internal spur gears with corrected profile


a)- Without center distance variation
$h_{k}=m-x \cdot m$
$h_{f}=\frac{7}{6} \cdot m+x \cdot m \quad$ or $\quad h_{f}=\frac{5}{4} \cdot m+x \cdot m$
$s_{o c}=\frac{m \cdot \pi}{2}-2 \cdot x \cdot m \cdot \tan \alpha_{o}$
b)- with center distance variation
$\operatorname{inv} \alpha_{b}=i n v \alpha_{o}+2 \tan \alpha_{o} \frac{x_{1}-x_{2}}{z_{1}-z_{2}}$
$a_{b}=a \frac{\cos \alpha_{o}}{\cos \alpha_{b}} \quad d_{b}=\frac{d_{g}}{\cos \alpha_{b}}$
$s_{b}=r_{b}\left[\frac{s_{o c}}{r_{o}}-2\left(i n v \alpha_{o}-i n v \alpha_{b}\right)\right]$
$d_{k}=m(z-2+2 x)$
Internal helical gears with normal profile
$d_{o}=m_{s} \cdot z$

$$
d_{g}=d_{o} \cdot \cos \alpha_{o s}
$$

$$
m_{n}=m_{s} \cdot \cos \beta_{o}
$$

$$
t_{o n}=m_{n} \cdot \pi
$$

$$
h_{k}=m_{n}
$$

$$
h_{r}=h_{k}+h_{f}
$$

$$
\begin{gathered}
t_{o s}=m_{s} \cdot \pi \\
t_{g s}=t_{o s} \cdot \cos \alpha_{o s} \\
\tan \alpha_{o n}=\tan \alpha_{o s} \cdot \cos \beta_{o} \\
t_{g n}=t_{o n} \cdot \cos \alpha_{o n} \\
h_{f}=\frac{7}{6} \cdot m_{n} \quad \text { or } \quad h_{f}=\frac{5}{4} \cdot m_{n} \\
d_{k}=d_{o}-2 h_{k} \\
s_{o n}=\frac{\pi \cdot m_{n}}{2} \quad s_{o s}=\frac{\pi \cdot m_{s}}{2}
\end{gathered}
$$

$d_{f}=d_{o}+2 \cdot h_{f}$

## Internal helical gears with corrected profile

a)- Without center distance variation
$h_{k}=m_{n}-x \cdot m_{n}$
$h_{f}=\frac{7}{6} \cdot m_{n}+x \cdot m_{n} \quad$ or $\quad h_{f}=\frac{5}{4} \cdot m_{n}+x \cdot m_{n}$
$s_{o n c}=\frac{m_{n} \cdot \pi}{m_{s}^{2}}-2 \cdot x \cdot m_{n} \cdot \tan \alpha_{o n}$
$s_{o s c}=\frac{m_{s}^{2} \cdot \pi}{2}-2 \cdot x \cdot m_{n} \cdot \tan \alpha_{o s}$
b)- With center distance variation
$\operatorname{inv} \alpha_{b s}=\operatorname{inv} \alpha_{o s}+2 \tan \alpha_{o n} \frac{x_{1}-x_{2}}{z_{1}-z_{2}}$
$a_{b}=a \frac{\cos \alpha_{o s}}{\cos \alpha_{b s}} \quad d_{b}=\frac{d_{g}}{\cos \alpha_{b s}}$

$$
s_{b s}=r_{b}\left[\frac{s_{o s c}}{r_{o}}-2\left(\operatorname{inv} \alpha_{o s}-\operatorname{inv} \alpha_{b s}\right)\right]
$$

$d_{k}=m_{n}\left(\frac{z}{\cos \beta_{o}}-2+2 x\right)$

Contact length calculation
$\rho_{k 1}=\sqrt{r_{k 1}^{2}-r_{g 1}^{2}} \quad \rho_{k 2}=\sqrt{r_{k 2}^{2}-r_{g 2}^{2}}$
$g=\rho_{k 1}-\rho_{k 1}+a_{b} \cdot \sin \alpha_{b}$
$g_{1}=\rho_{k 1}-r_{b 1} \cdot \sin \alpha_{b}$

$$
g_{2}=-\rho_{k 2}+r_{b 2} \cdot \sin \alpha_{b}
$$

## Contact radius $R_{a}$ calculation

$R_{a 2}=\sqrt{\left(\rho_{k 2}+g\right)^{2}+r_{g 2}^{2}}$

In the case of helical gears use transverse section values $\alpha_{b s}$ instead of $\alpha_{b}$.


