

Forward Contracts

- A forward contract is an agreement to buy an asset at a future settlement date at a forward price specified today.
- No money changes hands today.
- The pre-specified forward price is
exchanged for the asset at settlement date.
- By contrast, an ordinary transaction that settles immediately is called a spot or cash transaction, and the price is called the spot price or cash price.
Motivation
■ Suppose today, time 0 , you know you will need
to do a transaction at a future date, time t.
■ One thing you can do is wait until time t and then
do the transaction at prevailing market prices
- i.e., do a spot transaction in the future.
- Alternatively, you can try to lock in the terms of
the transaction today
- i.e., arrange a forward transaction today.

Synthetic Forward Contract on a Zero

Suppose $\mathrm{r}_{0.5}=5.54 \%, \mathrm{~d}_{0.5}=0.9730, \mathrm{r}_{1}=5.45 \%$, and $\mathrm{d}_{1}=0.9476$.
Synthesize a forward contract to buy $\$ 1$ par of the zero maturing at time 1 by

1) buying $\$ 1$ par of the 1 -year zero and
2) borrowing the money from time 0.5 to pay for it:
3) $-0.9476 \quad+1$
4) +0.9476 ?

Net: 0

Class Problem: What is the no-arbitrage forward price F?

Synthetic Forward Price for a Zero

- In general, suppose the underlying asset is $\$ 1$ par of a zero maturing at time T.
- In the forward contract, you agree to buy this zero at time t.
- The forward price you could synthesize is spot price plus interest to time t :

$$
F_{t}^{T}=d_{T}\left(1+r_{t} / 2\right)^{2 t}
$$

- If the quoted contractual forward price differs, there is an arbitrage opportunity.
Class Problem
Suppose the spot price of $\$ 1$ par of the 1.5 -year zero
is 0.9222 .
What is the no arbitrage forward price of this zero
for settlement at time $1, F_{1}{ }^{1.5}$?
\square

Examples

Recall the spot prices of $\$ 1$ par of the $0.5-, 1-$, and 1.5year zeroes are $0.9730,0.9476$, and 0.9222 .

The no-arbitrage forward price of the 1-year zero for settlement at time 0.5 is

$$
F_{0.5}^{1}=d_{1} / d_{0.5}=0.9476 / 0.9730=0.9739
$$

The no-arbitrage forward price of the 1.5-year zero for settlement at time 1 is

$$
F_{1}{ }^{1.5}=d_{1.5} / d_{1}=0.9222 / 0.9476=0.9732
$$

Class Problem

Suppose a firm has an old forward contract on its books.

- The contract commits the firm to buy, at time $t=0.5$, $\$ 1000$ par of the zero maturing at time $T=1.5$ for a price of $\$ 950$.
\square At inception, the contract was worth zero, but now markets have moved. What is the value of this contract to the firm now?

Class Problem
Recall that the no-arbitrage forward price of the 1.5-
year zero for settlement at time 1 is

Connection Between Forward Prices and Forward Rates

Of course, this is the same as the no arbitrage equations we saw before:

$$
\left(1+f_{t}^{T} / 2\right)^{2(T-t)}=\frac{\left(1+r_{T} / 2\right)^{2 T}}{\left(1+r_{t} / 2\right)^{2 t}} \Leftrightarrow F_{t}^{T}=\frac{d_{T}}{d_{t}}
$$

Example: The implied forward rate for a loan from time 0.5 to time 1 is 5.36%. This gives a discount factor of 0.9739 , which we showed before is the synthetic forward price to pay at time 0.5 for the zero maturing at time 1 .

$$
\begin{aligned}
& \frac{1}{\left(1+f_{t}^{T} / 2\right)^{2(T-t)}}=\frac{\left(1+r_{t} / 2\right)^{2 t}}{\left(1+r_{T} / 2\right)^{2 T}}=\frac{d_{T}}{d_{t}}=F_{t}^{T} \\
& \frac{1}{(1+0.0536 / 2)^{1}}=\frac{(1+0.0554 / 2)^{1}}{(1+0.0545 / 2)^{2}}=\frac{0.9476}{0.9730}=0.9739
\end{aligned}
$$

Summary: One No Arbitrage Equation, Three Economic Interpretations:

(1) Forward price $=$ Spot price + Interest

$$
F_{t}^{T}=d_{T} \times\left(1+r_{t} / 2\right)^{2 t}
$$

(2) Present value of forward contract cash flows at inception $=0$:

$$
-d_{t} \times F_{t}^{T}+d_{T} \times 1=0
$$

(3) Lending short + Rolling into forward loan $=$ Lending long:

$$
\left(1+r_{t} / 2\right)^{2 t} \times\left(1+f_{t}^{T} / 2\right)^{2(T-t)}=\left(1+r_{T} / 2\right)^{2 T}
$$

Using the relations between prices and rates,

$$
d_{t}=\frac{1}{\left(1+r_{t} / 2\right)^{2 t}} \quad \text { and } F_{t}^{T}=\frac{1}{\left(1+f_{t}^{T} / 2\right)^{2(T-t)}} \quad \text { or } \quad f_{t}^{T}=2\left(\left(\frac{1}{F_{t}^{T}}\right)^{\frac{1}{2(T-t)}}-1\right)
$$

we can verify that these equations are all the same. Other arrangements:

$$
F_{t}^{T}=\frac{d_{T}}{d_{t}} \quad\left(1+f_{t}^{T} / 2\right)^{2(T-t)}=\frac{\left(1+r_{T} / 2\right)^{2 T}}{\left(1+r_{t} / 2\right)^{2 t}}
$$

