Fortran to Python Interface Generator with an Application to

Aerospace Engineering

Pearu Peterson

<pearu@cens.ioc.ee>

Center of Nonlinear Studies
Institute of Cybernetics at TTU
Akadeemia Rd 21, 12618 Tallinn, ESTONIA

Joaquim R. R. A. Martins and Juan J. Alonso

<joaquim.martins@stanford.edu>, <jjalonso@stanford.edu>

Department of Aeronautics and Astronautics
Stanford University, CA

Revision : 1.16
January 18, 2001

Abstract

FPIG — Fortran to Python Interface Generator —
is a tool for generating Python C/API extension
modules that interface Fortran 77/90/95 codes with
Python. This tool automates the process of interface
generation by scanning the Fortran source code to
determine the signatures of Fortran routines and cre-
ating a Python C/API module that contains the cor-
responding interface functions. FPIG also attempts
to find dependence relations between the arguments
of a Fortran routine call (e.g. an array and its dimen-
sions) and constructs interface functions with poten-
tially fewer arguments. The tool is extremely flexible
since the user has control over the generation process
of the interface by specifying the desired function sig-
natures. The home page for FPIG can be found at
http://cens.ioc.ee/projects/f2py2e/.

FPIG has been used successfully to wrap a large
number of Fortran programs and libraries. Advances
in computational science have led to large improve-
ments in the modeling of physical systems which
are often a result of the coupling of a variety of
physical models that were typically run in isolation.
Since a majority of the available physical models have
been previously written in Fortran, the importance of
FPIG in accomplishing these couplings cannot be un-
derstated. In this paper, we present an application
of FPIG to create an object-oriented framework for
aero-structural analysis and design of aircraft.

Contents

1 Preface

2 Introduction

3 Getting Started
3.1 Interfacing Simple Routines
3.2 Interfacing Libraries

4 Basic Features

5 Implementation Issues
5.1 Mapping Fortran Types to C Types .
5.2 Calling Fortran (Module) Routines . .
5.3 Wrapping Fortran Functions
5.4 Accessing Fortran Data
5.5 PyFortranObject
5.6 Callback Functions

6 Future Work

7 Application to a Large Aero-Structural

Analysis Framework

7.1 The Need for Python and FPIG

7.2 Wrapping the Fortran Programs . . .

7.3 Module Design
7.3.1 Geometry
732 Flow
7.3.3 Structure
7.3.4 Aerostructure

74 Results.

(OIS BEN BEN e e)]

Qo

[y
[es 3 s JiNe JiNe BiNe BN BiNe BN0 N© ¢]

[y

1 Preface

The use of high-performance computing has made
it possible to tackle many important problems and
discover new physical phenomena in science and en-
gineering. These accomplishments would not have
been achieved without the computer’s ability to pro-
cess large amounts of data in a reasonably short time.
It can safely be said that the computer has become an
essential tool for scientists and engineers. However,
the diversity of problems in science and engineering
has left its mark as computer programs have been de-
veloped in different programming languages, includ-
ing languages developed to describe certain specific
classes of problems.

In interdisciplinary fields it is not uncommon for
scientists and engineers to face problems that have
already been solved in a different programming envi-
ronment from the one they are familiar with. Unfor-
tunately, researchers may not have the time or will-
ingness to learn a new programming language and
typically end up developing the corresponding tools
in the language that they normally use. This ap-
proach to the development of new software can sub-
stantially impact the time to develop and the qual-
ity of the resulting product: firstly, it usually takes
longer to develop and test a new tool than to learn
a new programming environment, and secondly it is
very unlikely that a non-specialist in a given field can
produce a program that is more efficient than more
established tools.

To avoid situations such as the one described
above, one alternative would be to provide auto-
matic or semi-automatic interfaces between program-
ming languages. Another possibility would be to pro-
vide language translators, but these obviously require
more work than interface generators — a translator
must understand all language constructs while an in-
terface generator only needs to understand a subset
of these constructs. With an automatic interface be-
tween two languages, scientists or engineers can ef-
fectively use programs written in other programming
languages without ever having to learn them.

