

Forte for Java
Community Edition 1.0
Java Integrated Development Environment

Tutorials

 Tutorials version 0.9.4

Copyright © 1997-1999 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303, U.S.A.
All rights reserved. This software is distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of this software may be reproduced in any form by any
means without prior written authorization of Sun and its licensors, if any. Third party software,
including font technology, is copyrighted and licensed from Sun suppliers. Sun, Sun Microsystems,
the Sun logo, Solaris, Java, JDK, JavaBeans, Forte, and NetBeans are registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. UNIX is a registered trademark in the U.S. and
other countries, exclusively licensed through X/Open Company, Ltd. Federal Acquisitions:
Commercial Software – Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES,INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

The Tutorials – Your First
Steps in the IDE
These tutorials will get you down to work with Forte for Java Community Edition 1.0, quickly
and easily. We'll walk you through building several simple applications, step by step, to familiarize you
with the IDE interface and operation.

Tutorial One: The Clock. Presented in three steps, this first builds a simple, functional clock,
making use of the built in TimerBean. Steps two and three then extend the functionality of the clock,
adding the ability to set the time, and date format.

Tutorial Two: The Color Picker. In part one of this tutorial, we will use Forte for Java’s special
bean support to generate a JavaBean with three properties – red, green and blue. In Step 2 we will
build a form incorporating this bean and use RGB sliders to set the background color.

Tutorial Three: The Image Viewer. In this tutorial we build a simple image viewer.

Tutorial Four: The Debugger. A brief introduction to Forte for Java’s Debugging subsystem.

5

Tutorial One: The Clock
For this tutorial, we will start with a simple clock form, making use of the built-in TimerBean. Once
we have this clock compiled and running successfully, we will then extend its functionality, adding the
ability to set the time, and change the time and date format.

Part One
Startup:

1 Click the New from Template icon on the Main Window. The Templates dialog will open,
displaying available templates grouped into a number of categories. Flip to the SwingForms panel,
select JFrame, and click OK.

2 A dialog requesting the new object's name and location will open. Expand the directory structure
using the node icon (depending on the Look & Feel you are using, this icon is either a "+" or a
bullet), choose $FORTE4J_HOME/Development/examples as the location, (where
$FORTE4J_HOME is your Forte For Java installation directory) and type ClockFrame in the
Object Name field. Click OK when done.

3 You should see the status line of the Main Window read Opening Form: ClockFrame.
Several windows will open – the source Editor, the Form Editor window and the Component
Inspector. Note there are sections of the source in the Editor which have a colored background –
these sections are those regenerated by the Form Editor and may not be modified.

The Component Inspector lists all components currently in the Form Editor and their properties.
Initially there are no components except for the default layout (BorderLayout) and a heading for
Non-Visible components – currently empty.

Add a component:

1We will use a standard JLabel for our
clock display. Flip to the Swing tab of
the Component Palette. You will see a
grouping of common Swing
components. Position your mouse
cursor over each icon to see a tooltip
identification.

2 Select JLabel by single clicking on its icon. The icon will appear "clicked", indicating it has been
selected and is the active component.

3 Place it on the Center panel of the Form Editor surface by clicking once. You will see the
generated code appear in the Editor and a new component listed in the Component Inspector.
Note the currently selected component is marked with blue corner anchor marks. The item
highlighted in the Component Inspector listing also indicates the selected component.

6

Modify the component's properties:

1 Now we will modify the properties of the JLabel. Make sure the JLabel is selected, either by
clicking it in the Component Inspector or by clicking it in the Form Editor window. Flip to the
Synthetic tab of the JLabel in the Component Inspector – you will see Variable Name property
and its value listed.

2 Click on the Variable Name field. The
cursor will appear in the variable value field,
ready to accept keyboard input. Type
jlblCurrentTime into this field. To set
the new value, hit ENTER.

3 Next, find the text property on the Properties
tab. Depending on the size of your Inspector
widow, you may need to scroll down to see
all available properties. Click on the
property's value (currently set to a default of
jLabel1) and enter the text to appear on
the Label – type 00:00:00. Again, hit
ENTER to change the property to this new
value. You will see your text appear on the
Form Editor window.

