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Chapter 1

The Circuit Abstraction

Exercises

Exercise 1.1 Quartz heaters are rated according to the average power drawn from a 120
volt AC 60 Hz voltage source. Estimate the resistance (when operating) a 1200 watt
quartz heater.

NOTE: The voltage waveform for a 120 volt AC 60 Hz waveform is

���������
	 ��������������������������

The factor of 	 � in the peak amplitude cancels when the average power is computed.
One result is that the peak amplitude of the voltage from a 120 volt wall outlet is about
170 volts.

Solution:

Power �������� watts � �"!��#�$�&%'!�( �*)�+,
���������*) +, ; where � is average value of sinusoidal voltage,

���������-	 �.!������/�0���1�2�������3���

Average value of a sinusoidally oscillating signal is the peak value divided by 	 � .

Therefore �4������
(5� ����� %�������

Therefore ( �����6
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2 CHAPTER 1. THE CIRCUIT ABSTRACTION

ANS:: (5�-����6

Exercise 1.2

a) The battery on your car has a rating stated in ampere-hours which permits you to es-
timate the length of time a fully charged battery could deliver any particular current
before discharge. Approximately how much energy is stored by a 50 ampere-hour
12 volt battery?

b) Assuming 100% efficient energy conversion, how much water stored behind a 30
meter high hydroelectric dam would be required to charge the battery?

Solution:

a) � �������.� �"!��4���
	������������ ���� ������� � �'! � ! � � �������#� �! ��#"$�&%
���'��(*) ��+,�����0�2��� ���.- �����4� �����/"0�&%,���1�2(
) ��+3�4( ���1- ���
�����5"0�&%,���'�6(7) �.+,�4( � �.- ��� !�8������/�9���0� �;: ��<5) �.+,�/� ��= ���?> ���'@BA"��+3-���

b) Potential Energy (DC Electrical Energy; assume �����0E efficiency
�*!�� !�) �5��= ���F> ���'@GA3�.+3-H���
� � ��= ���?>JIKML�ON P
�FQ IK �R +) �*8��'� , height of water, assuming that there is enough water in the dam such that
the height does not change as some of the water is taken out

��"���� ��GSUTVS ���XW$�4�1YZ�["��\���

ANS:: (a) ��= �F> ��� @ Joules, (b) 7200 kg, or about 8 tons.

Exercise 1.3 In the circuit in Figure 1.1, R is a linear resistor and � �^];_a` a constant
(DC) voltage. What is the power dissipated in the resistor, in terms of ( and ];_a` ?

Solution:

� �������.� ��! �
But � � ��<�( (Ohm’s Law), so

� �.�[���.�
�
( !��4�

],_a` %
(

ANS:: b +ced,
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R

+

v
-

Figure 1.1:

Exercise 1.4 In the circuit of the previous exercise (Figure 1.1), � � ] � ` �0����� � , a sinu-
soidal (AC) voltage with peak amplitude ] � ` and frequency � , in radians/sec.

a) What is the average power dissipated in R?

b) What is the relationship between ]D_a` and ] � ` in Figure 1.1 when the average
power in ( is the same for both waveforms?

Solution:

t

v

V DC

V AC 2V DC peak= =

Figure 1.2:

a) If peak voltage is ] � ` , then

] � ` � 	 �X],_a`

where ]3_a` is the average amplitude of the voltage signal.

� �e���'"5��� � ������� �
��]�� ) �� � �\� � %( � ],_a` %

( � ��] � `a< 	 ��� %( � ] � ` %
��(

b) If peak voltage is ] � ` , then

] � ` � 	 �X],_a`

where ]3_a` is the average amplitude of the voltage signal.
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ANS:: (a) ] %� ` <���( (b) ] � ` � 	 �X],_a`

Problems

Problem 1.1 Determine the resistance of a cube with sides of length - cms and resistivity��� Ohm-cms, when a pair of opposite surfaces are chosen as the terminals.

Problem 1.2 Sketch the �Z( � characteristic of a battery rated at 10V with an internal
resistance of 10 Ohms.

Problem 1.3 A battery rated at 7.2V and 10000 joules is connected across a lightbulb.
Assume that the internal resistance of the battery is zero. Further assume that the resis-
tance of the lightbulb is � ����6 .

1. Draw the circuit containing the battery and the lightbulb and label the terminal
variables for the battery and the lightbulb according to the associated variables dis-
cipline.

2. What is the power into the lightbulb?

3. Determine the power into the battery.

4. Show that the sum of the power into the battery and the power into the bulb is zero.

5. How long will the battery last in the circuit?

Problem 1.4 A sinusoidal voltage source

�4� ��� � � � � �
is connected across a 1k resistor.

1. Make a sketch of % � ��� , the instantaneous power supplied by the source.

2. Determine the average power supplied by the source.

3. Now, suppose that a square wave generator is used as the source. If the square wave
signal has a peak-to-peak of 20V and a zero average value, determine the average
power supplied by the source.

4. Next, if the square wave signal has a peak-to-peak of 20V and a 10V average value,
determine the average power supplied by the source.



Chapter 2

Resistive Networks

Exercises

Exercise 2.1 Find the equivalent resistance from the indicated terminal pair of the net-
works in Figure 2.1.

1 Ω

4 Ω 3 Ω

2 Ω 2 Ω

2 Ω

1 Ω

2 Ω

2R 2R2R R

RRRR

(a) (b)

(c)

Figure 2.1:

Solution:

5



6 CHAPTER 2. RESISTIVE NETWORKS

a)

( ��� �  ����  �  !. 
 ��  �5��=  �6

b)

( ��� � ������� ��� �	���0�����5��������� ��6

c)

��(
������(5� S�( %
S�( � (

Therefore ( ��� � (�� (5�5��(

ANS:: (a) ��=  �6 (b) ��6 (c) ��(

Exercise 2.2 Determine the voltages � � and �� (in terms of �� ) for the network shown
in Figure 2.2.

vS

vB

6 vA 3 vA

2 vA

vA

+
+

+

+

+

+

-

-

-

-

-

-

Figure 2.2:

Solution:

KVL:

(1) ���� ��� � ( ��� � �
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�� � ���� ��� �

(2) ��� ( ��� � ( 8�� � ( ��� � ( � � � �
�� � ����� �

����� � � ��� � ��� �

��� � � ���
� � � ����
��� �5����

ANS:: � � �$��e<�� , �� � ����

Exercise 2.3 Find the equivalent resistance between the indicated terminals (all resis-
tances in ohms) in Figure 2.3.

(a) (b)

(c) (d) Difficult

5 Ω

10 Ω10 Ω

4 Ω

2 Ω

2 Ω

1 Ω

2 Ω 3 Ω 6 Ω

4 Ω

2 Ω

3 Ω
2 Ω

1 Ω

Figure 2.3:

Solution:

a) ( ��� �  �� � � ��� ���/�����6
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b) ( ��� � � ����� 8�� ��� �/� ��6

c) ( ��� � �HS�� ��� ��� ��� � ��� � ��6

d) Apply test voltage: ( ��� � )��������� �������

v1 v2

itest

vtest

1

4

2

2
3+

–

Figure 2.4:

� � � � R � ( � I �S � � ��( � I �� � � � % ( � I �8 � �

� � � � R � ( � % �� � ��� I ( � % �8 � � ��( � % �� � �

� I �
� � � R �8 T � % �

� � � R �8

Substitute these expressions into the equation below:

� � � R � �
��� I ( � � � R � �S � � � % ( � � � R � �� � �

� � � R �� � � R �
� ( � � �5��6

ANS:: (a) ����6 (b) ��6 (c) ��6 (d) ��6

Exercise 2.4 Determine the indicated branch voltage or branch current in each network
in Figure 2.5.

Solution:

a) � � �"!�(5�*8.!�� � �����.- ���
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2 Ω

(a)
(b)

(c)

(e)

v

+

-

2 MΩ

1 µA

2 Ω 20 kΩV

+

-

i

6 V

+

-

(d)

+
-

10 kΩ

30 V

i

20 kΩ
30 V

i

20 kΩ
+
- (f)

2 MΩ
1 µA

2 MΩ

i

3 A

10 kΩ

Figure 2.5:

b) � ��� @ b% � � ([8�"0�&% �

c) KVL: 8�� ( � �2��� T ����� � ��� T ����� ��� �
� � � � ��-H- ��"0�&% ���� �

]-�5����T ����� !�� �5���/���.- ���

d) � �-��� � ; current follows path of “short circuit”

i1

+
–

i

20KΩ 20KΩ

10KΩ

30V
i2

Figure 2.6:

e) � I ���MK b,��
	
( ��� � ���5W � ���0W ��� ���5W
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( ��� � ���0W 6
� I ��'=� 1� �

KVL: (right loop)
� % � ��� T ����� � ( � � ��� T ������� � �
� � � %
KCL:
� I ( � ( � % � �
This implies � I � ���
��� �-�5=� .� �

� � ��=��5 .� �

e1 i

2MΩ 2MΩ1µA

Figure 2.7:

f) KCL: ��� � � K � ���%�� � � K � ���%�� � � �� I �� ���.- �
� � K � ���%�� � � ( ��=� � �

ANS:: (a) 6V (b) -3A (c) 20V (d) ��� � (e) .75mA (f) -.5 �
�

Exercise 2.5 Find the equivalent resistance at the indicated terminal pair for each of the
networks shown in Figure 2.8.

Solution:

a)

( � � � ( I � ( % � ( �
b)

( ��� � ( I ��� ( % � ( � �
( I ( % � ( � ��( I � ( % �

( I � ( %
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R2

(b)

R1

R3R2

(a)

R1R1

(d) (e)

R1

R3

R1

(c)

R2

R3

R2

R3 R4
R2

R3

R4

Figure 2.8:

c)

( ��� � ( I ��� ( % � ( � �
( I � ( % � ( � �
( I � ( % � ( �

d)

( ��� � ( I ��� ( % � ( � ��� (�� �
( I ( %
( I � ( %

� (
�
(��

(
�
� (��

e)

( � � � � ( I � ( % � ��� � ( � � (��0� �
��( I � ( % �0��( � � (��0�
( I � ( % � ( � � (��

ANS:: (a) ( I � ( % � ( � , (b)
, � , + � ,���� , � � , +��, � � , + (c)

, � � , + � ,�� �, � � , + � ,	� (d)
, � , +, � � , +

� , � ,	
,	� � , 
 (e)� , � � , +�� � ,	� � , 
 �, � � , + � ,�� � , 


Exercise 2.6 In the circuit in Figure 2.9, � , � , and ( I are known. Find ( % .

�4�  5]
� �*S � � �
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R1 R2

i
+

v

-

Figure 2.9:

( I ��� ��0W 6

Solution:

KCL:
��� � (7]

( I
� � (7]
( %

� �

( % � �5 ��0W 6

ANS:: 750 k 6

Exercise 2.7 In the circuit in Figure 2.10, ��� � �0] , ( I � ������6 , ( % � �5 �6 , and ( � � ���6 . Which of the resistors if any, are dissipating less than 1/4 watt?

R2
vo R3

+
-

R1

Figure 2.10:

Solution:

i1

25Ω 50Ω

100Ω

6V
i2 i3

e1

+
–

Figure 2.11:

KCL: ���0] ( � I �
������6 � ��� ( � I �

�5 �6 � ����( � I � ���6 � �
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� I �
�
�
���.- ���

� I �
�0] ( � I
� ����6 � � = �0 ��S58 �

� % �
� I ( �
�' �6 � � = �58'S1���

�

�
�
� � I ( � ���6 � � = � � � �GS

�

Power in ������6 resistor � � �� � ����� �

� �� � ����� ���$� I % ! ������� � = ���'SX�[" � ���
� �� ���5 ���� � % % !��5 /� � = � ���'S �[" � ���
� �� �! �� ��� �

�
% !. ���� � = � ��S �[�[" � ���

( % and ( � dissipate less than �9<1S watt of power =
ANS:: ( % and ( �

Exercise 2.8 Sketch the i-v characteristics for the networks in Figure 2.12. Label inter-
cepts and slopes.

10 Ω

(a)

5 V

(b)

v

+

-
v

+

-

ii

2 V

(c)

v

+

-

i

6 Ω

(d)

v

+

-

i 4 Ω5 Ω

2 A

(e)

v

+

-

i 5 Ω

4 Ω

+
-

+
-

Figure 2.12:

Solution:
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a) See Figure 2.13 �#�$� � ��� �

� � ���� �

1

2

3

-1

-2

-3

i

v

3 6 9-3-6-9

1

10
-------

10Ω

(a)

v

+

-

i

Figure 2.13:

b) See Figure 2.14 �4�  

1

2

3

-1

-2

-3

i

v

1 2 3-1-2-3 4 5

5V

(b)

v

+

-

i

+
-

Figure 2.14:

c) See Figure 2.15 �#�  ���� �
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� � � ��(
�
 

1/5

2/5

3/5

-1/5

-2/5

-3/5

i

v

1 2 3-1-2-3

1
5
---

4-4

2V

(c)

v

+

-

i 5Ω

+
-

Figure 2.15:

d) See Figure 2.16 �#� �����
� � ���� �

1

2

3

-1

-2

-3

i

v

3 6 9-3-6-9

1

10
-------

6Ω

(d)

v

+

-

i 4Ω

Figure 2.16:

e) See Figure 2.17 � �� ��<1S1� � � ��<5 �� ���
� � �

��� � � �
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1

2

3

-1

-2

-3

i

v

20/9 40/9-20/9-40/9

9
20
------

2A

(e)

v

+

-

i 5Ω

4Ω

Figure 2.17:

Exercise 2.9 a) Assign branch voltages and branch current variables to each element
in the network in Figure 2.18. Use associated reference directions.

A

+

-

B

E

C D

iA

vA

Figure 2.18:

b) How many linearly independent KVL equations can be written for this network?

c) How many linearly independent KCL equations can be written for this network?

d) Formulate a set of KVL and KCL equations for the network.

e) Assign non-zero numbers to each branch current such that your KCL equations are
satisfied

f) Assign non-zero numbers to each branch voltage such that your KVL equations are
satisfied.

g) As a check on your result, you can draw on the fact that power is conserved in
a network that obeys KVL and KCL. Therefore calculate the quantity � � 	 � 	 . It
should be zero.
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Solution:

a) See Figure 2.19.

A

B

E

C DvA

vE

vB

iA

iE

iC

vC

+

–

–

–

–

– +

+

+

+

iB

iD

vD

–

+

Figure 2.19:

b) 2

c) 3

d) KVL:

(1) ] � � ] � � ]3` � ] � � �

(2) ],`Z(7]3_ � �

KCL:

(1)
� � ( ��`Z( ��_ � �

(2)
� � ( � � � �

(3) ( � � � � � � �

e) Satisfy KCL:
� � � � � � � � � = � � ��` �-� � ��_ � ( � =�� �
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f) Satisfy KVL:
],_ � ( �'] T ],` � ( �5]
] � � �5] T ]�� � ��]
] � � (���]

g) Power conservation:
� � 	 ] 	 � �

� � ] � � � � ] � � � � ] � � ��`a],` � ��_ ],_ � �

Check:

��= �F> � � ��= �F> �\(���� � � = �F> ��� �X> ��( ��� � �\( � =�� � ��( ���'� �0]

��� �0] so, correct

ANS:: (b) 2 (c) 3 (d) (Depending on your assignment of branch variables, your answer
may be different). KVL: ] � � ] � � ]3`	� ] � � � , ],` ( ],_ � � KCL: � � ( ��`?( ��_ � � ,� � ( � � �5� , ( � � � � � � � (e) � � � � � � � � � = � � ��` � � � ��_ � ( � =�� �
(f) ],_ � ( �5] , ]3` � ( �5] , ] � �5�5] , ]�� � ��] , ] � � (���]

Exercise 2.10 A portion of a larger network is shown in Figure 2.20. Show that the
algebraic sum of the currents into this portion of the network must be zero.

Solution:

Prove: � � � � � � ��` � �
Use KCL at node A ( � is a fraction of �M` that flows to the left at node B):

� � � � ��` � � � � �2�6( � � ��` � �

� � � � � � ��` � �
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iA

iB iC

Figure 2.20:

iC

iA

iB

iB xiC+

xiC

A

B
1 x–( )iC

Figure 2.21:
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Problems

Problem 2.1 A pictorial diagram for a flashlight is shown in Figure 2.22. The two bat-
teries are identical, and each has an open-circuit voltage of 1.5 volts. The lamp has a
resistance of  �6 when lit. With the switch closed, 2.5 volts is measured across the lamp.
What is the internal resistance of each battery?

B
at

te
ry

B
at

te
ry

+

-

+

-

Lamp

Switch

Figure 2.22:

Solution:

Redraw circuit:

RI

RI

1.5V
+
-

1.5V
+
-

lamp 3V
+
-

2RI

5Ω
2.5V

Figure 2.23:

Use a voltage divider relation to find (�� :
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(�� � ���
(�� � ��� � ��( � !�80]-�5��=  5]

 
 �� ��( � !�85] � ��=  5]

( � � � =� �6

ANS:: � =  �6

Problem 2.2 Determine the current � K in the circuit in Figure 2.24 by working with resis-
tors in series and parallel.

2 Ω0.4 A
i0

1 Ω

2 Ω 2 Ω

Figure 2.24:

Solution:

The circuit simplifies to 2 6 in parallel with 2 6 . The current divides into 0.2A for each
branch. On the right branch, the current divides evenly again among the 2 6 resistors. So� K � � = � � .

ANS:: 0.1A

Problem 2.3 Find the resistance between nodes A and B in Figure 2.25. All resistors
equal ��6 .

Solution:

One possible way to solve this problem is by using vertical symmetry. The current
going in and out of the radial branches must be equal in magnitude. In fact, the radial
resistors may be detached from the middle node completely. The circuit simplifies to

�

�
6 ,

�

�
6 , and ��6 all in parallel. Resulting resistance is �

�
�
6 .

See example 4 in section 1.5 for an alternative approach also using symmetry.

ANS::
�
�
6



22 CHAPTER 2. RESISTIVE NETWORKS

A

B

Figure 2.25:

Problem 2.4 For the circuit in Figure 2.26, find values of ( I to satisfy each of the fol-
lowing conditions:

a) v = 3 V

b) v = 0 V

c) i = 3 A

d) The power dissipated in ( I is 12 watts.

12 V

3 Ω

R1
+
-

+

-
v

i

Figure 2.26:

Solution:

a) Voltage divider. Solve ���5]��
, �
� � , � � 80]

( I ���6

b) � � ��� ( I . Since the current is not 0, the resistance must be zero.
( I � �

c) Solve � �J8 � � I % b, ��� � I % b� � � , �
( I ���6
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d) Power dissipated in ( I � ����� � ��� � where �#�-���5]��
, �
� � , � and � � I % b� � , � .

( I � 8�6

ANS:: (a) ( I �-��6 (b) ( I � � (c) ( I �-��6 (d) ( I �J8�6

Problem 2.5 Find the equivalent resistance (�� at the indicated terminals for each of the
networks in Figure 2.27.

R1
R2

R3

R1 R2 R3 R1

R2

R3

R1

R2 R3

R1

R2

R3

R4

(a) (b) (c) (d)

(e)

Figure 2.27:

Solution:

a) (�� � ( I � ( % � ( �
b) (�� � I�� �

� �� +
� �� �

(�� � , � , + ,	�, � , + � , � , � � , + , �

c) (�� � I�� +�� � �
� �� �

(�� � , � , + � , � , �, � � , + � ,	�

d) (�� � ( I �
, + ,��, + � ,	�

e) (�� � I�� � �
� +
� �� �

�
� 


(�� � , � ,	� � , � , 
 � , + ,�� � , + , 
, � � , + � ,	� � , 
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ANS:: (a) (�� �( I � ( % � ( � (b) (�� �
, � , + ,	�, � , + � , � ,�� � , + ,�� (c) (�� �

, � , + � , � ,	�, � � , + � ,	� (d)
(�� � ( I �

, + ,��, + � ,	� (e) (�� �
, � ,�� � , � , 
 � , + ,�� � , + , 
, � � , + � ,	� � , 


Problem 2.6 In each network in Figure 2.28, find the numerical values of the indicated
variables (Units are Amperes, Volts and Ohms).

+
-

+

-

+

-
+

-

+-+ -

+

-

1 A 1 V - 4 A 2 V

v2v1
4 V

i1 i1
v1 Ω

V3 = 5 V

I3 = 5 A

Figure 2.28:

Solution:

Top figure, � I �JS$] ( �9] �*80] , � % �*80] � �5]-�J 5] , � I � (48 �

Bottom figure, since 5V is in parallel across the ��6 resistor, all 5A of � � go through
the resistor. �#�  5] T � I � � �

Top: � I �J80] T � % �  '] T � I � ([8 � , Bottom: �#�J 5] T � I � � � .

ANS:: Top: � I � 80] T � % �  '] T � I � ([8 � , Bottom: �4�  '] T � I � � � .

Problem 2.7 For the circuit in Figure 2.29, determine the current � � explicitly in terms of
all circuit parameters.

i3v R2

R3R1
+
-

Figure 2.29:

Solution:
(�� � ( I �

, + ,	�, + � , �
� � � ),�� � ) � , + � , � �, � , + � , � ,	� � , + ,	��
�
� ( � � � , +, + � ,���
�
� ( ) , +, � , + � , � ,	� � , + ,	�

ANS:: � � � ( ) , +, � , + � , � ,	� � , + ,	�
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Problem 2.8 Determine explicitly the voltage � � in the circuit in Figure 2.30.

+

-

R3I

R4

R2

R1 v3

Figure 2.30:

Solution:
(�� � (�� � , � , + � , � , �, � � , + � ,	�
Voltage across current source is not zero. ] � � � �/� (�� �

, � , + � , � ,��, � � , + � ,	�
�

Using voltage divider, ( � � � � (�� �
� � � +�� � � � �� � �

� + � � �, � �
,��, + � ,	��

�
� ( � � , � , + � , � ,	�, � � , + � ,��

�
,��, + � ,��

ANS:: � � � ( � � , � , + � , � ,	�, � � , + � , �
�
,��, + � , �

Problem 2.9 Calculate the power dissipated in the resistor R in Figure 2.31.

4 Ω

3 V

2 Ω = R

1 Ω 2 Ω
+
-

Figure 2.31:

Solution:

The equivalent resistance is ��6 , so �%
�

of current is split between the ��6 and S 6
resistors. Therefore, � � current goes through ( .
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Power �5���

ANS:: Power � ���

Problem 2.10 Design a resistor attenuator to make � � � � � <�������� , using the circuit con-
figuration given in Figure 2.32, and resistor values available in your lab. This problem is
underconstrained so has many answers.

+

-

R3

vi
R4R2

R1

vo+
-

Figure 2.32:

Solution:

Here is one possibility with the resistors available in lab kits.
( I � �����0W 6 , ( % �  �����6 , ( � �J81S ��6 �*858���6 � � ��6 , (�� �5������6
ANS:: ( I � �����0W 6 , ( % �J �����6 , ( � � 8'S���6 �J858���6 � ����6 , (�� � ������6

Problem 2.11 Consider the network in Figure 2.33 in which a non-ideal battery drives a
load resistor (�� . The battery is modeled as a voltage source ] � in series with a resistor( � . The following are some proofs about power transfer.

vS

RS

RL
+
-

Source
network

Load

Figure 2.33:

a) Prove that for ( � variable and (�� fixed, the power dissipated in (�� in maximum
when ( � � � .

b) Prove that for ( � fixed and (�� variable, the power dissipated in (�� is maximum
when ( � � (�� (“matched resistances”).
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c) Prove that for ( � fixed and (�� variable, the condition that maximizes the power
delivered to the load (�� requires that an equal amount of power be dissipated in the
source resistance ( � .

Solution:

a) Power dissipated in resistor (�� :

� � � %� � � ��� ��� (��

� �
] %�

��( ��� (�� � % ( �

� � ,���� K �
] %�

��� � (�� � % (�� �
] %�
( �

- ��� ,��	��
 ] %�
� ( � � (�� � % (�� � �

So, power dissipated in (�� maximum when ( �
� � . Otherwise power in (��
decreases as ( � increases.

b)
� � � %� � � ��� ��� (��

� �
] %�

��( ��� (�� � % ( �

Maximize with respect to (�� :

: �: ( � �
��(�� � ( � � % ��] %� � ( �!] %� (�� � ��� ��(�� � ( � ���

� ( � � (�� � � � �

] %�
��( ��� (�� � % �

�5] %� ( �
� ( � � (�� � �

� ( � � (�� � ] % � �5] % (��
C ( �4� ( � � when this holds power maximized in (�� �

c) Maximum power in circuit is dissipated when ( � � (�� :

� � (�� ���
] %�

��( ��� (�� � % (��
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� � � � ��� ��� �
] %

� ( � � (�� � %

� ��(��4� ( �����
] %�
S ( �

� , �4� � � � � ��� � � ( � ,�� � ,��

� , � �
] %

( � � (��
� ��� �,��	� ,��

( ]/%
S ( � �

]/%
��( � (

] %
S ( � �

] %
S ( �

Problem 2.12 Sketch the v-i characteristics for the networks in Figure 2.34. Label inter-
cepts and slopes.

v

+

-
3 Ω

i

v

+

-
4 Ω

i

2 A v
+

-

4 Ω
i

8 V
+
-

v

+

-
3 A

i

v

+

-
3 Ω

i

4 Ω
v

+

-
4 Ω

i

3 Ω

Figure 2.34:

Solution:

a) See Figure 2.35 �4� 8��
� � � 8

b) See Figure 2.36 �#� S � ��� ���
� � � S ( �

c) See Figure 2.37 �#�*S���� �

� � � � ( � �
S � � S ( �
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v

+

-
3 Ω

i

1

2

3

-1

-2

-3

i

v

1 2 3-1-2-3

1
3
---

Figure 2.35:

v

+

-
4 Ω

i

2A

1

2

3

-1

-2

-3

i

v

2 4 6-2-4-6
1
4
---

8-8

Figure 2.36:
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1

2

3

-1

-2

-3

i

v

2 4 6-2-4-6
1
4
---

8-8

v
+

-

4 Ω
i

8V
+
-

Figure 2.37:

1

2

3

-1

-2

-3

i

v

1 2 3-1-2-3

-3 amps

v

+

-
3A

i

Figure 2.38:
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1

2

3

-1

-2

-3

i

v

2 4 6-2-4-6

1
7
------

8-8

v

+

-
3 Ω

i

4 Ω

Figure 2.39:

d) See Figure 2.38

e) See Figure 2.39
�4� ���
� � �

�

f) See Figure 2.40
�#� ( I ( %
( I � ( %

!�� � ���
�
�

� � �

��� �

Problem 2.13

a) Find � I , � % , and � � in the network in Figure 2.41. (Note that � � does not obey the
standard convention for current direction).

b) Show that energy is conserved in this network.

Solution:

a) An easy way to do this problem is by superposition.

� I �
� � ( % � � � ( � ( ���"( %
( I ( % � ( % ( � � ( I ( �
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3

6

9

-3

-6

-9

i

v

2 4 6-2-4-6

7
12
------

8-8

12

v

+

-
4 Ω

i

3 Ω

Figure 2.40:

R2

R1i1

vA

R3 i3

i2
+
-

+
- vB

v1+ - v3+ -

v2

+

-

Figure 2.41:
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� % �
� � ( � � ����( I

( I ( % � ( % ( � � ( I ( �

�
�
� ����( % � ���( I ( � � ( %( I ( % � ( % ( � � ( I ( �

b) KVL and KCL imply:
� % � � I � � � (2.1)
� % � � � � ��� (2.2)
� I � � � � � % (2.3)

We wish to show that
� � � I � ��"� �

�� � I � I � � % � % � � � � �
substitute (3) for � %

� � � � I � ��"� �
�� � I � I � ��� I � � � �2� % � � � � �

rearrange
� � � � I � ���"� �

�� � � I � � % �2� I � � � % � � � � � �
substitute (1) and (2)

� � � � I � ��"� �
�� � � � I � ����� �

Note: Power and, more generally, any sum of products of currents and voltages
will always be zero. Note that we did not use any information other than KVL and
KCL. The currents and voltages don’t even have to belong to the same network.
This powerful theorem is known as Tellegen’s Theorem.

ANS:: (a) � I � )��
, + � )�� ,	� � )�� , +, � , + � , + ,�� � , � ,	� ,

� % � )�� ,�� � )�� , �, � , + � , + ,�� � , � ,	� ,
�
�
� )�� , + � )�� , � � )�� , +, � , + � , + ,�� � , � ,	�

Problem 2.14 Assume that you have an arbitrary network of passive two-terminal resis-
tive elements in which the i-v characteristic of each element does not touch either the
v-axis or the i-axis, except that each i-v characteristic passes through the origin. Prove
that all branch currents and branch voltages in the network are zero.

Solution:

Assume that there is a voltage across any element. Therefore, since the v-i charac-
teristic is such that it intersects the axes at only the origin, there is a current through
that element. The element thus consumes power. Due to the conservation of power rule,
some element must be producing that power. This contradicts the assumption that all
the elements are passive. Therefore there cannot be any voltage across any element, and
consequently no current through any element either.
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Problem 2.15 Solve for the voltage across resistor ( � in the circuit in Figure 2.42 by
assigning voltage and current variables for each resistor.

R2v I

R1 R3

R4
+
-

Figure 2.42:

Solution:

Label currents and voltages (see Figure 2.43).

R2v I

R1 R3

R4
+
-

i1 i3
i2 i4v1+ - v3 +-

v2
+

-
v4
+

-

Figure 2.43:

From KCL:

1) � % � � I � � �
2) � � � � � � �

From KVL:

3) ( � � � I � � % � �

4) � � ( � � � � % � �

From Ohm’s Law:

5) � I � � I ( I
6) � % � � % ( %
7) � � � � � ( �
8) � � � � � (��
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Solving for � � , the voltage across ( � :

� � � ��( % ( � � � ( I ( % (�� � � ( I ( � (�� � � ( % ( � (��
( I ( % � ( I ( � � ( I (�� � ( % ( � � ( % (��

ANS:: � � �*)
, + , 
 �

� , � , + , 
 �
� , � ,�� , 
 � � , + ,�� , 
, � , + � , � ,	� � , � , 
 � , + ,	� � , + , 


Problem 2.16 Find the potential difference between each of the lettered nodes (
�

, � , � ,
and � ) in Figure 2.44 and ground. All resistances are in ohms.

A

C

D D

B

2  A

150 Ω 100 Ω

150 Ω 100 Ω

25 Ω 50 Ω20 Ω 20 Ω
E

Figure 2.44:

Solution:

A

C

D

E

B

150

150 100

100

50
2020

25

2A

i3

i5 i4

i1 i2

i6 i7

i9i8

D

Figure 2.45:
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Redraw circuit (see Figure 2.45)

From KCL:

1) � � � � I � � % � � �
2) � � � � � � � �

3) � � � � I � � �

4) ��� � � % � � �

5) � � � � @ � ���

From KVL:

1) ������� ( ����� @ � �

2) �9 ���� I ( �� ���� � � �

3) � ����� % ( ������� � � �

4) �9 ���� I � �' �� � (7 ������ ( ������� % � �

Solve for currents: � I � I%
�

, � % � I%
�

, � � � � , � �#� I%
�

, � � � I%
�

, � @ � � , ��� � � ,� � �� , ��� �-�

Find voltages relative to ground (D):

� � _ � �� ���� � � �' �� � ��� �� � �� � � �5 � ����� �����0]
���,_ � �5 �� � �5�5 ']
�1`
_ �  ������ �  ��0]

� � _ � �5] � � � � � � )
������6 �1��� � � �2�����9"0�'����) �����\� : =

ANS:: � � _ �-�����0] , ��,_ �5�5 5] , �'`
_ �  ��5] , � � _ � �5]

Problem 2.17 Find the voltage between node � and the ground node in Figure 2.46. All
resistances are in ohms.

Solution:

Since the network to the right of the �5 �6 resistor is not grounded, there is no loop for
current to flow through it. Therefore, apply a voltage divider to the left loop:

�1`
_ � S ��6
S ��6 � 80 �6 � �5 �6 �����0]-� �5 5]
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100 V
+
-

+
-

A

2 AC B

D

200 V

Grounded node

i1

i2

i3

85 Ω

35 Ω

40 Ω

15 Ω
25 Ω

5 Ω

20 Ω

Figure 2.46:

Note that node D is at �����0] :

�1_ � �����0] � �'` � �1`
_ � �1_ � �����0] � �5 5]-�5���5 ']

ANS:: �'` � ���' 5]
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Chapter 3

Network Theorems

Exercises

Exercise 3.1 Write node equations for the network in Figure 3.1. Solve for the node
voltages, and use these voltages to find the branch current � . To minimize errors and
facilitate answer-checking, it is helpful to obtain literal expressions before substituting
numerical values for the parameters.

]-�5� volts (
�
� 8�6 ( I �5��6 (�� � ��6 ( % � S 6 ( � ���6

V

+

-

R1

R2

R5
R3

R4i

Figure 3.1:

Solution:

Node equations:

] ( � I
( I

� � ( � I
( %

� � % ( � I
( �

� �

] ( � %
(
�

� � ( � %
(�� � � I ( � %

( �
� �

39
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e1 e2

R3R5
R1

R4R2

V
i

+
-

Figure 3.2:

Solving the above two equations,

� I � �5= ��8 ��� � ]

� % � � = � � ���98X]

� � � I ( � %
( �

� � = �� �� �1S �

� � �

 '8
�

ANS:: 8/53 A

Exercise 3.2 Find the Norton equivalent at the indicated terminals for each network in
Figure 3.3.

5 V
+

-
2 Ω v

i

+

-

3 Ω

Vo

+

-
v

i

+

-

R2

Is

R1

Figure 3.3:

Solution:

Left network:
(�� �J8 ��� �.��5= �/6 when  ] source is made a short circuit.
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� �  '<'8 �
when the indicated terminals are connected with a wire (“shorted”) since

then no current flows through the �.6 resistor.

Right network:
(�� � ( I �5( % , when the ] K source is shorted and the � � source is made an open

circuit.

� �
( %

( I � ( %� � � �

current
divider
for�
K����

! � ���
] K

( I � ( %� � � �

contribution
from

�
K

when � � ���

by superposition

ANS:: Left: �5= ��6�T  '<'8 � , Right: ( I � ( % ,
, +, � � , + �

� � b��, � � , +

Exercise 3.3 Find the Thévenin Equivalent for each network in Figure 3.4.

v

i

+

-

v

i

+

-

R2Is

R1

R2 Is
R3

R1

Figure 3.4:

Solution:

Left network:
(�� � ( I � ( % when � � is made an open circuit.
]	�,` � � ��( % since no current flows through ( I in the open circuit case.

(�� � (
�
��� ��( I � ( % � when � � current source is made an open circuit.
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Since ]	�,` � ( � ! (current through ( � ) by Ohm’s Law,

]	�,` � � ��!�( %
( I � ( % � ( �� ��� �

current di-
vider relation
for fraction of
� � that will
flow through

� I and
�
�

!�(
�

ANS:: Left: ]	�,`� � �1( % T ( � � ( I �-( % , Right: ]	�,` � � � , + ,��, � � , + � ,��
T (��
�

(
�
��� ��( I � ( % �

Exercise 3.4 Find � K in (a) and (b) by superposition in Figure 3.5.

vo

+

-6 A

+

-
10 V

4 kΩ

1 kΩ
2 kΩ

3 kΩ
vo
+

-

3 Ω

2 Ω

2 Ω

3 Ω

+

-

31 A

62 V

Figure 3.5:

Solution:

31A vo

i1

i2

2

3

2 3
+

–

Figure 3.6:

(a):

1. Set voltage source to zero (short circuit):

� K � �
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2. Set current source to zero (open circuit):

� K � ��� ] !
8������

8�������� �������
� � � �

voltage divider

� K � � ] �.- ���

� K � � � �0] [superposition]

� K � � ] �.- ���

(b):

1. Set current source to zero (open circuit):

� K �

������� � ���.8
����� 8 � � � 8
� ��� �

voltage divider

�������� !�� � ]-�-���X] �1- ��� since ����� 8 �-�5= �

2. Set voltage source to zero (short circuit):

� I �J8 � �
������ �
8 � ����� 8 � �
� ��� �

current divider

� ����� � ��� �

� K � 8.!��\( � % ��� ( ����] �.- ��� � % ��� �8 � �
	 !�� I �JS �

� K � ����� �\(������ [superposition]

� K � �

ANS:: (a) 6V (b) 0V

Exercise 3.5 Use superposition to find the voltage � in the network in Figure 3.7.

Solution:
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1 V
+
-

1 Ω

2 Ω
1 Ω 1 A

1 Ω

1 Ω

v
+

-

1 Ω

2 Ω 1 A

Figure 3.7:

]-� �
8 ]
� ��� �

from left

current

source

� �
��� ]
� ��� �

from

voltage

source

���0( ���� ]��
� ��� �

from right

current

source

� �8 ] �.- ���

ANS:: 1/3V

Exercise 3.6 Determine (and label carefully) the Thévenin equivalent for the network in
Figure 3.8.
( I �5�5W 6 ( % ���W 6 � K � 8����	� � � (in mA)

R2v

+

-

i

i0

R1

Figure 3.8:

Solution:
]	�,` �J8
���	� � � [volts] since no current flows through ( I in the open-circuit case.
(�� � ( I � ( % � 8�W 6 , when � K current source set to zero (open circuit)

ANS:: ]	�,` � 8����	� � � volts, and (�� � 8�W 6

Exercise 3.7 Determine and label carefully the Norton equivalent for the network in Fig-
ure 3.9.
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4 mA

5 kΩ

2 kΩ

1 kΩ

a

b

Figure 3.9:

Solution:

� �.` ��� �5W
�5W �  5W �$��W��

� ��� �

current divider

!0SX� � �-�4� �

(�� �  5W � �'W �$��W � � W 6 , when current source is “open-circuited”

ANS:: � �.` � � � �
, and (�� � ��W 6

Exercise 3.8 Find the Thévenin equivalent for the circuit at the terminals
� ���

in Fig-
ure 3.10.

10 V

1 kΩ

2 kΩ

A

A’

2 kΩ

+
-

Figure 3.10:

Solution:
(�� � ��W 6 � �5W 6 �����5W 6 �5�5W 6 when voltage source is short-circuited.
]	�,` �  2]��1- ��� , by voltage divider since no current flows through ��W 6 resistor in the

open-circuit case.

ANS:: (�� � �5W 6 and ] �,` �J ]��1- ���

Exercise 3.9 The resistive network shown in Figure 3.11 is excited by two voltage
sources � I ����� and � % ����� .
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v1(t)

2 Ω

i(t)

v2(t)

2 Ω

+
-

+
-1 Ω

Figure 3.11:

a) Express the current � ����� through the ��6 resistor as a function of � I � ��� and � % ����� =

b) Determine the total energy dissipated in the ��6 resistor due to both � I � ��� and � % �����
from time � I to time � % .

c) Derive the constraint between � I ����� and � % ����� such that the value for b) can be
computed by adding the energies dissipated when each source acts alone (i.e. by
superposition).

Solution:

a)

� � ���'� � � ������ ������� � � � � I ����� � � % � ��� � � �S � � I � ��� � � % ����� �
b)

Energy �
�
���
� � +
�
�
��� I ����� � � % � ��� � % : �

c)

For superposition to apply,
� � +
�
�
� I !�� % ! : ���5� [orthogonal]

ANS:: (a) � � ��� � I� ��� I ����� � � % ������� (b) Energy � II @��
�
+� � ��� I ����� � � % ������� %

: � (c) �
�
+� � � I !� % ! : ���5�

Exercise 3.10 Find the Norton equivalent at the terminals marked ��� in the circuit in
Figure 3.12.
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Io = 3 A

2 Ω

Vo = 5 V+
-1 Ω

x
4 Ω

2 Ω

x

Figure 3.12:

Solution:

(�� � � ���1� �7S �����/�5��6 when both sources are “shut off”

� �.` � �
� ��� �

when
voltage
source
shut off

� �
� � � �

when
current
source
shut off

�-� � , by superposition

ANS:: (�� � ��6 and � �.` ���-� �

Exercise 3.11 Find the Thévenin equivalent for the circuit in Figure 3.13 at the terminals� � �
.

12 V

6 Ω

1 A3 Ω

A

+
-

A’

Figure 3.13:

Solution:
(�� � � ���.8 � ��6
]	�,` �*S2] � ��]-� � ] �.- ���

Find ] �,` by superposition:
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+

–

12V
6

3

A

A'

V oc
+
-

Figure 3.14:

When current source is off:

] �3` � � 8
8 � � �

� ��� �

voltage divider

! ��� ] �*S2] �.- ���

+

–

6

3

A

A'

V oc

i2
i1

1A

Figure 3.15:

When voltage source is off:

� I � � �8 � � �
� ��� �

current divider

! � � � �8
�

] �,` �$� I ! 8�6 �5�X] �1- ���

ANS:: (�� � ��6 and ]	�,` � ��] �1- ���

Exercise 3.12 In the network in Figure 3.16, find an expression for � % .
Solution:

By superposition,

� % � � � ! � ( %
( I � ( %

�
� ��� �

voltagedivider

� � � � ( I
( I � ( %

�
� ��� �

currentdivider

!1( %
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R1
v3

I3

- +
R2

v2
+ -

Figure 3.16:

ANS:: � % � � � !�� , +, � � , +�� � � � � , �, � � , +�� ! ( %
Exercise 3.13 The networks in Figure 3.17 are equivalent (i.e. have the same v-i relation)
at terminals

� ( � �
. Find � � and (�� .

R1
v3

I3

- +

v

+

-

A

A’

R2

RT

vT v

+

-

A

A’

i i

+
-

Figure 3.17:

Solution:

Right network is Thévenin Equivalent of left network.
(�� � ( % since no current flows through ( I when � � is shut off.
� � � ] �3` � � � ! ( % � � � , by superposition.

ANS:: (�� � ( % and � � � � � ! ( % � � �

Exercise 3.14 For each of the circuits in Figure 3.18 give the number of independent
node variables needed for a solution of the problem by the node method.

Solution:

a) 3 node variables

b) 3 node variables
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R2

I2

R4 v

R1

R3 R5

I1 R1

+ -

R4

R5

R4R3
R2

I

Figure 3.18:

ANS:: (a) 3 (b) 3

Exercise 3.15 For the circuit shown in Figure 3.19, write a complete set of node equa-
tions for the voltages � � , ��� and � � . Use conductance instead of resistance. Simplify
the equations by collecting terms and arranging them in the “standard” form for n linear
equations in n unknowns. Do not solve the equations.

v

I

R6R5

R3 R4

R2R1

va vb
vc

+
-

Figure 3.19:

Solution:

(1) � � I � �
�
� � � � � � ( �

�
! ��� � �.! �

�
� � I ![]

(2) ( �
�
! � � � � �

�
� � �0� ��� ( � �'! �

�
� �

(3) �.! � � ( � �'! ��� � �H� % � � � � � @ � ! � � �*� % !�]

ANS:: (1) � � I �X� � � � � � � �5([� � !���� � � ! � � �*� I !U] , (2) ( � � ! � � � �H� � �X� �0� ��� ([� ��! � � �
� , (3) �.! � � ( � � ! ��� � � � % � � � � � @ � ! � � �*� % !�]
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Exercise 3.16 For the circuit shown in Figure 3.20, use superposition to find � in terms
of the ( ’s and source amplitudes.

v

R1R3

R2
v2

+
-

+-

I

v1

+

-

Figure 3.20:

Solution:

Redraw:

V 2 V 1
R1

R2

R3

VI +–

+
-

+
-

Figure 3.21:

Superposition:

1.
] % , ] I off; � on:
]� � since no current through ( %
2.
] % on; ] I and � off:

]-� ( ( %
( % � ( I ����( �� ��� �

voltage divider

!e] %

3.
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R1

R2

R3

VI +–

Figure 3.22:

V 2 R1 R3

R2
+

–
V

+
-

Figure 3.23:

V 1

R1

R3 R2

–

+
V+

-

Figure 3.24:
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] I on; ] % and � off:
] � ( % ��� ( �

( I � ( % ��� ( �
! ] I

Superposition:

]-� ] I !
( % ����( �

( I � ( % ����( �
( ] % !