Although it is clear that it is impossible to interface
arbitrary programming languages with each other,
there is no reason for doing so. Low-level languages
such as C and Fortran are well known for their speed
and are therefore suitable for applications where per-
formance is critical. High-level scripting languages,
on the other hand, are generally slower but much
easier to learn and use, especially when performing
interactive analysis. Therefore, it makes sense to cre-
ate interfaces only in one direction: from lower-level
languages to higher-level languages.

In an ideal world, scientists and engineers would
use higher-level languages for the manipulation of
the mathematical formulas in a problem rather than
having to struggle with tedious programming details.
For tasks that are computationally demanding, they
would use interfaces to high-performance routines
that are written in a lower-level language optimized
for execution speed.

2 Introduction

This paper presents a tool that has been developed
for the creation of interfaces between Fortran and
Python.

The Fortran language is popular in scientific com-
puting, and is used mostly in applications that use
extensive matrix manipulations (e.g. linear algebra).
Since Fortran has been the standard language among
scientists and engineers for at least three decades,
there is a large number of legacy codes available that
perform a variety of tasks using very sophisticated
algorithms (see e.g. [1]).

The Python language [2], on the other hand, is a
relatively new programming language. It is a very
high-level scripting language that supports object-
oriented programming. What makes Python espe-
cially appealing is its very clear and natural syntax,
which makes it easy to learn and use. With Python
one can implement relatively complicated algorithms
and tasks in a short time with very compact source
code.

Although there are ongoing projects for extending
Python’s usage in scientific computation, it lacks re-
liable tools that are common in scientific and engi-
neering such as ODE integrators, equation solvers,
tools for FEM, etc. The implementation of all of
these tools in Python would be not only too time-
consuming but also inefficient. On the other hand,
these tools are already developed in other, computa-
tionally more efficient languages such as Fortran or C.
Therefore, the perfect role for Python in the context
of scientific computing would be that of a “gluing”
language. That is, the role of providing high-level
interfaces to C, C++ and Fortran libraries.

There are a number of widely-used tools that can
be used for interfacing software libraries to Python.
For binding C libraries with various scripting lan-
guages, including Python, the tool most often used is
SWIG [3]. Wrapping Fortran routines with Python
is less popular, mainly because there are many plat-
form and compiler-specific issues that need to be ad-
dressed. Nevertheless, there is great interest in in-
terfacing Fortran libraries because they provide in-

valuable tools for scientific computing. At LLNL, for
example, a tool called PyFort has been developed for
connecting Fortran and Python [4].

The tools mentioned above require an input file de-
scribing signatures of functions to be interfaced. To
create these input files, one needs to have a good
knowledge of either C or Fortran. In addition, bind-
ing libraries that have thousands of routines can cer-
tainly constitute a very tedious task, even with these
tools.

The tool that is introduced in this paper, FPIG
(Fortran to Python Interface Generator) [5], auto-
matically generates interfaces between Fortran and
Python. It is different from the tools mentioned
above in that FPIG can create signature files auto-
matically by scanning the source code of the libraries
and then construct Python C/API extension mod-
ules. Note that the user need not be experienced in
C or even Fortran. In addition, FPIG is designed to
wrap large Fortran libraries containing many routines
with only one or two commands. This process is very
flexible since one can always modify the generated
signature files to insert additional attributes in or-
der to achieve more sophisticated interface functions
such as taking care of optional arguments, predicting
the sizes of array arguments and performing various
checks on the correctness of the input arguments.

The organization of this paper is as follows. First, a
simple example of FPIG usage is given. Then FPIG’s
basic features are described and solutions to platform
and compiler specific issues are discussed. Unsolved
problems and future work on FPIG’s development
are also addressed. Finally, an application to a large
aero-structural solver is presented as real-world ex-
ample of FPIG’s usage.

3 Getting Started

To get acquainted with FPIG, let us consider the sim-
ple Fortran 77 subroutine shown in Fig. 1. In the sec-
tions that follow, two ways of creating interfaces to
this Fortran subroutine are described. The first and
simplest way is suitable for Fortran codes that are
developed in connection with £2py. The second and
not much more difficult method, is suitable for in-
terfacing existing Fortran libraries which might have
been developed by other programmers.

Numerical Python [6] is needed in order to compile
extension modules generated by FPIG.

