Forward and inverse wave problems: Quantum billiards and brain imaging

Alex Barnett

barnett@cims.nyu.edu.

Courant Institute

The one-minute talk : two areas

Simple linear $2^{\text {nd }}$-order PDEs

The one-minute talk : two areas

Simple linear $2^{\text {nd }}$-order PDEs
I. Scaling method for Helmholtz eigenproblem

- waves: elliptic PDE, time-independent
- short-wavelength limit \rightarrow numerically hard
- quantum chaos explains fast new method

The one-minute talk : two areas

Simple linear $2^{\text {nd }}-$ order PDEs
I. Scaling method for Helmholtz eigenproblem

- waves: elliptic PDE, time-independent
- short-wavelength limit \rightarrow numerically hard
- quantum chaos explains fast new method
II. Brain imaging with diffuse optical tomography
- diffusion: parabolic PDE, time-dependent
- ill-posed inverse problem, messy 3D geometry
- clinical and functional neuroimaging

I. Scaling method

with Cohen (Ben-Gurion), Heller (Harvard)

Domain in $d \geq 2$

$$
\begin{aligned}
\left(\nabla^{2}+k^{2}\right) \psi(\mathbf{r}) & =0 \quad \text { inside domain } \\
\psi(\mathbf{r} \in \text { boundary }) & =0 \quad \text { Dirichlet }
\end{aligned}
$$

Want spectrum k_{μ}, eigenfunctions ψ_{μ}

I. Scaling method

with Cohen (Ben-Gurion), Heller (Harvard)

Domain in $d \geq 2$

$$
\begin{aligned}
\left(\nabla^{2}+k^{2}\right) \psi(\mathbf{r}) & =0 \quad \text { inside domain } \\
\psi(\mathbf{r} \in \text { boundary }) & =0 \quad \text { Dirichlet }
\end{aligned}
$$

Want spectrum k_{μ}, eigenfunctions ψ_{μ}
Motivation ? Cavities: acoustics, electromag, optics, 'quantum dots' (electron systems), quantum chaos. . .

I. Scaling method

with Cohen (Ben-Gurion), Heller (Harvard)

Domain in $d \geq 2$

$$
\begin{aligned}
\left(\nabla^{2}+k^{2}\right) \psi(\mathbf{r}) & =0 \\
\psi(\mathbf{r} \in \text { inside domaindary }) & =0
\end{aligned}
$$

Want spectrum k_{μ}, eigenfunctions ψ_{μ}
Motivation ? Cavities: acoustics, electromag, optics, 'quantum dots' (electron systems), quantum chaos. . . Often care about $k L \gg 1$ E.g. spectral statistics as $k L \rightarrow \infty$ (asympotics).

Physical examples

dielectric laser
 resonators Tureci

Physical examples

dielectric laser
resonators Tureci

liquid surfaces Kudrolli

3 approaches

1. Finite Element (FEM) type

basis funcs obey BCs, not PDE
basis size $N \gg(\# \lambda$-sized patches in $V)$.

3 approaches

1. Finite Element (FEM) type

basis funcs obey BCs, not PDE basis size $N \gg(\# \lambda$-sized patches in $V)$.
2. Boundary Integral (BIM) type

Greens func known \Rightarrow use as basis
basis obeys PDE, not BCs
$N \sim$ (\# patches on surface).

3 approaches

1. Finite Element (FEM) type
basis funcs obey BCs, not PDE
basis size $N \gg(\# \lambda$-sized patches in $V)$.
2. Boundary Integral (BIM) type

Greens func known \Rightarrow use as basis
basis obeys PDE, not BCs
$N \sim$ (\# patches on surface).
3. Measure resonances of real system

- microwaves cavities, etc. . $k L \leq$ Q-factor, painful!

3 approaches

2. Boundary Integral (BIM) type

Greens func known \Rightarrow use as basis
basis obeys PDE, not BCs
$N \sim$ (\# patches on surface).