( %
( % � ( I ����( �

ANS:: ]-� ] I !
, + ��� ,	�
, � � , + ��� ,	� (7] % !

, +, + � , � ��� ,	�

Exercise 3.17 Find the Thévenin equivalent of the circuit in Figure 3.25 at the terminals
indicated.

v
R1

R3

R2
v

+

-
I

+
-

i

Figure 3.25:

Solution:

R1

R2

R3

Figure 3.26:

To find ( � , shut off 2 sources:

(�� � ( I ��� ��( % � ( � ���
( I ��( % � ( � �
( I � ( % � ( �

To find ]	�,` , use superposition:
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R3

R1

R2

i1
i2

I
+

–
V oc

Figure 3.27:

1.

Shut off ] :
� I �

( %
( I � ( % � ( �

! �

]	�,` � � I ! ( I �
( I ( % ! �
( I � ( % � ( �

2.

R3

R1 R2
V V oc

+

–

+
-

Figure 3.28:

Shut off � :
] �3` � ��( % � ( � � ![]( I � ( % � ( �

]	�,` � ( I ( % ! � � ��( % � ( � � ]( I � ( % � ( �

ANS:: (�� �
, � � , + � ,	� �, � � , + � ,�� ,

] �3` � , � , + N � � � , + � ,�� � b, � � , + � ,	�

Exercise 3.18 In the circuit shown in Figure 3.29 there are 5 nodes, only 3 of which
are independent. Take node

�
as a reference node, and treat nodes

�
, � , and � as the

independent nodes.

a) Write an expression for �'` , the voltage on node � , in terms of � � , ��� , �'_ , and ] I .
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R2

R6R5

V1

+ -
R3

R1

A
CB

D

E

R4

Figure 3.29:

b) Write a complete set of node equations which can be solved to find the unknown
voltages in the circuit. Do not solve the set of equations but do group them neatly.

Solution:

a) �1` �$�'_ � ] I
b) � � I � � % � � �0� ! � � ( � % ! � � ( � I �1_ � �

(6� % ! � � � �H� % � �
�
� � � � ��� ( �

�
�'_ �*�

�
] I

(6� I ! � � ( �
�
�� � �H� I � �

�
� � @ � ! �1_ � � � ] I

ANS:: (A) �'` � �1_ � ] I (b) �H� I � � % �7� ��� !.� � ( � % !.� � ( � I �1_ �5� , (6� % !.� � ��H� % � �
�
� � � � �� ( �

�
�'_ � �

�
] I , ( � I ! � � ( �

�
�� � � � I � �

�
� � @ � ! �1_ �*�

�
] I

Exercise 3.19 Consider the circuit in Figure 3.30.

25 V

300 Ω

+ -

-

+

v100 Ω

50 Ω i

0.5 A

A’

A’

Figure 3.30:

a) Find a Norton equivalent circuit for this circuit at terminals
� ( � �

.



56 CHAPTER 3. NETWORK THEOREMS

b) Find the Thévenin equivalent circuit corresponding to your answer in Part a).

Solution:

a) (�� � � ����� �  ���� ���.8������� ���/6

] �3` � � �����
����� �  ���� 8���� � ! ����=� � �

� ��� �

Current divider:

!$8������ � ([8����
8������ �������  �� � !.�5 X]

]	�,` � ��� �8 ] �1- ���

From this, one can find the short-circuit current:

� �.` �
] �3`
(�� ��9<��

� �&%,���1���

b) The open-circuit voltage was found in the previous part.

ANS:: (�� �-�����/6 , ]	�,` � ��� %� Volts, � �1` ��9<�� Amperes

Exercise 3.20 Measurements made on terminals � ( � � of a linear circuit in Fig-
ure 3.31(i), which is known to be made up only of independent voltage sources and current
sources, and resistors, yield the current-voltage characteristics shown in Figure 3.31(ii).

a) Find the Thévenin equivalent of this circuit.

b) Over what portions, if any, of the i-v characteristic does this circuit absorb power.

Solution:
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v

R

B

B’

V
+

-

+
-

i
I 10

20

30

-10

-20

-30

-4

-3 -2 -1

1 2 3 4 5

40

v (V)

(i) (ii)

i (mA)

Figure 3.31:

a) ] �,` � ([8 ] �.- ��� (voltage when current, � � � )

(�� � �
�9-�� %
� �

8 ]
� = � � � ��� ���6

We find � ������� � �"! �

b) In quadrants 1 and 3, the product � ! � is positive. Thus, the circuit absorbs power
within this range.

ANS:: (a) ]	�,` � (48 Volts, (�� �-�� ��/6 , (b) In quadrants 1 and 3

Exercise 3.21

a) Write in standard form the minimum number of node equations needed to analyze
the circuit in Figure 3.32.

R4R1

i4

I
+
-

R5R2

R3

v

Figure 3.32:
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i4

e2R3

R5

R1 R4

R2

V

e1

I+
-

Figure 3.33:

b) Determine explicitly the current � � .

Solution:

a)

� � � �!� % ( � I �
(��

Thus we need to find � % , � I .
� I � I, � , etc.

Node equations: Standard form:

(1) At � I :
��] ( � I �
( %

� � �
�!� % ( � I �
(�� � � � � I ��( � % ( � � � � � % � � � ([] � % ( �

(2) At � % :
��� ( � % �
(
�

( � �
�� I ( � % �
(�� � � � � I !6� � � � % �\(6� � ( �

�
��� �

b) We find that:
� % � � � % ( ] � % � �� � � % � �

�
� % � �

�
� �

� I � � �H� � � % � �
�
� % � �

�
� �0� ( � % � � (7]�� ��� �H� � � �

�
�

� �'! �H� � � % � �
�
� % � �

�
� �0�

�� % ( � I � �
( �!]-!6� % ! � � � � � ! �H� % � �

�
� �

� % � � � � % � � � �
�
� �

� � � ( � � !4��] ! � % ! � � � � ! � � % � �
�
���

� % � � � � % � � � �
�
� �
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ANS:: (a) � I �\(6� % ( � ��� � � % � � � ([] � % ( � , and � I ! � � � � % ��( � � ( �
�
� � � , (b)

� � � � � 
 N � b N�� + N��
� � � N � � + � � � � �� + � 
 � � + � � � � � � 


Exercise 3.22

a) Find the Thévenin equivalent of the circuit in Figure 3.34.

R4R1

R2

R3

v

R8

R6

A
R7

R5

+
-

A’

I

Figure 3.34:

b) Find the Norton equivalent of the circuit in Figure 3.35.

I

R1

v R4

1
R2

R3

+
-

1

Figure 3.35:

Solution:

a) (�� � ( @ � ( � � ( � , since the current source cuts off the subcircuit to its left, for
the purpose of determining the Thevenin resistance.
] �,` � � !�( @

b) (�� � (��	��� � ( % � ( � � , since no current flows through ( I
� �1` � b, + � ,	�
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ANS:: (a) (�� �( @ � ( � � ( � and ]	�,` � � !#( @ , (b) (�� �(�� ����� ( % � ( � � , and
� �.` � ] < ��( % � ( � �

Exercise 3.23

a) Find the Norton equivalent of the circuit in Figure 3.36.

I

R1 v

1

R4

+
-

1

R2 R3 R5

R6

R7

Figure 3.36:

b) Find the Thévenin equivalent of the circuit in Figure 3.37.

I

A

A’

R1 R2 R3

R4

v
+
-

Figure 3.37:

Solution:

a) (�� � ( @ � ( �

� R � � ] < ��( @ � ( � �

b) (�� � � ( % ����( � � � ( �
] �,` � � ��( % ����( � �

ANS:: (a) ( � � ( @ � ( � , � R � � ] < ��( @ � ( � � , (b) (�� � � ( % ��� ( � � �$( � , ]	�,` �
� � ( % ����( � �
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Exercise 3.24 Find the Thévenin equivalent circuit as seen from the terminals " (�� in
Figure 3.38.

10 mA 10 kΩ 2 V +
-

10 kΩ

a

b

Figure 3.38:

Solution:
(�� � ���0W 6 ���1���0W 6 �  'W 6
By superposition,

] �3` � � ���'� � � � ���0W 6 ���1���0W 6 � � ��( �5] �
� � �0W
���0W � ���5W�� � S �0] �.- ���

ANS:: (�� �J 5W 6 , ] �3` �*S � Volts

Exercise 3.25 Find the node potential
�

in Figure 3.39.

5 V 8 kΩ

1 V

+ -

+
-

8 kΩ

0.4 kΩ

E

2.5 mA

Figure 3.39:

Solution:
� � � =��0] � � =��0] � � = �5] � ��= S0] , by superposition.

ANS:: 2.4 Volts
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Exercise 3.26 For the circuit in Figure 3.40, write the node equations. Do not solve, but
write in matrix form: source terms on the left, unknown variables on the right.

V

+ -
R1 R2

R2
R3

Figure 3.40:

Solution:

R2R1

R3 R4

+ –V

I

va

vb

Figure 3.41:

(1) ]5!6� I � � �.�H� I � � % � � ��� ( ��� !4� �
(2) ]5!6�

�
( � � � � ���\(6� � � � ��� � � � � � ���

ANS:: ] !;� I � � �/� � I � � % � � �0�$(#��� !;� � , and ] !;�
�
( � � � � ���\(6� ��� � ��� �H� � � � ���

Exercise 3.27 Find � I by superposition for the circuit in Figure 3.42.

Solution:

Superposition:

1.
] off, � on

� � � � ! � ( % ����( I �

2.
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V

R1

R2

v1

R3

+
-I

Figure 3.42:

R2

R1

R3

I

vi

Figure 3.43:

R2

R1

R3

I

vi

Figure 3.44:

R2

R1

R3

I

vi

V
+
-

Figure 3.45:
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R2

R1

R3

vi

V
+
-

Figure 3.46:

] on, � off
� � � ] ( %

( I � ( %

� � � � ! � ( I ( %( I � ( %
� � ]5! � ( %

( I � ( %
�

ANS:: � � � � ! � , � , +, � � , + � � ]5! � , +, � � , + �

Problems

Problem 3.1 A fuse is a wire with a positive temperature coefficient of resistance (in
other words, its resistance increases with temperature). When a current is passed through
the fuse, power is dissipated in the fuse, which raises its temperature.

I0 Fuse

Figure 3.47:

Use the following data to determine the current � K at which the fuse (in Figure 3.47)
will blow (i.e., its temperature goes up without limit).
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Fuse Resistance:(5����7" ��� )
� �"4� = ��� ��66< : �G�e�1�9��� �
� � � ���&%,���1"���+,�'� ���&���4" ����+ � "0� � ��� � �
Temperature rise:
� ��� �� � � I� % % � � : �G�e�'�9��� � <�� "�� ���
� �7% ������� : �&����� %,"��\� : � � YD+��9�

Solution:
(5����7"�� ��� )U� �
(5����7"�� � %K ( � )U� �
(5� II � ��� � +�

� )U� �
�6( "�� � %K � �
� K ��� "0�&% �
ANS:: 15 amps

Problem 3.2

a) Prove, if possible, each of the following statements. If a proof is not possible,
illustrate the failure with a counter-example and restate the theorem with a suitable
restriction so it can be proved.

i) In a network containing only linear resistors, every branch voltage and branch
current must be zero.

ii) The equivalent of a one-port network containing only linear resistors is a linear
resistor.

b) To demonstrate that you understand superposition, construct an example which
shows explicitly that a network containing a nonlinear resistor will not obey su-
perposition. You may select any nonlinear element (provided you show that it is
not linear) and any simple network containing that element.

Solution:

a) i) This is true. Assume that there is a nonzero branch voltage. That must cause
a nonzero branch current, due to the ��( � relationship of a linear resistor.
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Therefore the resistor consumes power. Something must be producing this
power, but linear resistors cannot produce power, so our hypothesis falls apart.
Therefore there are no nonzero branch voltages or branch currents.

ii) This is true. This is the mathematical definition of linearity.

i = Kv3

v

i

Figure 3.48:

b) Consider the nonlinear resistor with the � ( � relation shown in Figure 3.48, which
is given by � ��� � � . Let a voltage � I be applied across the resistor. A current� I ��� � �I flows through the resistor. Similarly, a voltage � % produces a current� % ��� � �% . Suppose a voltage � � � � I � � % is applied. The � ( � relation tells
us the resultant � � is � � �� ��� ��� I �
� % � � . However, superposition tells us � � is� I � � % ��� � �I ��� � �% , which in general is not equal to what the �D( � relation says.

Problem 3.3 Find ] K in Figure 3.49. Solve by (1) Node Method, (2) Superposition. All
resistances are in Ohms.

2

V0
+
- 4

+

-

2

8 V 6 A 6

Ω

Ω Ω

Ω

Figure 3.49:

Solution:
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(1) Node Method
Label the nodes � I and � % as shown in Figure 3.50.

+
-

8V 4Ω

2Ω2Ω

6A

e2
e1

6Ω

+

-

Vo

Figure 3.50:

By the node method, we obtain the following two equations:
�

b � � �% � P � R ( � ��	� P � R � �
� � � + � � �% � P � R � �

� � � � +% � P � R ( � +@ � P � R � �
Thus, ] K �J� % � � =  �X]

(2) Superposition
Find the voltage due to each source independently, as shown in Figure 3.51 and
Figure 3.52.

+
-

8V 4Ω

2Ω2Ω

6Ω

8Ω

8
3
---Ω

+

-

Vo1

Figure 3.51:

] K I � � ��] � ���
� � P � R
% � �� � P � R

@ � P � R
� � P � R � 8 = S08�]

] K % � ��� � �0�

 � � P � R
� � 
� � P � R ��� � )U� �����  �= ��S ]

] K �J] K I � ] K % � � =  �X]

ANS:: 8.57 V
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4Ω

2Ω2Ω

6A 6Ω

4
3
---Ω 8Ω

+

-

Vo2

Figure 3.52:

Problem 3.4 Consider the figure you used for the previous problem (Figure 3.49). Find
the Norton equivalent of the network as seen at the terminals on the right.

Solution:

Remove the sources to find ( ��� , as shown in Figure 3.53.

4Ω

2Ω2Ω

6Ω

4
3
---Ω

+

-

Vo

Figure 3.53:

(���� � � @ � P � R � � % �

� � P � R �@ � % � 
� � �e= ��S � )
� �

��� � ) ���, ��� � )�� d,��	� �JS �

The Norton equivalent is shown in Figure 3.54.

ANS:: 2.14 Ohms and 4 A

Problem 3.5
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2.14Ω

+

-

Vo4A

Figure 3.54:

a) Find ( � � , the equivalent resistance “looking into” the terminals on the right, of the
circuit in Figure 3.55.

R 2R

R R R

2R2R Req = ?

Figure 3.55:

b) Find the Thévenin equivalent, looking into the terminals on the right of the circuit
in the figure in Figure 3.56.

1

Vo1 A

+

-

Ω 1Ω

1Ω

1Ω

2Ω 2Ω2Ω

Figure 3.56:

Solution:

a) See Figure 3.57.
( ��� � (

b) Check out Figure 3.58.
� ��� � � �3` � ��� � )U� ���0�2� � � I � P � RI � 
 �+ �

� P � R %
� P � R% � � �

�

� P � R %
� P � R% � � � P � R � = ���' �]

(���� �-� � )
�
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+

-

Vo

R

2R

R R

2R 2RR

RRR2R 2R 2R

Figure 3.57:

+

-

Vo1A

1Ω 1Ω 1Ω

1Ω 2Ω 2Ω 2Ω

1.17R1.05R2.05R 2.2R 3R

Figure 3.58:
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ANS:: (a) ( � � � (&T (b) � ��� � = ���5 '] T ( ��� �-� � )U�

Problem 3.6 Find � � for � � 8 amps, ] � � volts in Figure 3.59. Strategy: to avoid
numerical errors, derive expressions in literal form first, then check dimensions.

I

+

-

2 Ω

vi

V

-

3 Ω

2 Ω2 Ω

2 Ω
+

Figure 3.59:

Solution:

Use the node method. Label the nodes as shown in Figure 3.60.

I

+

-

2 Ω

vi

V

-

3 Ω

2 Ω2 Ω

2 Ω
+

e3

e2e1

Figure 3.60:

Node equations:
� I �
�
��6 �

�
��6 � ( � %

�
��6 � ( �

(4� I �
�
��6 � � � % �

�
��6 �

�
��6 �

�
8�6 � ( �

�
� �8�6 �'� �

([� %
�
8�6 �7�

�
� �8�6 �

�
��6 � � � �

]
��6

Solving with � �*8 � and ]-�5�5] :

� I � (  ��� � ]



72 CHAPTER 3. NETWORK THEOREMS

� % �
�
� � ]

�
�
� � �
� � ]

Thus,
� � � � I � (  ��� � ] Q ( �e= �0 ']

ANS:: -2.95 V

Problem 3.7 For the circuits in Figures 3.61(i) and (ii):

a) Find � � for ( I � ( .

b) Find � � for ( I �� (

c) Find the Thévenin equivalent for the network to the right of points
� � , assuming( I � ( .

V

RR

A

RR1

vo
+
-

V

RR

RR1

vo

+
-

B

A

B

R

+ -+ -

(i) (ii)

Figure 3.61:

Solution:

a) By symmetry, � � � � in both cases.

b) For (i), we can use two voltage dividers:
� � � ] � ,, � , � ( I% �
Note that the ( I � ( case reduces to part a.

For (ii), we must use the node method (See Figure 3.62).
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V

RR

RR1

vo

+
-

A

B

R

+ -e1 e2

Figure 3.62:

��� � b, � � ��� � � +, � ���, � �
� + � b, � � + � ���, � � +, � �
So, � � �J� I ( � % � b

� , � , � �� , � � , �
c) By symmetry, no current flows across the middle resistor for (ii), so we can replace

it with an open circuit. Therefore, cases (i) and (ii) are identical. The equivalent
resistance of the four resistors can be easily found, so in both cases, ( ��� �5( and� ��� � � .

ANS:: (a) � T b) i) ] � ,, � , � ( I% � T ii) b
� , � , � �� , � � , � T c) (���� � (&T ] ��� � � .

Problem 3.8

a) Determine the equation relating � to � in Figure 3.63.

i

2 Ω 2 Av

4 Ω1 Ω
+

-

3 Ω

Figure 3.63:

b) Plot the i-v characteristic of the network.

c) Draw the Thévenin equivalent circuit.

d) Draw the Norton equivalent circuit.
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Solution:

a) See Figure 3.64.

7Ω2Ω

+

-

v

2Ω 2A 7Ω

2A

i

Figure 3.64:

In (i), � � � , so �#� ( ��� � � � % � P � R � � � � P � R% � � � P � R � (48 = ���4] .

In (ii), �#� � , so � � ��� � �
� 


�

� P � R
I � � 


�

� P � R ��5= ���
�

.

Hence, by linearity, �4� ����=� ' � )U� ��� �a( 8 = ���4]

b) See Figure 3.65.

v

i

1.22A

-3.11V

Figure 3.65:
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c) See Figure 3.66.

2.56Ω
+

-

v+
-

3.11V

i

Figure 3.66:

d) See Figure 3.67.

2.56Ω

+

-

v

i

1.22A

Figure 3.67:

ANS:: (a) �#�� ��=  5 � )
� ��� �a( 8 = ����]

Problem 3.9 In Figure 3.68, find ��� via (a) superposition, (b) the node method.

i

4 Ω8 A vo

1 Ω 2 Ω

+

-

6 ΩAo V
+
-

Figure 3.68:

Solution:

a) See Figure 3.69.

Find the voltage due to each source. So,
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+
-

AoV 6Ω

2Ω1Ω

4Ω

3Ω

6Ω

+

-

vo1

i

6Ω

2Ω1Ω

8A 4Ω

+

-

vo2

i

6
7
---Ω 6Ω

Figure 3.69:
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� � I �� � K ���1- ����� �
� P � RI � � � P � R

�	� P � R% � �	� P � R �
�
�% � �.- ���

� � % �� � � � L � � P � R@ � L � � P � R ��(4S � )U� ����� ( S ���.- ���
� � � � � I � � � % �

�
�% ( S����.- ���

b) See Figure 3.70.

+
-

AoV 6Ω

2Ω1Ω

8A

e2
e1

4Ω

+

-

Vo

i

Figure 3.70:

� + � � �% � P � R ( � � ( � �@ � P � R �
�
� � � �I � P � � �

��� � � +% � P � R ( � +�	� P � R � �
� � �J� % �

�
�% ( S����.- ���

ANS::
�
�% ( S volts

Problem 3.10 Use the following three different methods to find � in Figure 3.71:

1) Node Method

3 V

6 Ω 2 A

3 Ω

6 Ω 3 Ω

+-
i

Figure 3.71:

2) Superposition

3) Alternate Thévenin/Norton Transformations
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+-

3V

6Ω

3Ω

2A

e2e1

3Ω6Ω

i

e1 - 3V

Figure 3.72:

Solution:

1) See Figure 3.72.

From the node diagram, we get:
� + � ����
� P � R ( ���@ � P � R � � b

� � � R � ���@ � P � � �
� � ( � +�

� P � R � ��� � � +�
� P � � �

So, � � ���@ � P � R � =� "0�&% �

2) See Figure 3.73.

From each source, we get:
� I � � b� � P � R @ � P � R@ � @ � P � R � = � � � "$�&% �
� % � ��� � � �

� P � R
� � @ � P � R @ � P � R@ � @ � P � R � = 858'8�"0�&% �

So, � �$� I � � ��� =  X"0�&% �

3) See Figure 3.74.

“Nortonize” the parts of the circuits on either side of the wire whose current we are
finding, and simplify:

So, � ��2�5=  '"0�&% ��� <5Y3�'"1� 8 � )U� ��8 � � � )U� � � =  �"0�&% �

ANS:: .5 amps

Problem 3.11 A student is given an unknown resistive network as illustrated in Fig-
ure 3.75. She wishes to determine whether the network is linear, and if it is, what its
Thévenin equivalent is.

The only equipment available to the student is a voltmeter (assumed ideal), 100 k 6
and 1 M 6 test resistors that can be placed across the terminals during a measurement
(Figure 3.76).
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6Ω

3Ω

2A3Ω6Ω

i

+-

3V

6Ω

3Ω

3Ω6Ω

i

3Ω 6Ω

6Ω3Ω

Figure 3.73:
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+-

3V

6Ω

3Ω

2A3Ω6Ω

i

.5A 6Ω 6Ω 6Ω 1A

i

1.5A 3Ω 6Ω

i

Figure 3.74:

Resistive
network

Unknown
network

Figure 3.75:
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V R

+

-
V

Resistive
network

Unknown
network

Test resistor

Voltmeter

Figure 3.76:

The following data were recorded:

Test Resistor Voltmeter Reading
Absent �5=  ��
�����0W 6 � = �' ��
��� 6 �5= ���

What should the student conclude about the network from these results? Support your
conclusion with plots of the network v-i characteristics.

Solution:

Let us assume that the network is linear and that the Thévenin equivalent voltage of
the network be denoted ] ��� and resistance (���� .

Without the test resistor, the measured voltage of 1.5V is the open circuit voltage.
Thus ] ��� � �5=  5] .

With a 100k resistor, the voltage measured across the test resistor is

��= �5 /� �5=� '] �����5W
� ���0W � ( ���

Thus (���� �  ����0W .

With a 1M resistor, the voltage measured across the test resistor is

�5=  5]#���
 ����5W �$��� ���]

This is corroborated by our measurement. Thus, the network is a linear network, and can
be represented by ] ��� and (���� .

Problem 3.12

a) Devise an electrical circuit of voltage sources and resistors that will “calculate”
the balance point (center of mass) of the massless bar shown in Figure 3.77, for 3
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arbitrary masses hung at 3 arbitrary places along the bar. We want the circuit to
generate a voltage which is proportional to the position of the balance point. Write
the equation for your network, and show that it performs the required calculation.
(Work with conductances and superposition for a simple solution.)

Mass A Mass B Mass C

Figure 3.77:

b) Extend your result in part a) to two dimensions, that is, devise a new network (which
will have more voltage sources and more resistors than above) that can find the cen-
ter of mass of a triangle with arbitrary weights handing from its three corners. The
network will now have to give you two voltages, one representing the x coordinate
and the other the y coordinate of the center of mass. This system is a barycentric
coordinate calculator, and can be used as the input for video games, or to simulate
trichromatic color vision in the human eye.

Solution:

a) See Figure 3.78.

+

-

vo

+
-

+
-

v1

G1

+
-

v3

G3G2

v2

Figure 3.78:

The center of mass of the bar is given by the equation � � � � � ��� � � � + � + � � � � �� � � � + � � � ,
where � � and � � are the mass and position of the � � P hanging object, respectively.
Analogously, in Figure 3.78, the conductances represent the masses, and the volt-
ages represent the positions. Thus, � � � � � b �

� � + b +
� � � b

�
� � � � + � � � , as needed.
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b) See Figure 3.79.

+

-

voy

+
-

+
-

v1x

G1

+
-

v3x

G3G2

v2x

+

-

vox

+
-

+
-

v3y

G3

+
-

v1y

G1 G2

v2y

Figure 3.79:

Similar reasoning as in part a.

Problem 3.13

a) Find the Thévenin equivalent for the network in Figure 3.80 at the terminals � � .
The current source is a controlled source. The current flowing through the current
source is � � I , where � is some constant. (We will discuss controlled sources in
more detail in the later chapters.)

C

I1

I1 +

-

10 kΩ
+
-

Vs 100 kΩ

B

β

Figure 3.80:

b) Now suppose you connect a load resistor across the output of your equivalent circuit
as shown in Figure 3.81. Find the value of (�� which will provide the maximum
power transfer to the load.

Solution:

a) (���� �-�����0W � )U� �
� � �$� �,` � �2� ����W � )U� ��� ��( � b

�

IK�� � P � R ��� (���� � ] �
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C

+
-

VT RL

B

RT

Figure 3.81:

b) � � � % (5� ( �3� b
�,�� � , � � % � ] %� (��"� (�� � (�� � � %

To maximize � , we write � as a function of (�� and set its derivative with respect
to (�� equal to zero. So,

� � � (�� � �J] %� � ��(�� � (�� � � % ( ��(�� ��( � � (�� � � � ��� �
� (�� � (��

ANS:: (a) (���� ������0W 6 , � � � (���� � ]�� (b) (�� � (��

Problem 3.14 You have been hired by the MITDAC Corporation to write a product de-
scription for a new 4-bit digital-to-analog-converter resistance ladder. Because of mask
tolerances in VLSI chips, each resistor shown in Figure 3.82 is guaranteed to be only
within 3% of its nominal value. That is, if ( K is the nominal design resistance, then each
resistance labeled R can have a resistance anywhere in the range �2��� = �58 �2( K and each
resistance labeled 2R can have a resistance anywhere in the range �����J= ��� ��( K .

You are to write an honest description of the accuracy of this product. Remember
that if you overstate the accuracy, your company will have many returns from dissatis-
fied customers, whereas if you understate the accuracy, your company won’t have any
customers.

NOTE: Part of this PROBLEM is to describe what the problem is: How should accu-
racy be specified? Is there an error level that is clearly unacceptable? Does your product
avoid that error level? Is there an obvious “worst case” that can be easily analyzed? Have
fun. And remember, common sense is an important ingredient of sound engineering.

Solution:

There are several approaches to this problem. This approach analyzed the circuit piece
by piece to determine the effective error we can expect from the circuit.

Given: 3% tolerance, implies that ( � �2��� � = �58 �2( K , ��(5� ����� � = ��� ��( K .
Accuracy of ��( ��� ��( : high: ��= ��� ��� ��= ���.��5= �58 , low: �5= �1S ��� �5= �1S�� � = � � .

So the error for 2 ��( resistors in parallel is 3%.
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R

2R
2R

+
-

2R

+
-

2R

+
-

2R

+
-

2R

R R

v1 v2 v4 v8

vA

+

-

Figure 3.82:

Accuracy of ( � ( : high: �5= �58��$�5= �58 � ��= ��� , low: � = � � � � = � � �-�5= �1S .

So the error for 2 ( resistors in series is 6%.

+
-

2R 2R 2R 2R 2R

2R

R R R

v8

+

-

vA

(a)

+
-

R

2R

v8

+

-

vA

(6%)

(3%)

(b)

Figure 3.83:

First, consider the highest-order bit ( � � ) in isolation (see Figure 3.83(a)). We can
simplify this circuit, keeping track of the effective errors incurred by taking the resistances
in parallel and in series. The resulting simplified circuit is shown in Figure 3.83(b), with
the effective errors of each resistor parenthesized.

We can now find the following voltage divider for � � , considering the extreme error
cases (high/low) in resistance values:

� ��� P� � �
��� � = �'8

��( � = ����� ��� � = �58 �
��� � = �58
8 ( � = �58 � � = 8 �
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� � � �
� �
� �6( � = �588�� � = �58 � � = 8 �

Now consider the lowest-order-bit ( � I ) in isolation (see Figure 3.84. Again, we find
voltage-divider relations:

+
-

2R R2R 2R
2R

R R R

v1

+

-

vA

e3 e2 e1

Figure 3.84:

� ��� P� I
� � � � = �58� � � =  �� 

� � � �
� I
� �6( � = �'8� � � = S �0 

And by symmetry:

� � � P� I
� � I � P� %

� � % � P�
�

� ��� �
� I
� � I � �� %

� � % � ��
�

Noting the similarity at � � to Figure 3.83(b):

�
� � P� I
� � ��� P� �

�
� �
�

� I
� � ��� �� �

We can now find the bit-conversion accuracies of the lowest-order bit:

� � � P� I
� � ��� P� I

! � I � P� %
! � % � P�
�
! � � � P� I

� ��� =  �� �� � � = 8 �

� ��� �
� I
� � � � �� I

! � I � �� %
! � % � ��
�
! � � � �� I

� ����= S �5 �� � � = 8��
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Generalizing to a bit of order
�

:
� � � P� % �

� � = 8 �.!�����=� �9 �� � � 	

� � � �
� % �

� � = 8 � !�����= S �5 �� � � 	

Now consider the circuit as a whole. The worst case error-wise will be when all bits
are “on”. In this case:

� � � P � � = 8 �.!�] P !��2��� � =� ��� � � =  �� % � � =  �� � ��� � = 8 � !.] P
�6( � =  �� �
�B( � =  �� � � =���� � !.] P

� � � � � � = 8�� !.] P !��2� � � = S �0 �� � = S �0 % � � = S �0 � � � � = 8��.!.] P
�6( � = S �0 �
�6( � = S �0 � ��=� � � !.] P

As a point of comparison, the error-free case is: � � �
�

�
] P � � = � �5 !.] P .

Error high: � = ��� ��( � = � �5 
��= � �' �� � =� 'E

Error low: � =  � �[( � = � �5 
� = ���5 � � = �9E

Problem 3.15 You have a 6 volt battery (assumed ideal) and a 1.5 volt flashlight bulb,
which is known to draw 0.5 amps when the bulb voltage is 1.5 volts (in Figure 3.85).
Design a network of resistors to go between the battery and the bulb to give � R ��5=  volts
when the bulb is connected, yet insures that � R does not rise above 2 volts when the bulb
is disconnected.

vs

+

-

+

-
?6 V

Figure 3.85:

Solution:

See Figure 3.86.
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+

-
6V 1Ω

2.25Ω

3Ω

Figure 3.86:

The resistance of the bulb is ( ��� � � � b � �J8 � )U� � .
When the bulb is connected, � � � ����] �

� � ������� � � ����� � �
� �
� ����� �

% � % � � P � R � � � ������� � � ����� � �� �
� ����� �

�-�5=� �]

When the bulb is disconnected, � �4���� ] � I � P �I � % � % � � P � R ��5=��0 X]
Note: This scheme is not very practical, but it is simple.



Chapter 4

Analysis of Nonlinear Circuits

Exercises

Exercise 4.1 Consider a two-terminal nonlinear device (Figure 4.1) whose v-i character-
istic is given by:

� � � Y � � � � (4.1)

iA

vA

+

-

Figure 4.1:

Show that the incremental change in the current (
� � � � � � ) for an incremental change

in the voltage (
� � � � � � ) at the DC operating point ] � T � � is given by:

� � �
: Y � � � �
: � �

�
�
�
�
� )�� � b �

� �

(Hint: Substitute � � � � � �5� � and � � � ] � �5� � in Equation 4.1, expand using
Taylor Series, ignore second order and higher terms in � � , and equate corresponding DC
and small signal terms.)

Solution:

89
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� � � Y � � � ��� � � � � � � � ��� � � � ] � � � �

Taylor series expansion (at ] � T � � ):

� � � � � � Y �!] � � �
: Y
: � �

�
�
�
� )�� � b �

� � � (7] � � � ����
: % Y
: � %�

�
�
�
� )�� � b �

��� � (7] � � % �*= = =

with: � � � � � (7] � , and ignoring high-order terms:

� � � � � �JY ��] � � �
: Y
: � �

�
�
�
� )�� � b �

� �

Equating DC and small-signal components, we have: DC:

� � � Y ��] � �

Small-signal:
� � �

: Y
: � �

�
�
�
� )�� � b �

� �

Exercise 4.2 Suppose the two-terminal nonlinear device from the previous exercise (Fig-
ure 4.1) has the following v-i characteristic:

� � � Y � � � � � ��� � %� � ����� � � ��	 Y��.� � ��
 ��T " � : Y ��� � � � �
��� ),���.� �&�9�

a) Find the operating point current � � for an operating point voltage ] � , where ] �� � .

b) Find the incremental change in the current � � for an incremental change in the volt-
age � � at the operating point ] � T � � .

c) By what fraction does � � change for a � percent change in � � .

d) Suppose the nonlinear device is biased at ] �� instead of ] � , where ] �� is � percent
greater than ] � . Find the incremental change in the current ( � � � ) for an incremental
change in the voltage ( � � ) at this new bias point. By what fraction is � � � different
from the � � calculated in part (b).

e) Find the incremental change in the current � � � � for an incremental change in the
parameter ��� (given by

� ��� � �
� ) from its nominal value of � � , assuming the

operating point v-i values are ] � T � � .

Hint: Observe that if � � depends on the parameters � � and � � , in other words,

� � �JY � � � TV���� T
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then the incremental change in � � for an incremental change in � � is given by

� � � �����
Y � � � T � ���
� ��

�
�
�
�
� � � � � �

� �

Solution:

a)
� � � Y �!] � �

� � �B] %� � � � ] � � � 	

b)
� � �

: Y
: � �

�
�
�
� )�� � b �

� �

� � ���
�
� � � ��� � ) � � b �

!�� �
� � � � � ! � �����6] � � ��� �

c) For a y% change in � ��� � �� � � ��� �IKMK �2� � ,
� � � � � �� ! � ���

�
] � � ��� �

� � � ��2��� �
� ��� �0� �����B] � � ��� �2� �
� � �
� � ����

�
� ���

� so � � also changes by y%. This is expected since � � � Y � � � � is linear.

d) Incremental change at new bias point:

] �� � � � � �
����� � ] �

� � � � � ��� ����� ] �� � ��� �
Different from part (b): � � �

� � �
� ����� ] �� � ��� � !�� �
� ����� ] � � ��� � !�� �

� �����.�2� � �IKMK � � � � �������� ] � � ���
� � ����� ] � � ��� � � � ����� ] � � ���IKMK �� ����� ] � � ��� �

� � �
� � ����

����� ] � � �IKMK ������ ] � � ���
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e)
� �
� �
�

� Y ������T ��� T ��	 �
� ���

�
�
�
�
��� � ` �

!����

� � � %� �
��� � ` � !����

� ��� !�� � � � %

At operating point: � �
� �
� ��� !��!] � � %

ANS:: (a) ��� ] %� � � � ] � � � 	 (b) � � ! � ����� ] � � ��� � (c) y% (d) � � � �*� ��� �����B] �� �
��� � T ����� � �-� � % ��� b �

���
� � � �% ��� b �
� ��	 (e) � � � � � ��� !1��] � � %

Exercise 4.3 The nonlinear device (NLD) in the circuit in Figure 4.2 has the �&( � char-
acteristics shown. Find the operating point ��_ and �'_ for ( � � ����6 .

R

10 V
+

- 5

10

5 10 vD (V)

iD(mA)

NLD vD

iD

0

Figure 4.2:

Solution:

KVL: ���0] ( ��_ ! � � �X( �1_ � �
��_ � (��5= � ! �'_ �$��� = � �'� �

Draw this load line on graph.

Intersection of it and 
�� � �a( � plot is operating point.

��_ �*SU= �1� �

�1_ �J �= �5]

ANS:: ��_ �*SU= � mA, �'_ �  �=�� V
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Exercise 4.4

a) Plot the � � vs. � � characteristics for the nonlinear network shown in Figure 4.3.
Assume the diode is ideal.

vA

NLD

1 kΩ 1 V

1 kΩ
+

-

iA

Figure 4.3:

b) The nonlinear network from part (a) is connected as shown in Figure 4.4. Draw the
load line on your �a( � characteristic from part (a), and find � � .

3.5 V vT

+

-

1 kΩ iT

NLD
+
-

Figure 4.4:

Solution:

0.5 1 2 3 4
3.5V

vA volts( )

oper.
point

iA mA( )

load line
1

2 slope
1

500
---------=

slope
1

1000
------------=

slope
1

1000
------------–=

Figure 4.5:
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a) � � � � : Diode on
� � � � �

������� �����������

� ��� � : Diode off
� � � � �

�������

b) Load line:

KVL: 8 =  5] ( � � �2������� � ( � � � �

� � � 8 =  �( � �
�������

Operating point occurs at intersection, and we find that

� � �5�1� �

ANS:: (b) � � � � mA

Exercise 4.5 Consider two identical semiconductor diodes, each of which has an � ( �
relation:

��_ � � � �!� ) c�� b
��� ( ��� (4.2)

a) Find the relation of � to � for the pair connected in parallel as shown in Figure 4.6a.

(a) (b)

Figure 4.6:

b) Find the relation of � to � for the pair connected in series as shown in Figure 4.6b.

Solution:
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a) The currents add, so the i-v graphs may be vertically added - so if the two devices
are identical, the output is merely twice the output of each individual device, since
we would replace the vertical coordinate � with

�
% .

� � ��_ I � ��_ % � �.! � R � � � N b c ��� � ( � �
b) Here, the two devices are in series, so the voltages add. Since the two devices are

identical, the horizontal addition is the same as replacing the original � coordinate
with ) % .

� � � R � � � N b c�� % � � ( � �
ANS:: (a) � �5� ! � R � � � N b c���� � ( � � , (b) � � � R �V� �\N b c � % � � ( � �

Exercise 4.6 For the circuit in Figure 4.7, find the input characteristic, � versus � , and the
transfer characteristic � % versus � . � is fixed and positive. Express your results in graphs,
labeling all slopes, intercepts, and coordinates of any break points.

v R1 I

+

-

i

i2
R2

Figure 4.7:

Solution:

Note: when diode is on,

� % � � � � �&�
( I

( I � ( %
But

� � ] ��( I � ( % �
( I ( %

� % � � ! ( I
( I � ( %

� ] � �( I � �( % � �( I
� �( I � �( % � �( I ( %

� % �
]
( %

� � ! ( I
( I � ( %

as graph shows.

ANS:: � % � b, +
� � N , �, � � , +
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O
N

I

slope
1

R1 R2||( )
----------------------=

slope
1

1
R
-----= OFF

V

Intercept at

v R1 R2||( ) I⋅=

IR2

ONI

slope
1

R2
------=

slope 0=

OFF

V
IR2

i
i2

I R1⋅
R1 R2+
-------------------

Figure 4.8:

Exercise 4.7 For the circuit in Figure 4.9 and the values shown below, sketch the wave-
form of � ����� . On your sketch, show when the ideal diode is on and when it is off.
� � �� � ����� � ] K �  5] ( ���6

vi

R

Vo+

-

i
+

-

Figure 4.9:

Solution:

Diode on: � ����� ���] I ����� �  '] � <�(

Diode off: � �����'� �
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t
ON

OFF

10

-10

-5

V 1 (+)

Figure 4.10:

t

ON

OFF

15

-10

-5

i (+)

  5
ON

OFF

Figure 4.11:
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ANS:: Diode on: ��� ����� � ] I � ��� �  5] � <�( ; Diode off: � ����� � �

Problems

Problem 4.1 Consider the circuit containing a nonlinear element 
 as shown in Fig-
ure 4.12. The i-v relation for 
 is given by:

� � � � % � %� � � I � � � � K Y ��� � �
 � T " �;: � � � � ��� )
���.� � �9�

-

+
R

-

+
vA

iA

vI N

Figure 4.12:

a) Solve for � � and � � using the analytical method.

b) Find the operating point values of the nonlinear element’s voltage and current for� � �J] � , where ] � is positive.

c) Find the incremental change in � � (given by � � ) for an incremental change in � �
(given by � � ).

d) Determine the incremental change in the voltage across the resistor ( for an incre-
mental change in the input � � (given by � � ).

e) Find the incremental change in � � for a 2% increase in the value of ( .

f) Find the incremental change in � � for an incremental change in � � at the bias point] � , � � .

g) Suppose we replace the source � � with a DC voltage ] � in series with a small time
varying voltage � � � � � ������� � . Determine the time varying component of � � .
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h) Suppose we now replace � � �J] � � � � , where ] � ���� volts and � � � � volt.

i) Find the bias point DC current � � corresponding to ] � � � � volts.

ii) Find the value of � � corresponding to � � �� volt using small signal analysis.

iii) Find the value of � � using small signal analysis. (Use � � � � � � � � ).
iv) Find the value of � � using the analytical method for � � � ] � � � � � ��� volts.

v) Now, find the exact value of the � � using � � � � � ( � � .

vi) What is the error in the value of � � computed using the small signal method?