3.1 Interfacing Simple Routines

In order to call the Fortran routine expl from
Python, let us create an interface to it by using f2py

subroutine expl(l,u,n)
C Input: n is number of iterations
C Output: 1,u are such that
C 1(1)/1(2) < exp(1) < u(1)/u(2)
C

integer*4 :: n =1

intent(out) 1,u

integer*4 n,i

real*8 1(2),u(2),t,t1,t2,t3,t4

1(2) =1

1(1) =

u(2) =

u(l) =

do 10 i
tl =

I = O O

,n
+ 32 (1+i)*i
t2 1 + (40+32%i)x*i
t3 = 3 + (24+32%i)*i
t4d = 8 + 32x(1+i)*i
t = u(1)
u(l) = 1(1)*t1 + t*t2
1(1) = 1(1)*t3 + txt4
t = u(2)
u(2) = 1(2)*tl + t*t2
1(2) = 1(2)*t3 + txtd
10 continue
end

0
4
1

Figure 1: Example Fortran code expl.f. This rou-
tine calculates the simplest rational lower and upper
approximations to e (for details of the algorithm see
[7], p.122)

(FPIG’s front-end program). In order to do this, we
issue the following command,

sh> f2py -m foo expl.f

where the option -m foo sets the name of the Python
C/API extension module that f2py will create to
foo. To learn more about the £2py command line
options, run f2py without arguments.

The output messages in Fig. 2 illustrate the proce-
dure followed by £2py: (i) it scans the Fortran source
code specified in the command line, (ii) it analyses
and determines the routine signatures, (iii) it con-
structs the corresponding Python C/API extension
modules, (iv) it writes documentation to a LaTeX
file, and (v) it creates a GNU Makefile for building
the shared modules.

Now we can build the foo module:

sh> make -f Makefile-foo

Figure 3 illustrates a sample session for calling the

Reading fortran codes...
Reading file ’expl.f’
Post-processing. ..
Block: foo
Block: expl
Creating ’Makefile-foo’...
Linker: 1d (°GNU 1d’ 2.9.5)
Fortran compiler: £f77 (°g77 2.x.x’ 2.95.2)
C compiler: cc (’gcc 2.x.x’ 2.95.2)
Building modules...
Building module "foo"...
Constructing wrapper function "expl"...
1,u = expl([nl)
Wrote C/API module "foo" to file "foomodule.c"
Documentation is saved to file "foomodule.tex"
Run GNU make to build shared modules:
gmake -f Makefile-<modulename> [test]

Figure 2: Output messages of £2py -m foo expl.f.

Fortran routine exp1 from Python.

Note the difference between the signatures of the
Fortran routine exp1(1,u,n) and the corresponding
wrapper function 1,u=exp1([n]). Clearly, the later
is more informative to the user: expl takes one op-
tional argument n and it returns 1, u. This exchange
of signatures is achieved by special comment lines
(starting with C£2py) in the Fortran source code —
these lines are interpreted by f2py as normal For-
tran code. Therefore, in the given example the line
Cf2py integer*4 :: 1 informs f£2py that the
variable n is optional with a default value equal to
one. The line C£2py intent(out) 1,u informs f2py
that the variables 1,u are to be returned to Python
after calling Fortran function exp1.

n =

3.2 Interfacing Libraries

In our example the Fortran source expl.f contains
f2py specific information, though only as comments.
When interfacing libraries from other parties, it is
not recommended to modify their source. Instead,
one should use a special auxiliary file to collect the
signatures of all Fortran routines and insert £2py spe-
cific declaration and attribute statements in that file.
This auxiliary file is called a signature file and is iden-
tified by the extension .pyf.

We can use f2py to generate these signature
files by using the -h <filename>.pyf option. In
our example, £2py could have been called as follows,

sh> f2py -m foo -h foo.pyf expl.f

where the option -h foo.pyf requests £f2py to read
the routine signatures, save them to the file foo.pyf,
and then exit. If expl.f in Fig. 1 were to contain

>>> import foo,Numeric
>>> print foo.expl.__doc__
expl - Function signature:

1l,u = expli([nl])
Optional arguments:
n := 1 input int

Return objects:
1 : rank-1 array(’d’) with bounds (2)
u : rank-1 array(’d’) with bounds (2)

>>> 1,u = foo.expl()

>>> print 1,u

[1264. 465.] [1457. 536.]

>>> print 1[0]1/1[1], u[0]/ul1]-1[0]1/1[1]
2.71827956989 2.25856657199¢-06

>>> 1,u = foo.expl(2)
>>> print 1,u
[517656. 190435.] [566827. 208524.]

