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Variational Method: Recap 
We can very rarely determine exact wave functions by analytical solution of 
a relevant Schrödinger (wave) equation  
But we can always evaluate expectation values for a guess wave function Φ 
Variational principle for Hamiltonian operator (expectation value energy): 

   

where E0 is the true ground-state energy 
Lower-limit condition: convenient way of evaluating the quality of different 
guesses (lower is better) 
It permits us to use the tools of variational calculus if Φ depends on 
parameters 

Φ∫
*HΦdr
Φ∫
*
Φdr

≥ E0



LCAO 
One-electron molecular orbitals φ  are built up as linear 
combinations of atomic orbitals ϕ according to  

The set of N atomic-orbital basis functions ϕi is called the “basis 
set” and each “basis function” has associated with it some 
coefficient ai for any given MO. 
Use the variational principle to find the optimal coefficients. 
Many-electron wave functions Φ: antisymmetrized Hartree 
products—Slater determinants—of occupied one-electron 
orbitals φn	
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N
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LCAO: Energy and Minimization  
For a given one-electron orbital we evaluate 

Hij and Sij “resonance” and “overlap” integrals 
Minimization condition 

   
N linear equations must be satisfied in order for above to hold true  
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The Secular Equation  
 .  

These linear equations can be solved for the variables ai if and only if  

    

Secular: or century equations: 
corrections required to compensate such inequalities in the celestial motions 
as occur in the course of one century  
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The Secular Equation  
Polynomial of order N, so N roots (N different satisfactory values of E).  
For each Ej there is a different set of coefficients, aij (i runs over basis 
functions, j runs over molecular orbitals, each having energy Ej) 
Solve the set of linear equations using that specific Ej to determine aij values 
Coefficients define an optimal associated one-electron wave function φj 
within the given basis set.  

Steps in a Calculation 
1) Select a set of N basis functions 
2) Determine all N(N–1)/2 values of both Hij and Sij 
3) Form the secular determinant; determine N roots Ej of secular equation 
4) For each Ej solve the set of linear eqs. to determine the basis set 
coefficients aij for that MO 



Food for Thought 
In general, what are the upper and lower limits on N? Consider this from a 
question of physical requirements and also practicality. If it helps to have a 
specific example to think about, what answer might you offer for the 
molecule formaldehyde? 

Write Hij and Sij in Dirac notation (bras and kets) and in standard 
mathematical notation. What are the relevant integration variables? 

Under what circumstances would you expect the values of Hij or Sij to be 
zero? 
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What Are Resonance and Overlap Integrals? 

Overlap is easy:  a value between –1 and 1 (for normalized 
basis functions) measuring nearness ( |Sij | near 1) and 
phase relationship. 

Resonance is trickier. It is helpful to consider diagonal vs. 
off-diagonal resonance integrals. 

Diagonal is 

€ 

Hii = ϕi
*∫ Hϕidr

and this is the expectation value of the Hamiltonian operator 
for the “pure” basis function (orbital). That is, the resonance 
energy is the energy of an electron found in that orbital. 



Off-diagonal Resonance Integral 

Consider a system of only two basis functions, 1 and 2. 
Further, let the overlap integral between the two normalized 
orbitals be zero (i.e., S11 = S22 = 1 and S12 = S21 = 0). 

In that case, the secular equation is 
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Solving for E, noting that H12 = H21 gives 
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Off-diagonal  
Resonance 
Integral 
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So, H12 couples orbitals 1 and 2, leading 
to a lower energy lower state and a higher 
energy higher state (resonance)  



Effective Hamiltonian or Semiempirical Theories 

Knowing the qualitative meaning of different resonance and 
overlap integrals means that we can adopt rational 
empirical approaches to estimating their quantitative 
values. This will likely compromise accuracy, but may 
greatly increase computational speed by avoiding 
extensive computations (especially of many very small 
integrals in large molecules) 



Hückel Theory  

Molecular orbital theory (1930s) developed by Erich Hückel for unsaturated 
and aromatic hydrocarbons.  
Conventions: 
a)  Basis set is formed from parallel carbon 2p orbitals, one per atom.  
b) The overlap matrix       

c) Matrix elements Hii equal to the negative of the ionization potential of the 
methyl radical CH3

•, i.e., the orbital energy of the singly occupied 2p orbital 
in the prototypical system defining sp2 carbon hybridization.  

Symbol α (α= –9.9 eV from experiment) 

Sij = δ ij



Hückel Theory: Energies  

(d) Matrix elements Hij between nearest neighbors are also derived from 
experimental information.  