Scaling sketch

quadratic functional $F_{k}[\psi] \equiv \oint d \mathbf{s}(\mathbf{r} \cdot \mathbf{n})^{-1} \psi^{2}$ is nearly diagonal in the basis : $\left\{\psi_{\mu}\right\}$ spatially rescaled to same wavenumber k. (discovered, not explained, Vergini \& Saraceno 1994)

Scaling sketch

quadratic functional $F_{k}[\psi] \equiv \oint d \mathbf{s}(\mathbf{r} \cdot \mathbf{n})^{-1} \psi^{2}$ is nearly diagonal in the basis :
$\left\{\psi_{\mu}\right\}$ spatially rescaled to same wavenumber k.
(discovered, not explained, Vergini \& Saraceno 1994)
Diagonalize F
\rightarrow basis rep of all ψ_{μ} in range $\left|k-k_{\mu}\right|<O\left(L^{-1}\right)$

Scaling sketch

quadratic functional $F_{k}[\psi] \equiv \oint d \mathbf{s}(\mathbf{r} \cdot \mathbf{n})^{-1} \psi^{2}$ is nearly diagonal in the basis :
$\left\{\psi_{\mu}\right\}$ spatially rescaled to same wavenumber k.
(discovered, not explained, Vergini \& Saraceno 1994)
Diagonalize F
\rightarrow basis rep of all ψ_{μ} in range $\left|k-k_{\mu}\right|<O\left(L^{-1}\right)$
$O(N)$ times faster than ubiquitous BIM !
(BIM has to search for each k_{μ})

Scaling sketch

quadratic functional $F_{k}[\psi] \equiv \oint d \mathbf{s}(\mathbf{r} \cdot \mathbf{n})^{-1} \psi^{2}$ is nearly diagonal in the basis :
$\left\{\psi_{\mu}\right\}$ spatially rescaled to same wavenumber k.
(discovered, not explained, Vergini \& Saraceno 1994)
Diagonalize F
\rightarrow basis rep of all ψ_{μ} in range $\left|k-k_{\mu}\right|<O\left(L^{-1}\right)$ $O(N)$ times faster than ubiquitous BIM ! (BIM has to search for each k_{μ})
Special F relies on boundary overlap of ψ_{μ} 's ...

Quasi-orthogonality sketch

$$
M_{\mu \nu} \equiv \oint d \mathrm{~d}(\mathbf{r} \cdot \mathbf{n}) \partial_{n} \psi_{\mu} \partial_{n} \psi_{\nu} \approx \delta_{\mu \nu} .
$$

Short-time correspondence of dynamics

Power spectrum (ω) of (weighted) classical bounces

heating rate under periodic deformation

Quasi-orthogonality sketch

$$
M_{\mu \nu} \equiv \oint d \mathrm{ds}(\mathbf{r} \cdot \mathbf{n}) \partial_{n} \psi_{\mu} \partial_{n} \psi_{\nu} \approx \delta_{\mu \nu}
$$

Special deformations : no heating as $\omega \rightarrow 0$.

Results $(d=2)$

plane-wave basis, $k L \approx 2000$ speed: 100 such ψ_{μ} found per minute

New basis for nonconvex

new singular basis, $k L \approx 400$
Forward and inverse wave problems:Quantum billiards and brain imaging - p. 9

Directions

- Better basis sets for variety of shapes

Directions

- Better basis sets for variety of shapes
- Understand basis completeness.

Directions

- Better basis sets for variety of shapes
- Understand basis completeness.
- Error analysis, creeping solutions

Directions

- Better basis sets for variety of shapes
- Understand basis completeness.
- Error analysis, creeping solutions
- Application to spectral statistics

II. Diffuse Optical Tomography

with Boas et al. (NMR Center, MGH / Harvard)

Image inside diffusive media?
scattering length κ absorption μ_{a}

Learn about $\mu_{a}(\mathbf{r}), \kappa(\mathbf{r})$

$$
\underset{1 \mu \mathrm{~m}}{\lambda}<\underset{1 \mathrm{~mm}}{\kappa} \ll \text { depth }
$$

It's all about blood

Near infrared: μ_{a} small Hemoglobin dominates

$\mu_{a}(\mathbf{r})$ at many λ 's \rightarrow maps of $\mathrm{Hb}, \mathrm{HbO}$

It's all about blood

Near infrared: μ_{a} small Hemoglobin dominates

$\mu_{a}(\mathbf{r})$ at many λ 's \rightarrow maps of $\mathrm{Hb}, \mathrm{HbO}$
Clinical: stroke, trauma, babies, breast tumors.. .