>>> print 1[0]/1[1], u[0]/ul1]1-1[0]1/1[1]
2.71828182845 1.36437527942e-11

Figure 3: Calling Fortran routine exp1 from Python.
Here 1[0]/1[1] gives an estimate to e with abso-
lute error less than u[0] /ul[1]1-1[0]/1[1] (this value
may depend on the platform and compiler used).

no lines starting with Cf2py, the corresponding
signature file foo.pyf would be as shown in Fig. 4.
In order to obtain the exchanged and more con-
venient signature 1,u=foo.expl([n]), we would
edit foo.pyf as shown in Fig. 5. The Python
C/API extension module foo can be constructed by
applying £2py to the signature file with the following
command:

sh> f2py foo.pyf

The procedure for building the corresponding shared
module and using it in Python is identical to the one
described in the previous section.

As we can see, the syntax of the signature file is an
extension of the Fortran 90/95 syntax. This means
that only a few new constructs are introduced for
f2py in addition to all standard Fortran constructs;
signature files can even be written in fixed form. A
complete set of constructs that are used when creat-
ing interfaces, is described in the £2py User’s Guide
8]

4 Basic Features

In this section a short overview of f2py features is
given.

1%£90 —*%— £90 —*-
python module foo

interface
subroutine expl(l,u,n)
real*8 dimension(2) :: 1
real*8 dimension(2) :: u
integer*4 :: n

end subroutine expl
end interface
end python module foo
! This file was auto-generated with f2py
I (version:2.298).
! See http://cens.ioc.ee/projects/f2py2e/

Figure 4: Raw signature file foo.pyf generated with
f2py -m foo -h foo.pyf expl.f

1%£90 —x— £90 —*-
python module foo
interface
subroutine expl(l,u,n)
real*8 dimension(2) :: 1
real*8 dimension(2) :: u
intent (out) 1,u
integer*4 optional :: n =1
end subroutine expl
end interface
end python module foo
! This file was auto-generated with f2py
I (version:2.298) and modified by pearu.
! See http://cens.ioc.ee/projects/f2py2e/

Figure 5: Modified signature file foo.pyf

1. All basic Fortran types are supported. They in-
clude the following type specifications:

integer[| *1 | *2 | %4 | *8]
logicall | *1 | *2 | *4 | %8]
real[| *4 | *8 | *16]
complex[| *8 | *16 | %32]
double precision, double complex
character[|#(k)[*1|*2[*3]...]

In addition, they can all be in the kind-selector
form (e.g. real(kind=8)) or char-selector form
(e.g. character(len=5)).

2. Arrays of all basic types are supported. Dimen-
sion specifications can be of form <dimension>
or <start>:<end>. In addition, * and : di-
mension specifications can be used for input ar-
rays. Dimension specifications may contain also
PARAMETER’s.

3. The following attributes are supported:

e intent(in):
ments.

used for input-only argu-

e intent(inout): used for arguments that
are changed in place.

e intent(out): used for return arguments.

e intent(hide): used for arguments to be
removed from the signature of the Python
function.

e intent(in,out), intent (inout,out):
used for arguments with combined behav-
ior.

e dimension(<dimspec>)

e depend([<names>]): used for arguments
that depend on other arguments in
<names>.

e check([<C booleanexpr>]): used for
checking the correctness of input argu-
ments.

e note(<LaTeX text>): wused for adding
notes to the module documentation.

e optional, required
e external: used for call-back arguments.

e allocatable: used for Fortran 90/95 allo-
catable arrays.

4. Using £f2py one can call arbitrary For-
tran 77/90/95 subroutines and functions from
Python, including Fortran 90/95 module rou-
tines.

5. Using f2py one can access data in Fortran 77
COMMON blocks and variables in Fortran 90/95
modules, including allocatable arrays.

6. Using £2py one can call Python functions from
Fortran (call-back functions). £2py supports
very flexible hooks for call-back functions.

7. Wrapper functions perform the necessary type
conversations for their arguments resulting in
contiguous Numeric arrays that are suitable for
passing to Fortran routines.

8. f2py generates documentation strings for __doc__
attributes of the wrapper functions automati-
cally.