4 This JLabel will be the main display of our
clock, so let's change the default font
properties. Click the Font property in the
Component Inspector and select the "..."
browse button which appears. A font
properties dialog box will open. Change the
font face to Serif, Bold, 36 pt. Click OK to
confirm the selection. You should see the
default text (00:00:00) on the Form
Editor window reflect your changes.

5 Lastly, we will center the time display. Change the horizontalAlignment property from its
default value (LEFT) to CENTER.

This completes the visual aspect of the first stage of this tutorial. Now we will add functionality to
this form by adding the TimerBean and some code.

Functionality – Adding Code:

1 First, we will add some imports to the code. Switch to the source Editor, and scroll to the top of
the code. This form will require the standard date and time imports. Copy the following code, and
paste it into the Editor directly under the line reading package examples;. When you paste
your code into the Editor, it may not stay correctly indented. To indent a block of code, select the
block and press TAB or SHIFT+TAB to correctly align the block.

import java.util.Date;

7

import java.util.GregorianCalendar;
import java.util.Calendar;
import java.text.SimpleDateFormat;

We will also use the standard JOptionPane for error messages:

import javax.swing.JOptionPane;

2 Add the following three lines below the Variables Declaration block towards the end of
the code (below the protected Form Editor code marked with a shaded background).

private GregorianCalendar gCal = new GregorianCalendar();
private String timeFormat = "hh:mm:ss";
private SimpleDateFormat formatter = new

SimpleDateFormat(timeFormat);

Add the TimerBean, and set an event handler:

1 Choose the Beans tab of the Component Palette and select TimerBean. Place it anywhere on the
Form work surface. The TimerBean is a non-visual component, so you will not see anything
appear on the Form Editor window. However, you will see the TimerBean listed in the
Component Inspector under the NonVisual Components heading.

2 Select the TimerBean in the Inspector, and change its variable name to tmrSeconds.

3 Flip to the Events panel of the TimerBean's properties in the Inspector. Set the onTime event to
tmrSecondsOnTime. You will see the Editor window generate the new method. If you scroll
back up through the code, you will see that the listener which invokes this method has also been
generated.

4 Now we will add the code for this new method in the Editor. Add the following code under the
// Add your handling code here line:

gCal.add(Calendar.SECOND,1);
String timeTxt = formatter.format(gCal.getTime());
if (jlblCurrentTime != null)
 jlblCurrentTime.setText(timeTxt);

Compiling and Executing the form:

1 The basic clock is now complete. Select the Execute icon from the Main Window. Watch the status
bar of the Main Window – you will see the progress of the operation. Your form and code are
first saved and then compiled.

2 Assuming there are no errors and compilation is completed successfully, Forte For Java will
switch to the Running Workspace and the form will open. Note that the Execution View, also
open on the Running Workspace, displays the ClockFrame as a currently running process.

That's it!

8

Again, assuming there are no errors, your clock should be
displayed, showing the correct current time, with the seconds
incrementing normally.

You've just built your first form!

To close the form, right-click on it in the Execution View, and
choose Terminate Process. Note that while you can also terminate
this form by closing the form window, this relies on the

WindowClosing event being set. The JFrame Template we used to build this form has this event set
to close the application as a default setting. Without it, closing the window would not actually
terminate the process.

This concludes Part One of the Tutorial. In Part Two – Adding a "Set Time" Panel, we will extend
the functionality of this clock, adding the ability to set the current time.

Part Two – Adding a "Set Time" Panel

In Part One of this tutorial, we built a basic functional clock. We will now add the ability to set the
time to our form.

First of all, since you have just executed the Clock form, Forte For Java has switched to the Running
Workspace, where the source Editor, Form Editor and Component Inspector are not displayed (by
default). Use the Workspace tabs on the Main Window to flip back to the Editing Workspace, where
all your editing tools are displayed.

Adding a panel and setting the Layout:

1 First add a new JPanel for our new components. Flip to the Swing tab of the Component Palette,
and select JPanel. Place it on the North panel of the Form Editor surface. You will see the new
item in the Component Inspector.

2 Expand this new JPanel in the Component Inspector by clicking on the "+" icon which appears
beside it – you will see the default FlowLayout listed below this JPanel. For this example we will
not use this default layout – in the Component Palette, flip to the Layouts tab. Position your
mouse over each of the icons in this group to see the tool-tip identifiers. Select GridLayout by
single-clicking its icon, and assign this layout to our new JPanel by clicking once on the JPanel in
the North part of the Form Editor. You will see the new layout replace FlowLayout in the
Component Inspector and a grid appear on the Form Editor surface.