It's all about blood

Near infrared: μ_{a} small Hemoglobin dominates

$\mu_{a}(\mathbf{r})$ at many λ 's \rightarrow maps of $\mathrm{Hb}, \mathrm{HbO}$
Clinical: stroke, trauma, babies, breast tumors.. . Neuronal activation $\rightarrow \mathrm{Hb}, \mathrm{HbO}$ changes Last decade: imaging the brain in action!

DOT equipment

DOT equipment

- Many S,D: use all possible pairs
- 10^{-12} s light pulse \rightarrow photon count vs time

DOT equipment

signals:

- Many S,D: use all possible pairs
- 10^{-12} s light pulse \rightarrow photon count vs time
fMRI: 2-4 mm, 1-2 s, >\$106, fixed, Hb only

DOT equipment

signals:

- Many S,D: use all possible pairs
- 10^{-12} s light pulse \rightarrow photon count vs time
fMRI: 2-4 mm, 1-2 s, $>\$ 10^{6}$, fixed, Hb only DOT: 1-2 cm, 10-100 ms, $\$ 10^{5}$, portable, $\mathrm{Hb} \& \mathrm{HbO}$.

Forward model

$$
\mathbf{x} \equiv \underset{\text { parameter vector }}{\left\{\mu_{a}(\mathbf{r}), \kappa(\mathbf{r})\right\} \quad \xrightarrow{\mathbf{f}} \quad} \quad \begin{aligned}
& \mathbf{y}=\mathbf{f}(\mathbf{x}) \\
& \\
& \text { expected sis }
\end{aligned}
$$

Forward model

$$
\mathbf{x} \equiv \underset{\text { parameter vector }}{\left\{\mu_{a}(\mathbf{r}), \kappa(\mathbf{r})\right\} \quad \xrightarrow{\mathbf{f}} \quad} \quad \begin{aligned}
& \mathbf{y}=\mathbf{f}(\mathbf{x}) \\
& \\
& \text { expected signal vector }
\end{aligned}
$$

Incoherent waves \rightarrow transport equation \rightarrow diffusion:

$$
\frac{1}{v} \frac{\partial}{\partial t} \phi=\nabla(\kappa(\mathbf{r}) \cdot \nabla \phi)-\mu_{a}(\mathbf{r}) \phi+q(\mathbf{r}, t)
$$

$$
\phi=\text { fluence }, \quad \text { Robin BCs } \frac{\partial \phi}{\partial n} \propto \phi .
$$

Forward model

$$
\begin{aligned}
\mathbf{x} \equiv \underset{\text { parameter vector }}{\left\{\mu_{a}(\mathbf{r}), \kappa(\mathbf{r})\right\}} \quad \xrightarrow{\mathbf{f}} \quad \begin{array}{l}
\mathbf{y}=\mathbf{f}(\mathbf{x}) \\
\\
\text { expected signal vector }
\end{array}
\end{aligned}
$$

Incoherent waves \rightarrow transport equation \rightarrow diffusion:

$$
\frac{1}{v} \frac{\partial}{\partial t} \phi=\nabla(\kappa(\mathbf{r}) \cdot \nabla \phi)-\mu_{a}(\mathbf{r}) \phi+q(\mathbf{r}, t)
$$

$$
\phi=\text { fluence }, \quad \text { Robin BCs } \frac{\partial \phi}{\partial n} \propto \phi .
$$

Finite-Difference Time-Domain in 3D ($\sim 2 \mathrm{~mm}$ lattice)

- $O(\Delta t)$ accuracy, for now...