9. f2py scans Fortran codes and creates the sig-
nature files. It automatically detects the signa-
tures of call-back functions, solves argument de-
pendencies, decides the order of initialization of
optional arguments, etc.

10. £2py automatically generates GNU Makefiles
for compiling Fortran and C codes, and linking
them to a shared module. f2py detects avail-
able Fortran and C compilers. The supported
compilers include the GNU project C Compiler
(gee), Compaq Fortran, VAST /90 Fortran, Ab-
soft F77/F90, and MIPSpro 7 Compilers, etc.
f2py has been tested to work on the following
platforms: Intel/Alpha Linux, HP-UX, IRIX64.

11. Finally, the complete £2py User’s Guide is avail-
able in various formats (ps, pdf, html, dvi).
A mailing list, <f2py-users@cens.ioc.ee>, is
open for support and feedback. See the FPIG’s
home page for more information [5].

5 Implementation Issues

The Fortran to Python interface can be thought of
as a three layer “sandwich” of different languages:
Python, C, and Fortran. This arrangement has two
interfaces: Python-C and C-Fortran. Since Python
itself is written in C, there are no basic difficulties
in implementing the Python-C interface [9]. The C-
Fortran interface, on the other hand, results in many
platform and compiler specific issues that have to be
dealt with. We will now discuss these issues in some
detail and describe how they are solved in FPIG.

5.1 Mapping Fortran Types to C
Types

Table 1 defines how Fortran types are mapped to C
types in £2py. Users may redefine these mappings
by creating a .f2py_f2cmap file in the working direc-
tory. This file should contain a Python dictionary of
dictionaries, e.g. {’real’:{’low’:’float’}}, that
informs f2py to map Fortran type real(low) to C
type float (here PARAMETER low = ...).

5.2 Calling Fortran (Module) Rou-
tines

When mixing Fortran and C codes, one has to know
how function names are mapped to low-level symbols
in their object files. Different compilers may use dif-
ferent conventions for this purpose. For example, gcc
appends the underscore _ to a Fortran routine name.
Other compilers may use upper case names, prepend
or append different symbols to Fortran routine names
or both. In any case, if the low-level symbols corre-
sponding to Fortran routines are valid for the C lan-
guage specification, compiler specific issues can be
solved by using CPP macro features.

Fortran type C type

integer *1 char

byte char

integer *2 short

integer[| *4] int

integer *8 long long

logical *1 char

logical *2 short

logicall[| #4] int

logical *8 int

real[| =4] float

real *8 double

real *16 long double

complex[| *8] struct {float r,i;}
complex *16 struct {double r,i;}
complex *32 struct {long double r,i;}
character[*...] | char *

Table 1: Mapping Fortran types to C types.

Unfortunately, there are Fortran compilers that use
symbols in constructing low-level routine names that
are not valid for C. For example, the (IRIX64) MIP-
Spro 7 Compilers use ‘$’ character in the low-level
names of module routines which makes it impossible
(at least directly) to call such routines from C when
using the MIPSpro 7 C Compiler.

In order to overcome this difficulty, FPIG intro-
duces an unique solution: instead of using low-level
symbols for calling Fortran module routines from C,
the references to such routines are determined at run-
time by using special wrappers. These wrappers are
called once during the initialization of an extension
module. They are simple Fortran subroutines that
use a Fortran module and call another C function
with Fortran module routines as arguments in order
to save their references to C global variables that are
later used for calling the corresponding Fortran mod-
ule routines. This arrangement is set up as follows.
Consider the following Fortran 90 module with the
subroutine bar:

module fun
subroutine bar()
end

end

Figure 6 illustrates a Python C/API extension mod-
ule for accessing the F90 module subroutine bar from
Python. When the Python module foo is loaded,
finitbar is called. finitbar calls init_bar by pass-
ing the reference of the Fortran 90 module subroutine
bar to C where it is saved to the variable bar_ptr.
Now, when one executes foo.bar() from Python,

bar_ptr is used in bar_capi to call the F90 module
subroutine bar.