3 The default GridLayout includes 3 columns and 2 rows. In fact, we only need 1 row – select the
GridLayout in the Component Inspector, and change the Rows property from the default of 2 to
1. The grid displayed in the Form Editor window will change accordingly.

Adding new components:

1 Next we will add some visual Swing components to the new panel. Flip to the Swing panel of the
Component Palette, select JLabel, and place it anywhere on the new panel.

9

2 Now select JTextField from the Swing panel, and place it on the panel by clicking anywhere on the
JPanel in the Form Editor window. Using this layout, visual components are ordered left to right
in the order that you add them.

3Lastly, select JButton from the Swing
panel of the Component Palette, and place
it on the JPanel – you should now see the
three components, equally sized, across
the top of the Form.

Changing properties:

1Now we will modify the properties of
these new components. Select the JLabel
component, either by clicking on it in the
Form Editor window or by clicking on it
in the Component Inspector. Flip to the
Synthetic tab in the Component Inspector.

2 First change the variable name to jlblNewTime – remember to hit ENTER to set the property
value.

3 Next change its text property on the Properties tab to New Time:. You will see the text appear
on the Label in the Form Editor.

4 Find the horizontalAlignment property, and select the new alignment – CENTER.

5 Click the JTextField component in the Component Inspector, change its variable name property
to jftNewTime, and set the text property to a default time of 00:00:00

6 Select the JButton in the Component Inspector. Change the variable name of the JButton to
jbtnNewTime. Change its text value to Set New Time.

Adding functionality:

1 Select the JButton you have just added in the Component Inspector, and flip to its Events panel.
Set the actionPerformed event to jbtnSetNewTimeClicked. You will see the new event
handler generated in the Editor.

2 Add the following code to this new handler:

try {

String timeStr = jtfNewTime.getText();

gCal.setTime(formatter.parse(timeStr));
} catch (java.text.ParseException e) {
 JOptionPane.showMessageDialog(this,

"Invalid date format",

"I don't understand your date format.",
 JOptionPane.ERROR_MESSAGE);

10

}

Compiling and executing:

1 Hit CTRL+F9 to execute the new form. Again you will see the status bar of the Main Window
indicating the progress of the execution. Once compiled and running, try setting a new time by
clicking the Set Time button. If you enter a time not in the default "hh:mm:ss" format, an error
dialog box will open.

2 Once you have verified your Clock is working, again terminate the process using the context
menu in the Execution View window.

3 This concludes Part Two of the Tutorial. In Part Three – A "Set Format" Panel, we will add a
panel allowing the date and time format to be modified.

Part Three – A "Set Format" Panel

In this final section we will add the option of setting the time format.

Adding a panel and setting the layout:

1 Switch back to the Editing Workspace to see your editing windows – the Explorer, Form Editor
window, Component Inspector, and Editor.

2 Add a new JPanel to the East panel of the Form Editor window surface. Select the new JPanel
item in the Component Inspector, and flip to its Layout tab. You will see the Direction property is
set to East, where you just placed the JPanel. In fact we want this new panel on the South part of
the Form – click the direction, and select South from the drop-down list. You will see the JPanel
repositioned in the new location.

3 We will again change the Layout of this new JPanel – select GridLayout from the Layouts tab of the
Component Palette, and drop it onto the new JPanel. Select the GridLayout in the Component
Inspector, and change the Rows property from the default of 2 to 1.

Add some components:

1 Position a JLabel from the Swing tab of the Component Palette on the new JPanel. Also add a
JTextField, and lastly, a JButton. The components will appear in the order you place them, across
the South panel of the Form.

11

Setting the properties:

1 Again we will modify the default properties of these new components. Set the JLabel's
variable name to jlblNewFormat, and its text property to Time Format. Change its
horizontal alignment to CENTER.

2 Set the JTextField variable name to jtfNewTimeFormat, and change the default text
to hh:mm:ss.

3 Set the JButton variable name to jbtnNewTimeFormat. Set the text to read Set new
time format.

Adding functionality:

1 Select the jbtnNewTimeFormat button in the Component Inspector, and flip to its Events
panel. Set the actionPerformed event to jbtnNewTimeFormatClicked. You will see the
new event handler generated in the code.

