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•A SHOALING water formula to calculate stone size is derived by first, introducing a 
new concept of the effect of face slope, second, relating forces to potential breaker 
height, and third, relating breaker height to depth of water. Wave forecasting thus 
becomes unnecessary under most conditions. 

The shoaling water formula is then modified for application to stream-bank and 
deep-water shore protection. 

SHOAL WATER WAVES 

Let line CP (Fig. 1) be drawn between the center of gravity of an outer stone and 
its point of contact with the stone below. If all stones were perfect spheres and 
perfectly arranged, the line CP would be parallel to the face slope a. But with irre­
gularly shaped stones the direction of CP will vary and CP for the most precariously 
situated stone will make the greatest angle with the face slope a. 

Experiments were made with small stones arranged as riprap in which all but the 
outer stones were held rigidly in plaster of Paris. The face angle was tilted upward 
until the first uncemented stone fell out (Fig. 2). Repetitions of this experiment indi­
cated that if the stones are fairly well placed, the face slope will reach an angle of 65 
or 70 degrees before the line CP of the least stable stone reaches the verti<:al and the 
stone falls out (Fig. 3). 

Let p represent this maximum angle of a. Then all angles of a less than p will be 
in a more stable condition as regards wave action, although the stability at angles 
greater than the angle of repose will be insufficient to resist the forces of gravity. 
The angle p may be compared to the angle of shear within a granular material such as 
sand. The angle of repose does not 
represent the angle of shear within the 
material prior to resting at the angle of 
repose. The interior angle of shear will 
be found to be closer to twice the angle 

Figure 1, Typical outer stone , Figure 2, Outer stones stable at a = 70 ° +. 
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Figure J. Typical outer s t one at equilibrium. 

of repose, and riprap, although 
not sufficiently stable to stand 
unaided steeper than the angle of 
repose, does increase in resist­
ance to wave action starting from 
an angle much steeper. 

In the case of the perfectly 
arranged uniform spheres, resist­
a nce to instability would increase 
starting at p = 90°. For irregularly 
shaped stones, p will be in the 
neighborhood of 65 or 70 degrees. 
A lesser value has not been used 
to introduce a factor of safety. 
The actual experimental value has 
been used which in turn should 
reflect the proper relation between 
the face angle of the riprap and the 
size of stone. A factor or factors 
of safety may be introduced later 
into the final formula. 

The minimum force that will 
dislodge the stone will be that 
required to rotate the stone about 
its point of contact P (Fig. 1). 

The vector diagram for this condition is shown in Figure 4. 
Because the force to dislodge the stone will be supplied by the water, W s will be the 

submerged weight of the stone and may be expressed: 

Ws = k1d3 (denr - denw) 

in which 

d = a linear dimension of the stone; 
denr = density of the rock; 
denw = density of the water; and 

K1 = a constant such that k1 d3 equals the volume of the stone. 

The minimum force necessary to dislodge the stone will be 

F1 = k1 d3 (denr - denw) sin(p-a) 

(1) 

(2) 

The farther the face slope of the 
riprap is laid back, the more force 
and energy will be required to dislodge 
the stone. The required energy could 
be supplied by the water without the 
necessary force, but it is hardly likely 
that the necessary force to move the 
stone would be of such short duration 
that the energy was insufficient to dis­
place it. Therefore, assume that for 
stability the stone must be of sufficient 
weight to resist the maximum force 
exerted by the water. The resistance 
of a body to high-velocity fluid flow is 
approximately proportional to the 
square of a lineal dimension of the 
body, the square of the velocity of the 

Figure 4. Vector diagram for an outer stone 
at equilibrium. 



fluid past the body, and the density. Therefore, the force exerted by the water on a 
stone may be expressed as 

Along streams the velocity will not be the average stream velocity, but will vary 
with location. Along tangents it will be the bank velocity, but at bends it will be the 
impinging velocity which may approach the thread velocity. 

Along larger rivers, lakes and oceans, it will be the maximum velocity resulting 
from wave action. 
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(3) 

Energy contained in deep-water swells is approximately proportional to the length 
of the wave and the square of the height (1). In general, the more energy involved, the 
greater will be the damage potential. But this is not the whole story for one can easily 
visualize that a low wave of extremely long length could have a large amount of energy but 
exert very little force in deep water. In shoaling water energy concentrates; it depends 
on the ratio of wave height to wave length, wave period, conditions of shoaling and 
other things as to how the energy will be concentrated and how much of this energy will 
be finally dissipated against the riprap. A rather simple way of summarizing the 
resultant of all these factors on the damage potential at the riprap is to measure the 
maximum height to which this available energy and any additional that is added by back­
wash will lift a breaking wave at the riprap. The height of the breaking wave will 
enable calculation of the maximum velocity of the water impinging on the riprap by the 
simple relation: 

(4) 

in which 

v = velocity of the water at the trough, and 
Hb = breaker height crest to trough. 

Eq. 4 neglects the forward velocity of the breaking wave which should be small com­
pared to the downward velocity at the trough. At higher elevations in the riprap the 
forward velocity would become more important but still the resultant velocity would be 
less. 