Solution:

a) � � � � � ( � � (
� � � � � ( (#� � % � %� � � I � � � � K �
(.� % �1%� � ��(.� I � ��� � � � ��(.� K ( � �0��� �
� � � � � , � � � I ��� 	 � , � � � I � + � � , � + � , � � � )�� �% , � +
� � � 	 � , � � � I � + � � , � + � , � � � )�� � �

� , � � � I �% , � + for � � 
 (.� K ; ] � �J] � otherwise

� � � % , � + ) � � , � � � I � 	 � , � � � I � + � � , � + � , � � � ) � �% , + � + for � � 
 (.� K ��� � � � otherwise

b) ] � � 	 � , � � � I � + � � , � + � , � � � b � � �
� , � � � I �% , � +

� � � %
, � + b �

� , � � � I � 	 � , � � � I � + � � , � + � , � � � b � �% , + � +
c)

� � �� )�� � I, � �6( I	 � , � � � I � + � � , + � � � + �
� , � + b �

�

d) � � � � �0(� )��� )�� � (#�
� � �� )�� � � �6( I	 � , � � � I � + � � , + � � � + �

� , � + b �

e)
� � � � II � K % , ��� � ( 	 � I � K % , � � � I � + � � � K � , � + � I � K % , � � � )�� � �

� I � K % , � � � I �% � + � I � K % , � +
�*( I, ��� � (

	 � , � � � I � + � � , � + � , � � � ) � � �
� , � � � I �% � + , +

�

f) 	
�
�

	 )��
�5��� % ] � � � I ; ] � 
 �

g) Incremental model of N is a resistor � �
��� �� 	 � �

	 ) �
� � I � I% � + b �

� � �
� � � )��, � ��
 � ) ��������

�, � �
	 � ��� � � � � +��


 ��� + � ��� � ��� � � � �
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h) i) � � � % K
, � + � , � � � I � 	 � , � � � I � + � � , � + � , � � � IK �% , + � +

ii) � � � I, � �
	 � ��� � � � � + �


 ��� + � ��� � � � � � � �
iii) � � � � � � � � �
% K , � + � , � � � I � 	 � , � � � I � + � � , � + � , � � � IK �% , + � +

� I, � �
	 � ��� � � � � + �


 ��� + � ��� � � � � � � �
iv) � � � % %

, � + � , � � � I � 	 � , � � � I � + � � , � + � , � � � IMI �% , + � +
v) � � � %

, � + � 	 � , � � � I � + � � , � + � , � � � IMI � � 	
� , � � � I � + � � , � + � , � � � IK �% , + � +

vi) error is: I, � �
	 � ��� � � � � + �


 ��� + � ��� � � � � � � �
(

% , � + � 	 � , � � � I � + � � , � + � , � � � IMI � � 	
� , � � � I � + � � , � + � , � � � IK �% , + � +

ANS:: (a) � � � %
, � + )�� � , � � � I � 	 � , � � � I � + � � , � + � , � � � )�� �% , + � + for � � 
 (.� K � � � � � oth-

erwise, � � �
	 � , � � � I � + � � , � + � , � � � )�� � �

� , � � � I �% , � + for � � 
 (.� K T ] � � ] � otherwise

(b) ] � � 	
� , � � � I � + � � , � + � , � � � b � � �

� , � � � I �% , � + , � � � %
, � + b �

� , � � � I � 	 � , � � � I � + � � , � + � , � � � b � �% , + � +
(c)

� � �� )�� � I, �2� ( I	 � , � � � I � + � � , + � � � + �
� , � + b �

� (d) � ( I	 � , � � � I � + � � , + � � � + �
� , � + b �

(e)
� � � � II � K % , � � � ( 	 � I � K % , � � � I � + � � � K � , � + � I � K % , � � � )�� � �

� I � K % , � � � I �% � + � I � K % , � +
� ( I, � � � (

	 � , � � � I � + � � , � + � , � � � )�� � �
� , � � � I �% � + , +

� (f) 	
�
�

	 )��
� ��� % ] � � � I ; ] � 
 � (g) ��� � I% � + b �

� � � ,
� � � ) �� �����

�, � �
	 � ��� � � � � + �


 ��� + � ��� � ��� � � � �
(h) (i) � � � % K , � + � , � � � I � 	 � , � � � I � + � � , � + � , � � � IK �% , + � +

(ii) � � � I, � �
	 � ��� � � � � + �


 ��� + � ��� � � � � � � �
(iii) � � � % K

, � + � , � � � I � 	 � , � � � I � + � � , � + � , � � � IK �% , + � +
�

I, � �
	 � ��� � � � � + �


 ��� + � ��� � � � � � � �
(iv) � � � % % , � + � , � � � I � 	 � , � � � I � + � � , � + � , � � � IMI �% , + � + (v) � � �

% , � + � 	 � , � � � I � + � � , � + � , � � � IMI � � 	
� , � � � I � + � � , � + � , � � � IK �% , + � + (vi) I, � �

	 � ��� � � � � + �

 ��� + � ��� � � � � � � �

(

% , � + � 	 � , � � � I � + � � , � + � , � � � IMI � � 	
� , � � � I � + � � , � + � , � � � IK �% , + � +

Problem 4.2 The circuit shown in Figure 4.13 contains two nonlinear devices and a cur-
rent source. The characteristics of the two devices are given. Determine the voltage, � ,
for (a) � � � � amp, (b) � �4� � � amps, (c) � �4� � ����� � (in amperes).

Solution:

(See Figure 4.14)
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N2N1

i1 i2
+

iS

-

v
v (V)

1

-1

-1

1

i1 (A)

v (V)
1

-1

1

i2 (A)

2

Figure 4.13:

v

i1+i2

1

-1

1 2-1-2

Figure 4.14:
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a) 2

b) 11

t

1

-1

is t( ) tcos=

2π2– π

t

2

-2

v t( )

2π2– π

Figure 4.15:

c) See Figure 4.15.

ANS:: (a) 2 (b) 11

Problem 4.3 A plot (hypothetical) of the v-i characteristics, (terminal voltage as a func-
tion of the current drawn out, and NOT its associated variables) for a battery is shown in
Figure 4.16(a).

a) If a 2 ohm resistor is connected across the battery terminals, find the terminal volt-
age of the battery and the current through the resistor.

b) A light bulb is a nonlinear resistance because of self-heating effects. A hypothetical
i-v plot is shown in Figure 4.16(b). Find the bulb current and bulb voltage if the
lamp is connected to the battery.
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1 2 3 40

2

1

3

I (A) 1 2 3 40
(V)

(V)
V

(A)
I

(a) (b)

5 5 V

2

1

Figure 4.16:

c) Devise a piecewise-linear model for the battery which is reasonably accurate over
the current range 0-2 amp.

d) Use this piecewise-linear battery model to find the battery voltage and bulb current
if the bulb and 2 ohm resistor are connected in series to the battery.

Solution:

a) � Q �5= S amps; �?Q
��=�� volts

b) � Q �5= � amps; �?Q
��= � volts

Vth
+

-

RTH

a

a’

i

Vth = 3 V
Rth = 0.1 ohms

0 i 2 amps≤ ≤

Figure 4.17:

c) see Figure 4.17. ] ��� �*8 volts; (���� � � = ��6

d) � Q � amp; �FQ 8 volts

ANS:: (a) � Q �5= S amps; �?Q
��=�� volts (b) � Q �5= � amps; �FQ-��= � volts (d) � Q � amp;�FQ 8 volts
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Problem 4.4

a) Assuming the diode can be modeled as an ideal diode, and ( I � ( % , plot the
waveform � ������� for the circuit in Figure 4.18, assuming a triangle wave input. Write
an expression for � ��� ��� in terms of � � T ( I and ( % .

b) If the triangle wave has a peak amplitude of only 2 volts, and ( I � ( % , a more
accurate diode model must be used. Plot and write an expression for � � assuming
that the diode is modeled using an ideal diode in series with a 0.6 volt source. Draw
the transfer curve � � versus � � .

vi R2 vo

vi

t

+
-

+

-

R1

Figure 4.18:

Solution:

vi

t

vo
vo

+
-

+

-

Rth
1
2
---R1=

vth
1
2
---vi=

Figure 4.19:

a) see Figure 4.19. ��� � I% � � for � � � � T and � � � � otherwise

b) See Figure 4.20. ��� �^I% � � for � � � (��5= � , and � � � ( � = � otherwise

ANS:: (a) � � � I% � � for � � � ��T and � � �5� otherwise (b) � � � I% � � for � � � ( �'= � , and� � � ( � = �
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vi

t

vo

vo
+
-

+

-

1
2
---R1

1
2
---vi

2

-2

-0.6

+
-

0.6 V

vo

2

-2

-0.6
vi

-1 4

Figure 4.20:

∆v
vovZ (V)

+

-

R1 = 1 k

+
-

+
-

50 mV AC

10 V DCV
-4

-8

8

4
-4 -2

2

iZ
(mA)

vZ

+

-

iZ
Ω

Figure 4.21:
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Problem 4.5 Figure 4.21 is an illustration of a crude Zener-diode regulator circuit.

a) Using incremental analysis, estimate from the graph an analytical expression for � �
in terms of ] and

� � .
b) Calculate the amount of DC and the amount of AC in the output voltage using the

Zener diode characteristic to find model values. Numbers, please.

c) What is the Theévenin output resistance of the power supply, that is, the Thévenin
resistance seen looking in at the ��� terminals.

Solution: Assume 20mA/V for forward bias, 40mA/V for reverse breakdown.

a) � � � � = � �1S � �

b) DC: SU=  V AC: �5= � mV

c) �' �6

ANS:: (a) � � � � = � �1S � � (b) DC: SU=  V AC: �'= � mV (c) �5 �6

Problem 4.6 The terminal voltage-current characteristic of a single solar cell is shown in
Figure 4.22a. Note that this is a sketch of the terminal voltage as a function of current
drawn out (i.e. not the associated variable convention). An array is made by connecting a
total of 100 such cells as follows: Ten solar cells are connected in series. Ten sets of these
are made. These ten series strips are then connected in parallel (see Figure 4.22b).

If a 3 ohm resistor is connected across this new two-terminal element (the 100 cell
array), determine the terminal voltage across and the current through the resistor.

Solution:

The act of combining 10 in series causes the graph to stretch vertically by a factor
of 10, and the act of combining 10 in parallel stretches it horizontally by 10. So one
intersects this new graph with a line of slope 3, and gets the approximate intersection
point of �2�5= ��T  e= ���

]�J �= � volts; � �-�5= � amps

ANS:: ]-�  �= � volts; � ��5= � amps

Problem 4.7 The junction field-effect transistor (JFET) with the specific connection
shown in Figure 4.23a (gate and source shorted together) behaves as a two-terminal de-
vice. The �'_ ( ��_ characteristics of the resulting two-terminal device shown in Fig-
ure 4.23b saturates at current � _ � � for �'_ greater than a voltage ] � , called the pinch-off
voltage. In the two-terminal configuration shown, the JFET characteristic is
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0.25 V

0.5 V
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non-linear region

linear region

0.1 A 0.2 A 0.25 A 0.3 A

V

I

current drawn out

1 2 9 10

1

2

3

4

9

10

V

+

-

(a) (b)

Figure 4.22:

��_ � � _ � ��� � � �1_ <5] � � ( � �1_ <5] � � %�� for �'_��*] �

and
��_ � � _ � � for �1_ � ] �

As illustrated in Figure 4.23c, this two-terminal device can be used to make a well-
behaved dc current source, even starting with a ripple-containing power supply (depicted
as ��� ), as would be obtained from ordinary rectifier circuits. Suppose the voltage source��� has an average value ] � and a 60 Hz “ripple component”, � � � " ���	� � � as shown in
Figure 4.23d.

a) First assume that there is no ripple ( " � � ). Find the current � through the resistor( as a function of ]�� for a value of ( � ��W 6 . At what value of ] � does the
current stabilize at � _ ��� ? How would this value change if ( were doubled in value?
Explain.

b) Now assume " � � = �9] and ( � ��W 6 . Make reasonable approximations to find
the current waveform when ] � �  5] T ] � � ���0] , and ]�� � �� '] . Determine in
each case the average value of the current � and the magnitude and frequency of the
largest sinusoidal component of the current.

Solution:
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vS
+
-

IDSS

vP

iD

vD

(b)

2vP

(a)

iD

vD

+

-

VS

vS

t

R

i

(d)(c)

0

0 2π
ω
------ 4π

ω
------

a

Figure 4.23:
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a) � �
% b
� � � � +�� � c � � � % b � � �

�
� � +�� � c � � � % b � � + �


 � +� � �� � c � �
% , for ]�� � ] � � � _ � � ( � The current

stabilizes at � _ � � when ]�� 
 ] � � � _ ��� (

b) � _ ��� �  1� �
, ] � �  5]

When ]��#�  5] , � � ) �!� � �\� � 8�= ��� � T largest sinusoidal component has frequency � ,
magnitude � = �0 ��'� �

When ]�� � ���0] , � � ) �!� � �\� �J 1� �
, largest sinusoidal component has frequency � � ,

magnitude � = ��� �1� �

When ]�� ��� 5] T�� � ) �� � � � �  .� �
, no sinusoidal component present

ANS:: Assume � _ ��� �  1� �
and

] � �  5] . (a) � �
% b
� � � � +�� � c � � � % b � � �

�
� � +�� � c � � � % b � � + �


 � +� � �� � c � �
% , for ]�� � ] � � � _ ��� ( (b)] � �  5] � � � ) �!� � �\� �J8 = ��� �

, ]��4�-���0] � � � ) �� � � � �  .� �
, ] � ��� '] � � � ) �!� � �\� �  1� �

Problem 4.8 The current-voltage characteristic of a photovoltaic energy converter (solar
cell) can be approximated by

� � � I �!� ) � b
��� ( ��� ( � %

where the first term characterizes the diode in the dark and � % is a term that depends on
light intensity.

R v Sunlight

+

-

i

Figure 4.24:

Assume � I ���� �
�

and assume light exposure such that � % ���� � � � .

a) Plot the i-v characteristic of the solar cell. Be sure to note the values of open-circuit
voltage and short-circuit current. (Note, however, that the characteristic is clearly
nonlinear. Therefore, Thévenin or Norton equivalents do not apply.)
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b) If it is desired to maximize the power that the solar cell can deliver to a resistive
load, determine the optimum value of the resistor. How much power can this cell
deliver?

Solution:

v

i

i I1 e
v V TH⁄

1–( ) I2–=

voc V TH

I2

I1
---- 1+ 

 ln=

Isc I2–=

Figure 4.25:

a) See Figure 4.25. � �1` � ( � % ; ] �3` � ] �������3� � +� � � ���

b) ( � � � � � �
�
� 8�� ohms; Maximum power = 2.6 mW

ANS:: (b) ( � � � � � �
�
� 8�� ohms; Maximum power = ��= �'� �

Problem 4.9

a) A nonlinear device has i-v characteristics shown in Figure 4.26. Assuming that �
is an ideal voltage source, which connection, (i), (ii) or (iii) consumes most power?
What if � is an ideal current source?

b) Another crazy device, � , with v-i characteristics as shown in Figure 4.27, is intro-
duced. If device

�
and device � are connected in series across an ideal voltage

source of 6 volts, what is the current flow in the circuit? (You can either solve it
analytically or graphically.)

Solution:

a) ii) consumes the most power. If S is a current source, i) consumes the most power.
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A

+

-
vA

iA

iA

vA = K  iA
2 for

vA = 0            for

vA

A

A
SV

I

+

-

A
S

I

A

(i)  n A’s in series (ii)  n A’s in parallel

iA 0≥

iA 0<

B
S

I

B

(iii)  n B’s in parallel, each

V

+

-

V

+

-

 B is n A’s in series

B

whereK = 1.0 V/A2

Figure 4.26:

C

+

-

vC

iC

iC  (A)

vC  (V)

4

2

5 10 15

Figure 4.27:
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b) 1 Ampere

ANS:: (a) ii; if S current source, i (b) � � �&%,���1�

Problem 4.10 In the circuit in Figure 4.28, assume � I � � =  5] and � % � � % ���	� � � , where� % � � = ��� �9] . Assume further that ] ��� �5�' mV.

+

-

v
v1

v2

+
-

+
-

I1 = 10-9A

i

i I1 e

v
V TH
---------

1–
 
 
 

=

Figure 4.28:

a) Find the current � if only the � I source is connected (i.e., with the � % source shorted
out).

b) Find the current � if only the � % source is connected.

c) Find the current � if both sources are connected as shown. Is superposition obeyed?
Explain.

d) Based on your answer in c) discuss the dependence of the amplitude of the sinu-
soidal component of the current on the amplitude

� % . How big can
� % be before

significant generation of harmonics will occur?

HINT: Taylor’s theorem is relevant to this problem.

Solution:

a) � �-��� �
� ������� � K � �

b
��� � ( ���

b) � �-��� �
� ������� � K � KMK I �����

�
�
� �

b
��� � ( ���

c) � �-��� �
� ������� � K � � � K � KMK I �����

�
�
� �

b
��� � ( ���

d) The dependence of the sinusoidal component of the current on the amplitude
� %

is nonlinear. However, for sufficiently small
� % the relationship approximates a

linear dependence. When
� % � � = ��� � , harmonics make up approximately 2% of

the sinusoidal component.
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ANS:: (a) � � � � �
� ��� ��� � K � �

b
�	� ��( ��� (b) � � ��� �

� � � ��� � K � KMK I �����
�
�
� �

b
��� � ( ��� (c) � �

��� � � ��� ��� � K � � � K � KMK I �����
�
�
� �

b
��� � ( ��� (d)

� % � � = ��� �

Problem 4.11 This problem concerns the circuit illustrated in Figure 4.29:

vI D1

R1

R2 R4

R3

+

-

iD

vD
+
-

Figure 4.29:

( I ��5= �0W 6 ( % ��5= �0W 6 (
�
� ��=� 5W 6 (�� �-��W 6

For � I � ��_ � � ���� ) c � b
��� ( ��� with � �4� ��> ��� �

� �
and ] ��� �5�5 mV.

a) Find the Thévenin equivalent circuit for the circuit connected to the diode.

b) Assume that for bias point determination the diode can be modeled by an ideal
diode and a 0.6 volt battery. What are �5_ and ��_ when � I �*S volts?

c) Find a linear equivalent model for this diode valid for small signal incremental
operation about the bias point determined from part b.

d) Use your model of part c) to find � 	
����� if � � �*S � � = ���'S����	� � � volts.

Solution:

a) (���� � � =� k 6 ]	�,` � I� � �

b) �1_ � � = � V, ��_ � ��= � mA

c) �
	
� b

���
� �

��� � � � b cb
��� ��� � = S'S?> ��� � � 6

d) � 	
� �e=� 5 &> � � � � ���	� � �

ANS:: (a) (���� � � =  5W 6�TO]	�,` � I� � � (b) �'_ � � = �0] T ��_ � � =��'� �
(c) � 	

�
b
���
� �

� ��� � � b cb
��� � � � = S'S > � � � � 6 (d) � 	

� ��=  5 &> ��� � � ���	� � �
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Problem 4.12 Consider the circuit in Figure 4.30. The voltage source and the current
source are the sum of a dc-level and an ac-perturbation:

�#� ] � � �
� � � � � �

such that ]-� 8��0] (dc), � �-��� � (dc),
� �#� �����'� ] (ac),

� � �  ��'� �
(ac).

i v0
Z0

R1

R2

+

-

i0
- +

v

Figure 4.30:

The resistors have the following values: ( I � ( % � ��<�� ohm. The nonlinear element
� K has the characteristic:

� K � � K � � %K

Find, by incremental analysis, the DC and AC components of the output voltage � K .
Remark: You can assume in your analysis that the nonlinear element is behaving as a

passive element, i.e., is consuming power.

Solution: DC component:  5]
AC component from current source: � = ��� �5]
AC component from voltage source: � = ��� �0]
ANS:: DC:  5] , AC from current: � = ��� �5] , AC from voltage: � = ��� �5]

Problem 4.13 The circuit shown in Figure 4.31 contains a nonlinear element with the
following properties:

��� � ��� � � � %� � )
� � � � � �
��� � � ��)
� � � � � �
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vi

+ -iN
vN

vOUT
VB

+

-

+

-

+
-

R

Figure 4.31:

where ��� is in amps, and � � is in volts.

The output voltage, � ��� � , may be written approximately as the sum of the two terms:

� ��� ��� ]	��� � � � �
� � (4.3)

Where ]	��� � is a dc voltage produced by ] � and � � � � is the incremental voltage pro-
duced by the incremental voltage source � � .

Assuming that � � � ��� � � � � � � � volts and ]�� is such that the nonlinear element
operates with ] � � ��� volts, determine the incremental output voltage � � � � .

Solution:

(note: must label resistor value)
� �
� � � ,, � � KMK ��� � � � ���"� � ���

ANS:: � � � � � ,, � � KMK ��� � � �����3� � ���
Problem 4.14 Consider the diode network shown below.

For purposes of this problem, the ��_ ( �'_ characteristics of all of the diodes can be
accurately represented as

��_ � � �$� � ) c�� % � � b � where � � ��G� � <'� % �

Do not use a piecewise-linear model.

a) First assume that
� � � � . (Thus

� � � � � � % � � ). What are the operating-point
values of voltages ] I and ] % ?

b) Now assume that
� � is non zero, but small enough so that incremental analysis can

be used to determine
� � I and

� � % . What is the ratio
� � I < � � % ?
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∆i

+

-1 mA

1 mA -

+ V2 + ∆v2

V1 + ∆v1

Figure 4.32:

Solution:

a) ] I � � �5 1� ] ; ] % �-�5= �5 5]
b) I�
ANS:: (a) ] I � � �5 .� ] � ] % �-�5= �5 5] , (b) I� .



Chapter 5

The Digital Abstraction

Exercises

Exercise 5.1 Write a Boolean expression for the following statement: “
�

is TRUE if
either � or

�
is FALSE, otherwise

�
is FALSE”. Write a truth table for this expression.

Solution:

� � � � �

� � �

0 0 1
0 1 1
1 0 1
1 1 0

ANS::
� � � � �

Exercise 5.2 Write a Boolean expression for the following statement: “
�

is FALSE if
either � or

�
is FALSE, otherwise

�
is TRUE”. Write a truth table for this expression.

Solution:

� � � � �

� � � � � � � �

ANS::
� � � �

117
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� � �

0 0 0
0 1 0
1 0 0
1 1 1

Exercise 5.3 Write a Boolean expression for the following statement: “
�

is TRUE if no
more than two of � , � , and

�
are TRUE, otherwise

�
is FALSE”.

Solution:

In this case, “no more than 2” = “not all 3”, so:

� � � � �

ANS::
� � � � �

Exercise 5.4 Consider the statement: “
�

is TRUE if at least two of � , � , and
�

are
TRUE, otherwise

�
is FALSE”.

a) Write a Boolean expression for the above statement.

b) Write a truth table for the function
�

.

c) Implement
�

using only AND, OR, and NOT gates. The inputs � , � , and
�

are
available. Each gate may have an arbitrary number of inputs. (Hint: A sum-of-
products representation of the Boolean expression will facilitate this implementa-
tion.)

d) Implement
�

using only AND, OR, and NOT gates. Each gate may have no more
than two inputs. As before, the inputs � , � , and

�
are available.

e) Implement
�

using only NAND and NOR gates. (Hint: a NAND gate or a NOR
gate with its inputs tied together behaves like an inverter).

f) Implement
�

using only NAND gates. (Hint: Use De Morgan’s laws.)

g) Implement
�

using only NOR gates. (Hint: Use De Morgan’s laws.)

h) Repeat part (d) and attempt to minimize the number of gates used.

i) Repeat part (d) and attempt to minimize the number of gates used, assuming that
the inputs are available both in their true and complement forms. In other words,
assume that in addition to � , � , and

�
, the inputs � , � , and

�
, are also available.
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Solution:

a)
� � � � � � � � �

� � � �
�

� �
� �

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

b)

c) See Figure 5.1 for logic diagram.

W

X

Y

Z

Figure 5.1:

d) See Figure 5.2 for logic diagram.

e) See Figure 5.3 for logic diagram.

f) Only NAND:
� � � � � �0� � � �0� � � � � � � � �

See Figure 5.4 for logic diagram.
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W

X

Y

Z

Figure 5.2:

W

X

Y

Z

Figure 5.3:

W

X

Y

Z

Figure 5.4:
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g) Only NOR:

� � � � � � � � � � � � � � � � � � � � � � � � � � �

See Figure 5.5 for logic diagram.

W

X

Y

Z

Figure 5.5:

h)
� � � � � � � � � � � � � �

� � � �2� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � � �

See Figure 5.6 for logic diagram.

W

X

Y

Z

Figure 5.6:

i) Solution: same as (h)

ANS:: (a)
� � � � � � � � � � � � � �
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Exercise 5.5 Represent the decimal number 4 as an unsigned, three-bit binary number
and as an unsigned, four-bit binary number. Unsigned numbers do not include a sign bit.
For example, 11110 is the unsigned, binary representation of the decimal number 30.

Solution:

Unsigned 3-bit: �����

Unsigned 4-bit: � �����

ANS:: ����� , � �����

Exercise 5.6 Consider the functions � � � T � T � � and � � � T � T � � specified in the truth
table given in Table 5.1.

� � � � � � T � T � � � � � T � T � �
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 1 1 0 1
1 0 0 1 0
1 0 1 1 1
1 1 0 0 1
1 1 1 1 1

Table 5.1: Truth table for Exercise 5.6

a) Write a logic expression corresponding to the functions � � � T � T � � and
� � � T � T � � .

b) Implement � � � T � T � � with logic gates.

c) Implement � � � T � T � � using only 2-input gates.

d) Implement � � � T � T � � using only 2-input NAND gates. Hint: Use De Morgan’s
laws.

e) Repeat parts b) through d) for the function � � � T � T � � .

Solution:

a)

� � � ! � ! � � � ! � ! � � � ! � ! � � � ! � ! �
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If we simplify F, combining the first pair and the second pair,

� � � ! � � � ! �

and
�-� � ! � ! � � � ! � ! � � � ! � ! � � � ! � ! �

We can combine the first and last terms,

�-� � ! � ! � � � ! � ! � � � ! �

b) See Figure 5.7 for logic diagram.

A

B

C

F

Figure 5.7:

c) Same as part (b)

d) Using our simplified version of � , De Morgan’s laws, and the fact that a NAND
gate with logical signal � tied into both inputs produces � ,

� � � � ! � � ! � � ! � �

See Figure 5.8

B

B
C

C

C

A
F

Figure 5.8:
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A

B

C

G

Figure 5.9:

A

B

C

G

Figure 5.10:
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e) Implement � � � T � T � � with logic gates. See Figure 5.9

Implement � � � T � T � � using only 2-input gates. See Figure 5.10

Implement � � � T � T � � using only 2-input NAND gates.

�-� � � � � � � � � � � � � � � ��� �

See Figure 5.11

A

B

C

G

Figure 5.11:

ANS:: (a) � � � ! � � � ! � ,
� ! � ! � � � ! � ! � � � ! �

Exercise 5.7 Consider the four logic expressions below.

1. � � � � �0� � ! � � � � � � ! �

2. � � ! � � � ! � �0� � � � � � �

3.
� � � ! � � � ! � ! �

4. � � � � � � � � � � � � � ! � ! �

a) Give an implementation using gates for each of the logic expressions above.

b) Write the truth table for each of the four expressions.

c) Suppose you know that
� � � . Simplify the four expressions under this constraint.

d) Simplify the four expressions assuming that
�

and � are related as
� � � .
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Solution:

a) 1. A simplification of the expression would be

� � � � ! � ! � ! � �

See Figure 5.12(1)

2. Using De Morgan’s laws, the fact that X ! � = 0, the fact that X ! X = X, and
the distributive law,

� �� � ! � � � � � � � � ! � ! � �

� � � ! � ! �

See Figure 5.12(2)

3. Using the fact that X + X ! Y = X and De Morgan’s,

� � � � � � �

See Figure 5.12(3)

4. Using the fact that � + X ! Y = � + Y and De Morgan’s,

� � � ! � � � � � � � ! �

See Figure 5.12(4)

b) See Table 5.2

�

c) 1) � � �
2) � �
3) � � �
4) � � �

d)

1) � � �

2) �
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B
A C

D

B
A

D

F

F

FB
A

D

D
BA

C

F

C

A

1)

2)

3)

4)

Figure 5.12:

Table 5.2:� � � � � I � % � � � �
0 0 0 0 1 0 1 0
0 0 0 1 1 0 0 1
0 0 1 0 1 0 1 0
0 0 1 1 1 0 0 0
0 1 0 0 1 1 1 0
0 1 0 1 1 0 1 0
0 1 1 0 1 1 1 0
0 1 1 1 0 0 1 0
1 0 0 0 1 0 1 0
1 0 0 1 1 0 1 0
1 0 1 0 1 0 1 0
1 0 1 1 1 0 1 1
1 1 0 0 1 0 1 0
1 1 0 1 1 0 1 0
1 1 1 0 1 0 1 0
1 1 1 1 1 0 1 0
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3) �

4) � � �

ANS:: (c) � � � , � � , � � � , � � � (d) � � � , 0, 1, � � �

Exercise 5.8 A logic gate obeys a static discipline with the following voltage levels:] � � � 8 =� '] , ] � � � SU= 80] , ] � � � �5=  5] and ] � �$� � = �0] . (a) What range of volt-
ages will be treated as invalid under this discipline? (b) What are its noise margins?

Solution:

(a)

Devices must produce output voltages within the following ranges:

Valid range for low outputs:

]	� � � � � � = � �$�

Valid range for high outputs:

] � � 
 � � SU= 8 
 �

Devices must interpret correctly input voltages within the following ranges:

Valid range for low inputs:

] � � �$� � �5=  � �

Valid range for high inputs:

] � � 
 � � 8 =� 
 �

(b)


 � K � ] � �&( ] � � �-�5=  ( ��= ��� ��= �


 � I � ] � � (7] � � � SU= 8X( 8�=� /� ��= �

ANS:: (a) “0” outputs: ��= ��� � , “1” outputs: SU= 8 
 � , “0” inputs: �5=� � � , “1” inputs:8 =  
 � , (b) 
 � K � ��= � and 
 � I � � =��
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Exercise 5.9 Consider a family of logic gates which operates under the static discipline
with the following voltage thresholds: ] � � � �5=  V, ]	� � � � =  V, ] � � � 8 =� V, and] � � �JSU= S V.

a) Graph an input-output voltage transfer function of a buffer satisfying the voltage
thresholds given above.

b) Graph an input-output voltage transfer function of an inverter satisfying the voltage
thresholds given above.

c) What is the highest voltage that can be output by an inverter for a logical 0 output?

d) What is the lowest voltage that can be output by an inverter for a logical 1 output?

e) What is the highest voltage that must be interpreted by a receiver as a logical 0?

f) What is the lowest voltage that must be interpreted by a receiver as a logical 1?

g) Does this choice of voltage thresholds offer any immunity to noise? If so, determine
the noise margins.

Solution:

a) See Figure 5.13

vout

vin1.5 3.5

0.5

4.4

Figure 5.13:

b) See Figure 5.14

c) ] � �#� � =  5]
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vout

vin1.5 3.5

0.5

4.4

Figure 5.14:

d) ] � � �JSU= S$]

e) ] � �#��5=  5]

f) ] � � � 8 =  5]

g) Yes. The noise margins are given by:


 � K � ] � �&(7]	� �#� �5=� [( ��=� /���]


 � I �J]	� � (7] � � �JSU= SX( 8 =  � � = �0]

ANS:: (c) 0.5V (d) 4.4V (e) 1.5V (f) 3.5V (g) Yes. 
 � K � ��] and 
 � I � � = �0]

Exercise 5.10 Consider a family of logic gates which operates under the static discipline
with the following voltage thresholds: ] � �#� ] � �#� � =  V and ] � � � ]	� � �*SU= S V.

a) Graph an input-output voltage transfer function of a buffer satisfying the voltage
thresholds given above.

b) Graph an input-output voltage transfer function of an inverter satisfying the voltage
thresholds given above.

c) What is the highest voltage that can be output by an inverter for a logical 0 output?

d) What is the lowest voltage that can be output by an inverter for a logical 1 output?

e) What is the highest voltage that must be interpreted by a receiver as a logical 0?
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f) What is the lowest voltage that must be interpreted by a receiver as a logical 1?

g) Does this choice of voltage thresholds offer any immunity to noise?

Solution:

a) See Figure 5.15

vout

vin0.5 4.4

0.5

4.4

Figure 5.15:

b) See Figure 5.16

vout

vin0.5 4.4

0.5

4.4

Figure 5.16:

c) ] � �#� � =  5]

d) ] � � �JSU= S$]
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e) ] � �#� � =  5]

f) ] � � �JSU= S$]

g) No.

ANS:: (c) 0.5V (d) 4.4V (e) 0.5V (f) 4.4V (g) No

Problems

Problem 5.1 Derive a truth table and a Boolean expression that describes the operation
of each digital circuit shown in Figure 5.17.

Solution:

For truth tables, see Table 5.1 (parts a-b), and Table 5.1 (parts c-f).

� � � � � � �
�

0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 0 0
0 0 1 1 1 0
0 1 0 0 0 0
0 1 0 1 0 1
0 1 1 0 0 0
0 1 1 1 1 0
1 0 0 0 0 1
1 0 0 1 0 1
1 0 1 0 0 1
1 0 1 1 1 1
1 1 0 0 1 0
1 1 0 1 1 1
1 1 1 0 1 0
1 1 1 1 1 0

a)
� � ! � � � � � � � � � � � � � �

b)
� � ! � � � � � � � � � � � � � �
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A

C

B

D

(a)

Z

A

C

B

D

(b)

Z

A

C

B

(c)

Z

A

C

B

(d)

Z

A

C

B

(e)

Z

A

C

B

(f)

Z

Figure 5.17:

� � � �
�

�

	
� � ���

0 0 0 0 1 0 0
0 0 1 0 1 1 1
0 1 0 0 0 0 0
0 1 1 1 1 0 1
1 0 0 1 1 0 1
1 0 1 1 1 1 1
1 1 0 0 0 1 1
1 1 1 1 1 1 1
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c)
� � ! � � � � � � � �

d)
� � ! � ! � � � � � � � � � � � � � �

e)
� � � � � � � � � � � � �1! � � � � ��� � � � � � � � � � � � � � � � � � � � �

f)
� � � ! � � � ��

ANS:: (a)
� � � � � (b)

� � � � � (c)
� � � � � (d) � � � (e)

� � � � � � � � (f)
1

Problem 5.2 Draw an output voltage waveform for the circuit in Figure 5.17c in response
to the input voltage waveforms shown in Figure 5.18. Assume that the gates in the circuit
obey the static discipline with ]���� �*S V, ]���� �*8 V, ]��	� � � V, and ]��
� �5� V.

0

5 V

1 V

4 V

3 V

2 V

A

B
C

t
Figure 5.18:

Solution:

For Circuit 5.17c, the output is given by

� � � � � � �

There are 7 different states, where a state transition occurs when one of the three
inputs changes by itself. For example, the first state is when

�
and � are low and � is

high, the second state is when
�

and � are high, and � is low, and so on. The output
in the first, second and fifth states is low (below 1V), while the output in the remaining
states is high (above 4V).



135

Problem 5.3 The truth table for a “ones count” circuit is given in Table 5.3. This circuit
has four inputs:

�
, � , � , and � , and three outputs � � � K , � � � I , and � � � % . Together,

the signals � � � K , � � � I , and � � � % represent a 3-bit positive integer � � � % � � � I � � � K .
The output integer � � � % � � � I � � � K reflects the number of ones in the input. Using only
NAND, NOR and NOT gates, design an implementation for the circuit. Each gate may
have an arbitrary number of inputs.

� � � � � � � % � � � I � � � K
0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 0 1
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 0 1 0
0 1 1 0 0 1 0
0 1 1 1 0 1 1
1 0 0 0 0 0 1
1 0 0 1 0 1 0
1 0 1 0 0 1 0
1 0 1 1 0 1 1
1 1 0 0 0 1 0
1 1 0 1 0 1 1
1 1 1 0 0 1 1
1 1 1 1 1 0 0

Table 5.3:

Solution:

See Figure 5.19 for logic diagram.

Using sum-of-products,

� � � % � � � � �
� � � I � � ! � � � � � � � � � � � � � � � � � � � � � ! � � � � � � � � � � � � �

� � � ! � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ! � � � � � � ! �
� � � K � � ! � ! � � � � ! � � � � � � � ! � � � � � � � � � ! � ! � � � � � � �

� � � � � � � � �
ANS:: � � � % � � � � � , � � � I � � � � � � � � � � � � � � � � � � � ! � � �

� � � ! � , � � � K � � ! � ! � � � � ! � � � � � � � ! � � � � � � � � � ! � ! � �
� � � � � � � � � � � � � �

Problem 5.4 A four-input multiplexer module is shown in Figure 5.20. The multiplexer
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Out 2
A
B
C
D

C

D

A

D

A

C

B

D

B

C

A

D

C

B

A

D

A

B

D

B
C

C
Out 1

A

D

A

D

B
C

C
Out 0

D

B
C

B
C

B
C

D

B
C

A

D
C

A

B
C

B

B

A

D

A

A

D

Figure 5.19:
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has two select signals � I and � K . The value on the select signals determines which of
the inputs A, B, C, and D appears at the output. As illustrated in the figure, A is selected
if � I � K is 00, B if � I � K is 01, C if � I � K is 10, and D if � I � K is 11. Write a boolean
expression for Z in terms of � I � K , A, B, C, and D. Implement the multiplexer using only
NAND gates.

00

01

10

11

A

B

C

D

2

Z

S1S0

Figure 5.20: A four-input multiplexer module. The “2” beside the wire corresponding to
the select signals is a short-hand notation indicating there are two wires present.

Solution:

Boolean expression:

� � � � I ! � K � � � I � K � � � I � K � � � I � K

See Figure 5.21 for logic diagram.

ANS::
� � � � I ! � K � � � I � K � � � I � K � � � I � K

Problem 5.5 A four-input demultiplexer module is shown in Figure 5.22. The demulti-
plexer has two select signals � I and � K . The select signals determines on which of the
outputs (OUT0, OUT1, OUT2, or OUT3) the input IN appears. As illustrated in the fig-
ure, IN appears at output OUT0 if � I � K is 00, at OUT1 if � I � K is 01, at OUT2 if � I � K
is 10, and at OUT3 if � I � K is 11. An output is 0 if it is not selected. Write a boolean
expression for each of the outputs in terms of � I � K and IN. Implement the demultiplexer
using only NAND gates.

Solution:

See Figure 5.23 for logic diagrams.

Boolean expressions:
� � � ��� � 
 ! � I ! � %
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A

B

C

D

Z

S0

S1

S0

S1

S1

S0

S0

S1

Figure 5.21:

00

01

10

11

OUT0

OUT1

OUT2

OUT3

2

S1S0

IN

Figure 5.22:

IN

IN

IN

IN

OUT0
S0

S1

S0

S1

S1

S0

S0

S1
OUT1

OUT2

OUT3

Figure 5.23:



139

� � � � � � 
 ! � I ! � K

� � � �/� � 
 ! � I ! � K

� � � 8�� � 
 ! � I ! � �

ANS:: � � � �$� � 
 ! � I ! � % , � � � � � � 
 ! � I ! � K , � � � � � � 
 ! � I ! � K ,
� � � 8�� � 
 ! � I ! � �

Problem 5.6 Implement the “greater-than” circuit depicted in Figure 5.24 using NAND
gates. A and B represent one-bit positive integers. The output Z is 1 if A is greater than
B, otherwise Z is 0.

>
A

B Z

Figure 5.24:

Solution:

Z is 1 only if A is 1 and B is 0. The resulting expression is then:

� � � �

See Figure 5.25 for logic diagram.

Z
B

A

Figure 5.25:

ANS::
� � � �

Problem 5.7 Implement the 4-input “odd” or “odd parity” circuit depicted in Figure 5.26
using NOR gates. In this circuit, the output Z is high if an odd number of the inputs are
high, otherwise the output Z is low. How would you use the 4-input “odd” circuit module
shown in Figure 5.26 to implement a 3-input “odd” circuit. If this cannot be done, discuss
why not.
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ODD

A0

Z

A1

A2

A3

Figure 5.26:

� � � � � 8 � S �

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0
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Solution:

Boolean expression:
� � � 8 ! � � ! � � ! � � � � 8 ! � � ! � � ! � � � � 8 ! � � ! � � ! � � � � 8 ! � � ! � � ! � � �

� 8.! � �.! � � ! � � � � 8/! � �.! � � ! � � � � 8.! � � ! � � ! � � � � 8.! � � ! � � ! � �
This circuit can be implemented in the same way as the previous problems, using sum

of products and NAND gates. This same circuit module can be used to implement a 3-
input “odd” circuit by tying one of the A inputs to ground. Incidentally, you could also
make a 3-input “even” circuit by tying one of the A inputs to hi.

ANS::
� � � 8 ! � � ! � �'! � ��� � 8 ! � � ! � � ! � ��� � 8 ! � � ! � �'! � � � � 8 ! � � ! � �'!

� � � � 8.! � � ! � � ! � � � � 8.! � � ! � � ! � � � � 8/! � � ! � � ! � � � � 8.! � � ! � � ! � �

Problem 5.8 Figure 5.27 depicts a 4-input majority circuit module. The output Z of this
circuit module is high if a majority of the inputs are high. Write a boolean expression for
Z in terms of A0, A1, A2, and A3. How would you use the 4-input majority circuit mod-
ule shown in Figure 5.27 to implement a 3-input majority circuit and a 2-input majority
circuit. If either of these cannot be done, discuss why not.

A0

Z

A1

A2

A3

Majority

Figure 5.27:

Solution:

Boolean expression:

� � � �/! � � ! � � ! � 8 � � �.! � � ! � � ! � 8 � � �.! � � ! � �.! � 8 � � � ! � �.! � 8

Use NAND gates and sum-of-products to implement the Boolean expression. A 3-
input majority circuit can be implemented by tying one input to HI. A 2-input majority
circuit can be implemented by tying one input to ground and another input to HI.

ANS::
� � � � ! � � ! � � ! � 8 � � � ! � � ! � � ! � 8 � � � ! � � ! � � ! � 8 � � � ! � � ! � 8

Problem 5.9 Figure 5.28 illustrates a two-bit grey code converter. Its outputs OUT0,
OUT1, are equal to the inputs when the IN0, IN1 are 00 or 01. However, when the inputs
IN0, IN1 are 10 and 11 the outputs OUT0, OUT1 are 11 and 10 respectively. Implement
the grey code converter using 2-input NAND gates.
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� � � � � 8 � S �

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

IN 0

IN 1

OUT 0

OUT 1

Figure 5.28:

� 
 � � 
 � � � � � � � � �
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0
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Solution:

Boolean expressions:
� � � ��� � 
 �

� � � � � � 
 � � 
 ��� � 
 � � 
 �

ANS:: � � � ��� � 
 � , � � � � � � 
 � � 
 � � � 
 � � 
 �

Problem 5.10 Figure 5.29 illustrates input-output voltage transfer functions for several
one-input one-output devices. For the voltage thresholds ] � � , ] � � , ] � � , and ] � � as
shown, which of the devices can serve as valid inverters?

E

B
C AFD

0 VIL VIH

5 V

VOL

VOH

5 V
VIN

VOUT

Figure 5.29:

Solution:

Only C is valid according to the static discipline.

Problem 5.11 Suppose we wish to build a two-bit adder circuit (Figure 5.30) that takes
as input a pair of two-bit positive integers

� I � K and � I � K and produces a two-bit sum
output � I � K and a carry out bit � I . Write a truth table and a boolean expression for the
carry out bit in terms of the inputs.

Now, suppose we wish to build a two-bit adder circuit (Figure 5.31) that takes as input
a pair of two-bit positive integers

� I � K and � I � K , and a carry-in bit � K , and produces
a two-bit sum output � I � K and a carry out bit � I . Write a truth table and a boolean
expression for the carry out bit in terms of the inputs.

Solution:
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Adder

A1 A0 B1 B0

C1

S1 S0

Figure 5.30:

Adder

A1 A0 B1 B0

C1

S1 S0

C0

Figure 5.31:

� I � K � I � K � I
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1
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� I � K � I � K � K � I
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 1 0 0 0
0 0 1 0 1 0
0 0 1 1 0 0
0 0 1 1 1 1
0 1 0 0 0 0
0 1 0 0 1 0
0 1 0 1 0 0
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 0 1 1
0 1 1 1 0 1
0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 0 1 0
1 0 0 1 0 0
1 0 0 1 1 1
1 0 1 0 0 1
1 0 1 0 1 1
1 0 1 1 0 1
1 0 1 1 1 1
1 1 0 0 0 0
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1
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� I � � I � K � I � K � � I � K � I � K � � I � I

� I � � I � K � I � K � � I � K � I � K � � I � I � � I � K � K � � I � K � K � � I � K � K � � K � I � K

ANS:: � I � � I � K � I � K � � I � K � I � K � � I � I � � I � K � K � � I � K � K � � I � K � K �� K � I � K

Problem 5.12 Suppose we have two logic families named NTL and YTL. The NTL fam-
ily of logic gates operates under the static discipline with the following voltage thresh-
olds: ] � �5� �'=� V, ] � �
� �5= � V, ] � � � 8 =  V, and ]	� � � S V. The YTL family, on
the other hand, is characterized by the voltage thresholds: ] � � � ��= � V, ]	� � � � = 8 V,] � � � 8 = � V, and ]	� � � SU=  V. Will a YTL inverter driving the input of an NTL inverter
operate correctly? Explain. Will a NTL inverter driving the input of an YTL inverter
operate correctly? Explain.

