Forward and inverse wave problems: Quantum billiards and brain imaging

Alex Barnett

barnett@cims.nyu.edu.

Courant Institute

Forward and inverse wave problems: Quantum billiards and brain imaging – p.1

The one-minute talk : two areas

Simple linear 2nd-order PDEs

The one-minute talk : two areas Simple linear 2nd-order PDEs

I. Scaling method for Helmholtz eigenproblem

- *waves:* elliptic PDE, time-independent
- short-wavelength limit \rightarrow numerically hard
- quantum chaos explains fast new method

The one-minute talk : two areas *Simple linear 2nd-order PDEs*

I. Scaling method for Helmholtz eigenproblem

- *waves:* elliptic PDE, time-independent
- short-wavelength limit \rightarrow numerically hard
- quantum chaos explains fast new method

II. Brain imaging with diffuse optical tomography

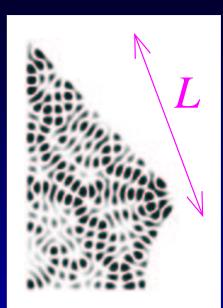
- *diffusion:* parabolic PDE, time-dependent
- ill-posed inverse problem, messy 3D geometry
- clinical and functional neuroimaging

I. Scaling method

with Cohen (Ben-Gurion), Heller (Harvard)

Domain in $d \ge 2$

 $(\nabla^2 + k^2)\psi(\mathbf{r}) = 0$ inside domain $\psi(\mathbf{r} \in \text{boundary}) = 0$ Dirichlet



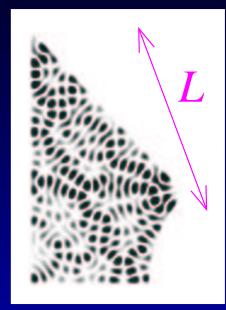
Want spectrum k_{μ} , eigenfunctions ψ_{μ}

I. Scaling method

with Cohen (Ben-Gurion), Heller (Harvard)

Domain in $d \ge 2$

 $(\nabla^2 + k^2)\psi(\mathbf{r}) = 0$ inside domain $\psi(\mathbf{r} \in \text{boundary}) = 0$ Dirichlet



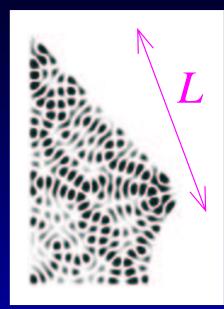
Want spectrum k_{μ} , eigenfunctions ψ_{μ} Motivation ? Cavities: acoustics, electromag, optics, 'quantum dots' (electron systems), quantum chaos...

I. Scaling method

with Cohen (Ben-Gurion), Heller (Harvard)

Domain in $d \ge 2$

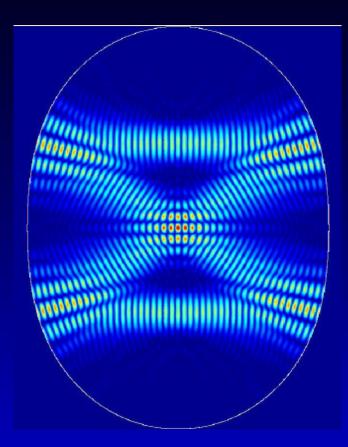
 $(\nabla^2 + k^2)\psi(\mathbf{r}) = 0$ inside domain $\psi(\mathbf{r} \in \text{boundary}) = 0$ Dirichlet



Want spectrum k_{μ} , eigenfunctions ψ_{μ}

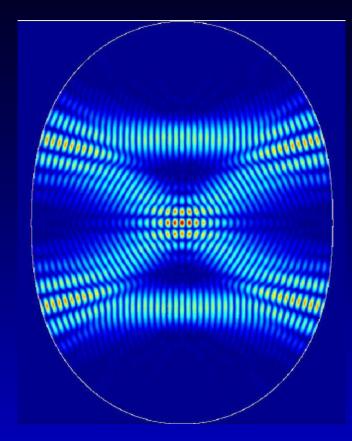
Motivation ? Cavities: acoustics, electromag, optics, 'quantum dots' (electron systems), quantum chaos... Often care about $kL \gg 1$ *E.g.* spectral statistics as $kL \rightarrow \infty$ (asympotics).