A 90° rotation about the π bond in ethylene removes all of the bonding 
interaction between the two carbon 2p orbitals: positive cost of the process is  

ΔE = 2Ep – Eπ 

                         E = Eπ                                          E = 2Ep 

The (negative) stabilization energy for the π bond is distributed equally to the 
two p orbitals involved (divided in half) :  

quantity termed β used for Hij between neighbors  

 



Hückel Theory: Energies  

ΔE = 2Ep – Eπ=-2β 
Ep = α 

So Eπ=-(ΔE -2Ep )=2α+2β	



π bond energy in ethylene ca. 60 kcal/mol= 2.6 eV.  
Dividing between the two carbon atoms: β= –1.3 eV. 

(e) Hij between 2p more distant than nearest neighbors is zero. 



Hückel Theory: Extended? 

What steps would be necessary to 
extend Hückel theory to include, 

say, N and O atoms? 
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The Allyl π System: C3H5 
Three carbon atoms: basis set determined from convention (a)  
3 2p orbitals, one centered on each atom (1, 2, 3, from left to right) 
Solve a 3 x 3 secular equation.  
Conventions (b)-(e): 
H11=H22=H33=α   H12=H21 = H23 = H32 = β  
H13 = H31 = 0                S11 = S22 = S33 = 1, all other S=0 

Solve: 
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β α – E β
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Energies 
Kronecker δ to define the overlap matrix: E appears only in the diagonal 
elements. Expand the 3 x 3 determinant 

(α–E)3+(β2•0)+(0•β2)–[0•(α–E)•0]– β2(α – E) – (α – E)β2 = 0   

three solutions 
    

α and β are negative by definition: the lowest energy solution is E1 
To find the MO associated with this energy: use linear equations 
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Coefficients 

(k = 1, k = 2, k = 3) 

    

Infinitely many values of a1, a2, and a3 which satisfy above 2 equations 
Add requirement that the wave function be normalized:  

   

a1 α – α + 2β( ) •1[ ] + a2 β – α + 2β( ) • 0[ ] + a3 0 – α + 2β( ) • 0[ ] = 0
a1 β – α + 2β( ) • 0[ ] + a2 α – α + 2β( ) •1[ ] + a3 β – α + 2β( ) • 0[ ] = 0
a1 0 – α + 2β( ) • 0[ ] + a2 β – α + 2β( ) • 0[ ] + a3 α – α + 2β( ) •1[ ] = 0

a2 = 2a1
a3 = a1
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Lowest MO 
The unique values satisfying all equalities are then 

    

coefficients are specific to the lowest energy molecular orbital E1.  
With both the coefficients and the basis functions, we may construct the 
lowest energy molecular orbital 

    

By choosing the higher energy roots we can determine the coefficients 
required to construct φ2 (from E = α) and φ3 (from E =              ).  
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The other two MOs 

    

Three orbitals: bonding, non-bonding, and antibonding 
Analysis of the so-called resonance energy arising from electronic 
delocalization in the π system 
Delocalization: participation of more than two atoms in a given MO 
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MO energy diagram  
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The Allyl π Cation: C3H5
+

 
Molecular aufbau principle of filling lowest energy MOs first:  

each electron has the energy of the one-electron MO that it occupies (φ1 in 
this case) total energy of the allyl cation π system is 2(              ).  

Alternative fully localized structure:  

 full (doubly-occupied) π bond between two of the carbons  

 empty, non-interacting p orbital on the remaining carbon atom 

π  energy: that of a double bond: 2(α + β).  

Hückel resonance energy, HHuckel – Hlocalized, is 0.83β (β is negative, so 
resonance is a favorable phenomenon). 

Recalling the definition of β, the resonance energy in the allyl cation is about 
40% of the rotation barrier in ethylene—ca. 25 kcal mol‑1.  
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Allyl Radical and Anion 
Add the energy of φ2 to the cation for each successive electron 

 Hπ(allyl radical) = 2(                 ) + α  

Hπ(allyl anion) = 2(              ) + 2α 
Hypothetical fully-π-localized non-interacting system, each new electron 
would go into the non-interacting p orbital, also contributing each time a 
factor of α to the energy (by definition of α).  
Resonance energies of the allyl radical and the allyl anion are the same as for 
the allyl cation, 0.83β. 
Neither experiment, (measured rotational barriers), nor more complete levels 
of quantum theory support the notion that in all three cases the magnitude is 
the same. (The failure is mostly associated with using a one-electron-like 
model for a many-electron problem; more to come!) 
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