2 Add the following to the handler generated:

String timeFormat = jtfNewTimeFormat.getText();
formatter = new SimpleDateFormat(timeFormat);

Compiling and executing:

1 Execute the completed code from the Build menu of the Main Window.

You can now set the time format using the SimpleDateFormat syntax (described in the JDK
documentation – $JDK_HOME/docs/api/java/text/SimpleDateFormat.html, where
$JDK_HOME is the directory where the JDK installed)

For example, try the entering following in your New Format text panel:EEEE, d MMMM,
hh:mm:ss a .

This concludes Tutorial One. On the Running Workspace, right-click on the ClockFrame item
appearing in the Execution Window, and select Terminate Process. This will close the currently
running ClockFrame.

In Tutorial Two: The Color Picker, we will use Forte for Java’s bean support to build a JavaBean

12

component, and then we will build a form using that bean to set the background color using RGB
sliders.

Tutorial Two: The Color Picker
In this tutorial we will first use the Bean Patterns feature to build a JavaBean component with three
properties – red, green, and blue – which are used to set the background color. In Part Two, we will
create a form incorporating this JavaBean, which uses sliders to set these RGB values and display the
resulting color.

Part One – Building a JavaBean

If you have not already done so, switch back to the Editing Workspace. If you have just completed
Tutorial One, you probably still have the Clock Form and Editor open – close these windows.

If you don't have one open, open an Explorer window from the Explorer icon on the Main Window.

Right-click on the Examples directory, and select New Package from the context menu. Call your
new package colorpicker.

Next we will create a new class called ColorPreview in the colorpicker package.

Creating a bean:

◊ Create a new class in the colorpicker package by right-clicking on the colorpicker folder
and selecting New From Template | Classes | Class from the popup menu. When the New dialog
appears, enter ColorPreview as the class name.

The Bean Patterns:

We will use Bean Patterns to create a JavaBean. The bean will have three properties – red, green
and blue – and display these values as a background.

1 Expand the ColorPreview class node under the ColorPreview node. (The Bean Patterns node
will appear.)

2 Since ColorPreview extends JPanel, you need to open the property sheet of the ColorPreview
class node by selecting Properties from its popup menu and changing the Extends property
from java.lang.Object to javax.swing.JPanel .

13

3Right-click on the Bean Patterns node and select New |
Property from the popup menu. The New Property
Pattern dialog will appear.

4Now you will generate the property red. Enter red in
the Name field and select int as the Type and
Read/Write as the Mode of the property. Also check
the Bound, Generate Field, Generate Return Statement,
Generate Set Statement, and Generate Property Change
Support options. Finally, click OK to confirm your
selections.

Repeat these steps for the green and blue properties.

Adding code:

We will now need to manually add some code to the set
methods of the color properties.

1In the Editor, flip to the ColorPreview tab

2Find the setRed method. Immediately under the line
reading:

propertyChangeSupport.firePropertyChange("red", new
Integer(oldRed), new Integer(red));

add the following lines:

setBackground (new java.awt.Color(red,green,blue));
repaint();

3 Copy and paste this same code to each of the other methods – both setGreen and setBlue.

Generating BeanInfo

We would like to assign an icon to the ColorPreview bean. So we will need to generate its
BeanInfo and in it specify the location of the icon.

1 Right-click on the Bean Patterns node of the ColorPreview bean and select Generate BeanInfo
from the popup menu. The Generate BeanInfo Dialog will appear.

2 Select the Bean Info node on the left tab and its properties will appear on the right tab

3 Set the Icon 16x16 Color property to ColorPreview.gif. Please note that the
ColorPreview.gif must be presented in the colorpicker folder. So you should copy the
tutorial/colorpicker/ColorPreview.gif to your Examples/colorpicker folder.

4 The ColorPreviewBeanInfo node will appear in the Explorer under the
Examples/colorpicker folder.

5 Save and compile the ColorPreviewBeanInfo

14

This completes the construction of the JavaBean. Now let's test it out.

Testing your Bean:

1 right-click on the colorpicker package in the Explorer, and select Compile from the context
menu to compile all out-of-date classes in this package. Assuming there are no errors, you can
close the Editor window.

2 Once you have seen the bean in action click Cancel on the Customize dialog to close it.

We will now add our new bean to the Component Palette, where it will be available for use just like
any standard component.