For critical equilibrium Fi must equal F2, hence 

(5) 

The weight of the stone in air may be expressed: 

W = k4d3 denr 

or (6) 

Substituting Eqs. 4 and 6 into 5 and combining all constants results in the following 
for the required weight of stone: 

W = ks Hb3 den~ denr 
(denr- denw)3 sin3(p-O!) 

(7) 

Most of California's highway embankments along the shore, especially the ocean 
shore, are not in deep water and some are not even wet except at high tide, so usually 
waves· generated in deep water will be shoaling as they approach the embankment. 
Under these circumstances there will be a maximum size wave that will reach it still 
in possession of most of its deep-water energy. This maximum size wave which will 
expend its energy upon the embankment would ordinarily break at this depth of water. 
Larger deep-water waves will break in deeper water and will have spent a large portion 
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of this energy before reaching the embankment. Waves that would ordinarily break in 
shallower water will, of course, reach the embankment but will contain less energy. 
Thus, the wave that would ordinarily break at the depth of water near the embankment 
will expend a maximum amount of energy upon the protection. 

The height of this breaking wave, which is the criterion of damage potential adopted 
in Eq. 7, bears a relation to the depth of water. 

For various beach slopes and wave shapes, Figure 5 (2) shows the relation between 
the height of breaker and the depth of water at which the wave will break when shoaling. 

These data are the results of wave tank experiments. They show that for a steep 
beach slope (1:10), waves with a height to length ratio of approximately Ho/Lo= 0.02) 
(H0/T

2 = 0. 1) will produce the highest breakers for any given depth. Their height can 
be as much as 1. 25 times this depth of water db (flatter slopes give lower breaker 
heights). Thus, considering all factors most unfavorable except depth of water which 
is known, db may be substituted for Hb in Eq. 7 and absorb the value of 1. 25 in the 
constant. 

Ko d1/ denw 
3 

denr 
W= --~------ (8) 

(denr- denw) 3 sin3(p-O!) 

All experimental work relating stone size to breaker height has been done on a 
small scale with artificial waves less than 10 in. high. Considerable trouble can result 
from extrapolating into the unknown from an empirical or partially empirical formula 
derived from small-scale experiments. However, once the form is determined from 
small-scale tests, it may be fitted to full-scale experience by means of the constant. 
Fortunately for construction, but unfortunately from the standpoint of furnishing data 
to develop an equation, very few failures resulted that could be directly attributed to 
wave action. On the Ventura County coast, 3-ton stones resting on a 1. 5 to 1 slope 
were displaced during a severe storm. The depth of water at this time was approxi­
mately 7 ft. Damage was minor (Fig. 6). Waves in this area at other times have been 
estimated to be 7 ft high but did no damage. 

On this same coast in an area of greater exposure, 12-ton stones successfully 
resisted waves estimated to be 12 ft. With no experience with designs failing as a 
result of insufficient stone size, the constant Ks has been set at 0. 003 to agree with 
minimum stone sizes which proved adequate. As data build up, it is quite possible 
that this constant may be reduced. 
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STREAM FLOW 

Whether it be by wave action or stream 
flow, it is the velocity of water against 
the riprap that displaces the stones. As 
stated previously, it seems reasonable 
that the breaking wave concentrates and 
transforms the energy into high velocity 
flow, and neglecting forward velocity, the 
relation between the height of breaker and 
velocity of water against the riprap is 

(9) 

Figure 6. Displaced stones after severe 
storms. 

From Iversen' s data (Fig. 5), the 
maximum height of breaker in relation to 
depth would be Hb = 1. 2 5 db. Therefore, 

db= v2/ 80. 
Substituting v2/80 for db in the shallow water formula gives: 

v6 
0. 003 - denw 3 denr 

W = 80
3 

= 1.17 x 10-
5
v

6 
denw

3 
denr (10) 

(denr- denw) 3 sin3(p-a) (denr- denw) 3 sin3(p-a) 

The constant of 1 . 17 has been increased to 2. The values obtained then agree with 
a table that had been in general use in California and which was based on experience 
of the Division of Highways Joint Bank Protection Committee. 

It may be noted that this increase in the constant is the equivalent of an increase in 
stream velocity of less than 10 percent. 

DEEP-WATER WAVES 

The California Division of Highways experience with deep-water protection is very 
limited. By substituting significant wave height HJ/, for Hb and using a constant of 
231 x 10- 5

, Eq. 7 then agrees with Iribarren's forni ula for a slope of 1%-1 and with the 
Army Engineers' method (1) for all slopes betwee n 1Xi-1 and 3-1 provi ding the Army K 
is always taken for the most severe wave shape. Its relation to the formulas of other 
investigators is shown in Figure 7. 

The formulas in slightly altered form used by the California Division of Highways 
~) are as follows: 

Shoal water: 

Stream flow: 

Deep water: 

W = 0. 003d3b sgr csc3 (p-a) 

( sgr - 1)3 
sgw 

w = 0. 00002 v2 sgr csc3 (p-a'.) 

(sgr - 1)3 

0 . 00231 H 11
3 sgr csc:1 (p-o:) 

w = / 3 

( 
sgr _ 

1
)3 

sgw 

p = 70° for broken rock. 

(11) 

(12) 

(13) 
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