#include "Python.h"

char *bar_ptr;
void init_bar(char *bar) {
bar_ptr = bar;
}
static PyObject *
bar_capi(PyObject *self,PyObject *args) {

‘(;&(void *x)bar_ptr)) O ;

}

static PyMethodDef

foo_module_methods[] = {
{"bar",bar_capi,METH_VARARGS},
{NULL,NULL}

};

extern void finitbar_;

void initfoo() {

/* GCC convention */

finitbar_(init_bar);
Py_InitModule("foo",foo_module_methods);

Figure 6: Sketch of Python C/API for accessing
F90 module subroutine bar. The Fortran function
finitbar is defined in Fig. 7.

subroutine finitbar(cinit)
use fun
extern cinit
call cinit(bar)

end

Figure 7: Wrapper for passing the reference of bar
to C code.

Surprisingly, mixing C code and Fortran modules
in this way is as portable and compiler independent
as mixing C and ordinary Fortran 77 code.

Note that extension modules generated by f2py ac-
tually use PyFortranObject that implements above
described scheme with exchanged functionalities (see
Section 5.5).

5.3 Wrapping Fortran Functions

The Fortran language has two types of routines:
subroutines and functions. When a Fortran func-

tion returns a composed type such as COMPLEX or
CHARACTER-array then calling this function directly
from C may not work for all compilers, as C func-
tions are not supposed to return such references. In
order to avoid this, FPIG constructs an additional
Fortran wrapper subroutine for each such Fortran
function. These wrappers call just the corresponding
functions in the Fortran layer and return the result
to C through its first argument.

5.4 Accessing Fortran Data

In Fortran one can use COMMON blocks and Fortran
module variables to save data that is accessible from
other routines. Using FPIG, one can also access these
data containers from Python. To achieve this, FPIG
uses special wrapper functions (similar to the ones
used for wrapping Fortran module routines) to save
the references to these data containers so that they
can later be used from C.

FPIG can also handle allocatable arrays. For ex-
ample, if a Fortran array is not yet allocated, then by
assigning it in Python, the Fortran to Python inter-
face will allocate and initialize the array. For exam-
ple, the F90 module allocatable array bar defined in

module fun
integer, allocatable ::
end module

bar(:)

can be allocated from Python as follows

>>> import foo

>>> foo.fun.bar = [1,2,3,4]

5.5 PyFortranObject

In general, we would like to access from Python the
following Fortran objects:

e subroutines and functions,

F90 module subroutines and functions,

items in COMMON blocks,
F90 module data.

Assuming that the Fortran source is available, we can
determine the signatures of these objects (the full
specification of routine arguments, the layout of For-
tran data, etc.). In fact, £2py gets this information
while scanning the Fortran source.

In order to access these Fortran objects from C, we
need to determine their references. Note that the di-
rect access of F90 module objects is extremely com-
piler dependent and in some cases even impossible.

Therefore, FPIG uses various wrapper functions for
obtaining the references to Fortran objects. These
wrapper functions are ordinary F77 subroutines that
can easily access objects from F90 modules and that
pass the references to Fortran objects as C variables.

£2py generated Python C/API extension modules
use PyFortranObject to store the references of For-
tran objects. In addition to the storing functional-
ity, the PyFortranObject also provides methods for
accessing/calling Fortran objects from Python in a
user-friendly manner. For example, the item a in
COMMON /bar/ a(2) can be accessed from Python as
foo.bar.a.

Detailed examples of PyFortranObject usage can
be found in [10].

5.6 Callback Functions

Fortran routines may have arguments specified as
external. These arguments are functions or subrou-
tines names that the receiving Fortran routine will
call from its body. For such arguments FPIG con-
structs a call-back mechanism (originally contributed
by Travis Oliphant) that allows Fortran routines to
call Python functions. This is actually realized using
a C layer between Python and Fortran. Currently,
the call-back mechanism is compiler independent un-
less a call-back function needs to return a composed
type (e.g. COMPLEX).

The signatures of call-back functions are deter-
mined when f2py scans the Fortran source code. To
illustrate this, consider the following example:

subroutine foo(bar, fun, boo)
integer i
real r
external bar,fun,boo
call bar(i, 1.2)

r = fun()
call sun(boo)
end

f2py recognizes the signatures of the user routines
bar and fun using the information contained in the
lines call bar(i, 1.2) and r = fun():

subroutine bar(a,b)
integer a
real b

end

function fun()
real fun

end

But £2py cannot determine the signature of the user
routine boo because the source contains no informa-
tion at all about the boo specification. Here user
needs to provide the signature of boo manually.