Add the new bean to the Component Palette:

1 Right-click on ColorPreview in the Explorer window, and select Tools | Add To Component Palette
from the context menu.The Palette Category dialog will appear.

2 Select the Beans item from the Palette Category and confirm the selection.

Flip to the Beans tab of the Component
Palette on the Main Window, and you will see
your new bean installed and ready for use.

This concludes Step One of the Color Picker
tutorial. In Part Two – The Color Picker
Form, we will build a Form which uses this
bean and allows background color to be set
via sliders.

Part Two – The Color Picker Form
Startup:

1 right-click on the colorpicker package in the Explorer, and select New From Template | Swing
Forms | JFrame.

2 Give your new JFrame the name ColorPicker, and click OK. The JFrame template will open
in the Editor window, and the Form Editor and Component Inspector windows will open.

Adding Components:

1 We will now add some components to the JFrame. On the Component Palette, flip to the Swing
Tab, and select JPanel. Click on the Center panel of the Form Editor surface to add the JPanel to
the form. You will see the new JPanel (named JPanel1) appear in the Component Inspector.

2 Rename this JPanel colorPreviewPanel, either by changing the variable name in the
properties listed, or by in-place renaming of the item in the component listing at the top of the
Component Inspector

3 We will not use the default layout for this JPanel. Expand the new JPanel listed in the Component

15

Inspector by clicking its "+" icon, and right-click on the FlowLayout item listed below it. Select
Set Layout | BorderLayout from the context menu.

4 Now we will add the JavaBean created in Step One. Flip to the Beans tab of the Component
Palette, select the ColorPreview bean, and click once on the center panel of the
colorPreviewPanel JPanel to position the bean there.

5 Next we will add the three sliders which will be used to set the color.

Add a new JPanel to the North panel of the Form Editor surface: flip to the Swing tab of the
Component Palette, select JPanel, and click on the north panel of the form surface.

6 Flip to the Layouts tab, select BoxLayout, and place it on the new (north) JPanel.

7 Flip to the Swing2 tab of the Component Palette, and select JSlider. Place a JSlider on the new
JPanel.

8 We will need a slider for each color property (red, green and blue). Select JSlider again: this time
hold down the SHIFT key as you click on the form surface (on the same north JPanel where the
first JSlider is). This will allow you to add multiple components without needing to reselect them
from the Component Palette. Add two more JSliders, so that you have a total of three.

9 Name each of your new sliders – set the variable name property in the Component Inspector
to redSlider, greenSlider, and blueSlider, for the first, second, and third sliders in the
component listing, respectively.

10 Now we must set the maximum allowed value of each slider. Select the red slider on the form
surface by clicking on it, and then by holding down CTRL, select both of the other sliders. You
should see the anchor marks indicating the component is selected appear around each slider on
the form. In addition, the components will be highlighted in the Component Inspector listing.
Change the Maximum property in the property listing to 255, and hit ENTER. This changes that
property for all three sliders.

Adding Borders:

1 Next we will add a border to each of the sliders. Flip to the Borders tab of the Component
Palette, and select TitledBorder. Again, hold down the SHIFT key to add multiple borders, and add
one to each JSlider. Click directly on each JSlider on the form surface – you should see the
borders appear around each.

16

2Now we will set the text of the slider
borders.

3In the Component Inspector, select the red
slider and click on its border property and
then the "..." icon to open the Border
Properties dialog. Change the Title
property of this border to Red. Remember to
hit ENTER to set this new property, and click
OK.

4Repeat this procedure for both of the other
sliders and title them Green and Blue,
respectively.

5We will also add a border to the
colorPreviewPanel panel. Select Titled
Border from the Borders tab of the
Component Inspector, and place it on the
colorPreviewPanel JPanel. Place it
anywhere on the JPanel but the center panel,
where the ColorPreview bean is located.

6Select ColorPreviewPanel in the
component listing, and open its Border

Property dialog by clicking its Border property and then "...". Set its title to Color Preview,
hit ENTER, and click OK.

The Connection Wizard:

Finally, we will use the Connection Wizard to connect the sliders to the bean.

1Click the Connection Mode icon, which appears on the Main
Window immediately to the left of the Component Palette. The
icon will appear "pushed", indicating Connection Mode is active.

2Click first on the Red JSlider on the Form Editor surface, and
then the center panel of the Color Preview panel, where the
colorPreview1 bean is located. The Connection Wizard
dialog will open.