Solution:

A YTL inverter driving an NTL inverter will operate correctly because all valid out-
puts of the YTL are valid inputs for the NTL.

On the other hand, an NTL inverter driving a YTL inverter will not operate correctly
since a valid low output of the NTL between 0.8V - 1V would fall into the forbidden
region (0.8V - 3V) of the YTL.

Problem 5.13 Consider a family of logic gates which operates under the static discipline
with the following voltage thresholds: ]��	� � � =  V, ]��
� � �5= � V, ]����
� SU= S V and]���� � 8 = � V.

a) Graph an input-output voltage transfer function of a buffer satisfying the voltage
thresholds given above.

b) Graph an input-output voltage transfer function of an inverter satisfying the voltage
thresholds given above.

c) What is the highest voltage that can be output by an inverter for a logical 0 output?

d) What is the lowest voltage that can be output by an inverter for a logical 1 output?

e) What is the highest voltage that must be interpreted by a receiver as a logical 0?

f) What is the lowest voltage that must be interpreted by a receiver as a logical 1?
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g) When transmitting information over a noisy wire, buffers can be used to minimize
transmission errors by restoring signal values. Consider the transmission of data
over a noisy wire which picks up a maximum of 80 mV symmetric peak-to-peak
noise per centimeter. How many buffers are needed to transmit a signal over a
distance of 2 meters in this noisy environment?

h) How large are the � and � noise margins for a buffer in this logic family? Now
consider three buffers connected in series and behaving as a single buffer. What are
the noise margins for this new buffer?

Solution:

a) Any input below ] � � must produce an output less than or equal to ] � � and any
input above ] � � must produce an output greater than or equal to ] � � .

See Figure 5.32 for graph.

VIL=1.6V VIH=3.2V

VOL=0.5V

VOH=4.4V

Buffer

Figure 5.32:

b) See Figure 5.33 for graph.

c) ��=� 5]

d) S = S$]

e) �'= �0]

f) 8 = �5]
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VIL=1.6V VIH=3.2V

VOL=0.5V

VOH=4.4V

Inverter

Figure 5.33:

g) 2 meters = 200 cm which translates into 16V of noise peak-to-peak centered at 0,
meaning our signal could be plus or minus 8 volts from the desired. The smaller
noise margin is 
 � K which equals 1.1 volts.

�

bI � I b is 7 something so we need 8
buffers in between the sender and receiver.

h)


 � K � ] � �&( ] � � � �5= ��]


 � I � ] � � (7] � � � �5= �5]
If we look at what happens with a triple-buffer at the sender side and at the receiver
side, we realize that the noise margins stay the same. Basically this means we
are not allowed any more noise during transmission than with a single buffer. If we
look at the low noise margin, the minimum voltage the triple-buffer is guaranteed to
output for a “low” is still ]	� � = 0.5V (any logic gate under this static discipline) and
likewise, the maximum voltage the receiving triple-buffer is guaranteed to interpret
as a “low” is still ] � � = 1.6V giving us a � noise margin of 1.1V

ANS:: (c) � =  5] (d) SU= S$] (e) �5= �0] (f) 8 = �5] (g) � (f) 
 � K � �5= �9] , 
 � I � �5= �5] ,
unchanged

Problem 5.14 Many manufacturing flaws in digital circuits can be modeled as stuck-at
faults. The output of a gate is said to suffer from a stuck-at 1 fault if the output is a 1
irrespective of its input values. Similarly, a stuck-at 0 fault at an output causes the output
to produce a 0 at all times.
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a) Consider the circuits shown in Figure 5.34 with one or more faults. Write an expres-
sion for each of the outputs in terms of the input variables for the given faults. (Hint:
As an example, the output of the faulty circuit in Figure 5.34a will be independent
of the input variable C).

A

C

B

(a)

Z

Stuck at 1

A

C

B

(b)

Z

Stuck at 1

A

C

B

(c)

Z

Stuck at 1

Stuck at 1

A

C

B

(d)

ZStuck at 0

Stuck at 0

Figure 5.34:

b) Suppose we are given the faulty circuit in Figure 5.35a where the output of NAND
gate N2 is known to have a stuck-at fault. However, we do not know whether it is a
stuck-at 1 fault or a stuck-at 0 fault. Further, as illustrated in Figure 5.35b, suppose
that we have access only to the inputs A, B, and C, and the output Z. In other words,
we are unable to directly observe the output X of the faulty NAND gate N2. How
would you go about determining whether N2 suffers from a stuck-at 1 fault or a
stuck-at 0 fault.

A

C

B

(a)

Z

Stuck at X

N1

N2

N3

A

Z
B

C

(b)

Figure 5.35:

Solution:
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a) a)
� � � �

b)
� ��

c)
� � �

d)
� � �

b) The boolean for a stuck at 1 is
� � � � . The boolean for a stuck at 0 is

� � � One
possible test is A = 1 , B = 1. If the output Z = 1 , then it is a stuck at 0 fault. If the
output Z = 0, then it is a stuck at 1 fault.

ANS:: (a)
� � � � (b)

� �� (c)
� � �

(d)
� � �



Chapter 6

The MOSFET Switch

Exercises

Exercise 6.1 Give a resistor-MOSFET implementation of the following logic functions.
Use the S model of the MOSFET for this exercise (in other words, you may assume that
the on-state resistance of the MOSFETs is 0).

1. � � � � � !�� � � � �

2.
� ! � ! � ! �

3. � � ! �-� � � ! �-�0� � ! � ! �
�

Solution:

1. � � � � � !�� � � � �

2.
� ! � ! � ! �
Using DeMorgan’s laws, we can transform the expression into

� � � � � ! �

See Figure 6.1

151
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RL
C

D

RL

A B
Output

Figure 6.1:

3. � � ! �-� � � ! �-�0� � ! � ! �
�

Solution:

Using DeMorgan’s laws, we can transform the expression into

� ! � � � ! � � � � � � �

See Figure 6.2

RL
Y

RL

X W

RL
Output

Y

W W

X

Figure 6.2:

Exercise 6.2 Write a boolean expression that describes the function of each of the circuits
in Figure 6.3.

Solution:

a) � � � � �

b) � � � � � � � � � ! �

c) � � � � � !�� � � � �

d) � � � � � � � � � � � ! � 


ANS:: (a) � � � � �
(b) � � � � � ! � (c) � � � � � !�� � � � � (d) � � � �� � � � � � ��! � 
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(d)

VS

A

OUT

VS

A

OUT

B
C

VS

B

OUT
A

VS

A

OUT

B

(a) (b)

(c)

C

VS

EN

R1

R2 R3
R4

R6

R5

R8

R7

Figure 6.3:
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VS

IN

OUT

RL

Figure 6.4:

Exercise 6.3 Figure 6.4 shows an inverter circuit using a MOSFET and a resistor. The
MOSFET has a threshold voltage ] � � �5] . Assume that ]�� �  5] and (�� � ���0W . For
this exercise, model the MOSFET using its switch model. In other words, assume that the
on-state resistance of the MOSFET is 0.

a) Draw the input versus output voltage transfer curve for the inverter.

b) Does the inverter satisfy the static discipline for the voltage thresholds ] � � � ��] ,] � � � �5=  5] , ] � � � S$] and ] � � � 80] ? Explain. (Hint: To satisfy the static
discipline, the inverter must interpret correctly input values that are valid logic sig-
nals. Furthermore, given valid logic inputs, the inverter must also output valid logic
signals. Valid logic 0 input signals are represented by voltages less than ] � � , valid
logic 1 input signals are represented by voltages greater than ] � � , valid logic 0
output signals are represented by voltages less than ] � � , and valid logic 1 output
signals are represented by voltages greater than ] � � .)

c) Does the inverter satisfy the static discipline if the ] � � specification was changed to] � �#�5��=  5] ? Explain.

d) What is the maximum value of ] � � for which the inverter will satisfy the static
discipline?

e) What is the minimum value of ] � � for which the inverter will satisfy the static
discipline?

Solution:

a) See Figure 6.5 for transfer curve.
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vout

vinVT = 2

5

0

Figure 6.5:

b) Yes, the inverter satisfies the static discipline, as illustrated in Figure 6.6. If the
input is less than ] � � , then output is always greater than ] � � . Similarly, if the input
is greater than ] � � , then the output is always less than ] � � .

vout

vin
VT = 2 VIH

VOL

VOH

5

VIL
1V 3V

4V

1V

Figure 6.6:

c) No. A case where this would not work is in the input voltage range: � � � � 	 � ��=  .
Under the new voltage threshold, input voltages in this range should be interpreted
as a logical 0. However, since ] � is at 2V, these would result in ��� � � �
� , which is
also a logical 0, thereby breaking the static discipline for an inverter.

d) The maximum value of ] � � is the threshold voltage ] � . So ] � � � � .
e) The minimum value of ] � � is also the threshold voltage ] � , because voltages

greater than or equal to ] � will be interpreted as a logical 1. So ] � � 
 � .
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ANS:: (b) yes (c) no (d) 2 (e) 2

Exercise 6.4 Consider, again, the inverter circuit shown in Figure 6.4. The MOSFET has
a threshold voltage ] � � �'] . Assume that ]�� �  5] and (�� � ���0W . For this exercise,
model the MOSFET using its switch-resistor model. Assume that the on-state resistance
of the MOSFET is ( � � � �0W .

a) Does the inverter satisfy the static discipline which has voltage thresholds given by] � �#� ] � �4���] and ]	� � �J] � � �JS$] ? Explain.

b) Does the inverter satisfy the static discipline for the voltage thresholds ] � � �
] � �#�5��=  5] and ]	� � � ] � � � 80] ? Explain.

c) Draw the input versus output voltage transfer curve for the inverter.

d) Is there any value of ] � � for which the inverter will satisfy the static discipline?
Explain.

e) Now assume that ( � � ���W and repeat parts (a), (b), and (c).

Solution:

a) First find the relevant threshold output and input values for the inverter:

The output high voltage is 5.

The output low voltage is

] � ! ( � �
( � � � (�� �  ! �

� � � �e= �

The lowest input voltage recognized as a logical 1 is

] � � �5]

The highest input voltage recognized as a logical 0 is less than �5] .

With ] � �#� ] � �4���] and ]	� � � ] � � �JS$] :

No, the static discipline is not satisfied. A failure case is for an input voltage which
is greater than ]	� � � S$] (i.e., a valid 1). Since this high input voltage is greater
than the threshold, the inverter output voltage is 2.2V, which is greater than ] � � ���] . But this is not a valid 0. Valid 0 outputs would be outputs that are less than 1V.
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vout

vin

5V

2.2V

VT=2

Figure 6.7:

b) With ]	� �#� ] � �4�5��=  5] and ]	� � � ] � � � 80] :

No. Now we have a failure case when the input is, say, 2.3V (i.e., a valid 0). But
since ��= 8 � ] � , the output will be 2.2V. For a valid inverter the output should have
been a valid 1. Thus, this violates the inverter’s static discipline.

c) See Figure 6.7 for transfer curve.

d) No. The lowest value the inverter output ever reaches is 2.2V, which is still higher
than 2V. Thus the inverter output can never turn the MOSFET in a receiving inverter
off. This implies that we will never be able to satisfy the discipline.

e) a) ( � � � ��W
]	� �#�J]���!�� ( � �

( � � � (�� � �J .! ���� � � = S0 

With ] � �#� ] � � � ��] and ]	� � �J] � � �*S0] :

Yes, we satisfy the static discipline. For valid 0 input ( � ] � � ), then output is
always a valid 1 ( � ]	� � ). For valid 1 input ( � ] � � ), the output is always a
valid 0 ( � ]	� � ).

b) With ]	� �#� ] � � � ��=  5] and ]	� � � ] � � �J80] :

No. Counter case is if the input is 2.3V which is � ] � � (valid 0), then it will
produce an output 0 as well (i.e., � ] � � ).

c) See Figure 6.8 for transfer curve.

ANS:: (a) no (b) no (d) no (e-a) yes (e-b) no
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vout

vin
VT=2

0.45V

5V

Figure 6.8:

Exercise 6.5 Compute the worst-case power consumed by the inverter shown in Fig-
ure 6.4. The MOSFET has a threshold voltage ] �$� �5] . Assume that ]�� �  5] and(��$� ���0W . Model the MOSFET using its switch-resistor model, and assume that the
on-state resistance of the MOSFET is ( � � � ��W .

Solution:

Power dissipated:

� ������� � ] � � �
] %�

(�� � ( � �
�  % !�� �

� ����� ��� ��� � �

� ��= � �1� �

ANS:: 2.27 mW

Exercise 6.6 Consider again the circuits in Figure 6.3. Using the switch-resistor model
of the MOSFET, choose minimum values for the various resistors in Figure 6.3 so each
circuit satisfies the static discipline with voltage thresholds given by ] � �#� ] � �#� ] �e< ���
and ] � � � ] � � � S$] �$<5 . Assume the on-state resistance of the MOSFET is ( � � and
that its turn-on threshold voltage ] � � ]��$<�� .

Solution:

There are two critical constraints.

First, the valid low input and output voltage thresholds must be less than ] � . The
given parameters satisfy this constraint irrespective of the resistor values.
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Second, the output low voltage produced by the inverter must be lower than ] � � . Let
us check this second constraint for each circuit.

a) For this circuit, the following constraint must be satisfied

]	� � � ]���! ( � �
( � � � ( I

With ] � �#� b
�

IK , �
��� �

( � �
( � � � ( I

����( � � � ( � � � ( I
( I � ��( � �

Similarly,
( % � ��( � �

b) Similarly to part (a),
(
� � ��( � �
( � � ��( � �
( � � ��( � �

The same constraint applies to ( � because the relevant worst case scenario in one
in which only one of the MOSFETs associated with ( � is on.

c) Similarly to part (b),
( � � ��( � �

For ( @ , the worst case scenario is when two ON MOSFETs appear in series with
resistor ( @ , and the third MOSFET is off.

( @ � ��( � � � � � �

where

( � � � � � � � ( � � � ( � � �5��( � �
( @ � � ��( � �
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d) Similar to part (c), in the worst case scenario, there are three ON MOSFETs (those
with input signals

�
, � , and

� 
 :

( � � ��( � � � � � �
( � � � � � � � ( � � � ( � � � ( � � �*8�( � �

( � � � ��( � �

ANS:: (a) ( I � ��( � � , ( % � ��( � � (b) ( � � ��( � � , (�� � ��( � � , ( � � ��( � � (c)( @ � � ��( � � , ( � � ��( � � (d) ( � � � ��( � �

Exercise 6.7 Consider a family of logic gates which operates under the static discipline
with the following voltage thresholds: ]��	� � � =  V, ]��
� � �5= � V, ]����
� SU= S V and]���� � 8 = � V.

a) Graph an input-output voltage transfer function of a buffer satisfying the voltage
thresholds given above.

b) What is the highest voltage that can be output by an inverter for a logical 0 output?

c) What is the lowest voltage that can be output by an inverter for a logical 1 output?

d) What is the highest voltage that must be interpreted by a receiver as a logical 0?

e) What is the lowest voltage that must be interpreted by a receiver as a logical 1?

f) What is the 0 noise margin provided by this logic family?

g) What is the 1 noise margin provided by this logic family?

h) What is the minimum voltage gain the buffer must provide in the forbidden region?

Solution:

a) ]	� �#� ��=� �TO] � �4� �5= ��T ]	� � � SU= SUT ] � � � 8 = �
See Figure 6.9 for transfer function.

b) highest for logical 0: ] � �#� ��=� 5]

c) lowest for logical 1: ] � � �JS = S$]

d) highest interpreted as logical 0: ] � � �-�5= �0]
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vout

vin1.6 3.2

0.5

4.4

Figure 6.9:

e) lowest interpreted as logical 1: ] � � �*8 = �5]

f)

 � K �J] � �&(7] � �#��5= � ( � =  �-�5= ��]

g)

 � I �J]	� � (7] � � �JSU= SX( 8 = � �-�5= �5]

h) Minimum gain: enough to go ] � � � ]	� � at the output for an input transition] � � � ] � � . In other words,

]	� � (7] � �
] � � (7] � � �

SU= S ( � =  
8 = �[( �5= � �5��= S

ANS:: (b) 0.5 (c) 4.4 (d) 1.6 (e) 3.2 (f) 1.1 (g) 1.2 (h) 2.4

Problems

Problem 6.1

a) Write a truth table and a boolean equation relating the output
�

to
�

,
�

, � , and � ,
when these are input to the circuit shown in Figure 6.10.
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Z

A

A

B

B

C

VS

R

Figure 6.10:

Z

A

A

B

B

C

VS

R

Figure 6.11:
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b) Suppose the circuit in Figure 6.10 suffers a manufacturing error which results in a
short between the pair of wires depicted in Figure 6.11. Write a truth table and a
boolean equation relating the output

�
to

�
,
�

, � , and � , for the resulting circuit.

Solution:

a) See table.

� � � � �

0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0

� � � � �

0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0

b)

ANS:: (a)
� � � � � (b)

� � � � �

Problem 6.2 A specific type of MOSFET has ] � � (���] . The MOSFET is in the ON
state (a short exists between its drain and source) when � � � 
 ] � . The MOSFET is in
the OFF state (an open circuit exists between its drain and source) when � � � � ] � . (a)
Graph the ��_ � versus � � � characteristics of this MOSFET. (b) Graph the ��_ � versus �'_ �
characteristics this of the MOSFET for � � � 
 ] � and � � � � ] � .

Solution:



164 CHAPTER 6. THE MOSFET SWITCH

iDS

vDS

vGS < -1

vGS >= -1

1
RON
-------------

iDS

vGS

1
RON
-------------

(a) (b)

-1

Figure 6.12:

a) See Figure 6.12(a)

Graph of ��_ � versus � � � : ��_ � � � for � � � � (�� and ��_ � � �1_ �$<�( � 	 for � � � �
(�� .

b) See Figure 6.12(b)

Graph of ��_ � versus �'_ � in an ideal MOSFET: For � � � � ] � , ��_ � versus �'_ � is
zero for all �'_ � . For � � � � ] � , ��_ � is zero until �'_ � � � , when ��_ � increases
linearly with a slope of ��<�( � 	

Problem 6.3 Consider a family of logic gates which operates under the static discipline
with the following voltage thresholds: ] � �#�� V, ] � � � �5= 8 V, ] � � �JS V, and ] � � � 8
V. Consider the N-input NAND gate design shown in Figure 6.13. In the design ( ������5W
and ( � � for the MOSFETs is given to be ��W . ] � for the MOSFETs is �'=� V. What is the
maximum value of N for which the NAND gate will satisfy the static discipline? What is
the maximum power dissipated by the NAND gate for this value of N?

Z

A1 A2 A3 ...
R

An

VS

Figure 6.13:

Solution:

Voltage value at Z will equal ]�� during a logical 1. During a logical 0, ] � is divided
between N ( � � and ( . Therefore, we require
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] 	 � K �*] � �
] 	 � K �J]�� � ��� ,

� 
��� ,
� 
 � IKMK � �
��]

��] � ( ��� 
 ( � � �
�����0W

 � IKMK ��

b
� � I � , � 


Maximum power dissipation when all switches on.

� � � � � b +�IKMK � � � , � 

ANS:: 
 � IKMK ��

b
� � I � , � 
 , � � � � � b +�IKMK � � � , � 


Problem 6.4 Consider the N-input NOR gate shown in Figure 6.14. Assume that the on-
state resistance of each of the MOSFETs is ( � � . For what set of inputs does this gate
consume the maximum amount of power? Compute this worst-case power.

Z

A1 A2 A3

R

A4 ... An

VS

Figure 6.14:

Solution:

Maximum power is consumed when all inputs are high. The equivalent on parallel on

resistances decreases to zero for higher N. � � � � � b +�,
ANS:: � � � � � b +�,

Problem 6.5 Consider the circuit shown in Figure 6.15. We wish to design the circuit so
it operates under a static discipline with voltage thresholds ] � � , ] � � , ]	� � and ] � � . As-
sume that the on-state resistance of each of the MOSFETs is ( � � and that the MOSFET
threshold voltage is ] � . Assume that the given values satisfy the constraints ] � 
 ] � �
and ] � � � ] � . For what values of

�
and � does this gate operate under the static disci-

pline? What is the worst case power consumed by this circuit?

Solution:

We can assume that ] � 
 ] � � and ] � � � ] � .
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Z

A11

R

A12

A13

A1n

A21

A22

A23

A2n

Am1

Am2

Am3

Amn

VS

Figure 6.15:

To satisfy the static discipline,

] � � � ] � � ( � �
� ( � � � (

� � ]	� � (
�!]���( ]	� � ��( � �

Value � may be any value greater than 0 under the static discipline because each
parallel branch contributes only parallel resistances when on.

Worst case power is when all
�

MOSFET’s are ON. Equivalent pull-down resistance

approaches zero as � increases. � � � � � b +�,
ANS::

� � b �
��,�

b
� � b �

� � , � 
 , � :any value, � � � � � b +�, as � becomes large

Problem 6.6 Consider a family of logic gates which operates under the static discipline
with the following voltage thresholds: ] � � � � =  5] , ] � � � ��] , ]	� � � SU=  5] , and] � � � SU= �0] .

a) Graph an input-output voltage transfer function of an inverter satisfying the voltage
thresholds given above.

b) Using the switch-resistor MOSFET model, design an inverter satisfying the static
discipline for the above voltage thresholds using an n-channel MOSFET and a re-
sistor. The MOSFET has (��4� ����6 and ]�� � �5=�� ] . Recall, ( ��� � (��1� � <��-� .
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Assume ] � �  ] and (�� for a resistor is  ���� 6 . Further assume that the area
of the inverter is given by the sum of the areas of the MOSFET and the resistor.
Assume that the area of a device is � > � . The inverter should take as little area
as possible with minimum size for � or � being � =  ��� . Graph the input-output
transfer function of the inverter. What is the total area of the inverter? What is its
maximum static power dissipation?

Solution:

a) See Figure 6.16.

vout

vin1 4

0.5

4.5

Figure 6.16:

b) The relevant issue in the design is to ensure that the output low voltage produced
by the inverter is lower than or equal to ] � � .
Therefore, to find the respective � � <��-� ratios:
] � �#� ] � > ,

� 
,
� 
 � , ���

� =  /�  F> ,
�

� ���	�
 ��� �,
�

� �����
 ��� � � ,� �
� ���

 �	� �

� � � � �	�� �	� � �
� �	�
� �	�

To minimize area, � � 	
� � =� ��� and � � � � � =  ���

Use the last equation to minimize the Area equation.
� �'�9"4� � � 	

� �
	
� � � � � � �

� � � � � �
	
� �� % ���
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ANS:: (b) � ���\"$-H"0�'�9"4� �� % ��� % and � �������.� ] %� < � ( � � � ( � �3�

Problem 6.7 Consider a family of logic gates which operates under the static discipline
with the following voltage thresholds: ] � � � ��=� 5] , ] � � � � = �0] , ] � � �*SU=  5] and ]���� �S$] . Using the switch-resistor MOSFET model, design a 2-input NAND gate satisfying
the static discipline for the above voltage thresholds using three n-channel MOSFETs as
illustrated in Figure 6.17 (the MOSFET with its gate connected to a voltage ] � and drain
connected to the power supply ] � serves as the pull-up). ] � is chosen such that ] � �
] �	� ] � . The MOSFETs have ( �4� � ��6 and ]�� � �5= � ] . Recall, ( ��� � (��1� � <��-� .
Assume ]��4�  ] . Further assume that the area of the NAND gate is given by the sum of
the areas of the three MOSFETs. Assume that the area of a device is � > � . The NAND
gate should take as little area as possible with minimum size for � or � being ��=� ��� .
What is the total area of the NAND gate?

Z

A

B

VS

L1

W 1
-------

L2

W 2
-------

L3

W 3
-------

VA

Figure 6.17:

Solution:

Using the same steps as in the previous problem:

The relevant issue in the design is to ensure that the output low voltage produced by
the inverter is lower than or equal to ] � � .

Therefore, to find the respective � � < � � ratios:
]	� � �J]�� > ,

� 
,
� 
 � , � �

� =  �J ?> ,
�

� �����
 �	� �,
�

� �����
 ��� � � ,  �
� �	�

 ��� �

� � � � +� +
� � �

� � � �
�

�� �
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� � � � + � � �
� ��� +� + � �
� � �

�� �

The ratios remain the same:
� I � � =  , � I � 80< 	 �
� % � � � � � =  , � % � �

�
� ��< ��� 	 �

ANS::
� �1�9"4� II % � % � �% � %

Problem 6.8 Remember that a NAND gate can be implemented as a circuit with two
n-channel MOSFETs and a pull-up resistor ( � . Let us call it the NAND circuit shown
in Figure 6.18. These NAND circuits are used by Penny-Wise Computer Corporation in
their computer boards. In one ill-fated shipment of computer boards, the outputs of a pair
of NAND circuits get shorted accidentally resulting in the effective Circuit � shown in
Figure 6.18.

NAND
circuit

NAND
circuit

        Circuit X

A
B

C
D

E

NAND circuit

RL

Figure 6.18:

a) What logic function does Circuit X implement? Construct its truth table.

b) If we connect
�

identical NAND circuits together in parallel forming Circuit
�

as
shown in Figure 6.19, what is the general form of the logic function it implements?

c) If for each MOSFET, ( �
� �  ���� 6 , ( � � ����� ��6 , and ] � � �'= �0] , how many

NAND circuits can we connect in parallel and still satisfy the static discipline for
the voltage thresholds given by: ] �
� � ]��	� ��=� V and ]���� � ]���� �*SU=  V.

d) We now connect 10 identical NAND circuits together and have the resulting Circuit
�

satisfy the static discipline for the voltage thresholds in Part c) with ( � �  ���� 6 .
Give specifications on the dimensions of the MOSFETs such that total MOSFET
area is minimized. As before, assume that the area of a device is � > � . Assume
that (�� � ����6 and no resistor dimension or MOSFET gate dimension should be
smaller than � =� ��� . For what inputs does Circuit

�
dissipate maximum static

power, and what is that power?

e) Now, suppose choose a static discipline with voltage thresholds given by: ] �	� �� =  V, ]��
� �*�5= � V, ] ��� � SU= S V and ]���� � 8 = � V. As before, each MOSFET has
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NAND
circuit

NAND
circuit

NAND
circuit

 Circuit Y

I1
I2

I3
I4

I2n-1
I2n

Out

Figure 6.19:

(
�
�#�  ���� 6 , ( � � ����� ��6 , and ] � � �5=��0] . How many NAND circuits can we

connect in parallel and still satisfy this static discipline?

f) Repeat part (d) assuming the voltage thresholds given in part (e).

Solution:

a) Shorting the two NAND circuits is like putting two (�� ’s in parallel above the output
line and two pairs of MOSFETS in parallel where each pair is in series.

Circuit X should implement the following logic function

� ! � � � ! �

b) The logic function has the following form

� I ! � % � � � ! � � �*= = = � � % 	 � I ! � % 	

c) The only relevant threshold that we have to consider is ] �	� . Thus, taking just one
NAND gate on, the following must be satisfied

] � � 
 ( � �( � � ( ���
] �

We now have two MOSFETs in series giving us an ( ��� of 1k 6 . Our worst case with�
circuits would have only 1 of

�
NAND gates on but we can’t change the fact that
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� � � � � � � T � T � T � �
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

there are
� (�� ’s in parallel giving an equivalent of (�� /

�
resulting in the following

equation.

]	� � 
 ( � �(��U< � � ( � �
] �

Plugging in the values, we see this equation is satisfied for
� � 11.11 so

�
= 11

d) Again looking at one NAND circuit, it must satisfy the following equation where( ��� = 2 ( � 	 = 2k 6 !
�

� since there are two MOSFETs in series

] � � 
 ( � �( � � ( ���
] �

Substituting the values, we get that
�
� 
 360

� � � =� ��� " � : � �� ��� ���

( � 	 �
�������
8���� �

�5 
�

To maximize the static power, we want the equivalent ( � 	 and (�� to be as small as
possible since
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� �.�[��� � � ��� � %,"�� �&� � �
] %�

( � 	 � (��

If we turn all inputs on, the equivalent ( � 	 has 10 pairs of MOSFETs in parallel
which gives 0.56 6 and the 10 (�� resistors in parallel gives 50 6 .

� ������� � �&����� %,"�� �&� � � � = S � �

ANS:: (a)
� ! � � � ! � (b) � I ! � % � � � ! � � �*= = = � � % 	 � I ! � % 	 (c) 11 (d) � � � =  ���

and � �� ��� ��� . � �������/� � = S � �

Problem 6.9 Consider a family of logic gates which operates under the static discipline
with the following voltage thresholds: ]��	� � � =  V, ]��
� � �5= � V, ]����
� SU= S V and]���� � 8 = � V.

a) Graph an input-output voltage transfer function of an inverter satisfying the voltage
thresholds given above.

b) Using the switch-resistor MOSFET model, design an inverter satisfying the static
discipline for the above voltage thresholds using an n-channel MOSFET with ( � �����6 and ] � � �5=�� ] . Recall, ( �

�4� (���� � <��-� . Assume ]�� �  ] and (�� for a
resistor is  ���� 6 . Further assume that the area of the inverter is given by the sum
of the areas of the MOSFET and the resistor. Assume that the area of a device is
� > � . The inverter should take as little area as possible with minimum size for �
or � being � =  ��� . Graph the input-output transfer function of the inverter. What
is the total area of the inverter? What is its static power dissipation?

Solution:

a) See Figure 6.20

b) Basically, we need to sift through the given information to see what is important.
When the MOSFET is off, there is no current flowing, thus the power dissipated
is zero, and the output is just ] � . When the MOSFET turns on, the output must
become less than or equal to ] � � . A voltage divider relationship results in the
following equations

] � � 
 ( � 	( � � ( � 	
] �
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VOL

VOH

VIL VIH

VO

VI5
VT

5

Figure 6.20:

Substituting,

��=� 
 ������� ��
������� �� �  ���� � �� �

 

After lots of algebra,
� ,
� ,
! �
�


 � �

If we make each ratio a bit above 	 � � or about 4.25 and use the minimum dimen-
sion of � =  ��� , we get the following values for our design

� � � � � � � � � =  ��� " � : � �5��= ���5 ���
( ��� � � �2��� � �5��= ���5 ��� " �;: � � � =� ���

� ���\"$- � �'�9" �5��= ���5 ��� %
( � 	 � �180 �6
(�� �5��= ���5 'W 6

� " � ���Z+,� � �\"�� � � � �.�[��� � � ��� � %,"�� � � � �
] %�

( � 	 � (��
�-��� = �'� �
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Chapter 7

The MOS Amplifier

Exercises

Exercise 7.1 Determine the voltage � � across the voltage-dependent current source
shown in the circuit in Figure 7.1 when

� � Y � � ��� �� %

R v

vO

+

-

VS -
+

+

-

i = f(v)

Figure 7.1:

Solution:
]�� � � � � �
�#� ( � � (XY � � ��� , �) +
� � � ( �

175
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�#� � ( � � ��
� � � ] � ( � ( � � ��

ANS:: � � � ] � ($� ( � � ��

Exercise 7.2 Consider the circuit containing the dependent current source shown in Fig-
ure 7.2.

RI
vB

vI -
+

+

-

iB

RL

vO

+

-

iD

Figure 7.2:

a) Determine � � in terms of � � if ��_ � � I �� . What are the units of � I ?
b) Determine � � in terms of � � if ��_ � � % � � . What are the units of � % ?

c) Determine � � in terms of � � if ��_ � � � �1%� . What are the units of � � ?

d) Determine � � in terms of � � if ��_ � � � � % � . What are the units of � � ?

Solution:

a) � � � ( (�� � I � �
� I is in units of

� ��� �!�M� R) � � � R or Siemens.

b) � � � ( (�� � % � �
� � � � ,�� � + )��, �
� % has no units.

c) � � � ( (�� �
�
� %�

� � � ( (�� �
�
� %�

�
� has units of

� � � �!��� R) � � � R +
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d) � � � ( (�� � � � % � � ( (�� � ��� )��, � � %
� � � � ,�� � 
 ) +�, +�
� � has units of I� � � �!��� R

ANS:: (a) � � � ( (�� � I � � , units:
� � � ��M� R) � � � R or I

� P � R (b) � � � � , � � + ) �, � , units: none (c)
� � � ( (�� �

�
� %� , units:

� ��� �!�M� R) � � � R + (d) � � � �
,�� � 
 )�+�, +� , units: I� � � �!��� R

Exercise 7.3 The resistance ( in the circuit shown in Figure 7.3 depends on the voltage
across resistor ( � . Determine �� if

( � ���

RB vB

VS -
+

+

-

RA

R=f(vB)

Figure 7.3:

Solution:
�� � ,

� b
�

,
�
� ,

�
� �

� �

���( � � ��"(�� � � � ( � ] �
�� � , � b

� � �,
�
� ,

�

ANS:: �� �
,
� b
� � �,

�
� ,

�

Exercise 7.4 A MOSFET is characterized by the following equation

��_ �4� � � ��� � ��(7] � � %

in its saturation region. A MOSFET operates in the saturation region for

�1_ � 
 � � ��(7] � and � � � 
 ] �
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Express the �'_ � 
 � � � ( ] � constraint in terms of ��_ � and �'_ � .
Solution:
% � c �
�
� ��� � ��( ] � � %

� % � c �
�
� � � ��( ] �

�'_ � 
 � % � c �
�

ANS:: �'_ � 

� % � c �

�

Exercise 7.5 The MOSFET in Figure 7.4 is characterized by the equation

��_ �4� � � ��� � ��(7] � � %

in its saturation region according to the SCS model. The MOSFET operates in the satu-
ration region for

�1_ � 
 � � ��(7] � and � � � 
 ] �

The MOSFET operates in its triode region for

�'_ � � � � � (7] � and � � � 
 ] �

Suppose the MOSFET is characterized by the SR model in its triode region. In other
words,

��_ � � �1_ �( � �
in the triode region. Assume that ( � � is a constant with respect to �M_ � and �'_ � , but its
value is some function of � � � . Further suppose that �M_ � � � when � � � � ] � .

D

vR

5  V +
-

5 sin (ωt )+
-

S

G

+

-
1  Ω

vD

+

-

Figure 7.4:
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a) For � � � �  5] , what value of ( � � makes the MOSFET ��_ � versus �'_ � character-
istic continuous between its triode and saturation regions of operation.

b) Plot � , versus �'_ for the circuit shown in Figure 7.4. This circuit is useful in
plotting the MOSFET characteristics. Assume that � � ��� � <5] % and ] � � ��] .
Use the value of ( � � calculated in (a). Use a volt scale for �0_ and a millivolt scale
for � , .

Solution:

a) Boundary between triode and saturation regions is when �$_ � � � � � ( ] � �  ( ] �
At this point, ��_ �4� �

% �� �(7] � �2%
( � � � ) c �� c � �

� � b
�

�

+
� � � b

� � +( � � � %
� � � � b

� �
b) ( � � �J �����6

MOSFET is in triode region for �5_ � S�� �.- ��� . In triode region, � , � ) c� KMK . In
saturation region, � , � �'� ] .

vD

vR

5V-5V

10mV

-10mV

Figure 7.5:

See Figure 7.5.
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ANS:: (a) ( � � � %
� � � � b

� �
Exercise 7.6 Consider the MOSFET amplifier shown in Figure 7.6. Assume that the
amplifier is operated under the saturation discipline. In its saturation region, the MOSFET
is characterized by the equation

��_ �4� � � ��� � ��(7] � � %

where ��_ � is the drain-to-source current when a voltage � � � is applied across its gate-to-
source terminals.

vO

RL

VS

+
-

vI

D

S

iDS
G

Figure 7.6:

a) Draw the equivalent circuit for the amplifier based on the SCS model of the MOS-
FET.

b) Write an expression relating � � to ��_ � .

c) Write an expression relating �M_ � to � � .
d) Write an expression relating � � to � � .
e) Suppose that an input voltage ] � results in an output voltage ] � . By what factor

must ] � be increased (or decreased) so that the output voltage is doubled.

f) Suppose, again, that an input voltage ] � results in an output voltage ] � . Suppose,
further, that we desire an output voltage that is �'] � . Assuming that both the input
voltage and the MOSFET do not change, what are all the possible ways of accom-
plishing the desired doubling of the output voltage.

g) The power consumed by the MOSFET amplifier in Figure 7.6 is given by ] ����_ � ,
assuming that no current is draw out of the � � terminal. Which of the alternatives
for doubling ]	� from parts (e) and (f) will result in the lowest power consumption.
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RL

vI

VS

+

-

vO

iDS

Figure 7.7:

Solution:

a) See Figure 7.7.

b) � � � ]���( (�� ��_ �

c) ��_ � � �

% ��� � (7] � � % for � � 
 ] � ; ��_ � � � otherwise

d) � � � ]���( , � �% � � � (7] � � % for � � 
 ] � ; � � � ] � otherwise

e) ] � � ]��X( , � �% ��] � (7] � � %
�5] � � ] � ( ,�� �% � 
 ] � ( ] � �2%
] � ( �']	� � ,�� �% � 
 ] � ( ] � � %
%,�� � ��] � ( �5] �"� � � 
 ] � ( ] � � %


 ] � (7] � � � %,�� � ��] ��( �']	�"�


 �
�
+� � �

�
b
� � % b � �

�
b
�

b � ; �5] � �*] �
Scale ] � by factor 


f) ] � � ]��X( � ,��
% ��] � (7] � � %

This can be accomplished by changing ] � , (�� , or by changing both.

By changing (�� :
�5] � � ] � ( � ,�� � �

% ��] � ( ] � � %

 , � % b

� �
�
b �� , � � b � � b
� � +
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Scale (�� by factor 
 , . This will only work if �5] � �*] �
By changing ]�� :
�5] � � 
 �e] � ( � ,��

% ��] � (7] � � %


 � � % b �
� � � �
+

�
b � � b

� � +
b
�

Scale ] � by factor 
 �
By changing ]�� and (�� :
Scale ] � by factor � and scale (�� by factor

�
where

� � % b �
� � � � 	
+

�
b � � b

� � +
b
� . This will only work if �'] � � � ] �

g) The alternative from part e results in the lowest power consumption.

ANS:: (b) � � � ] �X( (�� ��_ � (c) ��_ �4� �

% � � � ( ] � �2% for � � 
 ] � ; ��_ � � � otherwise

(d) � � � ] �D( ,�� �% ��� �1(�] �3� % for � � 
 ] � ; � � � ]�� otherwise (e) 
 �
� +� � �

�
b
� � % b � �

�
b
�

b �(g) e

Exercise 7.7 Consider, again, the MOSFET amplifier shown in Figure 7.6. Assume that
the amplifier is operated under the saturation discipline. The MOSFET in doctored so
its threshold voltage is 0. In other words, the saturation region of the MOSFET is now
characterized by the equation

��_ � � � � � %� �

where ��_ � is the drain-to-source current when a voltage � � � is applied across its gate-
to-source terminals. The following questions relate to the large-signal analysis of the
amplifier.

a) Derive the relationship between the output voltage � � and the input voltage � � .
b) Derive the range of valid input voltages. Under the saturation discipline, valid input

voltages are those which result in saturation region operation of the amplifier. De-
termine the corresponding range of output voltages ( � � ) and output currents ( �M_ � ).

c) Suppose we wish to amplify an AC input signal � � . Assume that � � has a zero
DC offset. Draw a circuit showing how a separate DC input voltage ] � can be
used to bias the amplifier in a region where saturation region operation is achieved
for both positive and negative excursions of � � . Assuming the � � has symmetric
positive and negative swings, how would you choose the input operating point for
the amplifier which allows a maximum peak-to-peak voltage range for � � . What is
the corresponding output operating point ( � � and ��_ � ).
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Solution:

a) � � � ]���( ��_ �1(��
� � � ]���( � ,�� )�+�%

b) � � � � � � I � % � ,�� b
� � I

� , �
� I � % � ,�� b

� � I
� ,�� � � � �*] �

� � ��_ � � I � � ,�� b
� � � I � % � ,�� b

�

� , +�

RL

vi

VS

vO

+
-

+
-

VI

Figure 7.8:

c) See Figure 7.8.

An operating point that is in the middle of the range of valid inputs allows a maxi-
mum peak-to-peak voltage range for � � .
] � � � I � % � , � b

� � I% � ,��
] � � � � ,�� b

� � I � � I � % � ,�� b
��

� ,��

� _ � � I � � , � b
� � � I � % � , � b

��
� , +�

ANS:: (a) � � � ]��#( � ,�� )�+�% (b) � � ��_ � � I � � ,�� b
� � � I � % � ,�� b

�

� , +� (c) ] �5�
� I � % � ,�� b

� � I% � ,�� , ]	� � � � ,�� b
� � I � � I � % � ,�� b

��
� ,�� , � _ � � I � � ,�� b

� � � I � % � ,�� b
��

� , +�
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Exercise 7.8 The three terminal device shown in Figure 7.9a is called a bipolar junction
transistor (BJT). Figure 7.9b shows a piecewise linear model for the device, in which the
parameter � is a constant. When � � � �

and �1` � � ��� � ( ��= S
the emitter diode behaves like a short circuit, the collector diode like an open circuit, and
the collector current is given by ��` ����� �
Under the above constraints, the BJT is said to operate in its active region. For the rest of
this exercise, assume that � � ����� .

vCE

+

-

C

B
βiB

E

B

C

E

iC
iB

iEvBE

+

-

(a) (b)

vCE

+

-

iC

iB

iE
vBE

+

-

0.6 V+
-

0.4 V
+ -

Figure 7.9: (a) A bipolar junction transistor. B stands for base, E for emitter and C for
collector. (b) A piecewise linear model for the BJT

a) Determine the collector current �M` for a base current � � � ��� � and �1` � � �5]
using the model in Figure 7.9b.

b) Sketch a graph of ��` versus �'` � for � � � � � � . using the model in Figure 7.9b. In
drawing this graph, assume that the current source turns off for

�'` � � �� � ( � = S

Solution:

a) Since � � � � and �'` � � � = �5] , the BJT operates in its active region.

��` ����� � � �����
� �
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b) The graph of ��` versus �'` � will look like this:

For �'` � from 0 to 0.2V, �M` � � .
Then, for �'` � greater than 0.2V, �M` �-�����
� � .

ANS:: (a) ��` ������
� �

Exercise 7.9 Consider the bipolar junction transistor (BJT) amplifier shown in Fig-
ure 7.10. Assume that the BJT is characterized by the large signal model from Exer-
cise 7.8, and that the BJT operates in its active region. Assume further that ] � �  5] ,(�� �� �0W , ( � �  ����0W , and � � � ��� .

vI

RL

VS

vO

B

C

E+
-

RI

iB

iC

β

iE

Figure 7.10:

a) Draw the equivalent circuit for the BJT amplifier based on the large signal BJT
model from Exercise 7.8.

b) Write an expression relating � � to ��` .

c) Write an expression relating �M` to � � .

d) Write an expression relating � � to � � .

e) Write an expression relating � � to � � .

f) What is the value of � � for an input voltage � � � ��=�� V? What are the corresponding
values of � � , ��` and � � .

Solution:

a)
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b)

� � � ] � ( ��`3(��

c)

��` ����� � ��� � � ( � = �( �

d)

� � � � �'� � � ���

e)

� � � ] �X( � � ( � = �( � � (��

Or, substituting known values

� � � � = � ( ��� �

f) � � �*SU= �5] , � � � � = � � � , ��` �5���
� � , and � � � ��� = � � � .