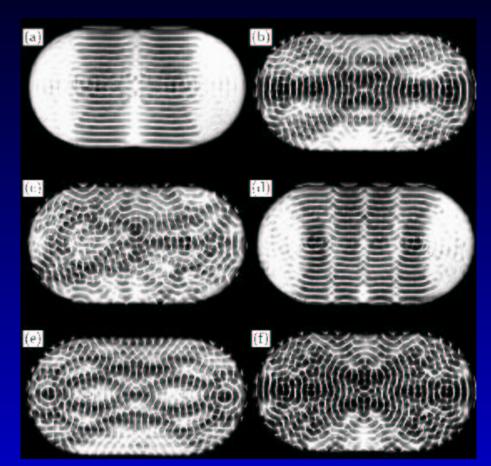
Physical examples



dielectric laser resonators Tureci

Physical examples



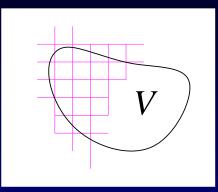


dielectric laser resonators Tureci

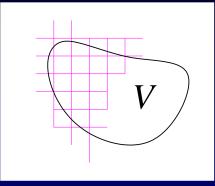
liquid surfaces Kudrolli

Forward and inverse wave problems: Quantum billiards and brain imaging – p.4

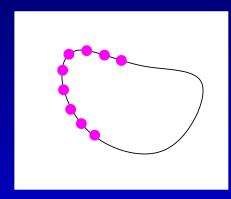
1. Finite Element (FEM) type basis funcs obey BCs, not PDE basis size $N \gg (\#\lambda$ -sized patches in V).



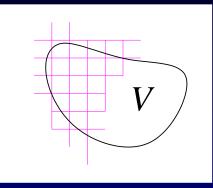
1. Finite Element (FEM) type basis funcs obey BCs, not PDE basis size $N \gg (\#\lambda$ -sized patches in V).



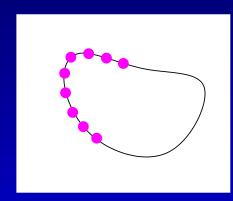
2. Boundary Integral (BIM) type Greens func known \Rightarrow use as basis basis obeys PDE, not BCs $N \sim (\#$ patches on *surface*).



1. Finite Element (FEM) type basis funcs obey BCs, not PDE basis size $N \gg (\#\lambda$ -sized patches in V).

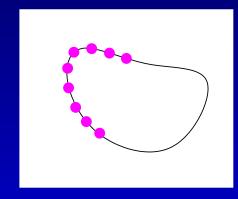


2. Boundary Integral (BIM) type Greens func known \Rightarrow use as basis basis obeys PDE, not BCs $N \sim (\#$ patches on *surface*).



- 3. Measure resonances of *real system*
 - microwaves cavities, etc... $kL \leq Q$ -factor, painful!

2. Boundary Integral (BIM) type Greens func known \Rightarrow use as basis basis obcys PDE, not BCs $N \sim (\#$ patches on *surface*).



quadratic functional F_k[ψ] ≡ ∮ ds (r ⋅ n)⁻¹ ψ² is nearly diagonal in the basis :
{ψ_μ} spatially rescaled to *same* wavenumber k.
(discovered, not explained, Vergini & Saraceno 1994)