3 Expand the "change" node, and select stateChanged. Click Next to continue.

4 With the Set Property radio button checked, select the red property, and click Next.
5 In the final Connection Wizard dialog, click the Property radio button, and select "..." to browse.

Select value from the list, and click OK. Lastly, click Finish to dismiss the Connection Wizard.

6 Repeat the previous three steps for each of the other JSliders, selecting the green and blue
properties respectively in Step 2.

Repositioning the sliders

17

◊ Lastly, we will reposition the Sliders. In the Component Inspector, select the BoxLayout of the
JPanel1 component. Double-click on the Axis property to toggle to the Y Axis value. This is a
more convenient display of the JSliders in this example.

That's it! Save your form via the File | Save menu item or using the Save icon on the Main Window,
and compile from the Build | Compile menu item. Execute it via the Build | Execute menu item, or by
hitting CTRL+F9.

Forte For Java will switch to the Running Workspace and display the running Color Picker form.
Adjust the sliders and check the displayed color changes accordingly.

To close the Color Picker, use the Execution View, which is also displayed on the Running
Workspace. Right-click on the ColorPicker item listed in the Execution View, and select Terminate
process from the context menu.

This concludes Tutorial Two.

Tutorial Three: The Image Viewer
In this tutorial, we build a simple image viewer.

Part One
Startup:

1 If Forte For Java is still on the Running Workspace from the previous tutorial, terminate any
currently executing processes (via the Execution View listing), and switch back to the Editing

18

Workspace. If you have any Forms or Editor windows open from previous tutorials, save your
work if necessary, and close them.

2 In the Explorer, browse the Repository to the examples directory. Right-click the examples
directory, and select New Package – call it imageviewer. You will see the new package appear in
the Explorer.

3 Right-click the new package, select New From Template | Swing Forms | JFrame. Name the new
JFrame ImageViewer. Click OK – the Editor, Form Editor and Component Inspector windows
will open.

4 Set JFrame title. Select ImageViewer in Component Inspector and set its title property to
Image Viewer and hit ENTER.

Adding Components:

1 First we will add a menu to the JFrame. Flip to the Swing tab of the Component Palette, and
select JMenuBar. Click anywhere on the Form Editor surface to add the menu. You will see the
menu appear on the form surface, and in the component listing in the Component Inspector.
Initially the menu has no item.

2 We will add some elements to this menu, using the Menu Editor. Right-click on the Menu in the
Component Inspector (the Menu itself, not the MenuBar), and select New | JMenuItem. You will
see JMenuItem appear below JMenu1.

3 Next, right-click on the Menu in the Component Inspector (the Menu itself, not the MenuBar),
and select New |Separator. You will see the separator appear below the first menu item.

4 Next we will add a second menu item. Again right-click on the parent Menu, and select New |
JMenuItem. It will appear below the separator in the menu listing.

5 With the Menu selected in the Component Inspector, scroll through the list of its properties to
the text property; set this to File. Hit ENTER to set the new value. Change its variable
name from jMenu1 to fileMenu; again remember to hit return.

6 Select the first menu item in the Component Inspector, change its text to Open, and its
variable name to openMenuItem.

7 Similarly for the second menu item, change its text to Exit, and its variable name to
exitMenuItem.

19

8 Next we will add a JDesktop to the frame, where the images will be displayed. Select JDesktopPane
from the Swing2 tab of the Component Palette, and place it on the center panel of the Form
Editor surface. Set its variable name in the Component Inspector property listing to
desktop.

Adding the Code:

Now we need to generate the event handlers for the menu items. There are several ways of doing this;
we will demonstrate two of them here.

Adding the event handler:

1 Firstly, for the Open menu item, simply double-click the item in the component list in the
Component Inspector. You will see the Editor jump towards the bottom of the code, and the new
handler generated.

2For the Exit menu item, this time actually select
Exit from the Menu on the Form Editor surface.
You will again see the new handler generated in
the Editor window.

We will now add some code to these event
handlers.