ANS:: (b) � � � ] �2( ��`"( � (c) ��` � � ) � � K � @, � (d) � � �
� �'� � � ��� (e) � � �
� = � ( ��� �
(f) � � � SU= �5] , � � � � = � � � , ��` �5���
� � , and � � �5��� = � � � .

Exercise 7.10 In this exercise you will perform a large signal analysis of the BJT ampli-
fier shown in Figure 7.10. Assume that the BJT is characterized by the large signal model
from Exercise 7.8. Assume further that ] � �  5] , (�� � ���0W , ( � �  ����0W , and � ������ .

a) Write an expression relating � � to � � .

b) What is the lowest value of the input voltage � � for which the BJT operates in its
active region? What are the corresponding values of � � , ��` , and � � ?

c) What is the highest value of the input voltage � � for which the BJT operates in its
active region? What are the corresponding values of � � , ��` , and � � ?

d) Sketch a graph of � � versus � � for the parameter values given above.

Solution:



187

a)

� � � ] �X( � � ( � = �( � � (��

Or, substituting known values

� � � � = � ( ��� �

b)

� � � � = �0]

The BJT goes into cutoff if � � goes any lower.

The corresponding values of � � , ��` , and � � are as follows. � � � � , ��`$� � , and� � �  5] .

c) As � � increases, the BJT enters saturation when the collector diode gets forward
biased. This happens when the base voltage is greater than the collector voltage by
0.4V. In other words, when �5` � � �� � ( � = S , or when �'` � � � � falls to 0.2V. The
corresponding value of � � is obtained by solving

� � � � = �/� � = ��( ��� �

Solving, we get � � ��85] . In other words, when � � rises to 3V, the output falls to
0.2V, and the BJT goes into saturation.

The corresponding values of � � , ��` , and � � are as follows. � � � �.S$<5 � � , ��`$�S ���
� � , and � � � � = �5] .

d) A graph of � � versus � � is made up of three straightline segments.

In the first segment, � � is at 5V for � � ranging from 0V to 0.6V.

In the second segment, � � decreases linearly from 5V to 0.2V as � � increases from
0.6V to 3V. In other words, the second segment follows the equation

� � � � = �/� � = ��( ��� �

for � � � ��= �0] to � � �*80] .

In the third segment, � � stays at 0.2V for � � greater than 3V.

ANS:: (a) � � � ��= � ( ��� � (b) � � � � = �0] , � � � � , ��` � � , and � � �J 5] . (c) � � �*80] ,� � � �1S$<' � � , ��` �JS ���
� � , and � � � � = �5] .
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Problems

Problem 7.1 Consider the MOSFET voltage divider circuit shown in Figure 7.11. As-
sume that both MOSFETs operate in the saturation region. Determine the output voltage] � as a function of the supply voltage ] � , the gate voltages ] � and ]�� , and the MOSFET
geometries � I T � I and � % T � % . Assume that the MOSFET threshold voltage is ] � , and
remember, � � � 	

�
� .

VO

VS

+-

+-

VA

VB

L1
W1

L2
W2

Figure 7.11:

Solution:

Since the current through both MOSFETs must be the same, ] � is forced to a value
such that this is the case.

� 	 � %� � %
��] � ( ] � � % � � 	 � I

� � I
��] � (7] � ( ] � � %

] � �J] � (7] � (�� � % � I
� % � I

��] � ( ] � � %

ANS:: ]	� � ] � ( ] � ( � � +
�

��

+ � �
��] � (7] � � %

Problem 7.2 An inverting MOSFET amplifier is shown in Figure 7.12, together with an����� - ����� characteristic for the MOSFET. This characteristic is simpler than the SCS model
presented in this chapter. The characteristic is simply the standard MOSFET characteristic
with the triode region compressed onto the Y axis.
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Alternatively, this characteristic can be viewed as describing ideal switch behavior that
is extended to exhibit a saturating drain-source current. In other words, for ����� � ] � ,
the MOSFET behaves like an open switch with � ��� � � . For ����� 
 ]�� , the MOSFET
behaves like a closed switch with � ��� �5� provided that ����� � �

% � �����B(7] ��� % . However,
once ����� reaches

�

% � �����4( ] ��� % , which is the maximum current the MOSFET can carry
for a given ����� , MOSFET operation enters a saturation region in which the MOSFET
behaves as a current source of value

�

% � �����[( ]����2% . Saturated operation is as described
by the saturation model given in Figure 7.12.

+
-

vIN

R

VS

D

S

G
vOUT

+

-

G

D

S

+

-
vGS

iDS
K
2
---- vGS VT–( )2=

n-channel MOSFET model

vDS

 iDS

Saturation region

n-channel MOSFET
for the saturation regioncharacteristic

vGS < VT

Closed switch
behavior on the
iDS axis

Open switch behavior
on thevDS axis

vDS

+

-

vGS V T≥

Figure 7.12:

a) Determine � ��� � as a function of � � � for � � � � � .

b) What is the lowest value of � � � for which � ��� � � � ?
c) Assume that ] � � �9 V, ( � �� k 6 , ] � � � V and � � � mA/V % . Graph � ��� �

versus � � � for 0 V � � � � �*8 V.

d) On the input-output graph, identify the regions over which the MOSFET behaves
as an open circuit, behaves as a short circuit, and exhibits saturated behavior.

Solution:
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a) When there is current going through ( , the current is limited by two quantities:
either b �, or

�

% � �����B(7] ��� % , whichever is lower. If the limit is ] �9<�( , then the MOS-
FET is in the closed-switch region. If the limit is

�

% � �����B( ]���� % , then the MOSFET
is in the saturation region.

open-switch region For ����� �J] � , the MOSFET is open, therefore � ��� � � ] � .
saturation region When ����� begins to exceed ] � , the quantity ������(*]�� is still

small, so the current is limited by
�

% �������B(7]���� % . This current determines the
output voltage, which is given by � ��� � � ] � ( � ,

% � � � � (7] ��� % .
closed-switch region � ��� increases until it reaches b �, at some gate voltage ]�� ��� .

Now ����� drops to zeros, and both � ��� and ����� are no longer affected by the
increase in ����� .

In summary,

� ��� � �
��� ��
] � � � � � � �*] �
] � ( � ,

% � � � � (7]����2% � � � � � � �*]�� ���
� ]�� ��� � � � � �*]�� �	��
��

b) The lowest value of � � � for which � ��� � � � occurs when � � � is at the transition
between the saturation region and the closed-switch region. At this point, the satu-
ration region current limit and the closed-switch region current limit are the same,

� ��� � ] �
( �

�

� ��]�� ���&(7]���� %

Solving for ]�� ��� we get

]�� ��� � � �5] �
� ( � ] �

c) Combining the results of part (a) and (b), we obtain the following equations.

� ��� � �
��� ��
�� � � � � � �
�
�� �( �� ��� � �Z( ��� % � � � � � � �
� ��� � � � � 8

The graph is shown in the figure.

d) Region I is the open switch region, where � ��� � � ] ���*�9 . Region II is the satu-
ration region, where � ��� � drops according to ] � ( � ,

% � � � �?( ]���� % . The MOSFET
enters the closed-switch region when � � � � ]�� ���#�5� . In this region, � ��� � � � .
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vIN

vOUT
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ANS:: (b) ]�� ���4� � % b �� , � ] �

Problem 7.3 A two-stage amplifier is shown in Figure 7.13. It is constructed by cascad-
ing two one-stage amplifiers of the type seen in Problem 7.2. In analyzing this amplifier,
use the MOSFET model described in Problem 7.2 and illustrated in Figure 7.12.

+
-

vIN

R

VS

R

VS

vOUT

-

+

vMID

+

-

Figure 7.13:

a) The fact that a second amplifier stage is connected to the first amplifier stage does
not change the operation of the first stage. That is, the relation between ��� � � and� � � here is the same as the relation between � ��� � and � � � in Problem 7.2. Why?
What terminal characteristic of the second MOSFET must change in order for this
not to be true?

b) Derive the relation between ��� � � and � � � for � � � � � , and the relation between� ��� � and ��� � � for � � ��� � � �*] � . Hint: see Problem 7.2.
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c) Derive the relation between � ��� � and � � � for ���$� � � .

d) Determine the range of input voltages for which both MOSFETs operate under the
saturation discipline. What are the corresponding ranges for � � � � and � ��� � ?

e) Using the numerical parameters given in Problem 7.2, graph � ��� � versus � � � for� � � for 0 V �*� � � � 8 V. Compare this graph to the input-output graph found in
Problem 7.2, and explain the differences.

Solution:

a) The second amplifier does not change the operation of the first because its input
draws no current. If the second amplifier drew current from the first, then the out-
put of the first amplifier would be affected by the input resistance of the second
amplifier.

b) There are three modes of operation for each amplifier. The cutoff and the satura-
tion modes will be considered, and the triode mode will be ignored for now. In
saturation, the equations derived in Problem 8.2 remain valid, as does the threshold
voltage. We must also figure out the threshold between the saturation and triode
regimes. The MOSFET is in saturation when ] ��� 
 ] ���[( ]�� . This implies that��� � � 
 � � �Z( ]�� , or that ] �B( � ,

% � � � �Z( ] ��� % 
 � � �Z(7]�� . This implies that

� � � �*]�� � ( ��� 	 ��� � � (X] �
� ( =

Let us define ]�� ��� to be this threshold.

A similar calculation can be made for � ��� � vs. ��� � � .

For the first amplifier,

��� � � � ��� ��
] � � � � � � �*]��
] �B( � ,

% ��� � �Z( ] ��� % ]�� �$� � � �*]�� ���
Y � � � �"� ]�� ��� � � � � �*]�� ����
��

For the second amplifier,

� ��� � �
��� ��
] � ��� ��� � � �*] �
] � ( � ,

% ����� � ��( ]���� % ] � � ��� � � �*] � � �	�
Y ����� � � � ] � � �	� � ��� � � �*] � � � ��
��
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c) This part is trickier.

First of all, if � � � � ] � then ��� � � � ] � , so the second FET will be either in
saturation or triode, depending on the value of R. Let us find the condition for
saturation.

] � �*] � ( �
� ( � � �

� % ( % �
�5] �
� ( =

Simplifying this, one gets:

� ( � �5]��
�!] �B( ]���� % =

Let us assume that R is large enough that if � � � � ]�� , the second FET will be in
triode. Then, while the first FET is in saturation, we can find the minimum value
for which the second FET also enters saturation.

��� � � 
 ]�� ( �
� ( � � �

� % ( % �
�'] �
� ( =

Substituting in for ��� � � and simplifying, we get that

� � � �*] � �
���� �5] �
� ( ( �5]��

� ( � �
� % ( % ( � S

� � ( � �
�0] �
� � ( � =

Now, we can prove that the second FET entered saturation before the first FET left
it. We prove that the value just derived is less than the boundary condition for the
first FET to leave saturation.

This expression:

] � �
���� �'] �
� ( ( �5]��

� ( � �
� % ( % ( � S

� � ( � �
�5] �
� � ( � =

Must be less than this expression:

]�� ( �
� ( � � �

� % ( % �
�5] �
� ( =

This simplifies to



194 CHAPTER 7. THE MOS AMPLIFIER

( �5] �
� ( �$� =

This is always true for NFETs, which is what we are using, so we have proven that
there will be a range for which both FETs are in saturation. Next, either the first
FET will enter triode, or the second will enter cutoff. Since we are not dealing with
the triode region, it is easier to assume that the second will enter cutoff while the
first is still in saturation. Therefore, we want to have both of the following equations
satisfied:

� � � �*]�� ( �
� ( � � �

� % ( % �
�'] �
� (

] � ( � (� � � � �Z( ] ��� % �*]�� =

We find the threshold condition for these two inequalities by setting the lower and
upper bounds of � � � the same. Simplifying, we get that

� ( 

� �!] � ( ]����

] %� =

We now have two conditions on � ( that must both be met. For now, assume that]��
� ��� and ] � �  �� . Therefore, we must make � ( 
 � % . We will choose
� � �F> ��� � � and (5� � ��6 .

We must now calculate the final branch of our voltage transfer graph, which is when
both inverters are in saturation. Substituting previously derived equations, we get
that

� ��� � � Y � � � � ��� ] � ( � (� �!] � ( � (� ��� � �Z( ] ��� % (7]���� %

In summary, if

] � � ]�� �
���� �5] �
� ( ( �5] �

� ( � �
� % ( % ( � S

� � ( � �
�0] �
� � ( � T
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� ��� � �

���������� ���������

� � � � �J] �
� � � � �3� ]�� � � � � �*] �
Y � � � � � ] � � � � � � ]�� � � % b �� , ( % b

�
� ,

] � ]�� � � % b �� , ( % b
�

� , � � � � �*] � � � I
� + , + �

% b �� , ( I
� ,

] � ]�� � � I
� + , + �

% b �� , ( I
� , � � � �

� is a constant, and � is an undetermined function, since both would require the use
of triode equations.

d) This is the third region in the previously calculated transfer function.

� ��� � � Y � � � �3� �J] �B( � (� ��] � ( � (� � � � � (7]���� % (7]���� % =

This holds when
���� �5] �
� ( ( �5] �

� ( � �
� % ( % ( � S

� � ( � �
�0] �
� � ( � � � � � � � � � � �5] �

� ( ( �5] �
� ( =

e) Using the formulas derived in part (c), we find

� ��� � �

����� ����
� � � � � � � �
� � � � ��� � � � � � � ��= S08
�� [( I �% � �� �( I �% � � � �Z( ��� % ( ��� % =��= S08 � � � � � ��=  ���� ��=  �� � � � �

This is shown in Figure 7.14.

Note that the transition region of this two-stage amplifier is much narrower than
that of the single-stage amplifier earlier. This is because when the second amplifier
is saturated, the first amplifier is also saturated. Since � � � � is the output of the first
stage, its range maps into a much smaller range of � � � values.

ANS:: (d)
�
% b �� , ( % b

�
� , � %

� + , + (
� �

�

 , 
 � �

b ��
� , � � � � � � � � � � % b �� , ( % b

�
� ,

Problem 7.4 Consider again the two-stage amplifier shown in Figure 7.13. Suppose that
the MOSFETs are characterized by the following equation in their saturation region:

� ��� � � � � %���
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vIN

vOUT

0 1 2 3 4 5
0

1

2

3

4

5

Figure 7.14:

In other words, the threshold voltage ] � � � . Furthermore, the MOSFETs operate in
their saturation region when

����� 
 ����� and ����� 
 �
Show that there is only one input voltage for which both stages simultaneously operate
under the saturation discipline. What is that input voltage?

Solution:

��� � � � ] � ( � (� � %� �
� ��� � �J] � ( � (� � %� � �

For the saturation discipline to hold for both, the following inequalities must all be met:��� � � 
 � � � , � ��� � 
 ��� � � , � � � 
 � , ��� � � 
 � . Substituting the equations from above,

] � ( � (� � %� � � 
 ] � ( � (� � %� �
� %� � 
 � %� � �
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Therefore since ��� � � 
 � , we find that � � � 
 ��� � � and ��� � � 
 � � � , so ��� � � must equal� � � for both MOSFETs to both adhere to the saturation discipline. Solving the equation� � � � ] � ( � ,
% � %� � , we find that this occurs when

� � � � ( ��� 	 ��� � � (X] �
� (

ANS:: � � � � � I �
� I � % � , b �� ,

Problem 7.5 Consider the “source-follower” or “buffer” circuit shown in Figure 7.15.
Use the SCS MOSFET model (with parameters ] � and � ) to perform a large-signal
analysis of this circuit according to the following steps.

+
- R vOUT

VS

vIN
+

-

iD

Equivalent
SCS model

+
- R vOUT

VS

vIN
+

-

G
D

S
(saturation)

Figure 7.15:

a) Assuming that the MOSFET operates in its saturation region, show that � ��� � is
related to � � � according to

� ��� � �
�� � � �5<�( � � � S � � � � (7]���� ( � �5<�( �

�
�� % =

b) Determine the range of � � � over which the assumption of saturated MOSFET oper-
ation holds. What is the corresponding range for � ��� � ?

Solution:

a) By Ohm’s law,
� ��� � � ��� (
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+
- R vOUT

VS

vIN
+

-

iD
Equivalent MOSFET
model (saturation)

Figure 7.16:

Substitute in the formula for the current source:

� ��� � � � � �������B(7]���� % (

Substitute for ����� � � � � ( � ��� � :

� ��� � � ( �� � � � � ( � ��� � (7]���� %

Let � �
� � � �Z(7] � and � � %, � :

� !�� ��� � � � %
�
( ���

�
� ��� � � � %��� �

This can be solved using the quadratic formula to obtain:

� ��� � � ��� �
� � � 	 � % �7S��

� �
� =

This simplifies to:

� ��� � � � � �Z( ]�� � �
( � � � � �( � � % � � � � �Z(7] � � �( �

We will determine which root to use in part (b).

Check the formula given in the problem by expanding it algebraically:

� ��� � � � 	 � �7S��
�
( 	 �

� � % T
� ��� � � � � � S��

�
� ( � 	 � % �7S��

� � � �
S T

� ��� � � ��� �
� � ( 	 � % �7S��

� �
� =
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b) Two conditions must be met for the MOSFET to remain in saturation:
����� 
 ] � (7.1)

����� 
 �����B(7]�� (7.2)

In addition, we require that ] � 
 � ��� � 
 �0] and b �, 
 � � 
 ��� .

Condition (1) requires that � ���.�5� � ��( � ��� � 
 ]�� . The minimum value of � ��� �
is 0V ( ��_ = 0A). Then we require that � � � 
 ]�� .

Note that condition (1) also requires that

� � � 
 � ��� � � ]�� � � � � � �
( � � � � � �Z(7]��

( � � � �( � � %

� 
 �
( � � � � � �Z( � �( � � � �( � � %

Thus we must take the negative root in the formula for � ��� � :

� ��� � � � � � (7]�� � �
( � ( � � �( � � % � � � � �Z( � � � �( � (7.3)

Condition (2) requires that � ��� 
 ������( ]�� � ] �[( � ��� � 
 � � � ( � ��� � ( ] � .
Then we require that ] � � ] � 
 � � � .

To be thorough, check that this value of � � � will not cause � ��� � to exceed ] � .
The maximum value of � ��� � is ] � ( � � � b �, ).

� � � ] �
( �

�

� �������B(7]���� %

� � � � �J] � � ]�� � � ] � �( �
Hence � ��� � will not exceed ] � while the MOSFET is in saturation.

ANS:: (b) ] � � � � � �*]�� � ] �

Problem 7.6 This problem studies the use of a mythical MOSFET-like device called a
ZFET to construct an amplifier as shown in Figure 7.17. The ZFET operates in its satura-
tion region when ����� 
 � and � ��� � � . In this region, the drain-source terminal relation
is �����4� � � ���� , where � is a constant having units of A/V � . When � ��� � � , the ZFET
exhibits a short circuit between its drain and source terminals, and is said to operate out-
side its saturation region. Similarly, the ZFET exhibits an open circuit for � ��� � � as it
again operates outside its saturation region. Finally, the gate terminal always exhibits an
open circuit. These characteristics are summarized in the figure, beneath the symbol for
the ZFET.
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Figure 7.17:
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a) Assuming saturated operation of the ZFET, determine � ��� � as a function of � � � .

b) Over what range of � � � will the ZFET operate in its saturation region?

c) Assume that ] � � � � V, ( � �� k 6 and � � � = ��� � A/V � . Sketch and clearly label� ��� � as a function of � � � for (�� V � � � � � 8 V.

d) Given the parameters of part (c), can the amplifier can be used as an inverter that
provides a valid output high voltage threshold of ]�� � � V. Why or why not?
Assume that ]�� � � V.

e) Given the parameters of part (c), can the amplifier can be used as an inverter that
provides a valid output high voltage threshold of ] � � � V. Why or why not? This
time around, assume that ]�� �-� V.

Solution:

a) Using a single KVL equation, we get that ] ��( ��� ( � ��� � � � , where ��� is the
voltage drop across the resistor. This is given by the current through the ZFET
(since it is the same as the current through the resistor) multiplied by the resistance.
Therefore, we get that

� ��� � � ] � ( � ( � �� �
b) First of all, � � � 
 � . Then, � ��� � � � , so if we substitute 0 into the previously

determined formula, we get that

� � � � � � � ] �( � � ��
=

c) ( � � � . For the saturation region, � ��� � �-���[( � �� � . This is shown in figure 7.18.

d) No. The output that corresponds to ] � � � is � ��� � � � , so for some values less
than ]�� , a value that is less than ] � , so it cannot be used as an inverter.

e) Yes. In this case, the device can be used as an inverter, since the output correspond-
ing to ]�� � � is � ��� � � � , so for all values that are less than ]�� , a value that is
greater than ]�� will result.

ANS:: (a) � ��� � � ] � ( � ( � �� � (b) ��� � � � � � b �, � �
��

(d) no (e) yes
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Problem 7.7 Consider the difference amplifier circuit shown in Figure 7.19. Notice that
the difference amplifier is powered by ��] � and (�] � power supplies. Assume that all
MOSFETs operate under the saturation discipline, and, unless indicated otherwise, are
characterized by the parameters � and ] � .

a) Determine � � and � � for the connection shown in Figure 7.19a. In this figure, the
gates of the MOSFETs are connected to ground.

b) Consider the difference amplifier version shown in Figure 7.19b. In this figure, a
MOSFET implementation of a current source replaces the abstract current source
from Figure 7.19a. Determine values for ]�� and � < � such that the circuit in (b) is
equivalent to that in (a).

c) The difference amplifier in Figure 7.19c is driven by two input voltages � ��� and � ���
as shown. Assume that the input voltages satisfy the following constraint � ���5�( � ��� at all times. Determine � ��� , � ��� , and � � as a function of � ��� .

Solution:

a) Because both FETs are identical, we know that � ��� � � ( � � and ����� � � �
� ��( � �B(7] ��� % . Solving for � � ,

� � � ( � �#] � ( � S � % ] %� ( S � % ] %� �7S � �
� �

Simplifying, � � � (�]�� ( � �

� . � � can be found using KVL: � � � ] � ( ,�� �% .

b) The current through the new mosfet must be equal to the current of the old current
source, ��� � �
	

% �������[( ]���� % � � , where ��� � �� �
% � . The gate to source voltage

of the new MOSFET is � ��� � ]���� ] � . Substituting and letting � be the � value
associated with the transistors of part a.,

� � �
� �
��]��	� ] �B( ] ��� % ��� �\( � �B(7]���� %

Therefore
�
� � % �

�� and ]��	� ] � � ( � � , or ]�� � ]�� � � �

�
(7] � .

c) Using MOSFET characteristics and KVL, � ��� � ] �4( � ,��
% � � ��� ( � �4( ] ��� % and

� ��� � ] �6( � ,��
% �\( � ��� ( � � ( ]���� % . By KVL, � � �5� ����( � ��� . Substituting for� ��� and � ��� using the above equations and cancelling, � � � � � ( ��� ��� ��� � � ]���� % .

ANS:: (a) � � � ([] � ( � �

� , � � � ] ��( ,�� �% (b)
�
� � % �

� � , ]�� � ] � � � �

�
(*] �

(c) � ��� � ] �2( � ,��
% � � ��� ( � �2( ]���� % , � ���
� ] �2( � ,��

% �\( � ��� (5� �2( ]���� % , � � �� � ( ��� ����� � � � ]���� %
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Problem 7.8 Consider the amplifier circuit shown in Figure 7.20. The amplifier is pow-
ered by a ��] � and a (�] � power supply.

VS- +

vO

RL

vI

VS+ -

+
-

iD

Figure 7.20:

a) Determine � � and ��� as a function of � � under the saturation discipline. Assume
that the MOSFET parameters � and ] � are given.

b) Determine the range of valid input voltages for saturation region operation. Deter-
mine the corresponding valid range for � � and ��� .

c) Determine the output voltage when the input is grounded. In other words, for � ���� .

d) Determine the value of � � for which � � �� � in terms of ] � , ( � and the MOSFET
parameters.

Solution:

a) Using a single Kirchoff voltage loop, we get that ] � ( ��� ( ����� � � ] � � � = We
can also get that ��� � �

% � � � � � ] � (7]���� % =
Since ����� � � � ��� � and ��� � ��� ( � , we can substitute, to get that� ��� � � ] � ( , �% � � � � � ] �B( ]����2%9=

b) The two threshold conditions are ] ��� 
 ]�� and ] ��� 
 ] ���6(7]�� .

For the threshold between saturation and cutoff: � � � � ] � 
 ]�� . The MOSFET is
off at this point, so � � � � and � ��� � �J] � .
For the threshold between saturation and triode:
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] � ( � (� � � � � � ] �B( ]���� % 
 � � � � ] �B( ]�� =

Simplifying this, one gets that the saturation range is

] � (7] � � � � � �*] � (7] � � 	 ��� �5] � � (
� ( ( �

� ( =

For the upper bound, the current and output voltage can be found by substituting
into the saturation equation. The current is:

��� � � � � (��� ( � 	 ��� �'] � � (
� ( � % =

This can be simplified to:

��� � �
� ( % �2� � ] � � (*( � � � �5] � � (/� =

The voltage can be found by finding the voltage drop across the resistor and sub-
tracting it from the supply voltage.

� ��� � � ] � ( �
� ( �2��� ] � � (J( � � � �5] � � (/� =

c) We must first determine which region we are in. If ] � � ]�� then we are in cutoff
and � ��� � � ] � . This is not very likely for our purposes, since our supply voltages
are at least 3 volts usually, and MOSFET threshold voltages tend to be below 2.5
volts. (For lower supply voltages, lower threshold voltages are used too.)

However, if the following condition exists, then we are in triode:

] � (7]�� 

	 � � �5] � � ( ( �

� (

Using the values ] � �  V and ]�� �
� V, we can find a a suitable threshold for KR.
Solving the quadratic equation results in the possibilities � ( �$� (not possible) or
� ( 


�
� . Therefore, if we want to be in saturation for the chosen voltages, then we

have to choose � ( � �
� .

If we are in saturation, then by substitution:

� ��� � �J] �B( � (� ��] � (7]���� % =
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d) For this, assume that we are in saturation.

��� � � �J] �B( ( �� ����� � � � ] � (7]���� % =

This can be solved for ��� � � , resulting in:

��� � � � ]�� (7] � ( �
� ( � 	 ��� S � (X] �B( � � (X] �

� (

ANS:: (a) ��� � �

% ��� � � � ] �6( ]���� % , � ��� � � ] � ( , �% � � � � � ] �6( ] ��� % (c) � ��� � �
] � ( � ,

% ��] � (7]����2% (d) ��� � � �J] � ( ] � ( I
� , �

� I � � � , b � � % � , b �� ,

Problem 7.9 Consider the current mirror circuit in Figure 7.21.
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I

W 1

L1
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+
-W 2

L2
-------

VL

(a)

IL
RC

VS

I

W 1

L1
-------

+
-W 2

L2
-------

VL

(b)

RL

Figure 7.21:

a) Referring to Figure 7.21a, determine � � as a function of � assuming both MOSFETs
operate under the saturation discipline. Both MOSFETs have the same values for
� 	 and ] � . Does � � change if ]�� changes? What are the conditions under which
� � � � ?

b) Now consider Figure 7.21b. The current � can be increased either by increasing] � or decreasing (�� . Assuming that either ] � or (�� may be changed, and that
� I < � I � � % < � % � � <�� , determine the range of values of � for which both
MOSFETs operate under the saturation discipline. Assume both MOSFETs have
the same values for � 	 and ] � .

Solution:
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a) We know that ����� � ] � ( � (�� . Therefore, substituting appropriate parameters,
� � � �� � +% � +

��] �[( � (��Z( ]����2% . The equation for � � can not change if ]�� changes
as ]�� is not present anywhere in the equation for � � . Logically this is so because
a MOSFET’s drain to source current is only dependent on its input voltage, its
threshold voltage, and its geometric parameters, of which only its input voltage can
be changed, and ]�� can have no effect on this MOSFETs input voltage due the con-
figuration of the circuit. As the input voltages for both MOSFETs are equivalent,
� � will equal � when

� ��
�
� � +� + .

b) To operate under the saturation discipline, � ��� 
 ] � and ����� 
 �����6(7]�� . Substi-
tuting into the first inequality from part a., ] �6( � ( � 
 ]�� or � � b � � b �, � for both
MOSFETs. Given that for MOSFET 1 ����� � ����� , the second inequality always
holds for that MOSFET. For MOSFET 2, � ��� � ]��&( � � ( � , where we know that
� � � � . Substituting and solving, � 
 b � � b � � b �,

� � ,�� . Finally,

] � (7]��
(�� 
 � 


] �B( ]�� ( ]��
(�� ( ( �

ANS:: (b) b � � b �, �

 � 
 b � � b � � b �,

� � ,��

Problem 7.10 Consider the circuit shown in Figure 7.22. Assume that the MOSFET
operates under the saturation discipline.

ID

RS

VS

S
vO

G RD

+ -

D

VS -+

Figure 7.22:

a) Draw the SCS equivalent circuit by replacing the MOSFET by its SCS model.

b) Determine � � and � � in terms of ( � , ( � , ] � , and the MOSFET parameters � and]�� .

Solution:

a) See Figure 7.23.
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ID

VS

vO

RD

+ -VS -+

RS

Figure 7.23:

b) By KVL, ����� � ] � (5( �0��� and ��� � �

% ��] � ( ( �0� � ( ] ��� % . Expanding, � �
�

% ( %� � %� ( � � ( � ��] �B(7] ��� � ���2��� � �

% ��] �6(7]���� % . From here we can solve for � �
and substitute into the equation � � � ] � ( ( ����� .

��� � ] � (7] �
( � � �

� ( %� �
� � � ( ����] � (7] ��� �$�

� ( %�
� � � ] � ( ( �

� ( %� � � ( ����] �6( ] ��� �$� � � � � ( � ��] � (7] ��� �$���

ANS:: (b) ��� � b � � b �, � � I
� , +� � 	 % �

, � � b � � b � � � I� , +� , � � �J] � ( ,��
� , +� � � ( � �!] � ( ] ��� �

��� � � � ( ���!] �B( ]���� � ���

Problem 7.11 Consider the “common-gate amplifier” circuit shown in Figure 7.24. As-
sume that the MOSFET operates under the saturation discipline.

ID

VS

S
vO

G RD

+ -

D

VS -+

+
-vI

Figure 7.24:

a) Draw the SCS equivalent circuit by replacing the MOSFET by its SCS model.

b) Determine � � and ��� in terms of � � , ( � , ] � , and the MOSFET parameters � and]�� .
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c) Determine the range of values of � � for which the MOSFET operates under the
saturation discipline. What is the corresponding range of � � ?

Solution:

a) See Figure 7.25.
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vO

RD

+ -VS -+

+
-vI

Figure 7.25:

b) There is only one relevant current, and it passes through the MOSFET, so we as-
sume that the MOSFET is in saturation and use the relevant formula.

� � � � � ��] � ( � � �Z( ] ��� % =

Then, using a Kirchoff voltage rule, we can find that

� ��� � �J] �B( � ( %� �!] �B( � � �Z( ]���� % =

c) Again, we must consider the boundaries for saturation: ] ��� 
 ] � and ]���� 

] ���B( ] � .

For the boundary between saturation and cutoff:

] � ( � � � 
 ] � =

And for the boundary between saturation and triode:

] �B( � (� �\( � � � � ] � (7]���� % ( � � � � ] � 
 ] �B( � � �Z(7]�� =

These two can be simplified to get
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] �B( ] � ( � �
� ( �!] � � ] ��� � � � � �*] � (7]�� =

The output conditions can be found by substituting into the previously derived for-
mula. Simplifying results in

(�]�� �$� ��� � � ] �1=
ANS:: (b) ��� � �

% ��] � ( � � �Z(7] ��� % , � ��� � �J] �B( � , c
% ��] �6( � � �Z(7]���� % (c) ([] � �� ��� � �*] �

Problem 7.12 Consider the MOSFET circuit shown in Figure 7.26. Determine the value
of � � in terms of the other circuit parameters. Assume the MOSFET is in saturation and
is characterized by the parameters � and ] � .

RL
vO

R1

VS

R2

vA

Figure 7.26:

Solution:

Due to the fact that the gate of a MOSFET has no input current, we can determine
the Thevenin equivalent of the voltage divider produced by ] � , ( I , and ( % to find � � and
then substitute appropriate parameters into the KVL equation � � � ] � ( ( ����� .

� � � ] � ( � ( �� � ( % ] �( I � ( %
(7] ��� %

ANS:: � � � ] �B( � ,��
% �
, + b �, � � , +

( ]���� %
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RL

vO

VS

vA

RG

RF

Figure 7.27:

Problem 7.13 Consider the MOSFET circuit shown in Figure 7.27. Determine the value
of � � in terms of the other circuit parameters. Assume the MOSFET is in saturation and
is characterized by the parameters � and ] � .

Solution:

Due to the fact that the gate of a MOSFET has no input current, we can determine
the Thevenin equivalent of the voltage divider produced by ] � , ( � , ( � and ( � to find� � � ,��

b �, � � ,�� � , � . If the current through ( � is � � , the current produced by the MOSFET
is ��� , and the current through ( � is � � , by KCL � � � � � � ��� . By KVL, ] �4( ( � � � ���( ��� ( ���2� � , which is equal to � � . Solving for � � in terms of � � and substituting into our
KCL equation, we can solve for � � .

] � ($��( � � ( ���2� �
( � � � � � � � �

( � ] �
( � � ( � � ( � ( ]���� %

� � �
] �B( � ,��

% �
,��
b �,�� � , � � ,�� ( ]���� %

( ��� ( � � ( �
Finally, because � � � � � � ( � � ( � � , we find that

� � � ( � � ( �
( � � ( � � ( � ��] � ( � ( �� � ( � ] �

(�� � (�� � ( �

(7] � � % �

ANS:: � � �
, � � ,��,�� � , � � ,�� �!] �B( � ,��

% �
,��
b
�,�� � ,�� � ,�� (7] � � % �

Problem 7.14 Figure 7.28 shows a MOSFET amplifier driving a load resistor ( � . The
MOSFET operates in saturation and is characterized by parameters � and ] � . Determine� ��� � versus � � � for the circuit shown.

Solution:
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RL

vO

VS

+
-

REvI

Figure 7.28:

First of all, assume that the circuit is in saturation. Call the three currents as follows:
through resistor ( � : � I , through the MOSFET: � % , and through resistor ( � : � � . All three
of them point from higher voltage to lower, so therefore � I � � % � � � . This is shown in
Figure 7.29.

RL

vO

VS

+
-

REvI

i1

i2

i3

Figure 7.29:

The three currents can be determined in terms of � � � , � ��� � , and MOSFET parameters:

� ��� � � � � ( � T
] � ( � I ( � ( � ��� � T

� % �
�

� � � � � (7]���� % =

Substituting this into the KCL equation and solving for � ��� � , we get

� ��� � � ] � ( � ,��
% � � � �Z( ] ��� %
� � , �,��

� �5] �0( �F( � ( � ( � ��� � �Z( ] ��� %
� ��( ��� ( � � =
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However, this only applies for when the MOSFET is in saturation. We must find the
range of � � � for which this holds valid. The boundary between saturation and cutoff is
merely � � � 
 ]�� . The boundary between saturation and triode can be found as follows.

�'] �0( �F( ( � ( � � ��� � � (7]���� %
� ��( ��� ( � � 
 � � �Z(7] � =

Solving this for � � � , one gets the following boundary conditions for saturation:

] � � � � � �*]�� ( ( � � ( �
� ( � ( � � � �

� % �
�
( � �

�
( � � % � �5] �� ( � =

For the cutoff region, we can find the output voltage through a simple voltage divider
relation, since no current flows through the MOSFET:

� ��� � � ] � ( �
( �	� ( � =

The voltage transfer characteristic for triode region will not be considered for this
problem.

ANS:: � ��� � � % b � , � � � , � ,�� � )���� � b � � +% � ,�� � , � �
Problem 7.15 Determine � ��� � versus � � � for the circuit shown in Figure 7.30. Assume
that the MOSFET operates in saturation and is characterized by the parameters � and ] � .
What is the value of � ��� � when � � � � � ?

Solution:

Start off with the following KVL equation, where � � � , ����� � , and ��� � are the voltages
across ( � , the MOSFET, and ( � , respectively.

] �B( ��� �Z( ����� � ( ��� � � ] � � � =
This is shown in Figure 7.31.

Since the voltage across a resistor is equal to the current through it times the resistance,
and there is only one relevant current in the problem, we can rewrite the equation as
follows:

�5] � ( � � ( � � ( � ��� ] ��� � =

Now, we must find the current. Assume that the MOSFET is in saturation - we will
find the boundaries for this assumption to be valid in a bit.
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Figure 7.30:
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Figure 7.31:
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� � � � � � � � ( � ( � � ] � (7] ��� % =

We solve for � to get

� � � � � � ] � (7]��
( � � �

� ( %� (
���� � � � � � � ] �B( ] ���

� ( �� � �
� % ( � � =

Now, we must find the boundary conditions for the saturation region. For the boundary
between saturation and cutoff, there is no current flowing through the MOSFET, so there
is no voltage drop across the resistors, so we simply have

� � 
 ] � (7] �1=
Now, for the boundary between saturation and triode, we have this equation.

� � � ] �B( ]�� �$�&( � =
Let ��� � � � � ] �B( ]�� , and substitute in for � :

��� ( �5] �
( � � � �����

� ( %� ( �
� % ( � � ( ���( � ( �

� ( %� =
We solve this for ��� since that is in terms of � � and constants.

]�� �
% b �,�� � % b �, � ,�� ( I

� ,���, +� (
� I

� + , 
 � , +� �
�
b �� , � � , +� �

�
b �� , 
 � , �� I, � � I, � � %

Now, solve for ]�� � , and find the boundaries of the saturation region:

]�� (7] � �*]��

]�� � ]�� ( ] � � �5] �0( %� � �'] �0( � ( ��( , �� (
� , +�

� + �
�
b � , � , +��

� �
b � ,

�
�

�

��( � � ( ��� %
Now, to actually find � ��� � . Using a KVL equation, we can find that � ��� � � �&( �3(?] � .

In cutoff, � ��� � � ([] � since there is no current through the resistors. In saturation,
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� ��� � � � � �Z(7] � � �
� ( � (

���� � ��� � � � ] �B( ]����
� ( � � �

� % ( %�
When there is an input voltage of zero, the system could be in cutoff, saturation, or

triode. For typical values of ] � and ]�� , the device will not be in cutoff. But if it were, the
output voltage would be (�] � .

For values of ] �.�  V, and ] � �� V, we can find a relation between ( � , ( � , and �

that allows the device to avoid the triode region.

If we substitute into the boundary condition, we get this relation:

8 � ����( �
( � � ( � ( �

� ( � � ( �3� %
�� ( �
�

( ( � � �
� % �

S��
�
��( ��� ( �"���� =

Further analysis is optional - we can assume that the device is in saturation for ]�� � �� . If this is the case, then

� ��� � � (�]�� � �
� ( � (

���� � �!] � (7]����
� ( � � �

� % ( %� =
ANS:: � ��� � � � � �Z( ]�� � I

� , � (
� % � ) � � � b � � b � �� , � � I

� + , +�
Problem 7.16 Determine � � versus � � for the circuit shown in Figure 7.32. Assume that
the MOSFET operates in saturation and is characterized by the parameters � and ] � .
What is the value of � � when � �3� � ?

Solution:

Most of the work has already been done in the previous problem. The boundaries for
cutoff, saturation, and triode remain the same, as does the current. All that changes is the
output voltage.

Using a KVL equation, we find that � ��� � �J] �B( � ( � . This is shown in Figure 7.33.

In cutoff, � ��� � � ] � . In saturation, we get that

� ��� � � ] �B( ( �( � ��� � � (7]�� � ] � � � ( �
� ( %� (

���� ��( %� � � � � � ] � (7] ���
� ( �� � ( %�

� % ( � � =
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For an input voltage of zero, we will assume that the system is in saturation since the
cutoff calculation is simply the rail voltage � ��� � � ] � , and the triode calculations are
unnecessarily terrible. In saturation,

� ��� � �J] � ( ( �( � �\([]�� � ] � � � ( �
� ( %� (

���� ��( %� �!] �B( ]����
� ( �� � ( %�

� % ( � � =
ANS:: � ��� � � ] � ( , �, � ��(�]�� � ] ��� � , �

� , +� (
� % , +� � b � � b � �� , � � � , +�

� + , 
 �
Problem 7.17 Determine � � versus � � for the circuit shown in Figure 7.34. Assume that
the MOSFET operates in saturation and is characterized by the parameters � and ] � .

RL

vO

VS

vI
R1

R2

Figure 7.34:

Solution:

First of all, define ��� to be the gate voltage. Also, define three currents � I , � % , and � �
to be the currents flowing through ( � , ( % , and the MOSFET, respectively. Define � � to be
flowing towards ground, and let � I � � % � ��8 . This is shown in Figure 7.35.

The gate voltage can be found through a voltage divider rule since no current flows
from between ( I and ( % to the gate.

��� � ( %
( I � ( %

� � � � ( I
( I � ( %

� ��� �

In cutoff, the output voltage and the input voltage are related by a voltage divider rule:

� ��� � � ] ����( I � ( % � � ]�� �3( �
( I � ( % � ( �
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RL

vO

VS

vI

R1

R2

i2

i1

i3

Figure 7.35:

In saturation, we have an extra current to worry about. We substitute into our original
KCL equation to get

] � ( � ��� �
( � � � � �Z( � ��� �( � � � � � ( %

( I � ( %
� � � � ( I

( I � ( %
� ��� � (7]�� � %

We can solve this for � ��� � , but it ends up being quite monstrous. Let ( � � ( I � ( % .

� ��� � � ( % (��D]��( % I
( ( % � � �( I

( ( %�
� ( � ( I

( (��
� ( % I

� 	 � � � � 

� � ( �1( I

T

with the following subexpressions:

� � ( %� � (�� � ( ��� % T

� � � % ( %� ( %� ]�� ��( I ( ( % � � ��� � ��( I (7] � (���� T


 � � � �!] �0( �1( % I ( %� (7] � ( I ( % ( %� � ( I � ( % � ( � � � � � �3( ��( I ( %� ��( � � ( % � � =

The boundaries for which the device is in saturation can be found by evaluating ��� 

]�� and � ��� � 
 ��� ($� � . This evaluation is even more complicated than the previous
equation, since ��� is given in terms of � ��� � , and needs to be put in terms of � � � . In terms
of both � � � and � ��� � , the boundary conditions are derived much more easily.

Between saturation and cutoff:
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( %
( I � ( %

� � � � ( I
( I � ( %

� ��� � 
 ]��

Between saturation and triode:

� ��� � 
 � � � ( ( I � ( %( %
� �

Problem 7.18 Consider the BJT circuit called the “common-collector amplifier” shown
in Figure 7.36. This BJT amplifier configuration is also called the source follower circuit.
For this problem, use the piecewise linear BJT model from Exercise 7.8. Assume that the
BJT operates in its active region.

RE

VS

vO

B

C

ERI

iB

iC

β

vI
+
-

Figure 7.36:

a) Draw the active-region equivalent circuit of the BJT source follower by replacing
the BJT by its piecewise linear model.

b) Assuming active region operation, determine � � in terms of � � , ( � , ( � and the BJT
parameter � .

c) What is the value of � � when � ( � � � ( � ?

d) Compute the value of � � given that � � � 80] , ( � ����0W , ( � ������5W , � ������ , and] � �� �0] .

e) Determine the range of values of � � for which the BJT operates in its active region
for the parameter values given in (d). What is the corresponding range of � � ?