6 Future Work

FPIG can be used to wrap almost any Fortran code.
However, there are still issues that need to be re-
solved. Some of them are listed below:

1. One of the FPIG’s goals is to become as plat-
form and compiler independent as possible. Cur-
rently FPIG can be used on any UN*X platform
that has gcc installed in it. In the future, FPIG
should be also tested on Windows systems.

2. Another goal of FPIG is to become as sim-
ple to use as possible. To achieve that, FPIG
should start using the facilities of distutils,
the new Python standard to distribute and build
Python modules. Therefore, a contribution to
distutils that can handle Fortran extensions
should be developed.

3. Currently users must be aware of the fact that
multi-dimensional arrays are stored differently in
C and Fortran (they must provide transposed
multi-dimensional arrays to wrapper functions).
In the future a solution should be found such
that users do not need to worry about this rather
confusing and technical detail.

4. Finally, a repository of signature files for widely-
used Fortran libraries (e.g. BLAS, LAPACK,
MINPACK, ODEPACK, EISPACK, LINPACK)
should be provided.

7 Application to a Large Aero-
Structural Analysis Frame-
work

7.1 The Need for Python and FPIG

As a demonstration of the power and usefulness of
FPIG, we will present work that has been done at the
Aerospace Computing Laboratory at Stanford Uni-
versity. The focus of the research is on aircraft design
optimization using high-fidelity analysis tools such as
Computational Fluid Dynamics (CFD) and Compu-
tational Structural Mechanics (CSM) [11].

The group’s analysis programs are written mainly
in Fortran and are the result of many years of de-
velopment. Until now, any researcher that needed to

use these tools would have to learn a less than user-
friendly interface and become relatively familiar with
the inner workings of the codes before starting the re-
search itself. The need to couple analyses of different
disciplines revealed the additional inconvenience of
gluing and scripting the different codes with Fortran.

It was therefore decided that the existing tools
should be wrapped using an object-oriented language
in order to improve their ease of use and versatil-
ity. The use of several different languages such as
C++, Java and Perl was investigated but Python
seemed to provide the best solution. The fact that
it combines scripting capability with a fully-featured
object-oriented programming language, and that it
has a clean syntax were factors that determined our
choice. The introduction of tools that greatly facili-
tate the task of wrapping Fortran with Python pro-
vided the final piece needed to realize our objective.

7.2 Wrapping the Fortran Programs

In theory, it would have been possible to wrap our
Fortran programs with C and then with Python by
hand. However, this would have been a labor inten-
sive task that would detract from our research. The
use of tools that automate the task of wrapping has
been extremely useful.

The first such tool that we used was PyFort. This
tool created the C wrappers and Python modules au-
tomatically, based on signature files (.pyf) provided
by the user. Although it made the task of wrapping
considerably easier, PyFort was limited by the fact
that any Fortran data that was needed at the Python
level had to be passed in the argument list of the For-
tran subroutine. Since the bulk of the data in our pro-
grams is shared by using Fortran 77 common blocks
and Fortran 90 modules, this required adding many
more arguments to the subroutine headers. Further-
more, since Fortran does not allow common block
variables or module data to be specified in a subrou-
tine argument list, a dummy pointer for each desired
variable had to be created and initialized.

The search for a better solution to this problem
led us to f2py. Since f2py provides a solution for
accessing common block and module variables, there
was no need to change the Fortran source anymore,
making the wrapping process even easier. With f2py
we also experienced an increased level of automation
since it produces the signature files automatically, as
well as a Makefile for the joint compilation of the
original Fortran and C wrapper codes. This increased
automation did not detract from its flexibility since
it was always possible to edit the signature files to
provide different functionality.

Once Python interfaces were created for each For-
tran application by running f2py, it was just a mat-
ter of using Python to achieve the final objective of
developing an object-oriented framework for our mul-
tidisciplinary solvers. The Python modules that we
designed are discussed in the following section.

7.3 Module Design

The first objective of this effort was to design the
classes for each type of analysis, each representing
an independent Python module. In our case, we are
interested in performing aero-structural analysis and
optimization of aircraft wings. We therefore needed
an analysis tool for the flow (CFD), another for an-
alyzing the structure (CSM), as well as a geometry
database. In addition, we needed to interface these
two tools in order to analyze the coupled system. The
object design for each of these modules should be
general enough that the underlying analysis code in
Fortran can be changed without changing the Python
interface. Another requirement was that the modules
be usable on their own for single discipline analysis.