Fig. ${ }^{\circ}$ 3
Interference

## Primary interference

Minimum internal diameter without interference

$$
d_{k 2 \min }=\sqrt{d_{g}^{2}+\left(2 a_{b} \cdot \sin \alpha_{b}\right)^{2}}
$$

## Secondary interference (figure $N$ 4)


$\cos \delta=\frac{r_{g 1}}{r_{k 1}} \quad v=\operatorname{inv} \delta-\operatorname{inv} \alpha_{b}$
$\cos \partial=\frac{r_{k 2}^{2}+a_{b}^{2}-r_{k 1}^{2}}{2 \cdot r_{k 2} \cdot a_{b}} \quad \cos \varphi=\frac{r_{k 2}^{2}-a_{b}^{2}-r_{k 1}^{2}}{2 \cdot r_{k 1} \cdot a_{b}}$
When the points $K_{1}$ and $K_{2}$ on the pinion and gear move to $K_{1}^{\prime}$ and $K_{2}^{\prime}$ in time $t_{1}$ and $t_{2}$, the respective angles are:
for the gear: $\partial-\varepsilon ; \quad t_{2}=\frac{\partial-\varepsilon}{\omega_{2}}$
for the pinion: $\quad \varphi+v ; \quad t_{1}=\frac{\varphi+v}{\omega_{1}}$

To avoid interference, the points $\mathrm{K}_{1}$ and $\mathrm{K}_{2}$ should not coincide at $\mathrm{K}_{1}$ and $\mathrm{K}_{2}$ and should satisfy the condition:
$t_{1}>t_{2} \quad$ or $\quad \frac{\varphi+v}{\omega_{1}}>\frac{\partial-\varepsilon}{\omega_{2}}$
The diagram of figure $N \circ 5$ is used to determine the largest difference $z_{2}-z_{1}$, which is a function of the pressure angle $\alpha_{o}$ and the ratio $\frac{h_{k}}{m}$, where not interference exist. When the gears are corrected $h_{k}$ becomes:

$$
h_{k}=\frac{h_{k b 2}+h_{k b 1}}{2}
$$



Fig. ${ }^{\circ}{ }^{\circ} 5$

## Dimension over pins and balls (figure $N^{\circ}$ )

Spur gear with even number of teeth
$\operatorname{inv} \alpha_{q}=\operatorname{inv} \alpha_{o}-\frac{d_{r}}{2 r_{o} \cdot \cos \alpha_{o}}+\frac{l_{o}}{2 r_{o}} \quad$ from which we have $\alpha_{q}$
$r_{q}=r_{o} \frac{\cos \alpha_{o}}{\cos \alpha_{q}} \quad Q=\mathbf{2} \cdot \boldsymbol{r}_{\boldsymbol{q}}-\boldsymbol{d}_{\boldsymbol{r}}$
Spur gear with odd number of teeth
$\alpha_{q}$ and $r_{q}$ are the same as for even teeth, but $Q=2 \cdot \boldsymbol{r}_{\boldsymbol{q}} \cdot \cos \frac{\pi}{2 z}-\boldsymbol{d}_{\boldsymbol{r}}$
Helical gear with even number of teeth
$i n v \alpha_{q s}=i n v \alpha_{o s}-\frac{d_{r}}{2 r_{o s} \cdot \cos \beta_{o} \cos \alpha_{o n}}+\frac{l_{o s}}{2 r_{o s}}$
$r_{q s}=r_{o s} \frac{\cos \alpha_{o s}}{\cos \alpha_{q s}}$
$Q=2 \cdot \boldsymbol{r}_{\boldsymbol{q}}-\boldsymbol{d}_{\boldsymbol{r}}$

Helical gear with odd number of teeth
$\alpha_{q s}$ and $r_{q s}$ are the same as for even teeth, but $\quad Q=\mathbf{2} \cdot \boldsymbol{r}_{\boldsymbol{q} s} \cdot \cos \frac{\pi}{2 \boldsymbol{z}}-\boldsymbol{d}_{\boldsymbol{r}}$


Fig.N ${ }^{\circ} 6$