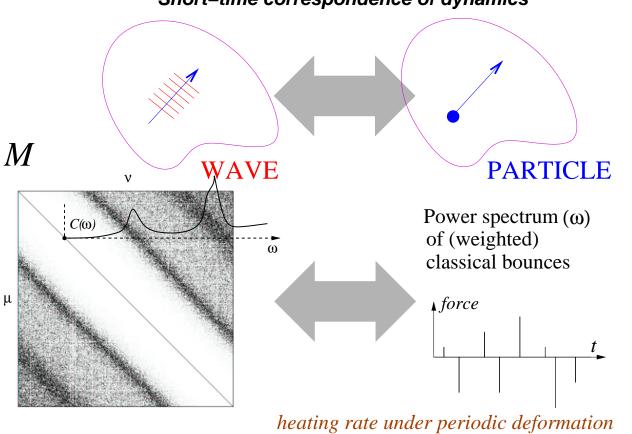
quadratic functional F_k[ψ] ≡ ∮ ds (r ⋅ n)⁻¹ ψ² is nearly diagonal in the basis : {ψ_μ} spatially rescaled to same wavenumber k.
(discovered, not explained, Vergini & Saraceno 1994)
Diagonalize F → basis rep of all ψ_μ in range |k - k_μ| < O(L⁻¹)

quadratic functional $F_k[\psi] \equiv \oint d\mathbf{s} \ (\mathbf{r} \cdot \mathbf{n})^{-1} \ \psi^2$ is nearly diagonal in the basis : $\{\psi_{\mu}\}$ spatially rescaled to same wavenumber k. (discovered, not explained, Vergini & Saraceno 1994) Diagonalize F \rightarrow basis rep of all ψ_{μ} in range $|k - k_{\mu}| < O(L^{-1})$ O(N) times faster than ubiquitous BIM ! (BIM has to search for each k_{μ})

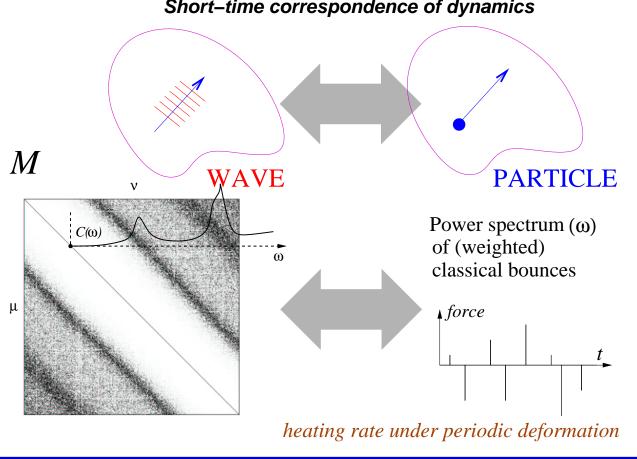
quadratic functional $F_k[\psi] \equiv \oint d\mathbf{s} \ (\mathbf{r} \cdot \mathbf{n})^{-1} \ \psi^2$ is nearly diagonal in the basis : $\{\psi_{\mu}\}$ spatially rescaled to same wavenumber k. (discovered, not explained, Vergini & Saraceno 1994) Diagonalize F \rightarrow basis rep of all ψ_{μ} in range $|k - k_{\mu}| < O(L^{-1})$ O(N) times faster than ubiquitous BIM ! (BIM has to search for each k_{μ})

Special F relies on boundary overlap of ψ_{μ} 's ...

Quasi-orthogonality sketch $M_{\mu\nu} \equiv \oint d\mathbf{s} (\mathbf{r} \cdot \mathbf{n}) \partial_n \psi_\mu \partial_n \psi_\nu \approx \delta_{\mu\nu}.$ Short-time correspondence of dynamics