Solution:
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a)

b)

� � � � � ( �� � � � � �$����( �� )�� � � )�� � K � @ �, � � � � ���2( �� ��� � ( � ��( � = � �0� � �$��� , �, �� ) � � K � @
I � � ����

� � �
� �

c) When � ( � � � ( � , � � Q � � ( � = �

d) Substituting into
� � � � � ( � = �

� � , �� � � I � ,��
we have

� � � 8 ( � = �
� � IK �� IKMK � I � IKMK �

Or, � � Q
��= S0]

e) At the low end, � � � � = � , so that the BJT is not in cutoff.

At the high end, � � must not be too large, or else the BJT will enter saturation. The
BJT enters saturation when ��� � � �1` � � � = S
Or, substituting for � � � and �'` �

� = ��� ]���( � � � � = S

In other words, when ] �X( � � � � = �
We know � � � � � ( � = �
Therefore, we need to solve for � � from

] � ( � � ( � = � � ��= �

Or, � � � � = �5]
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Thus the constraints on � � for active region operation are

� = � � � � � � = �5]

The corresponding constraints on � � are

� � � � � � = �0]

ANS:: (b) � � � ) � � K � @I � , � � � � � � I � , � � (c) � � � � � ( � = � (d) � � �5��= S$] (e) � = � � � � � � = �5]
and � � � � � � = �5]

Problem 7.19 Consider the compound three terminal device formed by connecting two
BJTs in the configuration shown in Figure 7.37. The three terminals are labeled � � , � �
and

� �
. The two BJTs are identical, each with � � � ��� . Assume that each of the BJTs

operates in the active region.

B’

C’

E’

β

β

Figure 7.37:

a) Draw the active-region equivalent circuit of the compound BJT by replacing each
of the BJTs by the piecewise linear model shown in Exercise 7.8. Clearly label the

� � , � � and
� �

terminals.

b) In the configuration shown, the compound device behaves like a BJT. Determine
the value of the current gain � � for this compound BJT.

c) When the base current � � � � � , determine the voltage between the � � and
� �

termi-
nals.

Solution:

a)
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b) The current gain of the new device is given by

� � � � � � ��� �
c) When the base current � � � � � , both transistors are in their active region. In this

situation, the voltage between the � � and
� �

terminals is 1.2V.

ANS:: (b) � � � � � � ��� � (c) 1.2V
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Chapter 8

The Small Signal Model

Exercises

Exercise 8.1 Consider the amplifier shown in Figure 8.1. The MOSFET operates in its
saturation region and is characterized by the parameters ] � and � . The input voltage� � comprises the sum of a DC bias voltage ] � and a sinusoid of the form � � � � ����� � � .
Assume that

�
is very small compared to ] � . Let the output voltage � � comprise a DC

bias term ]	� and a small-signal response term ��� .

RL

vO

Asin(ωt)

VS

VI

+

+

-

-

Figure 8.1:

a) Determine the output operating point voltage ] � for the input bias of ] � .
b) Determine the small signal gain of the amplifier.

225
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c) Draw the form of the input and output voltages as a function of time, clearly show-
ing the DC and time-varying small-signal components.

Solution:

a) ] � � ]��X( � ,��
% ��] � (7] � � %

b) small signal gain = 	 )��
	 )��

� )�� � b �
� ( � ( ����] � (7] � �

c) See Figure 8.2.

ANS:: (a) ]	� � ] � ( � ,��
% �!] � (7] ��� % (b) 	 )��

	 )��
� )�� � b �

� ( � (��3��] � ( ] � �

Exercise 8.2 Develop the small signal model for a two-terminal device formed by a
MOSFET with its gate tied to its drain, operating under the saturation discipline, with
parameters ] � and � .

Solution:
��_ �4� �

% � � � � ( ] � � %
��_ �4� �

% � �1_ ��(7] � �2%
	
� c �

	 ) c �
� ) c � � b c

� � � �!]3_ ��( ] � �
The small signal model is resistor � 	 R

� I
� � b c

� � b
� � .

ANS:: resistor � 	 R
� I

� � b c
� � b

� �

Exercise 8.3 Develop the small signal model for a two-terminal device formed between
the drain and source terminals of a MOSFET with a 2 volt DC source connected between
its gate and source terminals ( ] � � � �5] ). Assume the MOSFET operates under the
saturation discipline. Assume further that ] � � � volt for the MOSFET.

Solution:
��_ �4� �

% � � � � ( ] � � %
��_ �4� �

% � �[( ��� % � �

%
In other words, the two-terminal device formed between the drain and source termi-

nals of the MOSFET is a current source with current � ��<���� . Thus, the small signal model
of the two-terminal device is an open circuit.

ANS:: Current source �M_ �4� �

% , so that the small signal model is an open circuit
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Figure 8.2:
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Exercise 8.4 Consider the MOSFET amplifier shown in Figure 8.3. Assume that the
amplifier is operated under the saturation discipline. In its saturation region, the MOSFET
is characterized by the equation

��_ �4� � � ��� � ��(7] � � %

where ��_ � is the drain-to-source current when a voltage � � � is applied across its gate-to-
source terminals.

vO

RL

VS

+
-

vI

D

S

iDS
G

Figure 8.3:

a) Write an expression relating � � to � � . What is its operating point output voltage ] � ,
given an input operating point voltage of ] � ? What is the corresponding operating
point current � _ � ?

b) Assuming an operating point input voltage of ] � , derive the expression relating the
small signal output voltage ��� to the small signal input � � from the relationship
between � � and � � . What is the small signal gain of the amplifier at the input
operating point of ] � ?

c) Draw the small signal equivalent circuit for the amplifier based on the SCS model
of the MOSFET assuming the operating point input voltage is ] � .

d) Derive an expression for the small signal gain of the amplifier from the small signal
equivalent circuit. Verify that the gain computed from the small signal equivalent
circuit is identical to the gain computed in part (b).

e) By what factor must (�� change to double the small signal gain of the amplifier?
What is the corresponding change in the output bias voltage?

f) By what factor must ] � change to double the small signal gain of the amplifier?
What is the corresponding change in the output bias voltage?
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Solution:

a) � � � ]���( � ,��
% � � � (7] � � %

] � � ]��X( � ,��
% ��] � (7] � � %

� _ � � �

% �!] � ( ] � � %

b) 	 )��
	 )��

� )�� � b �
� ( � ( �"��] � ( ] � �

� � � ( � ( �"��] � (7] � � � �
The small signal gain is )��)�� � ( � (��"�!] � ( ] � � .

RL
vi

+

-

voids

+

-

Figure 8.4:

c) See Figure 8.4.

d) � � � ( �
	 R
( � ( � ( �"��] � ( ] � � � �

) �)�� � ( � (��"�!] � (7] ���

e) To double the small signal gain, (�� must double. This will decrease ] � by
� ,��
% ��] � (7] � � %

f) � �!] � ( ] � � � � � ] � (7] � �
�5] � ( �5] � � � � ] � ( ] � �
To double the small signal gain, scale ] � by � � % b � � b

�
b �

The output bias will decrease by �% � (��"�!] � ( ] � � % to ]���( � � (��3��] � (7] ��� %

ANS:: (a) ]	� �J]�� ( � ,��
% ��] �'(�] � � % , � _ � � �

% �!] �.(�] � � % (b) � � � ( � (��3��] �1(�] � �2� � ,)��)�� � ( � (��"�!] � ( ] � � (d) )��)�� ��( � ( �"��] � ( ] � � (e) (�� doubles (f) scale factor: � �
% b � � b

�
b �

Exercise 8.5 Consider again the MOSFET amplifier shown in Figure 8.3. Assume as be-
fore that the MOSFET is operated under the saturation discipline, and that its parameters
are ] � and � .
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a) What is the range of valid input voltages for the amplifier? What is the correspond-
ing range of valid output voltages?

b) Assuming we desire to use voltages of the form
� � � � � � as AC inputs to the ampli-

fier, determine the input bias point ] � for the amplifier which will allow maximum
input swing under the saturation discipline. What is the corresponding output bias
point voltage ]	� ?

c) What is the largest value of
�

that will allow saturation region operation for the bias
point determined in (b)?

d) What is the small signal gain of the amplifier for the bias point determined in (b)?

e) Suppose
�

is small compared to ] � . Write an expression for the small signal output
voltage � � for the bias point determined in (b).

Solution:

a) � � � 
 ] �
� � � (7] � � �1_ �
� � (7] � �*]���( � , �

% � � � ( ] � � %
] � �$� � �J] � � � I � % � ,�� b

� � I
� ,��

� � � ]���( � ,��
% � � � (7] � � %

� I � % � ,�� b
� � I

� ,�� � � � �*] �

b) To maximize input swing, pick ] � in the center of the range of valid input voltages.
] � � ] � � � I � % � , � b

� � I% � ,��
] � � � � ,�� b

� � � I � % � ,�� b
� � I�

� ,��

c)
� � � I � % � ,�� b

� � I% � ,��

d) )��)�� � ( � (��"�!] � (7] ���
) �)�� � I � � I � % � , � b

�

%
e) � � �

�
% � �6( 	 ��� � � ( �U] ��� � ���3� � ���

ANS:: (a) � ��( ] � � ]�� ( � , �
% ��� � ( ] � � % ,

� I � % � ,�� b
� � I

� , � � � � � ]�� (b) ] � �
] � � � I � % � ,�� b

� � I% � ,�� , ] � � � � ,�� b
� � � I � % � ,�� b

� � I�
� ,�� (c)

� I � % � ,�� b
� � I% � ,�� (d) I �

� I � % � ,�� b
�

% (e)
� � � �

% � � ( 	 ��� � � (�� ] � � �����3� � ���
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Exercise 8.6 Consider once more the MOSFET amplifier shown in Figure 8.3. Assume
as before that the amplifier is operated under the saturation discipline, and that its param-
eters are ] � and � .

a) Using the small signal circuit model of the amplifier, and assuming an input bias
voltage ] � , determine the small-signal output resistance of the amplifier. That is,
determine the equivalent resistance of the amplifier at the output port of its small-
signal model with ��� �
� .

b) Develop a Thévenin equivalent model for the small signal amplifier as observed at
its output port.

c) What is its input resistance? That is, determine the equivalent resistance of the
amplifier at the input port of its small-signal model.

Solution:

a) � �
� � � � � � (��

RL

+
-

A
2
--- 1 1 2K RLV S+–( ) wt( )sin

Figure 8.5:

b) See Figure 8.5.
� � P � (��
� �
�
� �
% � � ( 	 ��� � � ( �
] �1� � ���"� � ���

c) � � 	 � � � ���

ANS:: (a) � � � � � � � � (�� (b) � � P � ( � , � � � �
�
% � �F( 	 ��� � � (��U] ��� � � �"� � ��� (c)� � 	 � � � ���

Exercise 8.7 Consider the common emitter BJT amplifier shown in Figure 8.6. The input
voltage � � comprises the sum of a DC bias voltage ] � � � = �5] and a sinusoid of the form� � � � ����� � � , where

� �
� = ��� � V. For the values shown, you may assume that
�

is very
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small compared to ] � . You may further assume that the BJT always operates in its active
region. Figure 8.7 shows a small signal model for the BJT operating in its active region.
Let the output voltage � � comprise a DC bias term ]	� and a small-signal response term� � .

50 k

vO

0.001 V sin(ωt)

15 V

0.7 V

+

+

-

-

100 k
β 100=

Ω

Ω

Figure 8.6:

vCE

+

-

B

C

E

iC
iB

iEvBE

+

-

(a) BJT

C

B
βib

E

ic

ib

ie

(b) BJT small signal model

Figure 8.7:

a) Determine the output operating point voltage ] � for the input bias of ] � � ��=�� V.

b) Draw the small signal equivalent circuit for the amplifier.

c) Determine the small signal gain of the amplifier.

d) What is the value of ��� , the small signal component of the output, given the small
signal input shown in Figure 8.6.
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e) Determine the small signal input and output resistances of the amplifier.

f) Determine the small signal current and power gain of the amplifier, assuming that
the amplifier drives a load ( � �  ��0W that is connected between the output node
and ground.

Solution:

a) We determine the operating point using a large signal analysis of the BJT amplifier.
Since a specific large-signal model of the BJT is not suggested, we will go ahead
and use the large-signal model of the BJT (in its active region) suggested in the text
book. (The text book gives an example of an operating point calculation for a BJT
amplifier in the large-signal amplifier chapter.)

The relation between ]	� and ] � can now be derived as

] � � ] �X( � ( � ] � ( ��= �( �

(The above formula is also derived in the text book in one of the BJT examples in
the large signal amplifier chapter).

Substituting known values ]	� � ���5]

b)

c) Load (�� is 50k.

� � � ( � �( � � (��

Or � �
� � � ([ ��

d)

� � � (� �� > ��= ��� � ����� � �
Or � � � ( � = �5 ����� � �

e)

� � � ( � �� ���0W

� � � (�� �  ��0W
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f) Load is now (�� �J ��0W in parallel with ( � �J ��0W .

A current � � at the input results in a current

�
�
����� �

through the collector terminal. This current divides between ( � and ( � according
to the current divider relation. The current gain is given by the ratio of � � and the
current through ( � . We must also add on a minus sign since the direction of � � is
opposite to that of � � . Thus the current gain is given by

� �
� � � ( � ( �
< � (�� � ( ���

For the parameter values given � �
� � � (� ��

The power gain is the product of the voltage gain and the current gain. The absolute
value of the voltage gain with ( � added in parallel with (�� will be cut in half from
50 to 25.

Thus, the power gain is given by

� �
� �
� �
� � � ��( �' �� > �\([ �� � �-���5 ��

ANS:: (a) ]	� � ���0] (c) ([ �� (d) � � ��( � = �0 � ��� � � (e) � � � �����0W and � � �  ��5W (f)�
���� � ([ �� and )��)��

�
���� �-���5 ��

Problems

Problem 8.1 This problem studies the small-signal analysis of the MOSFET amplifier
discussed in Problem 7.3 (Figure 7.13) in the previous chapter.

a) First consider biasing the amplifier. Determine ] � � , the bias component of � � � , so
that � ��� � is biased to ] ��� � where � � ] ��� � � ] � . Find ] � � � , the bias component
of ��� � � in the process.



235

b) Next, let � � � � ]�� � � � � � where ��� � is considered to be a small perturbation of � � �
around ]�� � . Make the substitution for � � � and linearize the resulting expression for� ��� � . Your answer should take the form � ��� � � ] ��� � � �

�
��� , where � �

��� takes the
form � �

��� � �/� � � . Note that � �
��� is the small-signal output and � is the small-signal

gain. Derive an expression for � .

c) For what value of ]�� � is � ��� � biased to ] ��� �� ] �G<�� ? For this value of ]�� � ,
evaluate ��� using the numerical parameters given in Problem 7.2 in the previous
chapter. You should find that this gain is the slope of the input-output graph from
Problem 7.3 in the previous chapter evaluated at the bias point.

Solution:

a)

] � � � � ] � ( � �� (
� ] � ( � =  � (#�!]�� � ( � ��� %

]���� � � ] �B( � � �� (
� ] �B( ��=� � (#�!] � � �Z( � ��� %

From above we can solve for ] � � � ,

] � � � � � � �!] � ( ] ��� ���
� ( � � �

Similarly,

]�� � � � � ��] � ( ] � � �"�
� ( � � �

�
���� �5] �
� ( ( �5]��

� ( ( � �0] �
� � ( � (

�0]���� �
� � ( � � ]��

b) Let � � � �J]�� � � � � 	 , we first solve for the current � � � going through the first amplifier,

� � � � =  � �!]�� � � � � 	 ( � ��� %
� =  � �!]�� � ( � ��� % � � � � 	 ��]�� � ( � ��� �*=  � � %� 	Q =  � �!]�� � ( � ��� % � � � � 	 ��]�� � ( � ���
� � �� � � ��
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��� � � is related to � � � by the following equations:

��� � � � ] � ( � � �� � � �� ��(
� ] � ( =� � (#��]�� �Z( � ��� % ( ( � � � 	 ��]�� � ( � ���

Now we solve for the current � � �� , which goes through the second amplifier,

� � �� � =  � � ��� � ��( � � � %
� =  � ��] �B( =� � (#��]�� �Z( � � � % ( ( � � � 	 ��]�� � ( � ��� ( � ��� %
� =  � � ] �B( =  � (#��]�� �Z( � �3� % ( � � � %

( � ] �B( =� � (#��]�� �Z( � ��� % ( � � � � ( � % �!]�� � ( � ��� � � � 	
�*=  � � ( % ��]�� �Z( � � � % � %� 	Q =  � � ] �B( =  � (#��]�� �Z( � �3� % ( � � � %
( � ] �B( =� � (#��]�� �Z( � ��� % ( � � � � ( � % �!]�� � ( � ��� � � � 	

Finally we relate � ��� � to � � � ,

� ��� � � ] � ( � � �� (
� ] � ( =� � ( � ] � ( =� � (#��]�� � ( � ��� % ( � � � %

� � % ( % � ] � ( =� � (#�!]�� �Z( � ��� % ( � � � �!]�� � ( � ��� � � 	
� ]���� � � � �

� �
� ]���� � � � � � � 	

where � � ��� % ( % � ] � ( =  � (#��]�� �Z( � ���2% ( � � �&��]�� � ( � ��� .
c) Recalling the equation derived in part (a), we get that

] �
� �

���� �5] �
� ( ( �5] �

� ( ( � S$] �
� � ( � � ]�� =

We substitute this into the formula for gain, getting that

��� ��� % ( %
�� � ] �
� ( �� �

�

� ���� �5] �
� ( ( �5] �

� ( ( � S$] �
� � ( �

����
The parameters given previously were ] � �^ V, ]�� � � V, and � ( � 8�� . From
these parameters, we can find a numerical value of � � , which turns out to be ap-
proximately 136.
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ANS:: (a) ] � � � � � % � b � � b ��� � �� , � � � , ]�� � �
� % � b � � b � �

� �� , � � � (b) � � ��� % ( % � ] � (=  � (#��]�� � ( � ���2% ( � � �&��]�� � ( � ��� (c) �98��

Problem 8.2 Consider again the buffer described in Problem 7.5 (Figure 7.15) in the
previous chapter. Perform a small-signal analysis of this circuit according to the following
steps. Assume that the MOSFET operates in its saturation region and continue to use the
SCS MOSFET model with parameters ] � and � .

a) Draw the small-signal circuit model of the buffer.

b) Show that the small-signal transconductance � � of the MOSFET is given by

� � � � ��]�� � (7]���� � ( ] ���

where ]�� � and ]���� � are the bias, or operating-point, input and output voltages,
respectively.

c) Determine the small-signal gain of the buffer. That is, determine the ratio � �
��� <���� � .

d) Determine the small-signal output resistance of the buffer. That is, determine the
equivalent resistance of the buffer at the output port of its small-signal model with� � � �5� .

e) Assume that ] � � � V, � � � mA/V % , ( � � k 6 and ] � � ��� V. Under this
assumption, design the input bias voltage to satisfy the following two objectives.
First, MOSFET operation must remain within the saturation region for � � � � � � 0.25
V. Second, the output resistance of the small-signal model must be minimized.

f) Again assume that ] �5� � V, � � � mA/V % , ( � � k 6 and ] � � ��� V. For]�� � �J8 V, compute the small-signal gain and output resistance.

g) Determine the small-signal input resistance of the buffer. That is, determine the
equivalent resistance of the buffer at the input port of its small-signal model.

Solution:

a)

b) Use the formula for the MOSFET large-signal current source (in saturation):

��� � � � � �����6( � ��� %
Expand this formula in a Taylor series for � ��� � ] ��� � ���

� (Total Signal = LARGE-
SIGNAL + small-signal).
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+
- R vout

vin
+

-

id=gmvgs

+
-

R vout
vin

+

-

id=gmvgs

vgs+
-

� � � � � � � � � �������B( � � � % 	 � ��� � � � � � � � �����B( � �3� 	 � � %� �� � � � �*= = =

where the bracketed terms are evaluated at the large-signal bias point � ��� � ] ��� .
Then

� � � �

% ��] ���6( � � �2% . Ignoring higher-order terms, � � �*� � � �
� where

� � ��� ��] ���B( � ������� ��]�� �Z( ] ��� � ( � ��� (8.1)

c) Using small-signal equivalents, � �
��� � � � ( �*� � � �

�
( � � � � � � 	 ( � � � � �2( .

� " � � � � � ���� � � �
� � (
��� � ��( (8.2)

d) Connect ��� � to ground. Apply � ��� �
� at the output and measure � ��� �

� . Note that � ��� �
�

and � ��� �
� appear to be anti-associated variables, but they will be associated variables

for the equivalent resistance we are measuring.

R vtest

vin=0V

+

-

id=gmvgs

vgs
+ -

itest

Using KCL,
� � � � ���

�
� �
� ���

�
�

(
Note that � � �*� � � �

�
�*� � �\( � ���

�
� � when ��� � is grounded.

(6� � � ���
�
� � � ���

�
� �
� ���

�
�

(

(
�
��� �

� ���
�
�

� ���
�
�
� (
��� � � ( (8.3)
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e) To minimize the output resistance for a fixed value of R, we need to maximize � � .

� � � � �!]�� � (7]���� � ( ]����

Substitute in the formula for ]���� � :

� �
�
�
�� ]�� � ( ��

]�� � (7]�� � �
( � ( �� � � �( � � % �7S �!]�� �Z( � � � �( � �� (7]��

��
� � � �

�� � � �( � � % � ��]�� � (7] ��� �( � ( �
( � ��

To maximize � � , maximize ]�� � .
Choose ]�� � � ]�� � N �����3( � � 	.N ����� � ] � ��]��6( � � 	1N � � � � 10V + 1V - 0.25V = 10.75V

f) Find ] ��� � using equation (3) (derived in Exercise 5-1).

]���� � � ��]

Find � � using equation (4).
� � � � � �

�

Plug-and-play using equations (5) and (6):

� " � � � �8
(
�
��� � 8'858 = 8�6

g) The input resistance is infinite since the gate of a MOSFET has infinite input
impedance.

ANS:: (c) ��� ,I � � � , (d)
,

I � � � , (e) 10.75V (f) ��" � � � %� T ( �
��� �*85858 = 8�6 (g) infinite

Problem 8.3 This problem studies the small signal analysis of the ZFET amplifier from
Problem 7.6 (Figure 7.17) in the previous chapter. Assume that the amplifier is biased at
an input voltage ]�� � such that the ZFET exhibits saturated operation; the corresponding
bias output voltage is ]���� � . For this case, derive the small-signal voltage gain � �

��� <���� � of
the amplifier.

Solution:

Referring to Problem 7.6, the large signal output is ] ��� � � ] � ( � (X] �� � . Taking the
derivative of this with respect to ]�� � , one gets that
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: ]���� �
: ]�� � � (48�( �#] %� � =

This is, by definition, equal to the small-signal gain � �
��� <���� � .

ANS:: ([8�( �#] %� �

Problem 8.4 The circuit shown in Figure 8.8 delivers a nearly constant current to its load
despite the fact that the power supply is noisy. The noise is modeled by the small signal�
� superimposed on the constant supply voltage ] � . Thus, ] � and � � are the large-signal

and small-signal components of the total power supply voltage � � , respectively. � � and ���
are the large-signal and small-signal components of the load current � � , respectively. The
noise � � in the power supply voltage satisfies � �

� ] � , and is responsible for the presence
of ��� in � � .
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Figure 8.8:
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The current source contains a MOSFET which operates in its saturation region such
that ����� � �

% � �����X( ] ��� % . The current source also contains a nonlinear resistor whose
terminal characteristics are described graphically below. Assume that ] � � ] � � ]�� .

a) Assume � �
� � . Determine ] ��� , the large-signal component of � ��� , in terms of ( � ,( � , ] � and ] � .

b) Following the result of Part (a), determine � � in terms of ( � , ( � , ] � , ] � , � and]�� .

c) Now assume that � �
�� � . Draw a small-signal circuit model for the combined

circuit comprising the power supply, current source and load, with which � � can be
found from � � . Clearly label the value of each component in the circuit model.

d) Using the small-signal model from part (c), determine the ratio � � <�� � .

Solution:

a) We know that � ��� � � � �^] ��( ( � � , so � � � )�� � b �, � . Substituting into the first

equation, �����B( ] �B( ( � � b � � � b �,
�

� . Solving,

] ��� � ] � ( � � ] ��( �
( � � ( �

b)

� � �
�

� �
] � ( � � ] � ( �
( � � ( � (7]���� %

c) See Figure 8.9.

+
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Figure 8.9:
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d) Using Thevenin equivalents, ��� �
� ��

�
) �, 	 � ����
� ) �, 	 , � � I . Given that � � � � ��] ���[(

]����2% � �
� , we can solve for � � and then divide through by � � to find the ratio

���
) � .

���
�
�

�
� � b � , � � b � , 	, 	 , � � I ( ]��
( � (�� � �

ANS:: (a) ] ��� � b � , � � b � , 	,
�
� , 	 (b) � � � �

% � b
� , � � b � , 	,

�
� , 	 (7] ��� % (d)

� � � � � � � � � � 	� 	 � � � �
� b
�

, 	 , � � I

Problem 8.5 Figure 8.10 depicts a bipolar junction transistor (BJT). Recall that a BJT
has three terminals called the base (B), the collector (C) and the emitter (E). Figure 8.10
also shows an alternative small signal model for the BJT operating in its active region.
This model is slightly different from the small signal BJT model discussed in this chapter
in that it includes a base resistance ( � . In the model shown in the figure, � is a constant.

RB

CB

ib βib

E

B
C

E

Figure 8.10:

a) Draw the small-signal equivalent circuit for the BJT amplifier shown in Figure 8.11.
Use the small-signal equivalent circuit to derive the small-signal gain of the ampli-
fier.

b) Draw the small-signal equivalent circuit for the BJT amplifier shown in Figure 8.12.
Notice that the resistor divider provides the necessary bias voltage. Use the small-
signal equivalent circuit to derive the small-signal gain of the amplifier.

Solution:

a) See Figure 8.13.

By KVL, ��� � )��, 	 . Substituting in to the KVL equation for the other side of the

circuit, � �
� � � , � )��, 	 . Therefore the gain is

)�	)�� � �
� ,��, 	 .
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+
-

vi Rb
RL

βib

ib

vO
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R2

Figure 8.14:

b) See Figure 8.14.

Using KVL to find the voltage across ( I and combining that with � � �&( , we find
that ���.� I, 	 �

, � ) �, � � , + . By the same argument in part a., the gain is ) 	) � � �
� ,���, �, 	 � , � � , + � .

ANS:: (a) )�	) � � �
� ,��, 	 (b) )�	) � � �

� ,���, �, 	 � , � � , + �
Problem 8.6 Consider the MOSFET-based amplifier circuit discussed in Problem 7.8
(Figure 7.20) in the previous chapter. Assuming an input bias point voltage ] � , draw
the small signal circuit equivalent of the amplifier. Determine the small signal gain of the
amplifier. Assume throughout that the MOSFET operates in its saturation region.

Solution:

The small signal model is shown in Figure 8.15.

vo

RLvi +
-

id = gmvi

Figure 8.15:

Recall that the large-signal transfer characteristic for saturation derived in Problem 7.8
was:

]���� � � ] � ( � (� �!]�� � � ] �6( ] ��� % =

Taking the derivative of this with respect to ]�� � , one gets

: ] ��� �
: ]�� � � ( � (#��]�� � � ] � (7]���� =
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This is, by definition, equal to the small-signal gain.

ANS:: ( � (#�!]�� � � ] � (7]����

Problem 8.7 Consider again the amplifier circuit discussed in Problem 7.8 (Figure 7.20)
in the previous chapter. Suppose that the amplifier is biased such that � � � � � at the
bias point. Draw the small signal circuit equivalent of the amplifier assuming this bias
point. Determine the small signal gain of the amplifier at this bias point. Assume that the
MOSFET operates in its saturation region.

Solution:

The small signal circuit is shown in Figure 8.15.

Recall the formulae derived in the solutions to Problem 7.8 in the previous chapter
and Problem 8.6 in this chapter.

The large-signal transfer curve in saturation is equal to:

]���� � � ] � ( � (� �!]�� � � ] �6( ] ��� % =

Setting ] ��� � � ]�� � , and solving for ]�� � , we get that

]�� � � ]�� ( ] � � � �5] �
� ( � �5]��

� ( =

Recalling the small-signal gain from Problem 8.6,

: ] ��� �
: ]�� � � ( ( � ��]�� � � ] � (7]���� T

we substitute our freshly derived value of ] � � , and after simplifying, get that

: ] ��� �
: ]�� � �

� �5] � � (*( �5]�� � (&=

ANS:: 	 �5] � � ( ( �5]�� � (
Problem 8.8 Consider the common gate amplifier circuit shown in Figure 7.24, and ana-
lyzed earlier in Problem 7.11 of the previous chapter. Assume that the MOSFET operates
in its saturation region, and is characterized by the parameters ] � and � .

a) Draw the SCS equivalent circuit by replacing the MOSFET by its SCS model.
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b) Determine the output operating point voltage ] ��� � and operating point current � �
in terms of an input operating point voltage ] � � .

c) Assuming an input bias point voltage ] � � , draw the small signal model of the am-
plifier.

d) Determine the small signal gain � �
��� <�� � � of the amplifier.

e) Determine the small-signal output resistance of the amplifier. That is, determine
the equivalent resistance of the amplifier at the output port of its small-signal model
with ��� �
� . Is the small signal output resistance greater than, less than, or equal to
that of the “common source” amplifier shown in Figure 8.3.

f) Determine the small-signal input resistance of the amplifier. That is, determine the
equivalent resistance of the amplifier at the input port of its small-signal model.
Is the small signal input resistance greater than, less than, or equal to that of the
“common source” amplifier shown in Figure 8.3.

Solution:

a) See Figure 7.25 in the previous chapter.

b) As previously determined,

� � � � � ��] � (7]�� � (7] ��� % T

] ��� � � ] � ( � (� �!] � (7]�� � (7]���� % =

c) See Figure 8.16.

vo

RD
+
-vi

id

Figure 8.16:

d) Taking the derivative and simplifying, we get that

: ] ��� �
: ] � � � �

� � (#��] � (7]�� �Z( ] ��� =
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e) There is no current flowing through the MOSFET since there is no signal coming
into the gate and the source is grounded. Therefore, the output resistance must
simply be ( .

This is larger than the output resistance of the common-source amplifier.

f) Place a test voltage across the resistor, and measure the corresponding test current.

� � � � � � � ��� � � � � =
This is shown in Figure 8.17.

+

-

vtest R

itest
iFET

iR

Figure 8.17:

Plugging in

� ��� � � ��� � � � � � T
� � � � � � � �( T

and simplifying, we get that

( � � � (
�6( ( ���

=

This is smaller than the input resistance of the common-source amplifier.

ANS:: (b) � � � �

% ��] � ( ]�� � ( ]���� % , ] ��� � � ] � ( � ,
% �!] � ( ]�� ��( ] � � % (d) � (#��] � (]�� � (7] ��� (e) ( (f) ( � � �

,
I � , � �

Problem 8.9 Consider the circuit illustrated in Figure 7.30 and analyzed in Problem 7.15
in the previous chapter. Assume that the MOSFET operates in its saturation region, and
is characterized by the parameters ] � and � .
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a) Draw the SCS equivalent circuit by replacing the MOSFET by its SCS model.

b) Determine the output operating point voltage ] � and operating point current � � in
terms of an input operating point voltage ] � .

c) Assuming an input bias point voltage ] � , draw the small signal model.

d) Determine the small signal gain � �
<���� .

e) Determine the small-signal output resistance.

f) Determine the small-signal input resistance.

Solution:

a) See Figure 7.31 in the previous chapter.

b) We refer to Problem 7.15 for the corresponding large-signal model, as well as sev-
eral key derivations, including this one for the current through the MOSFET:

� � � �
( �
�!]�� � � ] � (7]���� � �

� ( %� ( � �
� ( �� �!]�� � � ] �6( ] ��� � �

� % ( � � =
From this, we can calculate the bias voltage to be

] ��� � � �
� ( � � ]��D(7]�� ( � �

� ( � ��]�� � � ] � (7] ��� � �
� % ( %� =

The full calculation is done in Problem 7.15.

c) See Figure 8.18.

gmvin

RS RD
vout RD

vin

Figure 8.18:

The transconductance � � is equal to the derivative of the � - ]�� � transfer curve at the
bias point.

� � �
: �: ]�� � �

�
( � � � � � ( �� � ]�� � � ] � (7] � � � ( %� � � �

+ =
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d) The small-signal gain is equal to the derivative of the ] ��� � - ]�� � transfer curve at
the operating point.

: ] ��� �
: ]�� � � �6( ��� � ( � � ]�� � � ] � (7] � � �$��� � �

+ =

e) As shown in Figure 8.19, we place a test voltage across the output, and measure the
corresponding current.

+

-

vtest

itest

iFET iRS

RD RS

Figure 8.19:

� ���
�
� � � ��� � � � � �1=

Substituting in known values, we get that

��� � ���
�
� �
� ���

�
�

( � =
Simplifying this, one gets that

( ��� � � � ��� �
�

� ���
�
�
� ( �.=

f) Infinite. The MOSFET gate has infinite input impedance, so the input resistance is
therefore infinite.

ANS:: (b) ] ��� � � I
� , � � ]�� (*]�� ( � %

� , � �!]�� � � ] �6( ] ��� � I
� + , +� (d) 	 b ���

�
	 b ���

�
�6( ��� � ( � � ]�� � � ] � (7]�� � � ��� � �

+ (e) )���� � ��
��� � �
� ( � (f) infinite

Problem 8.10 Consider the circuit illustrated in Figure 7.32 and analyzed in Prob-
lem 7.16 in the previous chapter. Assume that the MOSFET operates in its saturation
region, and is characterized by the parameters ] � and � .
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a) Draw the SCS equivalent circuit by replacing the MOSFET by its SCS model.

b) Determine the output operating point voltage ] � and operating point current � � in
terms of an input operating point voltage ] � .

c) Assuming an input bias point voltage ] � , draw the small signal model.

d) Determine the small signal gain � �
<���� .

e) Determine the small-signal output resistance.

f) Determine the small-signal input resistance.

Solution:

a) See Figure 7.33 in the previous chapter.

b) From Problem 7.16, we get that the current is

� � � �
( �
�!]�� � � ] � (7]���� � �

� ( %� ( � �
� ( �� �!]�� � � ] �6( ] ��� � �

� % ( � � =
From this, we can determine the voltage to be

]���� � � ] �B( ( �
� ( %� � ( �( � ��]�� (7]�� � ] � � ( ���� ��( %�

� ( �� ��]�� � � ] �B( ]���� � ( %�
� % ( � � =

This was calculated in problem Problem 7.16.

c) See Figure 8.20.

gmvin

RS RD

vout

RD

vin

Figure 8.20:

The transconductance is the same as had been derived in Problem 8.9.

� � �
: �: ]�� � �

�
( � � � � � ( �� � ]�� � � ] � (7] � � � ( %� � � �

+ =
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d) This is equal to the slope of the ]�� - ]�� transfer curve at the operating point.

: ] ��� �
: ]�� � �

( �
( � ( � � � ( ��( %� � ]�� � � ] � (7] � � � ( %�( %� � � �

+ =

e) As shown in Figure 8.21, we place a test voltage across the output, and measure the
corresponding current.

+

-

vtest

itest

iFET iRD

RS RD

Figure 8.21:

� ���
�
� � � ��� � � � � � =

Substituting in known values, we get that

� ���
�
� � � �

� ���
�
�

( � =
Simplifying this, one gets that

( ��� � � � ��� �
�

� ���
�
�
� ( � =

f) Infinite. The MOSFET gate has infinite input impedance, so the input resistance is
therefore infinite.

ANS:: (b) � �-� I, � ��]�� � � ] �X( ]���� � I
� , +� ( � %

� , � � �!]�� � � ] � (7]���� � I
� + , 
 � (d)

, �, � ( � % � , � �, +� � ]�� � � ] � (7]�� � � , +�, +� � �
�
+ (e) ( ��� � �*)�� � � ��

� � � �
� ( � (f) infinite

Problem 8.11 This problem studies the small signal analysis of the amplifier analyzed
in Problem 7.14 of the previous chapter (see Figure 7.28). Assume that the MOSFET
operates in its saturation region, and is characterized by the parameters ] � and � .
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a) Draw the small signal equivalent circuit of the amplifier driving the load resistor( � , assuming an input bias voltage ] � .
b) Determine the small signal gain of the amplifier when it is driving the load ( � .

Solution:

a) See Figure 8.22.

vout

RL || REvin +
-

id = gmvin

Figure 8.22:

From Problem 7.14, we get that the current through the MOSFET is as follows:

� �
�

� ��]�� � (7] ��� % =

Taking the derivative of this, we get the transconductance,

� � � � ��]�� � (7]���� =

b) We note that the current has nowhere to go but through the two resistors in parallel,
so we use a simple ]-� � ( relationship to determine the output voltage.

( �
�
��� � � � ��� � ��( � ��� ( � � =

The gain is equal to the small-signal output voltage divided by the small-signal
input voltage.

�
�
���

��� � � ( ( � ( �
( � � ( � � ��]�� � (7]���� =

This may be checked by the more traditional method of finding the output voltage
as a function of the input voltage, and taking its derivative.
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ANS:: (b) ( ,��0, �,�� � , � � �!]�� �Z( ] ���

Problem 8.12 This problem studies the small signal analysis of the circuit analyzed in
Problem 7.17 of the previous chapter (see Figure 7.34). Assume that the MOSFET oper-
ates in its saturation region, and is characterized by the parameters ] � and � .

a) Draw the small signal equivalent circuit assuming an input bias voltage ]�� . What is
the value of � � for the MOSFET under the given biasing conditions?

b) Determine the small signal voltage gain � �
<�� � . What does the � �

<�� � expression
simplify to when each of � ��( I , � � ( % , and � ��( � is much greater than 1.

Solution:

a) See Problem 7.17 for key large-signal derivations. See Figure 8.23 for the small-
signal model.

vout

RLvin +
-

id = gmvin

R2

R1

Figure 8.23:

� � � � ��] � (7]���� =

] � was derived as a function of ]�� � and ]���� � in Problem 7.17. ]���� � can be found
in terms of ]�� � , but the derivation is quite messy.

b) We must use implicit differentiation to find the small-signal gain, since we do not
have ] ��� � in terms of ]�� � , but we do have an expression that relates the two:

] � (7]���� �
( � � ]�� � (7]���� �

( I � ( %
� � � � ( %

( I � ( %
]�� � � ( I

( I � ( %
]���� � ( ]�� � % =

Differentiating this, we get

� ��� � � � � � � =
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� � ( : ]���� �
( � �

: ]�� � ( : ] ��� �
( I � ( %

� �
( %

( I � ( %
]�� � � ( I

( I � ( %
] ��� � ( ] � =

� �
( %

( I � ( %
: ]�� � � ( I

( I � ( %
: ] ��� � =

We can substitute in � � ��� �!] ��( ]���� , and solve for the ratio of the differentials:

: ] ��� �
: ]�� � �

( �X( � ��( % ( �
( I � ( % � ( ��� � ��( I ( �

=

From this, when ( I becomes very large, then the gain goes to zero. This is because
resistor ( I is the only connection from ]�� � to the gate, so if it is opened up, any
change in ]�� � is made irrelevant.

When ( % becomes very large, the gain approaches ( � ��( � . This makes sense be-
cause the input impedance is dependent on ( % , and if it becomes infinitely large,
we are dealing with a standard MOSFET amplifier.

When ( � becomes very large, the gain theoretically approaches ( ( % <�( I , but this
is not actually realistic since that implies cutting off the supply voltage, and thereby
taking the MOSFET out of saturation.

ANS:: (a) � � ��� �!] ��( ]����

Problem 8.13 This problem studies the small signal analysis of the source follower (or
common collector) BJT circuit analyzed in Problem 7.18 of the previous chapter (see
Figure 7.36). Assume that the BJT operates in its active region throughout this problem.

a) Determine the output operating point voltage ] � and operating point current � � in
terms of an input operating point voltage ] � .

b) Assuming an input bias point voltage ] � , draw the small signal model of the source
follower amplifier.

c) Determine the small signal gain � �V<�� � of the amplifier.
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d) Determine the small-signal output resistance of the source follower amplifier. Is this
resistance greater than, less than, or equal to that of the “common emitter” amplifier
analyzed in Exercise 8.7 and shown in Figure 8.6.

e) Determine the small-signal input resistance of the amplifier. Is the input resistance
greater than, less than, or equal to that of the “common emitter” amplifier shown in
Figure 8.6.

f) Determine the small signal current and power gain of the source follower amplifier.
Assume for this part that the amplifier is driving an output load of ( � connected
between the output node and ground.

Solution:

a)

]	� � � � ( �� � � � � �$����( �� b � �
�
b �
� K � @ �, � � � �$����( �� �!] � (7]	�Z( � = � �0� � � ��� , �, �� b � � K � @I � � ����

� � �
� �

� � �
]	�
( �
� ] � ( � = �
( � �

, �� � � I �
b)

c)

� � � � � ( �� � ��� � � ���2( �� )�� � )��, � � � �$����( �� ��� � ( � � �0� � � ��� , �, �� )��
I � � �� �

� � �
� �

Or, the small gain is � �
� � �

�
��� , �� � � I � , �

Further, when � ( � � � ( � , � �
� � Q �
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d) The small-signal output resistance is determined by applying a test voltage � � � R � at
the output and measuring the resulting current � � � R � into the output node from the
test voltage. We also set the input voltage � � to zero.

� � � R � �
� � � R �( � ��� ( �

� � � � � R �( �

Or � � � R �� � � R �
�-��<

� �
( � ��� ( �

� � �( � �
In other words

� � � � � � R �� � � R �
� ��( � ��� ( ��� <

�
��� � ( � ��� ( �( � �

When � ��( � ��� ( ��� <�( � � � � , � � Q5( � < �

The � factor in the denominator makes the output resistance of the BJT source-
follower significantly lower than that of the BJT common-emitter amplifier (for
comparable values of ( � and (�� ).

e) The small-signal input resistance is determined by applying a test voltage � � � R � at
the input and measuring the resulting current � � into the input node from the test
voltage.

� � � � � � R � ( � �( �

Or, substituting for ���
� ��� � � � R � ( � � � ( �( �

Multiplying throughout by ( � and dividing throughout by � � , and simplifying, we
get

� � � � � � R �� � � ( � � � ( �

When � ( � � � ( � , � � Q � ( �
The � factor in the numerator makes the input resistance of the BJT source-
follower significantly higher than that of the BJT common-emitter amplifier (as-
suming � ( � � � ( � , and the same value of ( � for both amplifiers).
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f) To compute the current gain and power gain, we are given that there is a resistance( � connected between the output node and ground.

The small-signal current gain is the ratio � � <�� � , where � � is the current into the output
load resistor ( � .

The total current into the resistance pair formed by ( � and ( � is

� � � ��� � � � � � ��� � �

Applying the current divider relation,

� � � � � � ���2� � ( �( � � ( �
Dividing by � � , we get the current gain as

Current Gain �
� �
� � � � � � ���

( �( � � ( �

We know that the power gain is given by

Power Gain �
� �
� �
� �
� �

Substituting for the voltage gain and the current gain

Power Gain �
� �
� �
� �
� � �

�
��� , �� � � I � � ,�� ��� ,

� �
> � � �$��� ( �( � � ( �

Notice that we have substituted (�� ��� ( � as the effective load resistance in comput-
ing the voltage gain. Simplifying,

Power Gain �� � � ��� %
( %�� ( � � ( ��� %

�
( � � � � � ���2( � ��� ( �

ANS:: (a) ]	� � b � � K � @I � � ����
� � �
� � and � � � b � � K � @,�� � � �� �

� � �
(c) )��)�� � I

I � � ����
� � �
� � (d) � � �

��( � ��� ( � � < �0��� � ,�� ��� , �, � � and � � � ( � � � ( � (f)
�
���� � � � � ��� ,��,�� � , � and Power Gain �

� � � ��� % , +�� , � � , � � +
I, � � � � � I � , � ��� ,

�

Problem 8.14 Consider again the compound three terminal device formed by connecting
two BJTs in the configuration shown in Figure 7.37 (Problem 7.19) in the previous chap-
ter. This problem relates to the small signal analysis of this device. Assume that the two
BJTs are identical, each with � � ����� , and that each of the BJTs operates in the active
region.