7.3.1 Geometry

The Geometry class provides a database for the outer
mold geometry of the aircraft. This database needs
to be accessed by both the flow and structural solvers.
It contains a parametric description of the aircraft’s
surface as well as methods that extract and update
this information.

7.3.2 Flow

The flow solver was wrapped in a class called Flow.
The class was designed so that it can wrap any type
of CFD solver. It contains two main objects: the
computational mesh and a solver object. A graph
showing the hierarchy of the objects in Flow is shown
in Fig. 8. Methods in the flow class include those
used for the initialization of all the class components
as well as methods that write the current solution to
a file.

7.3.3 Structure

The Structure class wraps a structural analysis code.
The class stores the information about the structure
itself in an object called Model which also provides
methods for changing and exporting its information.
A list of the objects contained in this class can be
seen in Fig. 9. Since the Structure class contains
a dictionary of LoadCuase objects, it is able to store

Flow

{BlocK]

<>t Surface

<>t Parameters

Figure 8: The Flow container class.

and solve multiple load cases, a capability that the
original Fortran code does not have.

7.3.4 Aerostructure

The Aerostructure class is the main class in the aero-
structural analysis module and contains a Geometry,
a Flow and a Structure. In addition, the class de-
fines all the functions that are necessary to translate
aerodynamic loads to structural loads and structural
displacements to geometry surface deformations.

One of the main methods of this class is the one
that solves the aeroelastic system. This method is
printed below:

def Iterate(self, load_case):

[Rode]
[Efement]
~[Group]

<>t Material

~{LoadCase]

Figure 9: The Structure container class.

7.4 Results

In order to visualize results, and because we needed to
view results from multiple disciplines simultaneously,
we selected OpenDX. Output files in DX format are
written at the Python level and the result can be
seen in Fig. 10 for the case of a transonic airliner
configuration.

The figure illustrates the multidisciplinary nature
of the problem. The grid pictured in the background
is the mesh used by the flow solver and is colored
by the pressure values computed at the cell centers.
The wing in the foreground and its outer surface is
clipped to show the internal structural components
which are colored by their stress value.

In conclusion, f2py and Python have been ex-
tremely useful tools in our pursuit for increasing the
usability and flexibility of existing Fortran tools.

"""Tterates the aero-structural solution."""

self.flow.Iterate()
self._UpdateStructuralLoads ()

self.structure.CalcDisplacements(load_case)

self.structure.CalcStresses(load_case)
self._UpdateFlowMesh()
return

This is indeed a very readable script, thanks to
Python, and any high-level changes to the solution
procedure can be easily implemented. The Aerostruc-
ture class also contains methods that export all the
information on the current solution for visualization,
an example of which is shown in the next section.

References

[1] Netlib repository at UTK and ORNL.
http://www.netlib.org/

[2] Python language.
http://www.python.org/

[3] SWIG — Simplified Wrapper and Interface Gen-
erator.
http://www.swig.org/

[4] PyFort — The Python-Fortran connection tool.
http://pyfortran.sourceforge.net/

Figure 10: Aero-structural model and results.

[5] FPIG — Fortran to Python Interface Generator.
http://cens.ioc.ee/projects/f2py2e/

[6] Numerical Extension to Python.
http://numpy.sourceforge.net /

[7] R. L. Graham, D. E. Knuth, and O. Patashnik.
Concrete Mathematics: a foundation for com-
puter science. Addison-Wesley, 1988

[8] P. Peterson. £2py - Fortran to Python Interface
Generator. Second Edition. 2000
http://cens.ioc.ee/projects/f2py2e/usersguide.html

[9] Python Documentation: Extending and Embed-
ding.
http://www.python.org/doc/ext/

[10] P. Peterson. PyFortranObject example usages.
2001
http://cens.ioc.ee/projects/f2py2e/pyfobj.html

[11] Reuther, J., J. J. Alonso, J. R. R. A. Mar-
tins, and S. C. Smith. “A Coupled Aero-
Structural Optimization Method for Complete

11

Aircraft Configurations”, Proceedings of the 37th
Aerospace Sciences Meeting, ATAA Paper 1999-
0187. Reno, NV, January, 1999