Inverse problem

$\mathbf{x} \stackrel{?}{\leftarrow} \mathbf{y}_{\text {measured }}$
 Ill-posed : many \mathbf{x} have $\mathbf{f}(\mathbf{x}) \approx \mathbf{y}_{\text {measured }}$

Inverse problem

$\mathbf{x} \stackrel{?}{\stackrel{ }{4}} \mathbf{y}_{\text {meassured }}$
 Ill-posed : many \mathbf{x} have $\mathrm{f}(\mathbf{x}) \approx \mathbf{y}_{\text {measured }}$ Statistical: incomplete info \rightarrow learn PDF on x

Inverse problem

Ill-posed : many \mathbf{x} have $\mathrm{f}(\mathbf{x}) \approx \mathbf{y}_{\text {measured }}$
Statistical: incomplete info \rightarrow learn PDF on \mathbf{x}

Bayesian inference $p(\mathbf{x} \mid \mathbf{y}) \propto p(\mathbf{y} \mid \mathbf{x}) \cdot p(\mathbf{x})$ posterior likelihood prior Embraces Ill-posedness

Inverse problem

$$
\mathbf{x} \stackrel{?}{\stackrel{ }{4}} \mathbf{y}_{\text {measured }}
$$

Ill-posed : many \mathbf{x} have $\mathrm{f}(\mathbf{x}) \approx \mathbf{y}_{\text {measured }}$
Statistical: incomplete info \rightarrow learn PDF on x

Bayesian inference $p(\mathbf{x} \mid \mathbf{y}) \propto p(\mathbf{y} \mid \mathbf{x}) \cdot p(\mathbf{x})$ posterior likelihood prior Embraces Ill-posedness

Use realistic noise model: $\left\{\begin{array}{l}\text { Poisson photon stats } \\ \text { forward model error }\end{array}\right.$

Baseline meas. with MRI help

Use geometry from MRI : $\operatorname{dim}(\mathbf{x})=10^{5} \rightarrow 6$
$\mathbf{x} \equiv\left\{\mu_{a}, \kappa\right\}$ for skull, scalp, brain.
Q: How well can measure absolute brain μ_{a}, κ ?

Baseline meas. with MRI help

Use geometry from MRI : $\operatorname{dim}(\mathbf{x})=10^{5} \rightarrow 6$

$$
\mathbf{x} \equiv\left\{\mu_{a}, \kappa\right\} \text { for skull, scalp, brain. }
$$

Q: How well can measure absolute brain μ_{a}, κ ?

posterior PDF \rightarrow errorbars

- Gaussian approx to PDF
- Markov chain Monte Carlo

Show 10^{6} detected photons gives 5\% in $\mu_{a}, 20 \%$ in κ even if 20\% forward model error

Baseline meas. with MRI help

Use geometry from MRI : $\operatorname{dim}(\mathbf{x})=10^{5} \rightarrow 6$

$$
\mathbf{x} \equiv\left\{\mu_{a}, \kappa\right\} \text { for skull, scalp, brain. }
$$

Q: How well can measure absolute brain μ_{a}, κ ?

posterior PDF \rightarrow errorbars

- Gaussian approx to PDF
- Markov chain Monte Carlo

Show 10^{6} detected photons gives 5\% in $\mu_{a}, 20 \%$ in κ even if 20\% forward model error

Directions

- Real-world data

Directions

- Real-world data
- Forward modelling: accuracy vs speed
- Adjoint Differentiation for Jacobean $\frac{\partial f_{m}}{\partial x_{n}}$
- cerebrospinal fluid clear \rightarrow diffusion bad

Directions

- Real-world data
- Forward modelling: accuracy vs speed
- Adjoint Differentiation for Jacobean $\frac{\partial f_{m}}{\partial x_{n}}$
- cerebrospinal fluid clear \rightarrow diffusion bad
- Imaging the cortex: $\sim 10^{3}$ unknowns

Directions

- Real-world data
- Forward modelling: accuracy vs speed
- Adjoint Differentiation for Jacobean $\frac{\partial f_{m}}{\partial x_{n}}$
- cerebrospinal fluid clear \rightarrow diffusion bad
- Imaging the cortex: $\sim 10^{3}$ unknowns
- Best S,D placement?

Directions

- Real-world data
- Forward modelling: accuracy vs speed
- Adjoint Differentiation for Jacobean $\frac{\partial f_{m}}{\partial x_{n}}$
- cerebrospinal fluid clear \rightarrow diffusion bad
- Imaging the cortex: $\sim 10^{3}$ unknowns
- Best S,D placement?
- AI / Optimization: explore high-dim PDFs