Adding code for the event handlers:

1Firstly, for the File | Exit Menu item: find the
exitMenuItemActionPerformed handler.
There will be a line immediately following reading

// Add your handling code here. Add the following line immediately below this:

System.exit(0);

2 Next, for the File | Open menu item: find the openMenuItemActionPerformed handler – this
should be just below the Exit menu handler – and copy the following code immediately below the
// Add your handling code here comment line.

java.awt.FileDialog fd = new java.awt.FileDialog (this);
fd.show ();
if (fd.getFile () == null) return;

This code simply displays the standard File | Open dialog, and returns if the Cancel button is
clicked.

3 Add the following four lines immediately below this (making sure that any lines that wrap below
do not wrap when you paste them to the Editor):

ImageFrame ifr = new ImageFrame (fd.getDirectory () + fd.getFile
());

desktop.add (ifr, javax.swing.JLayeredPane.DEFAULT_LAYER);

20

ifr.setSize (200, 200);
ifr.setLocation (0, 0);

This is the code that handles the display of the images. We will create ImageFrame in Part Two.

Save the form from the File menu, and close the Form Editor.

In Part Two – ImageFrame, we will build the ImageFrame.

Part Two – ImageFrame

1 Right-click on the imageviewer package in the Explorer, and select New From Template | Swing
Forms | JInternalFrame. Name the new form ImageFrame. Click OK. The Form Editor will open,
and the source will open (assuming your Editor window is still open from Part One) as a new tab
in the Editor window.

2 From the Swing tab of the Component Palette, select JScrollPane, and place it on the center panel
of the new form. Again from the Swing tab, select JLabel, and place it on the JScrollPane.

3 Change the JLabel variable name to imageLabel in the Component Inspector. Remember to
hit return to set this new value. Set the text to an empty string, by removing the default text
(jLabel1) in the Component inspector listing.

4 Select the top level node of the Component Inspector – ImageFrame. Scroll through the list of
properties, and double-click on each of the following items to toggle the property's value from
False to True:

• closable
• iconifiable
• resizable

This will allow us to close, iconify and resize any images we have open in the Image Viewer.

5 Lastly, we will add some code to the Editor. In the code marked /** Initializes the
Form */ towards the top of the source, modify the declaration reading public
ImageFrame() and add parameters so that the line reads

public ImageFrame(String imageName) {

Under the initComponents (); line in this same block, add the following:

setTitle (imageName);
imageLabel.setIcon (new javax.swing.ImageIcon (imageName));

The Image Viewer is now complete. Right-click on the imageviewer package in the Explorer, and
select Compile All. Watch the status bar of the Main Window to see the progress of the compilation.
Once completed, select the ImageViewer object in the Explorer, and execute it using the Execute icon

21

on the Main Window.

Use the File menu to open any .gif or .jpg images you have on your local drive(s). If you don't have
any images handy, browse to $FORTE4J_HOME/docs/Tutorial/images/, where
$FORTE4J_HOME is your Forte For Java installation directory, and select any file.

You can open multiple images, resize them, iconify them, and close them.

This concludes Tutorial Three.

Tutorial Four: The Debugger
In this tutorial we will demonstrate use of the debugging subsystem of Forte For Java. We will use the
completed code for one of the earlier tutorials – part three of Tutorial One, the advanced version of
the Clock. The completed code for this tutorial (and all other tutorials) is included with Forte For
Java, and can be found under Development/tutorial/ in the Forte For Java Explorer.

The Debugger allows you to set and remove breakpoints, watch variables, track the state of threads,
and more. All of this can be done within the simple and intuitive graphical user interface.

Preliminary Setup:

◊ At a later stage in this tutorial we will need to access the included TimerBean source. To make this
source accessible to the IDE, we need to mount it as a new file system. From the Tools menu on
the Main Window, select Add Directory. A standard Browse dialog will open. Navigate to your
Forte For Java installation directory, and select the sources subdirectory. Click Mount, and you will
see a new file system appear in the Repository.

Working with Breakpoints

1 Close any sources and forms you may have open, and terminate any running processes. Flip to
the Editing Workspace, open an Explorer window, and expand the
Development\tutorial\clock hierarchy. We will use the final stage of this tutorial – in the
part3 subdirectory. Double-click on ClockFrame to open this object in the Editor, Form Editor,
and Component Inspector.

2 Click the Compile icon on the Main Window, or use the keyboard shortcut F9, to compile this
source. You should see the Main Window status line indicating the progress of this command. (If
you get a warning about a deprecated API, ignore it – it is harmless in this case.)