258 CHAPTER 8. THE SMALL SIGNAL MODEL

a) Draw the active-region equivalent circuit of the compound BJT by replacing each
of the BJTs by the piecewise linear (large signal) model shown in Exercise 7.8.
Clearly label the � � , � � and

� �
terminals.

b) Develop a small signal model containing a single dependent current source for the
compound device by linearizing the circuit model in (a) and simplifying suitably.



Chapter 9

Capacitors and Inductors

Exercises

Exercise 9.1 Find the equivalent capacitance between the two terminals in each of the
networks in Figure 9.1.

Solution:

(a) 80<1S � �
(b) S � �
(c) S$<'8
� �
ANS:: (a) 80<1S
� � (b) S
� � (c) S$<'8
� �

Exercise 9.2 Find the equivalent capacitance or inductance for each case in Figure 9.2.

Solution:

(a) ��� � !�� � �
��� � � � � �

� �8 � �

(b) ��� � ! ��� % �
��� � ! ��� % �

� � = � % � C “p” = “pico” = � � � I %

(c) S � % � ! ��� �
S�� % � �$��� �

�*8 � =  % �

259
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(a)

(b)

(c)

1 µf 3 µf

1 µf

3 µf

3 µf

2 µf

1 µf

Figure 9.1:
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2 µF

(a) (b)

1 µF

   10 pF

1 µF

  30 pF

1 µF

10 pF 2 mH

1 mH

2 mH

1 µH

1 mH

1 µH

2 mH

(c) (d)

(e) (f)

Figure 9.2:
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(d) ��� � � �1� � � 8'� �

(e) �.� � �$��� � �5�e= ���1� �

(f) �.� � ! �G� �
�1� � �$��� � � ��� ���� �5<18'� �

ANS:: (a) 2/3 � F (b) 9.9pF (c) 38.5pF (d) 3mH (e) 2mH (f) 2/3mH

Exercise 9.3 Consider a power line on a computer backplane that is 2.5 mm wide, and
separated from its underlying ground plane by 25 � m. Let the permittivity and perme-
ability of the separating insulator be ����� and ��� , respectively. What is the capacitance and
inductance of the line per 10 cm of length?

If the voltage on the line is 5 V how much energy is stored in its capacitance per 10
cm of length? If the current through the line is 1 A how much energy is stored in its
inductance per 10 cm of length?

Solution:

Exercise 9.4 A current source drives a capacitor as shown in Figure 9.3. The source
current is as shown in Figure 9.4 for � �5� � � . If the capacitor voltage is ]�� at � � � ,
what was it at ��� � ?

+
C

-
v t( )I(t)

Figure 9.3: A current source driving a capacitor

Solution:

Exercise 9.5 A voltage source drives an inductor as shown in Figure 9.5. The source
voltage is as shown in Figure 9.6 for � �� � � . If the inductor current is � � at � � � ,
what was it at ��� � ?

Solution:
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t

I t( )

Io

T
2
---

Qo

T0

Figure 9.4: Source current

L

i t( )

V(t)
+
-

Figure 9.5: A current source driving an inductor

t

V t( )

V o

T
2
---

Λo

T0

Figure 9.6: Source current
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Exercise 9.6 Figure 9.7 shows four circuits, labeled “1” through “4”, together with the
waveform for the source in each circuit. The figure also shows four branch-variable wave-
forms, labeled “a” through “d”, that could correspond to the branch currents � or branch
voltages � labeled in the circuits. Match the branch variable waveforms to the appropriate
circuit and source waveform.

t

i

+

t t t

V I V I

V I
+

–
v

i

+V I
+

–
v

t t t t

(2) (3)(1) (4)

(a) (b) (c) (d)

Figure 9.7: Source current

Solution:
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Problem 9.1 A voltage source is connected in series with two capacitors as shown in
Figure 9.8. The source voltage is ] ����� �  � + � ��� , as shown. If the current � and voltage� are given by � �����.� S ��� � ����� and ������� � � � + � ��� , again as shown, what are � I and

� % ?

+

–
t

V t( )

5V

V t( )

i

v

C1

C2

+

t

i t( )

t

v t( )

1V4 µC

Figure 9.8:

Solution:

Problem 9.2 A current source is connected in parallel with two inductors as shown in
Figure 9.9. The source current is � ����� � S ��� � < �4+ ����� , as shown. If the current � and
voltage � are given by � ����� � ����� � < � + ����� and ������� �-� = 8 �*+ � ��� , again as shown, what
are � I and � % ?

I t( )

t

I t( )

400
A
S
----

i

L1 L2

+

–

v

t

i t( )

100
A
S
----

t

v t( )

1 V

Figure 9.9:

Solution:

Problem 9.3 A current source drives a series-connected capacitor and inductor as shown
in Figure 9.10. Let � ����� � � � � ���3� � ����+ � ��� , and assume that the inductor and capacitor both
stored no energy prior to � � � .

Determine the voltage � for � 
 � .
Is there any relation between � � , � , � and � for which � is constant for � 
 � ? If so,

state the relation and determine � .
Solution:
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I t( )
C

L

+

–

v t( )

Figure 9.10:

Problem 9.4 A voltage source drives a parallel-connected capacitor and inductor as
shown in Figure 9.11. Let ] � ��� � ] � �����3� � ���\+ � ��� , and assume that the inductor and
capacitor both stored no energy prior to ��� � .

Determine the current � for � 
 � .
Is there any relation between ] � , � , � and � for which � is constant for � 
 � ? If so,

state the relation and determine � .

+V t( )

i t( )

Figure 9.11:

Solution:

Problem 9.5 A constant voltage source having value ] drives a time-varying capacitor as
shown in Figure 9.12. The time-varying capacitance is given by � � ���'� � K � � I ������� � ��� .
Determine the capacitor current � � ��� .

Solution:

Problem 9.6 A constant current source having value � drives a time-varying inductor as
shown in Figure 9.13. The time-varying inductance is given by � � ��� � � K � � I ������� � ��� .
Determine the inductor voltage ������� .

Solution:
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V + C t( )

i t( )

Figure 9.12:

I

+

–

L t( )vt

Figure 9.13:

Problem 9.7 Consider the parallel plate capacitor shown in Figure 9.14. Assume that the
dielectric is free space so that � � ��� .

Suppose the capacitor is charged to the voltage ] . Determine the charge and the
electric energy stored in the capacitor in this case.

The capacitor is disconnected from the charging source so that its stored charge re-
mains constant. Following that, its plates are pulled apart so as to double the distance
between them; that is, the gap separation is now �'- . For this new configuration, determine
the voltage across the terminals of the capacitor and the energy stored in the capacitor.
Explain how the stored energy changes.

Solution:

Problem 9.8 Figure 9.15 shows two capacitive two-port networks. One is a “ � ” network,
and one is a “T” network. For the � network, find � I�� and � % � as functions of � I�� and � % � .
For the T network, find � I � and � % � as functions of � I � and � % � .

How must � I�� , � % � and � ��� be related to � I � , � % � and � � � for both networks to
have the same terminal relations?

Solution:

Problem 9.9 Figure 9.16 shows two inductive two-port networks. One is a “ � ” network,
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E E

E

E

q

l

ε

+

-

+

-

+

-

+

-

+

++

-

v

Area A

q
i

Figure 9.14:

+

–

+

–

v1 p

i1 p i2 p

C1 p C2 p

C3 p

v2 p

+

–

+

–

i1T i2T

v1T v2TC3T

C1T C2T

(a) (b)

Figure 9.15: (a) a capacitive T two-port network, and (b) a capacitive � two-port network
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and one is a “T” network. For the � network, find � I�� and � % � as functions of � I�� and � % � .
For the T network, find � I � and � % � as functions of � I � and � % � .

How must � I�� , � % � and � ��� be related to � I � , � % � and � � � for both networks to have
the same terminal relations?

+

–

+

–

v1 p

i1 p i2 p

L1 p L2 p

L3 p

v2 p

+

–

+

–

i1T i2T

v1T v2TL3T

L1T L2T

(a) (b)

Figure 9.16: (a) an inductive T two-port network, and (b) an inductive � two-port network

Solution:

Problem 9.10 This problem examines in more detail why energy is lost when the switch
in Figure 9.17 closes. To do so, we examine the transient that occurs during the closure
of the switch. In preparation for this, let ��� � be the time at which the switch first begins
to close, and let � � � be the time at which the circuit reaches steady state. The charges
on the two capacitors prior to switch closure are given to be � I and � % .

Further, let � I � ��� be any function defined over the interval ��� � � � such that

� I ��� ��� � I
and � I � � � is the steady state charge on the capacitor given by

� I � � ��� � I
� I � � %

� � I � � % �

In this way, the function � I is an arbitrary transient connecting the initial and final charge
during the switch closure.

(a) Use the charge conservation relation

� I � ��� � � % ����� � � I � � %
to find � % in terms of � I for ��� � � � . Then, use the equation

: � � ���: � � � �����
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v1 C1 C2 v2

+

--

+
q2q1

Figure 9.17:

to determine � I and � % , again in terms of � I for ��� � � � . Finally, use the equation

� ������� � �������

to find � I and � % , also in terms of � I for ��� � � � . The entire transient is now described
in terms of the arbitrary function � I .

(b) During the transient, the difference between � I and � % must appear across some el-
ement or elements within the circuit. KVL requires this. For example, it could appear
across the wiring resistance or the switch, or a combination of both. In any case, energy
is lost as a current passes through this voltage difference. If we consider the voltage dif-
ference to be ��� I ( � % � , as opposed to its opposite, then it is � % that passes into the positive
terminal of this difference. Why?

(c) The product � % � � I ( � % � is the power dissipated during the transient. Determine this
power in terms of � I for � � � � � .

(d) Integrate the power found in the previous part over the interval ��� � � � to find
the energy lost during the transient. Also, show that the energy lost is equal to the energy
difference in

� �"� � � ��� ( � �"� � � ����� ��
� I � %

� I � � %
� � I

� I
( � %

� %
� %

Remarkably, the energy lost is independent of the interior details of the function chosen
for � I . Since these details are equivalent to the details of the loss mechanism, it is apparent
that the amount of energy lost is independent of how it is lost.

Solution:
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First-order Transients

Exercises

Exercise 10.1 Using superposition, determine the current � I ����� for the network shown in
Figure 10.1. The network is at rest for � � � .

i1(t)

vS (t) +
-

1 H

3 k iS(t)

iS(t)vS(t)

1 mA1V

t t

Ω

Figure 10.1:

Solution:

The inductor first acts as an open circuit and eventually becomes a wire:

� 
 ��� initially: � I � ��� � � (open circuit)
finally: � I � ��� � b

� � � �� � � � � ����� � �
� mA

Assume � � ����� source points down.

� I � ��� � � � � � "$-a]2"$- +D��� � � � � � � ��"$- ]2"$- +3� ( � � � "e-;] "$- +D��� � � � ���
� I � ���'� S$<'8 �0�6( � � � ��� � � � � �

� � � <�( ���<'8'� �
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ANS:: � I �������
�
�
�2�6( � � ��� �\� �

for � 
 � ; � �^I
�
� �

Exercise 10.2 Find and sketch the zero state response for � � � in Figure 10.2. � � is a 10
mA step at � � � .

vR(t)iS 100 Ω 10 mH
+

-

iL(t)

Figure 10.2:

Solution:

t
0.5ms

iL t( )

Figure 10.3:

� �3����� � � initially

� �4�-���'� �
finally

� �"������� ��� �0�6( � � � ��� � � � � �

� � � <�(5� � = �G� �

ANS:: � � ����� ����5� � � ��� � �
; � � � = � ms

Exercise 10.3 In the circuit in Figure 10.4, � � ��� � � ��� � A, � � � � � second, zero
otherwise. At time � � � , the voltage �5` �  volts. What is �'` at time � � (�� second?
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i(t) 10 µf

+

-

vC

Figure 10.4:

1s

5V

slope 10=

2s

-5V

-1s
t ondssec[ ]

volts[ ]vC t( )

Figure 10.5:

Solution:

�
�
� � !

: �
�: �

�
�
� � � �

�
�� ��� for � � � � � �9���0� �;:

�
�
� � � �

�
� a constant, otherwise, when � � � �

Therefore,
�
�
� � � (�� second � � ([ 5]

ANS:: -5 volts

Exercise 10.4 In the circuit in Figure 10.6, the switch is closed at time � � � and opened
at � � � second. Sketch �'`������ for all times.

Solution:
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100 µf

+

-

vC(t)

+

-
11 V 1 k

10 kΩ

Ω

Figure 10.6:

1s
time

10e

t–
τ2
-----

10V

0

10 1 e

t–
τ1
-----

–
 
 
 

vC t( )

Figure 10.7:
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Assume �'` � � for � � � . When the switch is closed at ��� � , �5` rises from � to

��� ! ���0W
���0W � �9W � ��� Volts with � I � � ��W ���1���5W � ! �

� I � � = � �'� �

When the switch is opened, �5` falls exponentially back to zero with � % � ���0W4! � �� �9���0� �;:

Assuming �'` �*� for � � � , when the switch is closed at � � � , �5` rises from 0 to
10V with � I � � I � � = � �'� � ; When the switch is opened, �5` falls exponentially back to
zero with � % �-� second.

Exercise 10.5 Find and sketch the zero-input response for � � � in each network in
Figure 10.8 for the given initial conditions.

i
+

-
1kΩ1µF

v(0) = 6 V

1kΩ

v 1 kΩ1 mH

1 kΩ

i(0) = 6 mA

i
1 kΩ1 mH

1 kΩ

Switch opens at t = 0

+

-
6 V

+

-
1 kΩ1 µF v

+

-
6 V

Switch opens at t = 0

(a) (b)

(c) (d)

Figure 10.8:

Solution:

(a)� � � �9W ���1��W � ! � �  ����
���
�#� �'� � � ���
(b)
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t
2.5ms = 5

v

τ

6

Figure 10.9:

t
10   s = 5

i

τ

6mA

µ

Figure 10.10:
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� � � < �2��W ���1�9W ���5� ���
� � ���.!���� � � � � � � ���
(c)

t
5ms

v

6V

Figure 10.11:

����� ��� �� � ( ! � ��2��W 6 � �2� � � ��� ��� �
�#� �'� � � ���
(d)

t

i

6mA

5   sµ

Figure 10.12:

� � � � � � @ b � K �IKMKMK � � �'�
�

� � � < ��W � �����
� � � = �����5� � � ���
ANS:: (a) � ��5� � � ��� , � �  ���� ��� (b) � � ��� > � � � � � � � � ��� , � � � �"� (c) � � �5� � � ��� ,� ���� � (e) � � � � > ��� � � � � � � ��� , � � �����
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Exercise 10.6 Find and sketch the response for � � � in each network in Figure 10.13.
Assume that the input is as shown for � � � , and assume an initial zero state (in other
words, show the zero state response).

+

-
10 mH 1 µF

vA = 1 V, constant

100 Ω

v

iB = 1 µA, constant

10 kΩ

iD = (10-6)e-10 t

vA

vC = 10e-10 t

(a) (b)

(c) (d)

i
+
- iB

1 mH

1kΩ

vC

i
+
-

3

+

- .1 µF
viD

3

Figure 10.13:

Solution:

(a)

t
0.5ms

10mA

i

Figure 10.14:

i:

final value: b �IKMK � � � �'�
�

initial value: �



279

� ����'� � �2�6( � � � ��� �� � � <�(5� � = �G� �
(b)

t
1s

V

1V

slope
1V
1s
-------=

Figure 10.15:

� � �-��� � � � 	 )	
�

]� � I��
�` ! : ��� �

(c)

9.93mA

6.9   sµ

i

t

Figure 10.16:

�'`�( ���������a( � ! 	 �
	
� � �

(1) ���������'` ����
� � � IKMKMK � � ���'@ ��� 	

�
	
� � � � � P � � � �\�	�� � �GR � � � � � ��� ��� � � �

� P � � � �\�!	G� � � R � � � � IK L �

Assume � � � � ��� ��� � � � in the form � � � � � ��� ��� � � � � � � � IKMKMK �

	
� � � � � � � ��� � �

	
� � (�������� � � � IKMKMK �

Now plug � � � � ��� ��� � � � into (1): � ����0<���� �
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Now use the initial condition � �����'� � to find
�

:

� � � � � IK @ � � ���
� � �

� � IKMKMK � � � when ��� � � � � ( � �
��� �

� � ���
� ���

� � � IKMKMK � ( � � IKML N � �
(d)

t

V

Figure 10.17:

��� � @ � � IKMKMK � � �
: �
: � �

�
���0W

���'� � IKMKMK � ��������0] �
: �
: �

�4� � � � IKMKMK �
� � � �

homo- ge-
neous solu-
tion

� � ! � !�� � IKMKMK �� ��� �

particular
solution

� factor included since forcing � � homogeneous �
Plug in particular solution to find � ���� . If � � � ��� � , then

� � � .
� ����.! � �5( ���������

ANS:: (a) � � �2� � � % � �0�6( � � IK 
 � � (b) � � � � where � � ��] <�� (c) � �
IK� � � � � � IK � � ( � � IK L � � (d) � ������\� � IK

� �
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R
+

-
viS C

Figure 10.18:

Exercise 10.7 For the current source shown in Figure 10.18, assume � � consists of a
single rectangular current pulse of amplitude � K amps and duration � K seconds.

a) Find the zero-state response to � � .

b) Sketch the zero-state response for the cases:

i) � K � � ( �
ii) � K � ( �

iii) � K � � ( �

c) Show that for � K � � ( � , (the case of a short pulse), the response for � � � K
depends only on the area of the pulse � � K � K � , and not on � K or � K separately.

Solution:

a) � : final value resulting from pulse � � K !�(
initial value � � (assumed zero state)

� � � � � K ���#� � K !�( �2�B( � � � ��� � ; � � ( �
When the pulse stops (at � K �$� ), exponential decay occurs in � ,
with the initial value � � K !�( � � ( � � � � �

, ` � and final value � � .

� � � K ���#� � K !�( �2�B( � � � � �
, ` � � � � � � � � � �

, `

b) i) � K � � ( �
For � K � ( � , � reaches max value since the pulse is sufficiently long.

ii) � K � ( �
� K � ( � : Here the pulse is not long enough for � to exponentially rise all the
way to � K !�( . ] only reaches 63% of its maximum before decaying.
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t
to

V

Io R⋅

Figure 10.19:

t

V

Io R⋅

to RC=

Io R 0.63( )⋅

Figure 10.20:

t

V

to

Io R⋅
10

-------------

Figure 10.21:
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iii) � K � � ( �
Here the exponential rise is very short, since the pulse is short

c) In case (iii), we see the output � for a constant pulse input is triangular, or ramped;
nearly the integral of the input, i.e. proportional to the area under the input curve.
� � ��<�( � � 	 )	

�
� K !�( � ��� ( � 	 )

	
�

�

�` � ), ` � 	 )
	
�

As ( � becomes larger � � � K � , our equation can be approximated as
: �
: � �

� K
�

� �4� � � �
K � K < �

since � <�( � C � when ( � is large.

ANS:: (a) For � � � � � K , � � ( � K � �6( � � � � , ` � , and for � � � K , � �
( � K � �6( � � � � �

, ` � � � � � � � � � � ,
`

Exercise 10.8 Identify the state variable in each network in Figure 10.22. Write the cor-
responding state equation and find the time constants.

C

(a) (b)

1 µF

(c) (d)

R L

R

i0
+
-v0

1 kΩ+
-vC

1 kΩ

1 mH 1 kΩ+
-v0

1 kΩ

Figure 10.22:

Solution:
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(a)
� K � ] <�( � �

: ]
: �

State variable: ]
Time constant: ( �

(b)
� K � ��!�(�� �

: �
: �

State variable: �

Time constant: � <�(

(c) � K ( �1`
������� � �

: �'`
: � �

�'`
� �����

State variable: �'`
Time constant:  ���� ���

(d) � K ( � �
� ����� � � � �

� �
�������

or, � K
������� �

� �
�������

: � �
: � � � �

State variable: � �

Time constant: � ���

ANS:: (a) ] , time constant ( � (b) � , time constant � <�( (c) �0` , time constant 500 � s
(d) � � , time constant � � s

Exercise 10.9 In the circuit in Figure 10.23, ��� ��� �  mV for � � � � � seconds, and
zero otherwise. At time � �*S seconds, � � ���'� � A. What is � ����� at time ��� (�� second?

Solution:

When � � � � � ,
� � � � !

: �
: �
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L = 1 mH

+

-
v(t)

i(t)

Figure 10.23:

1

2
slope 5=

 2-1
t s[ ]

A[ ]

 3  4 s

7

i t( )

Figure 10.24:

� � � � �
�
�  ! �

Graphically, � �\(���� �5� �

ANS:: 2A

Exercise 10.10 Identify appropriate state variables for the network in Figure 10.25 and
write the state equations.

C L+
-vs

R1 R2

Figure 10.25:

Solution:

State variables: � �DT �'`
] � ( �1`
( I

� � �F( �1`( %
( �

: �1`
: � � �
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�1`Z( � �#( % ( � � � �: �1`
: � ( � � ! ( %

�
(
: � �
: � � �

ANS:: State variables � � , �'` . State equations: b
� � ) d, � � ) � � ) d, +

( � 	 ) d
	
� � � , and

	 ) d
	
� ( � � ! , +� ( 	 )

�

	
� � �

Exercise 10.11 In Figure 10.26, ( I � ��W 6 , ( % �5�5W 6 , � ����
� � . The driving voltage��� �-� for � � � . Assume � � is a 3-volt step at � �
� . Make a sketch of �0` ����� for � � � .
Be sure to label the dimensions of the voltage and time axes and identify characteristic
waveform shapes with suitable expressions.

C
+
-vS

R1 R2

+

-

vCvS
0 t 0<( ),

3 V t 0≥( ),



=

Figure 10.26:

Solution:

t

2V

5 τ⋅ 33ms≈

vC t( )

Figure 10.27:

� � � ( I ����( % � ! � �
���
8 � �
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�'` : final value
�1` �*8/! ( %

( I � ( %
� �5]

Initial value � � �1` �5� �0�6( � � � ��� �� � ���8 � �

ANS:: �'` � � �0�6( � � � ��� � , for � � % K� ms

Exercise 10.12 Identify state variables and write appropriate state equations for the cir-
cuit in Figure 10.28.

+
-vS

R1 L1-M L2-M

M R2

Figure 10.28:

Solution:

State variables: � � I T � � % T � �
(1) � � I � � � % � � �

(2) ]
�
� ] � I � � � I !�( I (7] � � �

�
: �

�: � � � � I ( �5�
: � � I: � � � � I !�( I ( ]�� � �

(3)

]
�
� ] � % � � � % !�( % � �

�
: �

�: � � � � % ( �5�
: � � %: � � � � % !�( % � �

ANS:: State variables: � � I T � � % T � � . State equations: (1) � � I � � � % � � � , (2) � 	
���
	
� �

� � I ( �5� 	
� � �
	
� � � � I !�( I ( ] �4� � , (3) � 	

���
	
� � � � % ( �5� 	

� � +
	
� � � � % !�( % � �
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Exercise 10.13 Referring to Figure 10.29, before the switch is closed, the capacitor is
charged to a voltage �5` �� volts. The switch is closed at � �� . Find an expression for�1`������ for � � � . Sketch �'` ����� .

+

-

R

vC (t)V = 1 V
+

-
C

Figure 10.29:

Solution:

t
5RC

2

1

vC

Figure 10.30:

� � ( ! �
�1` : � � ��� ��"$-3��"$- +3� � �5]

Y�� � "$-3�e"e- +3� ���]
�1` � Y�� � "$- �e"e- +3��� � � � � � ��"$-3�e"e- +3�4( Y�� � "e-���"$- +3��� � � � ��� �-� �7� � � ���

ANS:: �'` � ��� � � � ���
Exercise 10.14 Find the time constant of the circuit shown in Figure 10.31.

Solution:
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1 µF

1 kΩ

iS(t) +
-

1 kΩ

1 kΩ vS(t)

Figure 10.31:

Use the Thévenin Equivalent taken about the capacitor terminals to find ( ��� .

Time constant � � � (���� ! �
(���� ��������

� � ������� ! �� ���� �

ANS:: � ���� �
Exercise 10.15 A two-input RC circuit is shown in Figure 10.32. (Parts a, b, and c are
independent questions).

0.5 µF

iI(t) +
-

1 kΩ

1 kΩ vI(t)

2 kΩ

+
-vO

0.5 µF 1.5 µF

1.5 µF

Figure 10.32:

a) You should realize that the “bridge” of capacitors can be replaced by a single ca-
pacitor in this problem. What is the value of the single equivalent capacitor?

b) Consider operation with � �������/� � and � ��� ����� � for � 
 � . The voltage � ������� is
known to be 1 volt at a time � � � . Determine � � � ��� for all � � � .

c) A different constraint is that sources � ������� and � ��� ��� are zero for � � � and that� � ��� � � � . Sources � ������� and � ������� undergo step transitions of +1 mA and +1 volt
respectively at time � � � . Determine � � � ��� for all time.

Solution:
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a) � ��� ���<1S � � � 80<1S � � � ��� �

b) � K ����� �� !�� � � ���� ���� �
c) � K ����� � � for � � �
� K ����� ��G� � �eI� � � �'W 6 � � ��] �$I% � � ��]��1- � , final value

� K ����� � � �6( � � � ��� � ; � � ��� � , for � � �

ANS:: (a) � ��� � ��� � (b) � � ��� � , � K ����� � � !�� � � ��� (c) � K ����� � �2�2(J� � � ��� � ;� ���� � , for � � �

Exercise 10.16 In the circuit in Figure 10.33, ( I � ��W 6 , ( % � �5W 6 , and � � 8
� � .
Assume initial rest conditions (zero initial state), and assume that � I has a 6-volt step at� � � . Find � % ����� for � � � . Sketch and label.

R2v1
+
- v2

R1
C

+

-

Figure 10.33:

Solution:

t
0.045 seconds

4V

v2 t( )

Figure 10.34:

� % : initially �
, +, � � , +
!��0]-�JS$]
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finally � �� � � �5W �$��W � 8
� � � �'� �
� % � ��� �*S � � � ��� ; � � �1� � , � � �

ANS:: � % � ��� �JS�� � � ��� ; � � �1� � , � � �

Exercise 10.17 Consider the circuit shown in Figure 10.35. Sketch and label � � ����� for� I � ��� a step as shown in Figure 10.36. Assume � � � � for � � � .

R1i1(t) vO4ib C
+

-

ib

Figure 10.35:

I

t

i1

Figure 10.36:

Solution:

t
R1 C⋅

I1 R1⋅
5

---------------

vo t( )

Figure 10.37:

� K : initially � �

finally �$� K !�( I �
�

� , �
�

� K � ��� �
�

� , �
�
� �6( � � � ��� �



292 CHAPTER 10. FIRST-ORDER TRANSIENTS

vtest

itest

ib

Ri 4ibt

Figure 10.38:

� � ( ��� ! � �
, � `
�

( ��� � b � ������ ��� ��� �

� � � b �������, �
� � � R � ( S � b � �����, � � ( b ����� �, � � �
( ��� �

, �
�

ANS:: � K � ��� �
�

� , �
�
� �B( � � � ��� � , � � , � `�

Exercise 10.18 For the circuit shown in Figure 10.39, find the characteristic equation and
the zero-input response assuming that the capacitor was initially charged to 1 volt. Label
your graph.

R
vI(t) +

- vO(t)

4R

C

+

-

Figure 10.39:

Solution:

*Characteristic equation:

� � � �'` �  �( � !
: �'`
: �

*zero input
� K � ��� : initially � ��]��1- �

finally � �
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t

1V

25 R C⋅ ⋅

vo t( )

Figure 10.40:

� �  �( �

ANS:: � � � �1` �  �( � ! 	 ) d
	
� , � K ����� initially 1V, finally 0V, time constant  �( �

Exercise 10.19 The excitation function for all four of the circuits shown in Figure 10.41
is:

��� ����� � � T � � �
��� ����� � ��� volts T5� 
 �

For each of the circuits, select the time function on the right that corresponds in mag-
nitude and shape to the output, � � ����� . Assume that all capacitors and inductors have zero
initial states, (the appropriate state variable is zero for � less than zero). In no matching
response exists, say so and explain briefly. All responses are made up of “straight lines”
and “exponentials”. You may choose a time function more than once. (Note that part (d)
shows an op-amp circuit. Op-amps will be covered in later chapters).

Solution:

(A) C � K � ���'�-���0] � �B( � � � ��� � ; � � ($! �
(B) C � K � ��������0] � ,, � , � �2�6( � � � < � � ; � � ( ! �
(C) C � K � ��� : finally � ���5] ; initially � �
� K � ��� � ��� � �6( � � � ��� � ; � � � <�(
(D) C b

�, � � 	 b �	 �
� � � ] K � � IK, ` !0� , within the linear region of the op. amp.

Therefore,

(A) 3
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vS(t) +
- vO(t)

R

C
+

-

Response number ______

vS(t) +
-

vO(t)

R

2C
+

-
R

Response number ______

vS(t) +
- vO(t)

L

R
+

-

Response number ______

C

R

vS(t) -
+ +

-

-10 V

+10 V

Response number ______

Op-amp saturation at +10 V

vO(t)

10 V

t

vO(t)

10 V

t
vO(t)

10 V

t

vO(t)

-10 V

t

vO(t)

10 V

t

vO(t)

5 V
t

vO(t)

5 V
t

vO(t)

10 V

t

(a)

(b)

(c)

(d)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

vO(t)

5 V

Figure 10.41:
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(B) 7

(C) 3

(D) 4

ANS:: (A) � K ����� � � �0] �2� ( � � � ��� � ; � � ($! � , (B) � K ������� ���0] � ,, � , � �2�B( � � � < � �
; � � ( ! � , (C) � K ����� �� � �2�B( � � � ��� � ; � � � <�( , (D) � K � � IK, ` �

Exercise 10.20 An RC network is shown in Figure 10.42. The voltage � and the current� are constant for all time. Prior to � � � , the circuit is in equilibrium with the switch
closed. At time �/� � , the switch is opened, and it is then closed some time later. The
waveform in Figure 10.43 is observed for �0` � ��� .

iv +
-

vC(t)

2 kΩ

1 µF+

-

1 kΩ
1 kΩ

2 kΩ

switch

Figure 10.42:

vC(t)

2 V

Switch open Switch closed

Time constant 1

(Final value)V1

Time constant 2

t

τ τ

Figure 10.43:

What are the value of � I , � % , and the final value ] I ? NOTE: The figure may not be to
scale.

Solution:� I � ��� �� % � ��<��1� �
] I �!Y�� � "$- �e"e- +3�����5�5]��1- ���
ANS:: � I ���� � , � % ��9<��1� � , ] I ��Y�� � "$-3�e"$-H+3�����5�'] �.- ���
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Exercise 10.21 In the two following cases in Figure 10.44 the input � � � ����� � ���'+ � I ����� ,
a 10 volt step I starting at time � � � . Give for each case

1 MΩ

1 µf

+
-vIN(t)

+

-

vOUT(t)

(a)

1 mH500 Ω

+
-vIN(t)

+

-

vOUT(t)

(b)

500 Ω

Figure 10.44:

a) The time constant of the circuit.

b) an analytic expression for the signal � ��� � ����� as a function of time.

c) A labeled sketch of the output signal � ��� � ����� as a function of time. Be sure to label
the time and voltage scales.

Solution:

a) (i) � � �2��� 6 �0�2��� � ������������ �;:

(ii) � K � � � � � � ��� ; � ����9����� � :
b) (i) � � �����

(ii) � � � � ����� �  #�2�6( � � � ��� � ; � ����"�
c) See Figures 10.45 and 10.46.
�
Recall that the notation ��� ����� represents an impulse at time

�
. The notation �
	 ����� represents the function

that results from differentiating the impulse � times, and the notation ���	 ����� represents the function that
results from integrating the impulse � times. Thus �� � ����� represents the unit step at time

�
, ���� ����� the

ramp, and � � ����� the doublet at time
�
. The unit step �� � ����� is also commonly represented as � ����� , and the

unit impulse � � ����� as � ����� .
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t

10V

5 seconds

vo t( )

Figure 10.45:

t

5V

5   sµ

vout t( )

Figure 10.46:
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ANS:: (a) (i) � � ���9���0� �;: (ii) � K � � �5� � � ��� ; � � ���9����� � : (b) (i) � � ����� (ii)� K �������  #�2�6( � � � ��� � ; � �� ���
Exercise 10.22 In each of the following cases, find by inspection and give

i) an expression for the time constant � ,

ii) a sketch of the signal versus time,

iii) an analytic expression for the signal in terms of � and any other necessary parame-
ters.

a) Referring to Figure 10.47, find � � ��� for � � � given � � � � ����� � K .

L

i

R1

+

-
vR2

(a)

Figure 10.47:

b) Referring to Figure 10.48, find � % ����� given � I ��� � � ��� � K <�� .

L1
i1

I0

R

L2

i2
b)

Figure 10.48:

c) Referring to Figure 10.49, find ������� for � � � given that the switch is moved from 1
to 2 at � � � .

Solution:

a) � K ����� � ( , � , + � �, � � , +
�!� � � ��� �

� � �

, � ��� , +
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c)

C2

V0
R1 C1

R2
v
+

-

1

2
+

-

Figure 10.49:

b) (1) � � �$� I � � %
(2) � I ( � � I 	

� �
	
� � � % 	

� +
	
�

So, � I �������
�
�% � �

�
�
� �
�

+
�
, since � I ����� � � �

�
�% .

From (1), � % � � � ( � I C � % � � (
�
�% � �

�
�
� �
�

+
�

� � � I � � %
(

c) b � b �, +
� ), � � � I 	 )	 �

� � % 	 )	
� � �

Homogeneous solution:

� � � � � � � ��� T � � ( I � ( %
� � I � � % ��( I ( %

Particular solution:

� � �
] � ( I
( I � ( %

Apply initial condition: ������� � � �J] �GT then

�4�$� � � � � �
] �

( I � ( %
� ( I � ( % � � � ��� � � � � ( I � ( %

� � I � � % ��( I ( %

ANS:: (a) � K � ��� � ( , � , + � �, � � , +
�!� � � ��� � , � � �

, � ��� , + (b) � % � � � (
�
�% � �

�
�
� �
�

+
�
, � � � � � � +,

(c) �#� b �, � � , +
� ( I � ( % � � � ��� � � � � , � � , +� ` � � ` +�� , � , +
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R
+

-
vCvI C

+
-

Figure 10.50:

t

vCvI

tτ

Figure 10.51:

Exercise 10.23 For the circuit in Figure 10.50, with no charge on the capacitor at � �-� ,
given that if � � � � ��+

� I ����� then �'` � � � ��� ( � � � � � � � � ��� � + � I � ��� . Note that + � I �����
represents a unit step at ��� � .

Find:

a) �1`������ when the input is the same as above but �5`������ � ���J] K .
b) �1`������ when �'` ��� � � � and � ������� � � +

� I � ��� . Note that + � I ����� represents a unit step
at � � � .

c) �1`������ for � 
 � when �'`�� � ��� � and

� ��� ���'�
��� ��
� � � �
� � ��� � � �� � � � �

Solution:

a)
�
�

( �
�
: �
�: � �

� �
( �

� Homogeneous solution: � � � � � � � � , `

For (a), assume a trial particular solution in the form � � � � I � � � % , since the input
is � � � � �"! + I ����� . Note that

�
in the homogeneous solution above is different from�

in the expression for � � .
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Plug into equation to find:

� I � � � % � ( ( � � � particular solution is � � � � ! � ( ( � �

Now apply the initial condition to complete the solution

�
�
� � � � � � , ` � � � ( ( � �

to find
�

.

�
�
����� � ��� ] K

therefore
� � ] K � ( � �

�
�
� ��] K � ( � � � � � � � , ` � � � ( ( � �

or, � � � � � � � ( ( � � � �!] K � � !�( � �\� � � � ,
` � !9+

� I ����� (a)

b) Here the particular solution is � � � � , so applying the initial condition, we find:

�
�
� � �2�6( � � � � , ` � (b)

c) � � ����� � � � �
�
�
����� � ��� � � � ( ( � � � � ( � � � � � , ` , “initial value” for � 
 �
�
�
��� C � ��� � � , “final value,” for � 
 �

Therefore, for � 
 � ,

�
�
����� � � � � � � � � ( � ( � � � ( � � � � � , ` � ( � � �3� � � � � � � � , `

�
�
����� � � � � � � ( � �!� �

� � , ` ( ��� �,� � � � � � � � , ` (c)

ANS:: (a) � � � � � � �a( ( � ��� �!] K � � ( � � � � � � ,
` � +
� I � ��� (b) � � � � �2� (#� � � � , ` � (c)�

�
����� � � � � � � ( � �!� �

� � , ` ( ��� � � � � � � � � � , `

Exercise 10.24 A digital memory element is implemented as illustrated in Figure 10.52.
Sketch the waveform at the output of the memory element for the input signals shown in
Figure 10.53. Assume that the switch is ideal and that the memory element has a 0 stored
in it initially.

Solution:

See Figure 10.54
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dOUTdIN

Store

CM

*

Figure 10.52:

t

dIN

Store

dOUT

Figure 10.53:

t

dIN

Store

dOUT

Figure 10.54:
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Problems

Problem 10.1 Figure 10.55a illustrates an inverter � 
 ] � driving another inverter � 
 ] � .
The corresponding equivalent circuit for the inverter pair is illustrated in Figure 10.55b.�

, � , and � represent logical values, and � � , �� , and �'` represent voltage levels. The
equivalent circuit model for an inverter based on the SRC model of the MOSFET is de-
picted in Figure 10.56.

INV1 INV2

(a)

A B C

vA

+

-+-
+
- vB

vC

VS VS

RL RL

(b)

Figure 10.55:

a) Write expressions for the rise and fall times of � 
 ] � for the circuit configuration
shown in Figure 10.55. Assume that the inverters satisfy the static discipline with
voltage thresholds ] � �4� ]	� � �

b
� and ] � � �J]	� � � ] � .

Hint: The rise time of � 
 ] � is the time � � requires to transition from the lowest
voltage reached by � � (given by the voltage divider action of (�� and ( � � ) to ] �
for a ] � to 0V step transition at the input � � . Similarly, the fall time of � 
 ] � is
the time ��� requires to transition from the highest voltage reached by � � (that is,] � ) to ] � for a 0V to ]�� step transition at the input � � .

b) What is the propagation delay � � 	 of � 
 ] � in the circuit configuration shown in
Figure 10.55, for ( � � � ��W , (�� � ����( � � , � � � �� � � , ]�� �  5] , ] � �-��] , and] � �J80] ?

Solution:
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VS

vIN
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RL

vOUT

vIN V T≥

VS

vIN

CGS

RL

vOUT

vIN V T<

Figure 10.56:

a) For �� going from low to high:
��� � ] � � ��] � , � 
,

� 
 � , � ( ]����\� � � ���
� � � R � � ( � ��� � b

� � b
�

b
� � b

�
� � 
� � 
 � � �

� � � (�� � � �

For �� going from high to low:
��� � ] � , � 
,

� 
 � ,�� � �!]���( ]�� , � 
,
� 
 � ,�� � � �

� ���
� � � � � � ( � � � � b � � b � � � 
� � 
 � �

�

b
� � b

�
� � 
� � 
 � � �

� � � � � � , � 
 , �,
� 
 � ,��

� � � R � � ( � � � � b
� � b

�

b
� � b

�
� � 
� � 
 � � �

� � � (�� � � � � � � � � � ( � ��� � b � � b � � � 
� � 
 � � �

b
� � b

�
� � 
� � 
 � � �

�� � � � � , � 
 ,��,
� 
 � ,��

b) � � 	
� � � � R � � � = � ���

ANS:: (a) � � � R � � ( � � � � b
� � b

�

b
� � b

�
� � 
� � 
 � � �

� � � (�� � � � , � � � � � �

( � � � � b � � b � � � 
� � 
 � �
�

b
� � b

�
� � 
� � 
 � �

� � � � � � � , � 
 ,��,
� 
 � ,�� (b) � � 	

� � = � ���

Problem 10.2 The inverter-pair comprising � 
 ] � and � 
 ] � studied in Problem 10.1
(see Figure 10.55) drives another inverter � 
 ]28 as illustrated in Figure 10.57a. Logically,
the series connected pair of inverters � 
 ] � and � 
 ] � function as a buffer, as depicted



305

in Figure 10.57b. The equivalent circuit of the buffer circuit driving � 
 ]28 is illustrated
in Figure 10.57c. For this problem, use the equivalent circuit model for an inverter based
on the SRC model of the MOSFET as depicted in Figure 10.56. Assume further that each
of the inverters satisfies the static discipline with voltage thresholds ] � � �J]	� �#� ] � and] � � � ] � � � ] � . Assume further that the MOSFET threshold voltage is ] � . (Note that
to satisfy the static discipline, the following is true: ] � � ] � � ] � ).

INV1 INV2 INV3

(a)

BUF

BUF INV3

(b)

INV1

vA

VS

+

-
+
-

+
-

+

-
vB vC

vD

VS
VS

INV2 INV3

RL RL RL

(c)

BUF

Figure 10.57:

a) Referring to Figure 10.57c, assume that the input to the buffer � � undergoes a step
transition from 0V to ] � at time � � � . Write an expression for � �'� ��� for � 
 �
for the step transition in � � . (Hint: See the fall time calculation in Problem 10.1a).
Sketch the form of � � for � 
 � .

b) Referring to Figure 10.57c, assume that the input to the buffer � � undergoes a step
transition from 0V to ] � at time �'�
� . Write an expression for �5`������ for � 
 � for
the step transition in � � . (Hint: Refer to the sketch of � � drawn in part (a). The
MOSFET in � 
 ] � stays on for � � 
 ] � , and turns off when � � � ] � ). Sketch
the form of �'`�� ��� for � 
 � .
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c) Write an expression for the rise time of the buffer for the circuit configuration shown
in Figure 10.57c. (Hint: Refer to the sketch of �0` from part (b). The rise time of the
buffer is the time �'` requires to transition from the lowest voltage reached by �$`
to ] � from the time the input � � makes a step transition from 0V to ] � . Note that
the rise time of the buffer includes the internal buffer fall delay, which is the time��� takes to transition from ]�� to ] � , and the additional time �5` takes to transition
from its lowest voltage to ] � ).

d) Referring to Figure 10.57c, assume that the input to the buffer � � undergoes a step
transition from ] � to 0V at time � �5� . Write an expression for � �'����� for � 
 � for
the step transition in � � . Sketch the form of �� for � 
 � .

e) Referring to Figure 10.57c, assume that the input to the buffer � � undergoes a step
transition from ] � to 0V at time �'�
� . Write an expression for �5`������ for � 
 � for
the step transition in � � . (Hint: Refer to the sketch of � � drawn in part (d). The
MOSFET in � 
 ] � stays off for � � � ] � , and turns on when � � 
 ] � ). Sketch
the form of �'`�� ��� for � 
 � .

f) Write an expression for the fall time of the buffer for the circuit configuration shown
in Figure 10.57c. (Hint: Refer to the sketch of �0` from part (e). The fall time of
the buffer is the time �'` requires to transition from ] � to ] � from the time the input� � makes a step transition from ] � to 0V. Note that the fall time of the buffer is
the sum of two components: (1) the internal buffer rise delay, or the time � � takes
to transition from its lowest voltage to ] � and (2) the additional time �5` takes to
transition from ]�� to ] � ).

g) Compute the rise time and the fall time for the buffer assuming that ( � � � ��W ,(�� �-����( � � , � � � �� � � , ]�� �  5] , ] � �-��] , ] � �5�'] , and ] � � 80] .

h) What is the propagation delay � � 	 of the buffer when the buffer output is connected
to a single inverter using an ideal wire as shown in Figure 10.57c?

i) Notice that unlike the delay calculation in Problem 10.1, we needed the value of ] �
to obtain the buffer delay. Why was it necessary in the case of the buffer?

j) An approximate value for the buffer delay can be obtained by doubling the individ-
ual inverter delay. Estimate the buffer delay by using the inverter delay computed
in Problem 10.1b. What is the percentage error in the value of this estimated delay
as compared to the accurate buffer delay computed in part (i) of this problem?