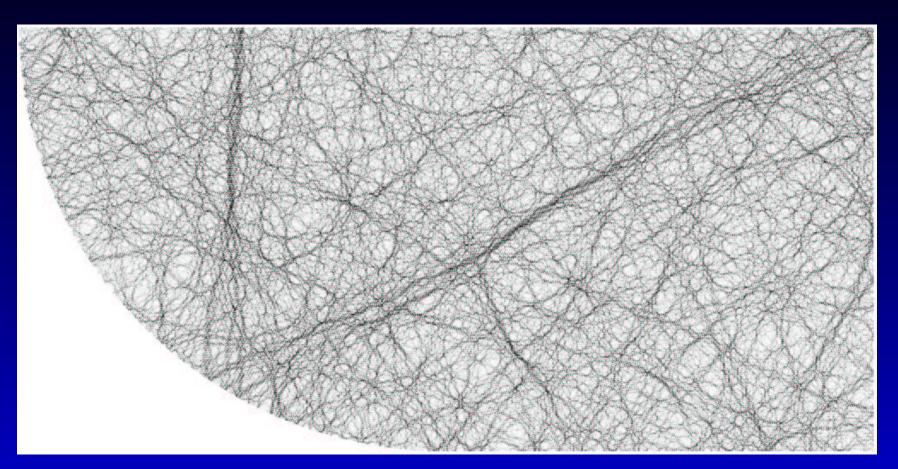


Quasi-orthogonality sketch $M_{\mu\nu} \equiv \oint d\mathbf{s} \ (\mathbf{r} \cdot \mathbf{n}) \ \partial_n \psi_\mu \ \partial_n \psi_\nu \ \approx \ \delta_{\mu\nu}.$ Short-time correspondence of dynamics



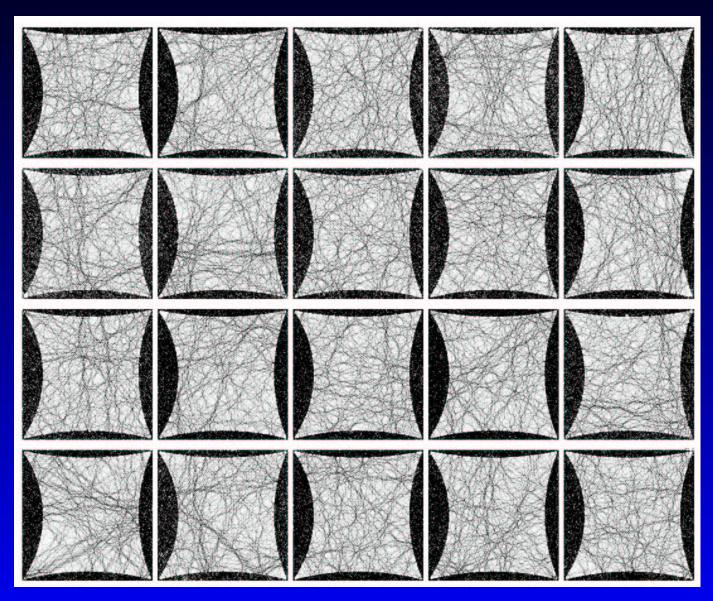
Special deformations : no heating as $\omega \to 0$.

Results (d = 2)



plane-wave basis, $kL \approx 2000$ speed: 100 such ψ_{μ} found per minute

New basis for nonconvex



new singular basis, $kL \approx 400$

Forward and inverse wave problems: Quantum billiards and brain imaging -p.9

• Better basis sets for variety of shapes

- Better basis sets for variety of shapes
- Understand basis completeness.

- Better basis sets for variety of shapes
- Understand basis completeness.
- Error analysis, creeping solutions

- Better basis sets for variety of shapes
- Understand basis completeness.
- Error analysis, creeping solutions
- Application to spectral statistics

Forward and inverse wave problems: Quantum billiards and brain imaging – p.11

II. Diffuse Optical Tomography *with Boas et al. (NMR Center, MGH / Harvard)*

Image inside diffusive media?