3 In the Editor window, find the main method, and position the cursor on the first line of the body
(you can also use CTRL+g to go to the correct line). We will add a breakpoint to this line. Open
the Debug menu from the Main Window, and choose Toggle Breakpoint or press CTRL+F8. You
will see the line highlighted in blue, indicating a breakpoint is set on that line. (Note that putting a
breakpoint on the previous line, the one declaring the method, will not work for main() – Java

22

calls the body of main methods in a special way for the debugger, and you cannot trace into it.)

The debugging session

1 Let's start the debugging session. Again from the Debug menu on the Main Window, choose Go,
or press F5. HotSpot users must set the Classic property to True for Debugger Types /
Standard Debugging/ Standard Debugging [default] under the Project Settings tab
in the Explorer). Forte For Java will switch to the Debugging Workspace, and two new windows
will open – the Debugger window, and the Output window.

The Output window is split vertically, the left panel displaying the output of the debugged
program and the right panel showing messages from the debugger itself.

The Debugger window is used to manipulate breakpoints and watch program variables and the
state of threads. These are each displayed under a separate tab. Currently under the Breakpoints

23

tab you will see the breakpoint we have just set, listed by source name and line number.

You will see several messages from the debugger in the Output window, and then the debugger
will halt at the breakpoint in the main method. The blue-highlighted line in the Editor will change
to pink to indicate where execution has halted.

2 At this point you can continue (F5), Trace Over the current line (F8), or Trace Into the function
called on the current line (F7). We wish to step into ClockFrame, so push F7, or select Trace Into
from the Debug menu on the Main Window and then push CTRL+F7 and F7 again.

You will see another line of Output from the Debugger in the output window, and the Editor
window will jump to the constructor of the ClockFrame class and again halt. You should see a
pink highlighted line where the debugger is currently stopped.

3 You will next break at the first of the three variable declarations manually entered when creating
the tutorial (private GregorianCalendar gCal ...). Push F8 to trace over this; Trace over both
others by pushing F8 twice more.

4 The pink line highlighting the current point in the code should now be at the line reading
initComponents ();. Push F7 to trace into this. You are halted on the line where the
instance of com.netbeans.timerbean.Timer is created. Press F7, then CTRL+F7, and
then F7 again to step in. Assuming you have mounted the sources directory as a file system as
described in the Preliminary Setup section, the Timer source will open in the Editor window, and
the Debugger session will now step into it. The pink highlighted line indicates the point in the
source where the Debugger is stopped.

5 Press F5 to continue. The ClockFrame will open and run.

6 Find the tmrSecondsOnTime() method in the ClockFrame source, and set a breakpoint
(CTRL+F8) on the line declaring the method. The next time the program flow goes through this
point, execution will halt, and the blue breakpoint line will turn pink.

Watching Variables

24

1 Flip to the Watches tab of the Debugger window. Here you can monitor the values of individual
variables during execution. To add a new watch, you can select Debug | Add Watch from the Main
Window or right-click on the root item of the Watches tree on the Watches tab of the Debugger
window, and select Add Watch. You can also right-click on the variable in the editor and select Add
Watch. Now go to the tmrSecondsOnTime() method and right-click on the variable timeTxt.
timeTxt will appear in the Watches tree in the Debugger Window.

2 Push F5 to continue the debugging session. After one second of execution,
tmrSecondsOnTime() will be called again, and execution will again halt. The value of
timeTxt displayed in the Debugger window will update when debugger moves over it (an
increment of one second).

It is possible to watch multiple variables simultaneously – simply add a watch as before. All
watched variables are listed in the Debugger Window. You can delete watched variables by
selecting them in the Watches tree and pressing the DELETE key, or by selecting Delete from
the popup menu. If a variable is not in the current scope, it does not display any value.

As you use F5, F7, and F8 to continue, step into, and step over the code, respectively, you can
monitor the values of the watched variables at each stage.

Threads

Under the threads tab of the Debugger window, the current state of all threads of the program are
listed.

Other Features

• The state of the debugging session, including breakpoint locations and watched variables, is
preserved across sessions. It is not necessary to explicitly save the session.

25

• To end a debugging session, select Debug | Finish Debugger from the Main Window, or use the
keyboard shortcut CTRL+F5.

• You can customize the Debugging subsystem from the Project Settings tab of the Explorer on
the property sheets for Debugger Settings and the various subnodes of Debugger Types.