Spot Rates as Averages of Forward Rates

Rolling money through a series of short-term forward contracts is a way to lock in a long term rate and therefore synthesizes an investment in a long zero. Here are two ways to lock in a rate from time 0 to time t :

$$
\left(1+r_{0.5} / 2\right) \times\left(1+f_{0.5}^{1} / 2\right) \times \cdots \times\left(1+f_{t-0.5}^{t} / 2\right)=\left(1+r_{t} / 2\right)^{2 t}
$$

\square The growth factor $\left(1+r_{t} / 2\right)$ is the geometric average of the $(1+f / 2)$'s and so the interest rate r_{t} is approximately the average of the forward rates.

Recall the example

- The spot 6-month rate is 5.54% and the forward 6 -month rate is 5.36%.
- Their average is equal to the 1 -year rate of 5.45%.

The Pure Expectations Hypothesis

- The "Pure Expectations Hypothesis" says that the forward rate is equal to the expected future spot rate.

■ It turns out that's roughly equivalent to the hypothesis that expected returns on all bonds over a given horizon are the same, as if people were risk-neutral.
\square For example, if the forward rate from time 0.5 to time 1 equals the expected future spot rate over that time, then the expected one-year rate of return from rolling two sixmonth zeroes is equal to the one-year rate of return from holding a one-year zero:
$\mathrm{E}\left({ }_{0.5} \widetilde{\widetilde{r}}_{1}\right)=f_{0.5}^{1}$
$\Rightarrow \mathrm{E}\left\{\left(1+r_{0.5} / 2\right)\left(1+{ }_{0.5} \widetilde{T}_{1} / 2\right)\right\}=\left(1+r_{0.5} / 2\right)\left(1+f_{0.5}^{1} / 2\right)$
$\Rightarrow \mathrm{E}\left\{\left(1+r_{0.5} / 2\right)\left(1+{ }_{0.5} \widetilde{r}_{1} / 2\right)\right\}=\left(1+r_{1} / 2\right)^{2}$

Example in which the Pure Expectations Hypothesis Holds: Upward-Sloping Yield Curve						
Time 0	Time 0.5					
	Zero rate	0.5-yr horizon		1-yr horizon		
		$\begin{aligned} & \text { ROR on } \\ & 0.5-\mathrm{yr} \mathrm{z} . \end{aligned}$	$\begin{aligned} & \text { ROR on } \\ & \text { 1-yr z. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ROR on } \\ & 0.5-\mathrm{yr} \mathrm{z} \end{aligned}$	$\begin{aligned} & \text { ROR on } \\ & 1 \text {-yr } z . \end{aligned}$	
$\begin{aligned} & { }_{0} \mathrm{r}_{0.5}=5.00 \% \\ & { }_{0} \mathrm{r}_{1}=5.25 \% \end{aligned} \lll{ }_{0.5}^{0.5 \mathrm{r}_{1} \mathrm{r}_{1}^{\mathrm{d}}=6.50 .50 \%}$		5.00\%	4.008\%	5.749\%	5.25\%	
		5.00\%	6.003\%	4.750\%	5.25\%	
Expected:	5.50\%	5.00\%	5.005\%	5.249\%	5.25\%	
Forward rate$\mathrm{f}_{0}{ }_{5}^{1}=5.50 \%$						
If the pure expectations hypothesis holds, then an upward-sloping yield curve indicates rates are expected to rise.						

Problem with the Pure Expectations Hypothesis: Expected Rates of Return May Differ Across Bonds

- Different bonds may have different expected rates of return because their returns have different risk properties (variance, covariance with other risks, etc.)
- In that case, the pure expectations hypothesis cannot hold.
\square For example, the yield curve is typically upward sloping.
- If the pure expectations hypothesis were true, that would mean people generally expect rates to rise.
- An alternative explanation is that investors generally require a higher expected return to be willing to hold longer bonds.

Some Evidence

Results of regressions of

$$
{ }_{t+j} r_{t+j+1}-r_{t+1}=a+\beta\left(f_{t+j}{ }^{t+j+1}-r_{t+1}\right)+\varepsilon_{t, j}
$$

for $\mathrm{j}=1,2,3,4$ years, sample period 1980-2006.
Pure expectation hypothesis: $\alpha=0, \beta=1$.
\pm

Country	j	α	Std. err,	β	Std. err,	R^{2}
US	1	-0.30	0.33	0.11	0.26	0.21
	2	-0.70	0.82	0.25	0.42	1.16
	3	-1.45	1.12	0.72	0.37	8.39
	4	-2.25	1.09	1.22	0.25	21.17
UK	1	-0.19	0.26	0.49	0.23	9.34
	2	-0.74	0.52	1.00	0.27	26.17
	3	-1.01	0.66	1.18	0.31	34.26
	4	-1.45	0.66	1.40	0.33	46.28
Germany	1	-0.36	0.32	0.48	0.18	6.30
	2	-1.01	0.51	0.98	0.26	19.14
	3	-1.77	0.51	1.39	0.33	35.44
	4	-2.46	0.45	1.62	0.29	49.86

From Boudoukh, Richardson, Whitelaw, 2007, The information in long forward rates: Implications for exchange rates and the forward premium anomaly.