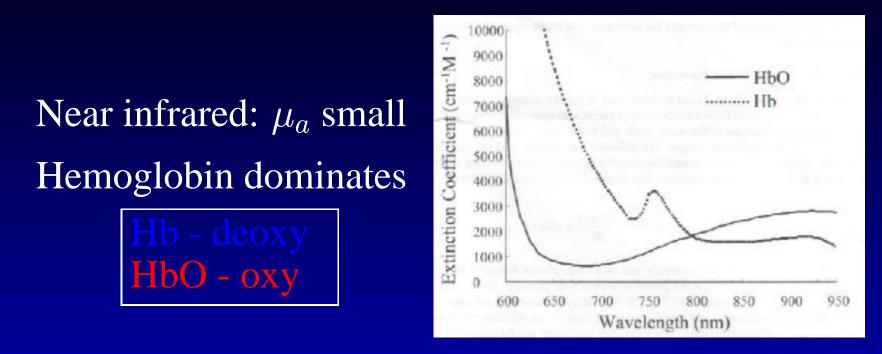
scattering length κ absorption μ_a

Learn about $\mu_a(\mathbf{r}), \kappa(\mathbf{r})$

$$\lambda \ll \kappa \ll \text{depth}$$

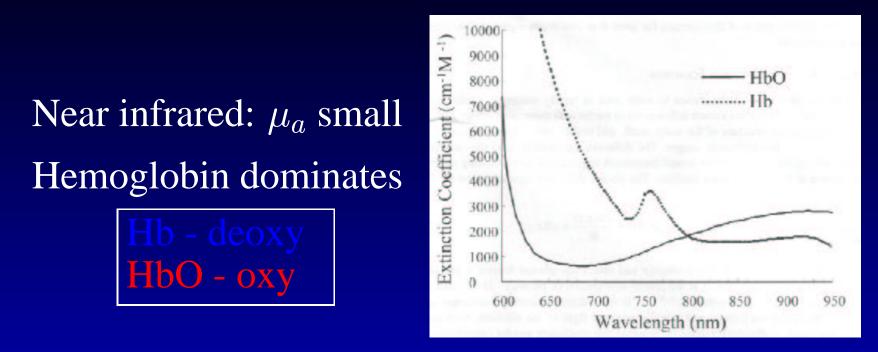
1 μ m 1mm few cm

It's all about blood



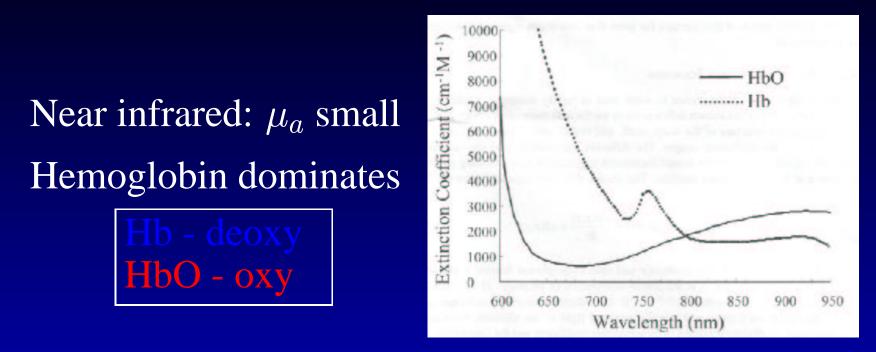
 $\mu_a(\mathbf{r})$ at many λ 's \rightarrow maps of Hb, HbO

It's all about blood



 $\mu_a(\mathbf{r})$ at many λ 's \rightarrow maps of Hb, HbO Clinical: stroke, trauma, babies, breast tumors...

It's all about blood



 $\mu_a(\mathbf{r}) \text{ at many } \lambda \text{'s } \rightarrow \text{ maps of Hb, HbO}$ Clinical: stroke, trauma, babies, breast tumors...
Neuronal activation \rightarrow Hb, HbO changes
Last decade: imaging the brain in action!

• Many S,D: use all possible pairs

• 10^{-12} s light pulse \rightarrow photon count vs time

• Many S,D: use all possible pairs

• 10^{-12} s light pulse \rightarrow photon count vs time

fMRI: 2-4 mm, 1-2 s, > \$10⁶, fixed, Hb only

- Many S,D: use all possible pairs
- 10^{-12} s light pulse \rightarrow photon count vs time

fMRI: 2-4 mm, 1-2 s, > \$10⁶, fixed, Hb only DOT: 1-2 cm, 10-100 ms, \$10⁵, portable, Hb & HbO.

Forward model

 $\mathbf{x} \equiv \{\mu_a(\mathbf{r}), \kappa(\mathbf{r})\} \xrightarrow{\mathbf{f}} \mathbf{y} = \mathbf{f}(\mathbf{x})$

parameter vector expected signal vector

Forward model

$$\mathbf{x} \equiv \{\mu_a(\mathbf{r}), \kappa(\mathbf{r})\} \xrightarrow{\mathbf{f}} \mathbf{y} = \mathbf{f}(\mathbf{x})$$
parameter vector expected signal vector

Incoherent waves \rightarrow transport equation \rightarrow diffusion:

$$\frac{1}{v}\frac{\partial}{\partial t}\phi = \nabla(\kappa(\mathbf{r})\cdot\nabla\phi) - \mu_a(\mathbf{r})\phi + q(\mathbf{r},t)$$

$$\phi = \text{fluence}, \qquad \text{Robin BCs } \frac{\partial\phi}{\partial n} \propto \phi.$$

Forward model

 $\mathbf{x} \equiv \{\mu_a(\mathbf{r}), \kappa(\mathbf{r})\} \xrightarrow{\mathbf{f}} \mathbf{y} = \mathbf{f}(\mathbf{x})$ parameter vector expected signal vector

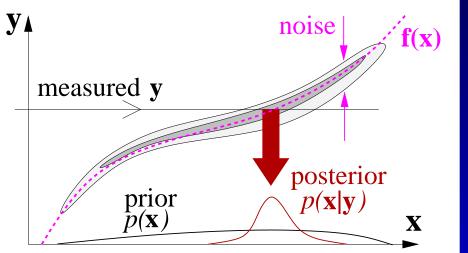
Incoherent waves \rightarrow transport equation \rightarrow diffusion:

 $\frac{1}{v}\frac{\partial}{\partial t}\phi = \nabla(\kappa(\mathbf{r})\cdot\nabla\phi) - \mu_a(\mathbf{r})\phi + q(\mathbf{r},t)$ $\phi = \text{fluence}, \qquad \text{Robin BCs } \frac{\partial\phi}{\partial n} \propto \phi.$ Finite-Difference Time-Domain in 3D (~ 2mm lattice) • $O(\Delta t)$ accuracy, for now...

 $\mathbf{x} \xleftarrow{?} \mathbf{y}_{\text{measured}}$ **Ill-posed** : many **x** have $\mathbf{f}(\mathbf{x}) \approx \mathbf{y}_{\text{measured}}$

 $\mathbf{x} \xleftarrow{?} \mathbf{y}_{\text{measured}}$ $\text{III-posed} : many \mathbf{x} \text{ have } \mathbf{f}(\mathbf{x}) \approx \mathbf{y}_{\text{measured}}$ $\text{Statistical: incomplete info} \rightarrow \text{learn } PDF \text{ on } \mathbf{x}$

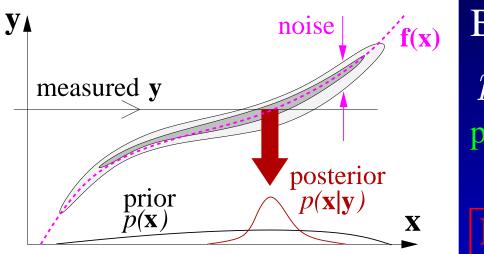
 $\mathbf{x} \xleftarrow{} \mathbf{y}_{\text{measured}}$ Ill-posed : many **x** have $\mathbf{f}(\mathbf{x}) \approx \mathbf{y}_{\text{measured}}$ Statistical: incomplete info \rightarrow learn *PDF* on **x**



Bayesian inference $p(\mathbf{x}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{x}) \cdot p(\mathbf{x})$ posteriorlikelihoodprior

Embraces Ill-posedness

 $\mathbf{x} \xleftarrow{} \mathbf{y}_{\text{measured}}$ $\text{III-posed} : many \mathbf{x} \text{ have } \mathbf{f}(\mathbf{x}) \approx \mathbf{y}_{\text{measured}}$ $\text{Statistical: incomplete info} \rightarrow \text{learn } PDF \text{ on } \mathbf{x}$



Bayesian inference $p(\mathbf{x}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{x}) \cdot p(\mathbf{x})$ posteriorlikelihoodprior

Embraces Ill-posedness

Use realistic noise model:

Poisson photon stats forward model error

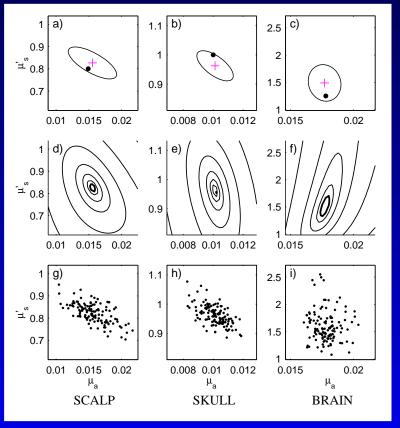
Forward and inverse wave problems: Quantum billiards and brain imaging -p.16

Baseline meas. with MRI help

Use geometry from MRI: $\dim(\mathbf{x}) = 10^5 \rightarrow 6$ $\mathbf{x} \equiv \{\mu_a, \kappa\}$ for skull, scalp, brain. Q: How well can measure absolute brain μ_a, κ ?

Baseline meas. with MRI help

Use geometry from MRI: $\dim(\mathbf{x}) = 10^5 \rightarrow 6$ $\mathbf{x} \equiv \{\mu_a, \kappa\}$ for skull, scalp, brain. Q: How well can measure absolute brain μ_a, κ ?



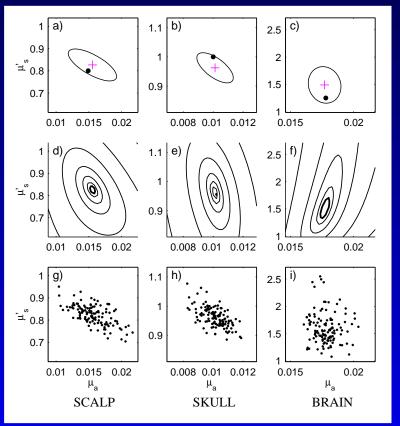
posterior PDF \rightarrow errorbars

- Gaussian approx to PDF
- Markov chain Monte Carlo

Show 10^6 detected photons gives 5% in μ_a , 20% in κ even if 20% forward model error

Baseline meas. with MRI help

Use geometry from MRI: $\dim(\mathbf{x}) = 10^5 \rightarrow 6$ $\mathbf{x} \equiv \{\mu_a, \kappa\}$ for skull, scalp, brain. Q: How well can measure absolute brain μ_a, κ ?



posterior PDF \rightarrow errorbars

- Gaussian approx to PDF
- Markov chain Monte Carlo

Show 10^6 detected photons gives 5% in μ_a , 20% in κ

even if 20% forward model error

f(x) is *expensive* \Rightarrow want fewest evaluations

Forward and inverse wave problems: Quantum billiards and brain imaging – p.17

• Real-world data

- Real-world data
- Forward modelling: *accuracy vs speed*
 - Adjoint Differentiation for Jacobean $\frac{\partial f_m}{\partial x_m}$
 - cerebrospinal fluid clear \rightarrow *diffusion bad*

- Real-world data
- Forward modelling: *accuracy vs speed*
 - Adjoint Differentiation for Jacobean $\frac{\partial f_m}{\partial x_m}$
 - cerebrospinal fluid clear \rightarrow *diffusion bad*
- Imaging the cortex: $\sim 10^3$ unknowns

- Real-world data
- Forward modelling: *accuracy vs speed*
 - Adjoint Differentiation for Jacobean $\frac{\partial f_m}{\partial x_m}$
 - cerebrospinal fluid clear \rightarrow *diffusion bad*
- Imaging the cortex: $\sim 10^3$ unknowns
- Best S,D placement?

- Real-world data
- Forward modelling: *accuracy vs speed*
 - Adjoint Differentiation for Jacobean $\frac{\partial f_m}{\partial x_m}$
 - cerebrospinal fluid clear \rightarrow *diffusion bad*
- Imaging the cortex: $\sim 10^3$ unknowns
- Best S,D placement?
- AI / Optimization: explore high-dim PDFs