Solution:

a) ��� � ] � , � 
,
� 
 � ,�� � �!]���( ]�� , � 
,

� 
 � ,�� � � �
� ��� � � � � � , � 
 , �,

� 
 � ,��
See Figure 10.58.
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t

vB

VS

VT

VS
Ron

Ron RL+
----------------------

tfallB

Figure 10.58:

b) The MOSFET in � 
 ] � stays on for � � 
 ] � , and turns off when �� � ] � . We
will call � � � � � � the time it takes for �� to reach ] � .

� � � � � � � ( � � � � � ��� � b � � b � � � 
� � 
 � �
�

b
� � b

�
� � 
� � 
 � �

� � � � � � � � � � � , � 
 ,��,
� 
 � ,��

� � � � � � � � : �'` � ] � , � 
,
� 
 � ,��

� � � � � � � � : �'` � ] ��� ��] � , � 
,
� 
 � ,�� (7] ��� � � � � � ��� � � � � � ��� � � ��� � � � R � � ( � � � �

See Figure 10.59.

c) � � � ] � � ��] � , � 
,
� 
 � ,�� (7] �1� � � � � � � � � � � � � ��� � � ���

� � � R � ` � � � � � � � ( � � � R � � � � b
� � b

�

b
� � b

�
� � 
� � 
 � �

� �
d) ��� � ] � � ��] � , � 
,

� 
 � ,�� ( ]����\� � � ��� � � ���
See Figure 10.60.

e) We will call � � � R � � the time it takes for �� to reach ] � .

� � � R � � � ( � � � R � � � � b
� � b

�
b
� � b

�
� � 
� � 
 � �

� �
�1` �J]�� , � 
,

� 
 � ,�� � ��] � (7] � , � 
,
� 
 � ,�� � � �

� � � � � � � � � � ��� � � � �
See Figure 10.61.
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Figure 10.59:
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tfallB

Figure 10.61:

f) � � � � � ` �$� � � R � � ( � � � � � � � � b � � b � � � 
� � 
 � � �

b
� � b

�
� � 
� � 
 � �

� �
g) � � � R � ` � ��= � � ���
� � � � � ` � � = � � ���

h) � � 	
� � � � R � ` � � = � � �"�

i) � 
 ] � switches when �� rises above or falls below ] � . Therefore the output of the
buffer is dependant on ] � .

j)
� %5%
��� � �!��" �\� : �9-H"0�#���� = � �"�
EF���.�����/�^I @ � % � � � I �� � I � � ���0E

ANS:: (a) ���$�^]�� , � 
,
� 
 � ,�� ���] � ( ] � , � 
,

� 
 � ,�� �\� �
� ��� � � � � � , � 
 ,��,

� 
 � ,�� (b) � �
� � � � � � : �1` � ] � , � 
,

� 
 � ,�� , � � � � � � � � : �1` � ] � � ��] � , � 
,
� 
 � ,�� ( ] ��� � � � � � ��� � � � � � ��� � � ���� � � R � � (�� � � � , � � � � � � � ( � � � � � ��� � b � � b � � � 
� � 
 � � �

b
� � b

�
� � 
� � 
 � �

� � � � � � ��� � � � , � 
 ,��,
� 
 � ,�� (c) � � � R � ` �

� � � � � �7( � � � R � � � � b
� � b

�

b
� � b

�
� � 
� � 
 � �

� � (d) ��*� ] � �*��] � , � 
,
� 
 � ,�� ( ] ��� � � � ��� � � ��� (e) �'` �

] � , � 
,
� 
 � ,�� � ��] �?( ]�� , � 
,

� 
 � ,�� � � �
� � � � � � ��� � � ��� � � � � , � � � R � � � ( � � � R � ��� � b

� � b
�

b
� � b

�
� � 
� � 
 � � �

� (f)
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� � � � � `5� � � � R � � ( � � � � � ��� � b � � b � � � 
� � 
 � � �

b
� � b

�
� � 
� � 
 � �

� � (g) � � � R � ` � � = � � ��� , � � � � � ` � � = � � ��� (h)
� �
	
� � = � � ��� (j)

: �9-H"0�#���� = � �"� , E?���.���.�/� ���0E

Problem 10.3 The circuit depicted in Figure 10.62 implements the logic function
� �

� � � � � � � � . Suppose the output of this circuit drives an inverter with a gate capac-
itance of � � � . Assume that the MOSFETs in the circuit have on resistance ( � � , and
that the high and low voltage thresholds are ] � � � ] � � � ] � and ] � � � ]	� � � ] �
respectively.

ZA

B

C

RL

D

E

VS

Figure 10.62:

a) What combination of logical inputs will result in the worst-case fall time for the
circuit?

b) Derive an expression for the worst case fall time in terms of ] � , (�� , ( � � , ] � and] � . Not all variables need appear in your answer.

c) Derive an expression for the worst case rise time.

Solution:

a) To make the rise time longest � must be its largest possible value. To achieve this,�
, � , � , and

�
must all be high and � must be low.
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b)
� � ] � � ,

� 
� ,
� 
 � ,�� � ��] � (7] � � ,

� 
� ,
� 
 � ,�� � � �

� ��� � � � �
� � � � � � ( � � � � � ��� � b � � b � 
 � � 

 � � 
 � � �

b
� � b

�

 � � 

 � � 
 � � �

� � � � � � � � � � � ,
� 
 , �� ,
� 
 � ,��

c) � � � R � is always � � �1(�� and the maximum voltage is always ] � , so the rise time is
based only on the minimum voltage level when low. The lowest low results when�

, � , and � are high, while � and
�

are low.

� � � R � � ( � � � R � ��� � b
� � b

�

b
� � b

� + � � 
+ � � 
 � � �
�

ANS:: (a)
�

, � , � , and
�

must all be high and � must be low (b) � � � � � �
( � � � � � � � � b � � b � 
 � � 

 � � 
 � � �

b
� � b

�

 � � 

 � � 
 � � �

� � � � � � � � � � � ,
� 
 ,��� ,
� 
 � ,�� (c) � � � R � � ( � � � R � ��� � b

� � b
�

b
� � b

� + � � 
+ � � 
 � � �
�

Problem 10.4 Figure 10.63 illustrates an inverter � 
 ] �
connected to another inverter

� 
 ] � by a wire of length - on a VLSI chip.

A B l C D

INVA INVB

Figure 10.63:

Figure 10.64 shows a lumped circuit model for the (nonideal) wire of length - in
a VLSI chip, and Figure 10.65 shows the equivalent circuit model for the inverter pair
connected by the nonideal wire based on the SRC model for the MOSFET. Assume that
the logic devices satisfy a static discipline with voltage thresholds given by ] � � � ] � �4�
] � and ] � � � ] � � � ] � , and that the supply voltage is ] � .

B C
l

CB
lR0

lC0

Figure 10.64:

Suppose � 
 ] �
is driven by a 0 to 1 transition at its input (denoted � � � � ) at time� �
� . Determine � � 	
� K � I , the propagation delay through � 
 ] �

for a 0 to 1 transition at
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VS
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Figure 10.65:

its input. Recall that by our definition � � 	
� K � I is the time taken by the input to � 
 ] � ,

namely � � � � , to fall from ]�� to ] � following the 0 to 1 transition at the input of � 
 ] �
.

Express your answer in terms of ] � , ] � , ( � � , � � � , the wire length - , and the wire model
parameters. By what factor does the delay increase for a 2 > increase in the wire length - ?

Solution:
� � � � � ] � , � 
,

� 
 � ,�� � ��] � (7] � , � 
,
� 
 � ,�� �\� �

� ���
� �
	
� K � I � ( � ��� � b � � b � � � 
� � 
 � �

�

b
� � b

�
� � 
� � 
 � �

� � � � �- � � � � � ��� �!-�( � � , � 
 ,��,
� 
 � ,�� �

Assuming the wiring terms dominate, a 2x increase in the wire length yields a 4x
increase in the delay.

ANS:: � � 	
� K � I � ( � � � � b � � b � � � 
� � 
 � �

�

b
� � b

�
� � 
� � 
 � �

� � � � �!- � � � � � � �0�!-�( � � , � 
 ,��,
� 
 � ,�� �

Problem 10.5 Figure 10.66 illustrates an inverter � 
 ] �
driving

�
other inverters � 
 ] �

through � 
 ] � . As in Problem 10.1, each of the inverters is constructed using a MOSFET
and a resistor (�� , and the inverters satisfy the static discipline with voltage thresholds] � � � ]	� � � ] � and ] � �-� ]	� �-� ] � . Model the MOSFETs using the SRC model
with MOSFET on resistance ( � � and gate capacitance � � � as in Problem 10.1 (see
Figure 10.56).

a) What are the rise and fall times for � 
 ] �
? (Hint: Sum the input capacitances of

each of the inverters into a single lumped value, and use your answer from Prob-
lem 10.1 to solve this part). How does the rise time increase as the number of driven
inverters

�
increases?
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INV1

INV2

INV3

INVn

INVA

Figure 10.66:

b) What is the propagation delay � � 	 of � 
 ] �
in the circuit configuration shown in

Figure 10.66, for ( � � � ��W , (�� � ����( � � , � � � �� � � , ]�� �  5] , ] � �-��] , and] � �J80] .

c) Now, assume that each of the wires connecting the output of � 
 ] �
to each of the

inverters � 
 ] � through � 
 ] � is nonideal as depicted in Figure 10.67. Model
each of the wires using the model shown in Figure 10.68. Assuming that the input
of � 
 ] �

makes a step transition from 1 to 0, find the rise time at the input of any
one of the inverters � 
 ] � driven by � 
 ] �

.

INVA

INV1

INV2

INV3

INVn

wire
 1

wire 2

w
ire n

wire 3

Figure 10.67:

RW

CW

Figure 10.68:

d) Compute the value of the rise time determined in part (c) for the following param-
eters: ( � � � ��W , (��
� ����( � � , � � �5� � � � , ( � � ������6 , � � � ��� � � ,



314 CHAPTER 10. FIRST-ORDER TRANSIENTS

] � �  '] , ] � � ��] , and ] � �*80] .

Solution:

a) � � � R � � ( � ��� � b
� � b

�

b
� � b

�
� � 
� � 
 � � �

� � � � � � �1(��

The rise time increases linearly with
�

.

b) � � � R � � � � = � ���

c) Refer to Figure 10.69.

+
-

vC

RW

+

-

i
RL

VS

CW+CGS

. . . n . . .

vA

Figure 10.69:

b
� � b �, � � � ��` � � � � � 	 ) d	 � � ��� � � � � � � �
] � � ��`3( � � �'` � ( � � ��� 	 ) d	 �

� �'`
Combining we have ] � � � � � � � ( � � ( � � � �1` �1`�������� ]�� , � 
,

� 
 � ,��
Solving this differential equation yeilds:
�1` �J]���� �!]�� , � 
,

� 
 � ,�� (7] �1� � � � ��� � � � � � � � � � �0� � (�� � ( � �

� � � R � � ( � ��� � b
� � b

�

b
� � b

�
� � 
� � 
 � � �

�
d) � � � R � � � � = ��� � ��� = 8�� ���

ANS:: (a) � � � R � � ( � � � � b
� � b

�

b
� � b

�
� � 
� � 
 � � �

� � � � � � �1(�� (b) � � � R � � � � = � ��� (c)

� � � R � � ( � ��� � b
� � b

�

b
� � b

�
� � 
� � 
 � �

� � � � � � � � � � � � � � (�� � ( � � (d) � � � R � ���� = � � � ��� = 8 �
���
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Problem 10.6 As can be seen from the answer to Problem 10.4, long wires have a serious
negative impact on the delay. One way to alleviate the wire delay problem is to introduce
buffers when driving long wires, as illustrated in Figure 10.70. Assume that the buffer is
constructed as depicted in Figure 10.57c using a pair of inverters identical to the inverters
in this problem. In other words, the input of a buffer has a capacitance � � � to ground,
and the output of a buffer has the same drive characteristics as an inverter output. For this
problem, you will ignore the internal delay of the buffer. (See Problem 10.2c and f for a
definition of the internal buffer delay). In other words, assume that a buffer driving zero
output capacitance has zero delay.

By introducing a buffer, the effective length of wire driven by either the inverter
� 
 ] �

or the buffer is -!<�� . For large - , given the nonlinear relationship between wire
length and delay, the sum of the delays in driving the two -!<�� wire segments is smaller
than driving a single wire segment of length - .

A B C D

INVA INVB

l
2
--- l

2
---

Figure 10.70:

a) Compute the propagation delay between the input of � 
 ] �
and the input of

� 
 ] � for the circuit in Figure 10.70. Assume that rising transitions are longer
than falling transitions at the output of either the inverters or the buffers.

Hint: The total delay from the input of � 
 ] �
to the output of � 
 ] � is the sum of

the following two quantities: (1) the propagation delay of � 
 ] �
driving the wire

segment of length -!<�� and a capacitance � � � corresponding to the gate capacitance
of the buffer and (2) the propagation delay of the buffer driving the second wire
segment of length -!<�� and a capacitance � � � corresponding to the gate capacitance
of � 
 ] � . (Remember, the buffer has zero delay when it is driving zero output
capacitance).

b) Figure 10.71 shows a circuit in which
� ( � buffers are introduced between � 
 ] �

and � 
 ] � . � 
 ] �
and each of the buffers drives a segment of wire of length-< � . Compute the propagation delay between the input of � 
 ] �

and the input of
� 
 ] � for this case.

c) Determine the number of buffers for which the propagation delay for the circuit in
Figure 10.71 is minimized.

Solution:
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A B C D

INVA INVB
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n
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B1
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n
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n
---… l

n
---

B2 ... Bn-1

Figure 10.71:

a) The delay is equivalent for each length of wire, so the total delay is twice that of
a single wire of length -<�� . Using the result from Problem 4 we can easily see the
following.

� �
	
� ( � � � � � b

� � b
�

b
� � b

�
� � 
� � 
 � � �

� � � � �% � � � � � ��� � �% ( � � ( � �

b) � � 	
� ( � � ��� � b

� � b
�

b
� � b

�
� � 
� � 
 � � �

� � �� �	 � � � � � ��� � �	 ( � � ( � �

c) The
�

that minimizes � � 	 we must also minimize
� � � � � �	 � � � � � ��� � �	 ( � � (�� � .

	
	 	
� � �	 � � � � � ��� � �	 ( � � (�� � � �

Solving for
� � � � � � ,

�

`
�` � ��,��

ANS:: (a) � � 	
�^( � � ��� � b

� � b
�

b
� � b

�
� � 
� � 
 � � �

� � � � �% � � � � � ��� � �% ( � � (�� � (b) � � 	
�

( � � ��� � b
� � b

�

b
� � b

�
� � 
� � 
 � �

� � � �� �	 � � � � � ��� � �	 ( � � (�� � (c)
� � � � ,

�

`
�` � ��,��

Problem 10.7 Figure 10.72 shows a buffer � �
� � driving a large load capacitor � � . The

buffer is built using an inverter pair as in Figure 10.57c. The width to length ratio of each
NMOS transistor in the buffer is � < � and the resistors have a value ( � . Accordingly,
the gate capacitance seen at the input of the buffer is given by � � < � � � � � . The buffer
satisfies a static discipline with voltage thresholds given by ] � � � ]	� � � ] � and ] � � �] � � � ] � . The supply voltage is ] � . Assume that the internal buffer delay (as defined
in Problem 10.2c) is zero. Assume that there is a 0 to 1 transition at the input

�
at time� � � .

a) Compute the propagation delay for the buffer � � � � driving the load � � for the
rising transition at the input

�
.

b) Now consider Figure 10.73. This figure shows the use of a second buffer with
larger transistors and smaller valued load resistors ( � � � ) interposed between the
first buffer and the load capacitor. Compute the propagation delay for the buffer
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BUF1

CL

A

W
L
----- RL,

Figure 10.72:

� �
� � in series with � �

� � driving the load � � for the rising transition at the
input

�
. Assuming that � � is much larger than the input gate capacitances of the

two buffers, and that � � � , is the delay computed in part (b) greater than or less
than the delay computed in part (a)?

BUF1

CL

A

BUF2

W
L
----- RL,

xW
L
-----

RL

x
------,

Figure 10.73:

c) Consider Figure 10.74. This figure shows the use of a series of
�

buffers in which
� � � � has transistors that have a width � times that of � � � �3( � and resistors that
are a factor � smaller than that of � � � � ( � . � is chosen such that � � is � times
the gate capacitance of � � � �

. In other words,
�

satisfies the equation:

� � � � 	
�

� � � �

Compute the propagation delay for the sequence of
�

buffers driving the load � �
for the rising transition at the input

�
. As before, assume that � � is larger than the

input gate capacitances of each of the buffers and that � � � .

BUF1

CL

BUF2 BUF3   ... BUFn

W
L
----- RL,

A

xW
L
-----

RL

x
-----, x

2W
L
-----

RL

x
2

-----, x
n 1– W

L
-----

RL

x
n 1–

------------,

Figure 10.74:
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c) Determine the value of � for which the propagation delay computed in part (b) is
minimized.

Solution:

a) � � 	
� ( � � � � b

� � b
�

b
� � b

�
� � 
� � 
 � �

� � � � (�� � �

b) � � 	
�� � � � � � � (�� � � �

, �
�

� � �
�

b
� � b

�

b
� � b

�
� � 
� � 
 � � �

�
Since � � � � � � � � � the first term in negligible. Since � � � the delay computed

in part (b) is smaller than the delay computed in part (a).

c) The result will be a sum of terms similar to those found in part (b).

� �
	
� ( 	�

� � I
� �
�

� � � �
(��
� �
���

�� ] � (7] �
] � ( ] � ��� , � 


��� , � 
 � ,��
��

d) The limitation on x is the maximum value such that the buffer can still achieve a
valid low.

] �#� ,
� 
,

� 
 � ,�� � �
� � �

, � � �� �,
� 
 � I � � �� � �

ANS:: (a) � � 	
� ( � ��� � b

� � b
�

b
� � b

�
� � 
� � 
 � �

� � � � (�� � � (b) � � 	
� � � � � � � ��( � �

� �
,��
�

� ���
�

b
� � b

�

b
� � b

�
� � 
� � 
 � �

� � (c) � � 	
� ( � 	

� � I � �
�
� � � � ,��

���
���

��
b
� � b

�

b
� � b

��� � � � 

� � � � 
 � � �

�� (d) � �
, � � �� �,

� 
 � I � � �� � �

Problem 10.8 In this problem, you will study the affect of parasitic inductances in VLSI
packages. VLSI chips are sealed inside plastic or ceramic packages and connections to
certain nodes of their internal circuitry (for example, power supply, ground, input and
output nodes) need to be extended outside the package. These extensions are commonly
accomplished by first connecting the internal node to a metallic “pad” on the VLSI chip.
In turn, the pad is connected to one end of a package “pin” using a wire that is bonded to
the pad at one end and the pin at the other. The package pin, which extends outside the
package, is commonly connected to external connections using a PC board.
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Together the package pin, the bond wire, and the internal chip wire are associated with
a non zero parasitic inductance. In this problem, we will study the effect of the parasitic
inductance associated with power supply connections. Figure 10.75 shows a model of our
situation. Two inverters with load resistors ( I and ( % and MOSFETs with width to length
ratios � I < � I and � % < � % respectively are connected to the same power supply node on
the chip that is labeled with a voltage � � . Ideally this chip-level power supply node would
be extended with an ideal wire outside the chip to the external power supply ] � shown
in the figure. However, notice the parasitic inductance � � interposed between the power
supply node on the chip (marked with voltage � � ) and the external power supply node
(marked with voltage ]�� ).

vP

C

VS

LP

R2
R1

A B = 0
W 1

L1
-------

W 2

L2
-------

t
t0

0 V

vA

5 V

Figure 10.75:

Assume that the input � is 0V at all times. Assume further that the input
�

has 0V
applied to it initially. At time � � � K , a 5V step is applied at the input

�
. Plot the form

of � � as a function of time. Clearly show the value of � � just prior to � K and just after� K . Assume that the on resistance of a MOSFET is given by the relation
�
� ( 	 and that

MOSFET’s threshold voltage is ] � � ]�� . Also assume that ] � �  '] .

Solution:
� � will be used to refer to the current through the inductor, from ] � to � � . For � � � K ,



320 CHAPTER 10. FIRST-ORDER TRANSIENTS

� � �J]�� . The following applies for � � � K .
� � � � � � � � � � � ��� � � � ��� ��=
� � � � � � K � � b

�

, � � 
 ��
�
,

�� � � �, � � 
 ��
�
,

�

� � � b
�

, � � 
 ��
�
,

�

� � ( � � � � � � � � ��� �
� � � � ( I �

� ��
�
( 	 �2� � � ] � �2�6( � � � � � � � � ��� �

See Figure 10.76.

t

vP

VS

to

Figure 10.76:

Problem 10.9 A certain box, known to contain only linear elements (and no independent
sources), is connected as shown in Figure 10.77.

v

+

-
i(t) Box

Figure 10.77:
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(s)
t20

i

3 5

1

2

(A)

Figure 10.78:

The current waveform � ����� has the form shown in Figure 10.78.

The voltage � is zero for all � � � , and is 1 volt for � � � � � . What is � during the
interval from � �5� to ���  ? Show one simple possibility for the circuit in the box.

Solution:

From � � � � � we see that � � 	
�
	
� �*� V. Keeping this relation we have � � (�� V

for � � � � 8 and � � (���<�� V for 8 � � �  .
See Figure 10.79.

1H

Figure 10.79:

ANS:: �4� (�� ���.- � for � � � � 8 and �4� (���<���� �.- � for 8 � � �  

Problem 10.10 As illustrated in Figure 10.80, a capacitor and resistor can be used to
filter or smooth the waveforms we derived from a half-wave rectifier, to get something
closer to a DC voltage at the output, for use in a power supply for example.

For simplicity, assume the voltage from source � � is a square wave. Assume that at� � � , � � � � , i.e., the circuit is at rest. Now assuming that ( is small enough to make
the circuit time constant much smaller than � I or � % , calculate the voltage waveforms for
each half cycle of the input wave. Find the average value of the output voltage � � for
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vOC
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-

vS
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-

R
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0

vS

t1 t2 t1

time

Figure 10.80:

� I �-� % . Sketch the waveforms carefully. For this choice of ( , it should be clear that no
useful smoothing has been accomplished.

Solution:
� � � � � I : � � � ] �2�6( � � ���d �
� I � � � � I � � % : � � � ]2� � � � � � � ���d
The average value of � � is ] <�� .

See Figure 10.81.

ANS:: � � � � � I : � � � ] � �6( � � ���d � , � I � � � � I � � % : � � � ]2� � � � � � � ���d

Problem 10.11 For ( much larger than the value used in Problem 10.10, so that the
circuit time constant is much larger than � I or � % , (so that the exponentials can be ap-
proximated by straight lines) calculate � � for the first half cycle of �� , and the second
half cycle. Sketch the result. Note that the solution does not return to the initial point of� � � � after one cycle, so is not in the “steady state” yet.

Solution:
� � � � � I : � � � ] �2�6( � � ���d �

For ( � � � % we can approximate � � as a straight line through the origin with slope
b, ` , so
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t

vO

VS

t1 t2 t1

. . .

. . .

Figure 10.81:

� � � ��� � b, ` �
Note that � � ��� I ��� b

� �, ` .

� I � � � � I � � % : � � � b
� �, ` � �

� � � � � ���d
Again, since ( � � � I we can approximate � � as a straight line with slope ( b

� �, ` I, ` �
b
� �� , ` � + , so

� � � ��� � b
� �, ` ( b

� �� , ` � +
��� ( � I �

See Figure 10.82.

ANS:: � � � � � I : � � � ��� � b, ` � , � I � � � � I � � % : � � ����� � b
� �, ` ( b

� �� , ` � +
��� ( � I �

Problem 10.12 You can see from Problem 10.10 that for circuit time constant � � � � I
and � % the capacitor voltage starts from some value ] � � 	 and increases when �� is positive;
then when �� is zero, � � starts at some value ] � " � and decreases. By definition, the
“steady state” of the circuit is when � � charges from ] � � 	 to ] � � � , then discharges from] � �

� to the same ] � � 	 . Assuming � I �$� % , sketch the � � waveform in the steady state.

Find the average value of the voltage � � . Problem 10.11 may give you a hint. Explain
your answer. It may help to consider the waveform � � to be made up of a DC voltage ] <��
and a symmetrical square wave whose values alternate between �X] <�� and (�] <�� .

Solution:

See Figure 12-12-a.
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t

vO

t1 t2

. . .
Vt1

RC
--------

V
RC
--------

Vt1

RC( )2
---------------–

Figure 10.82:

Let’s use the hint and think of � � as the sum of a DC term and a symmetric square
wave. For the DC voltage of ] <�� the capacitor acts like an open and � �5� ] <�� . The
symmetric square wave will charge and discharge the capacitor equally as the wave alter-
nates between ] <�� and ([] <�� , so the average value of � � from the square wave term is � .
Therefore the average value of � � for the total �� is ] <�� .

ANS:: ] <��

Problem 10.13 This problem (see Figure 10.83) involves a capacitor and two switches.
The switches are periodically driven by external clock controls at frequency Y K such that
first � I is closed and � % is open for the I% Y K , and then � % is closed and � I open for timeI% Y K .

You can assume that the clock drives are non-overlapping, that is, � I and � % are never
both closed at the same instant. � I opens just before � % closes, and � % opens just before
� I closes.

a) Find an effective average current � � by determining the average rate of charge trans-
fer over several clock cycles. Suppose � � � � ���	� � � where � � � ��� Y K . Sketch� � and � � on the same axes.

b) Examine your results for � � and � � from part a). They should be in phase, and the
amplitude of � � should be proportional to the amplitude of � � . This is a funny form
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Figure 10.83:

of ”resistor”. What is the ”resistor” value? Where does the energy supplied by � �
actually go?

COMMENT: Circuits of this type are now commonly used in a type of MOS inte-
grated circuit to make elements that simulate resistors with precisely controlled values.
The value of such elements is that precise control of capacitor sizes and clock frequencies
is easy in MOS integrated circuits, but precise control of resistor values is hard.

Solution:

a) When � I is closed and � % is open an amount of charge � is dumped onto the
capacitor and when the switches change the charge is removed.
� �
b
� ��� �
� � �

`
b �I � � �

� � �
b
� � � ] � Y K

For � � � � ���	� � � where � � � ��� Y K we can assume that the average current found
above is the actual current � � . � � � � � � Y K ���	� � � .
See Figure 10.84.

b) ( � ) �� � � I` �
�

The energy supplied by � � goes to charging the capacitor.

ANS:: (a) � � b
� � � ] � Y K (b) ( � )��� � � I` �

�
Problem 10.14 State variables can be used to describe the behavior of a wide range of
physical systems. For each of the examples below, try to determine:
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t

A

iA

vA

ACfo

Figure 10.84:

i) the number of state variables that are needed to describe the system, i.e., how many
state variables.

ii) Which physical variables can serve as state variables.

iii) The form of the state equations, including the identification of inputs.

iv) A simple circuit that can represent the system (an electrical analog).

Here are the examples:

a) A hockey puck leaves a hockey player’s stick with velocity � K and slides along the
ice until it comes to rest (assume a very large hockey rink, or a very weak shot).

b) Halfway through your shower each morning, the water temperature suddenly
plunges toward freezing, presumably because your roommates were up earlier and
showered first.

c) A simple pendulum starts from rest with an initial angular displacement
� K , and

rocks back and forth until it eventually comes to rest.

(COMMENT: Part (a) is easy if you concentrate only on the velocity, and is more
difficult in terms of the circuit analogy if you include the position as well. Parts (b) and
(c) lend themselves to excellent descriptions with circuit analogs.)

Solution:
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a) i) 1

ii) velocity of the puck ( � )
iii) 	 )

	
� � W�� (no inputs, only an initial velocity)

iv) See Figure 10.85.

Figure 10.85:

b) i) 1

ii) volume of hot water left in the tank ( ] )

iii) 	 b	 �
�^( � , where Q is a constant input (with units of volume/time) draining

the hot water from the tank.

iv) See Figure 10.86.

Figure 10.86:

See Figure 10.86.

c) i) 2

ii) angular displacement (
� I ) and its derivative (

� % )
iii) 	�� �

	
� � � %

	�� +
	
� � W I � I � W % � %

There are no inputs, only the initial angular displacement of the pendulum.

iv) See Figure 10.87.
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Figure 10.87:

ANS:: (a) (i) 1 (ii) � (iii) 	 )	
� � W � (b) (i) 1 (ii) ] (iii) 	 b	 �

� ( � (c) (i) 2 (ii) � )
� �\" and
its derivative (iii) 	�� �

	
� � � % , 	 � +

	
� �JW I � I � W % � %

Problem 10.15 Figure 10.88 shows the use of a filter choke.

LoadFilter choke

L

vS

i
+
- R

Source

Figure 10.88:

Assume that the waveform for � � for parts a) and b) is a series of square pulses starting
at � � � as shown in Figure 10.89.

Assume that the waveform for � � for parts c) and d) is a half-rectified sine wave as
shown in Figure 10.90.

a) Assume initial rest conditions at ��� � � , and assume that both � I and � % are long
compared to the time constant of the network. Determine each of the following:

i) Calculate the current waveform for the first cycle ( ��� � � � I � � % ), the second
cycle [ ��� I � � % � � � � � ��� I � � % � ], and a typical cycle after stead-state periodic
conditions have been reached.

ii) How many cycles are required to go from initial rest to steady-state condi-
tions?

iii) In steady state, determine the average load current, the amplitude of the vari-
ations in load current through one cycle, the average energy stored in the in-
ductor, and the ratio of this stored energy to the energy dissipated in the load
during one complete cycle.
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V0 -

0

vS

t1 t2 t1

Pulse continues

t1 t1 + t2 ... etc. t

Figure 10.89:

V0 -

vS

Continues

t3 2t3    ... etc. t3t3

Figure 10.90:
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b) Repeat part a) for the case where both � I and � % are short compared to the time
constant of the network.

c) Now assume that as a filter designer, you are faced with the problem of selecting
the inductor value to produce relatively smooth, ripple-free current in a load from
a voltage source with a strongly pulsating value, such as the half-wave rectified
sine wave shown. What method would you use to specify the inductor value with
which to achieve a specified maximum variation in load current? Why might the
specifications of a huge L value, much larger than might be needed, be a poor
design?

d) Try your hand at a design: assume that the source waveform is half-wave rectified
60 hz 115 V AC, the load resistor is 16.2 Ohms, and it is desired to have a load
current ripple of 5% of the average load current. Make reasonable approximations.

Solution:

For this entire problem, � � � <�( .

a) Since both � I and � % are long compared to the time constant, the circuit will reach
steady state during every cycle.

i) � � � � � I : � � ��� � b��, �2�6( � � � ��� �
� I � � � � I � � % : � � ��� � b��, � �

� � � � � � ���
Every other cycle will be identical to the first.

ii) It will only take one cycle to reach steady state. It will only take one cycle to
reach steady state.

iii) We will assume that for the majority of each cycle, i(t) is either � Amps or b��,
Amps. In this case:
� � ) � ����� � b �,

� �� � � � +
The amplitude of the variations is ] <�(�
� � � ) � � I% � � %� ) � �^I% �

� b �
� �, � � � � � +��

� %
� , � ) � � ( � %� ) � � � � � � ���

� � � � ���

� �

% ,

b) For this section we will approximate each exponential rise and decay as a straight
line, with a slope equal to the initial slope of the exponential.

i) � � � � � I : � � ��� � b �, I� � � b �
�
�

� I � � � � I � � % : � � ��� � b��
� �� ( b��

� �� � � � b��
� �� �2�6( � � � �� �

� I � � % � � � ��� I � � % :
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� �����'� I� � b��, ( b �
� �� � �6( � +� � � � � ( ��� I � � % ���

� � b��� ( b��
� �� � �2�B( � +� � � � � ( � � I � � % � �

� b �� � �6( � �� � � � � +� + � � � ( ��� I � � % ���
��� I � � % � � � � ��� I � � % � :
As a shorthand, lets say

� � b��� � �6( � �� � � � � +� + �
� �����'� � � I (

� � �� � � ( � ��� I � � % � � � � � I � �6(
� � � � % � � � � +��� �

For steady state:

Once the circuit reaches steady state, the value of the current will oscillate
between a high value ( � � ) and a low value ( � � ). Expressions for these two
values follow.
� � � b�� �

, � � �� � I � � �
� � � ��� ( � �� � %
We now have two equations and two unknowns. Solving yields:
� � � � �� � � �� � � � � � +�� � � � � +
� � � � �� � � � � � � + �� � � � � � +�� � � � � +
So in steady state � ����� rises and falls linearly between � � and � � .

ii) Notice in the expression labeled
�

in part b) i) a pattern begins to emerge:� ( � �� � � � � +� + . Since � I and � % are approximately equal when compared with� , we can approximate the final term in this expression as
� 	 � �� � 	 , where

�
is the cycle number. The circuit has reached steady state when this term is
reasonably close to zero. This is a subjective decision and is based on the
values of � I and � .

The circuit has reached steady state when
� 	 � �� � 	 is approximately zero, where

n is the cycle number.

iii) � � ) � ����� �
� � � � �
% � � �� � � � � � � ++ �� � � � � � +�� � � � � +

The amplitude of variations is � � ( � � � � �� � � � +� � � � � � +�� � � � � +�
� � � ) � � I% � � %� ) � where � � ) � is given above.

� , � ) � � ( � %� ) � � � � � � ���

� � � � ���

� �

% ,

c) We will approximate the sine wave as a square wave of decreased height, and so all
previous calculations apply.

For the difference seen between parts a) and b), we much choose L such that the
time constant is much larger that � � . From the calculation of variations in � � ��� from
part b) iii) we see that the ripple is inversely proportional to � . We should choose
L such that � is large enough to achieve the minimum ripple. If L is chosen to be
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larger than necessary, the current will take longer than necessary to reach steady
state.

d) � � � I@ K ��� � ��� = �1� �� � � � � � �� �
���

� � = �0 /�$� � �� � +�� �� � � � � � � �+ � �
� �� � � �+� � � �

K � K � �
� �
% �J8'S1�.� �

� � � (
��!8'S �1� ��� �2� � = ��6 ���  �=  '80 �

� �J �=  '80 �

ANS:: (a) (i) � � � � � I : � ����� � b �, �2� ( � � � ��� � , � � � � � I : � � ��� � b �, �2� (7� � � ��� � ,� I � � � � I � � % : � ����� � b��, � �
� � � � � � ��� (ii) 1 (iii) � � ) � � ����� b��,

� �� � � � + ,
�
� � � ) � � I% �

� b �
� �, � � � � � +��

� % ,
� � � � ���

� � � � ���

� �

% , (d) � �  �=� 180 �

Problem 10.16 Consider the circuit shown in Figure 10.91.

vC

+

-

vI
+
-

R
VP -

0

vI

t1 tt1

vR+ -

C

Figure 10.91:

a) Plot � , and �1` for several cycles of the indicated input waveform. Assume the RC
time constant is ����� I .

b) During the first several cycles, the �5` waveform does not repeat, but after some
time, �'` is cyclic. Find and sketch this cyclic waveform. Dimension key values.

Solution:

a) Since � � � I we can approximate �5` as a series of straight lines. We will define
these lines by their values at ��� � I T ��� I TO8�� I TG=�=�= .
�1`���� I ��� b �

IK � � � I � ��= ��] �

�1`�� ��� I ��� � = ��] � ( K � I b �
IK � � � I � � = � �0] �
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�1`��!8�� I ��� � = � �0] � � b � � K � K � b �
IK � � � I � � = � � ��] �

A pattern appears.

For even
�

, �'` � � � I ��� � = ���'` � � � ( ��� � I � ] �

For odd
�

, �'` � � � I ��������= ���1` � � � ( ��� � I � � � = ���1] �

Using this pattern, we can easily graph �0` , as seen in Figure 10.92. � , �
� � ( �'`
as graphed in Figure 10.92.

t

vC

VP

0.181VP

0.222VP

0.09VP

0.1VP

0.163VP

0.247VP

0.3VP

5t1 6t13t1 4t1t1 2t1 7t1

Figure 10.92:

See Figure 10.92. See Figure 10.93.

b) Once �'` becomes cyclic it will have some minimum value � � � � and some maxi-
mum value � � � � . From the pattern noted above, � � � � � � = ��� � � � . We also know
that the average value of �5` is ] � <�� (see Problem 12).
) � � � � ) � � 
% � b �

%
�
� � � � � � � � � ] �

�
� � � � � = ��� � � � � ] �

� �
� � � � � =� ����0] � and � � � � � � = S �1S$] �

See Figure 10.94.

Problem 10.17 Referring to Figure 10.95, for � � � � � , a ramp starting at � � � , find
expressions for � , and � � . Plot the waveforms.
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t

vC

VP

-0.181VP

-0.222VP

-0.09VP

-0.1VP

-0.163VP

-0.247VP

-0.3VP

0.819VP

0.778VP

0.91VP

0.9VP

0.837VP

0.753VP

0.7VP

5t1 6t13t1 4t1t1 2t1 7t1

Figure 10.93:
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t

vO

0.526VS

t1 t1t1

0.474VS

Figure 10.94:

vR

+

-

vI
+
-

R
Kt

0

vI

t

vL+ -

L

Figure 10.95:
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Solution:
� � is the integral of the inductor voltage in response to a step.
� � ��� � � �

� ��� � � � <�(
� � � ( � �/� � � ��� � � �
Note that a constant of integration was added, whose value was determined using the

initial condition of � � ��� ��� � .
� � � � � �2�6( � � � ��� �
� , �$� � ( � � ��� � ( � � �2�6( � � � ��� �
See Figure 10.96 and Figure 10.97.

t

vL

KL
R

-------

Figure 10.96:

ANS:: � � � � � �2� ( � � � ��� � , � , � � � ( � � �2� ( � � � ��� � � � � <�(

Problem 10.18 Referring to Figure 10.98, given an initial inductor current � � �����'�-��� �
,

find the expression for � , and � � . Plot the waveforms.

Solution:

We will solve this problem using superposition, treating the initial current through the
inductor to be a third independant source. For the entire problem, � � �

% , .

Contribution from ] � :
� � I ��� ��� �
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t

vR

Figure 10.97:

vR

+ -

IS R

K1t

VS

t

vL

+

-

L2R

VS
iL+

- 2R

K2t

IS

t

Figure 10.98:
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� � I � � � �% � �
� ��� : � � ( � � �% � � � ��� � � � �% � � � �% �2�6( � � � ��� �

Contribution from � � :
� � % ��� ��� �
� � % � � � % ( � �

� ��� : � � ( � % � ( � � � ��� � � % � ( � � % � (#� �6( � � � ��� �
Contribution from initial condition ( � �3� � � � ��� �

):
� � �� � � � � � � ���
� �
�
� � 	

� �
	
� � ( � � ��� � � � � � ���

� � � � � I � � � % � � � � � � � � �% � � % � (/�0�2�6( � � � ��� � � ( � � � � � � � � � ���
To find � , we will first find the Thevenin equivalent of everything to left of the induc-

tor and resistor of interest. The Thevenin voltage is ] ��<�� � � � ( . The Thevenin resistance
is ( . See Figure 10.99.

+
-

V S

2
------ I SR+

+

-
vR

R

vL

L

R

+ -

iL

Figure 10.99:

From this we can see the following relation for � , .
� , � I% ��] ��<�� � � �1(J( � � � � � � � ( where � � � is the inductor voltage due only to the

sources and � � is the inductor current due only to the initial conditions.
� , �� � �� � � + ,% � � ( �

� � �� � � + � ,% � � �B( � � � ��� � � � � � � ( � � � ���
See Figure 10.100 and Figure 10.101.

ANS:: � � � � � � �% ��� % � (/� � � ( � � � ��� ��� ( � � ��� � � � � � ��� , � , � � � �� � � + ,% � �;( � � � �� �
� + � ,% � �2�B( � � � ��� � � ��� � � ( � � � ���
Problem 10.19 The purpose of this problem is to illustrate the important fact that al-
though the zero-state response of a linear circuit is a linear function of its input, the
complete response is not. Consider the linear circuit shown in Figure 10.102.

a) Let � � � � � �1� �
. Let � I and � % be the responses resulting from voltages � I and � %

applied one at a time, where



339

t

vL

K1τ
2

--------- K2Rτ+

Figure 10.100:

t

vR

10-3R

Figure 10.101:
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e1

R = 5 kΩ

i+
-

+
-

e2

L = 1 mH

Figure 10.102:

� I � � � T � � �
���.���.- ���5T5� 
 � (10.1)

� % � � � T � � �
���.���.- ���5T5� 
 � (10.2)

Plot � I and � % as functions of � . Is it true that � % ����� � ��� I � ��� for all � 
 � ?

b) Consider now the zero-state responses due to � I and � % ; call them � � I � ��� and � � % ����� .
Plot � � I and � � % as functions of � . Is it true that � � % ����� � ��� � I � ��� for all � 
 � ?

Solution:

For the entire problem � � � <�(5� � = ��� .

a) See Figure 10.103 and Figure 10.104.

It is not true that � % ����� � ��� I � ��� for all � 
 � .

b) See Figure 10.105 and Figure 10.106.

It is true that � � % � ��� � ��� � I ����� for all � 
 � .

ANS:: (a) not true (b) true

Problem 10.20 In the circuit shown in Figure 10.107, the switch opens at � �-� . Sketch
and label � �"� ��� and � � ����� .
� I �  5] � % � 80] , ( I � �5W , ( % � 85W , � �*S5� �

Solution:� � �

, ��� , +
� 8�= 858�� .

� �3��� � �'� ] I <�( I � ] % <�( % �5��=  1� � � ��� � �*8 =� .� �

� �3��� C � ��� ] I <�( I �5��=  1� �
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t

i1

2mA

Figure 10.103:

t

i1

4mA

2mA

Figure 10.104:
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t

i1’

2mA

Figure 10.105:

t

i2’

4mA

Figure 10.106:
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v1

R1

+
- L v2

+
-

R2

Figure 10.107:

� �3����� � ��=  �� � � � ��� � � � �
� �3������� � 	

� �
	
� �

� � � � � ��� � � ] � � ( ( I � ( % � � � ��� � � ] � � ( �'= �'� � � ��� � ] �

See Figure 10.108 and Figure 10.109.

t

iL

3.5mA

2.5mA

Figure 10.108:

It is not true that � % � �����5��� I ����� for all � 
 � .

Problem 10.21 A two-input RC circuit is shown in Figure 10.110.

Consider operation with � ������� � � , � ������� � � for � 
 � . The voltage � � ����� is known
to be 1 volt at time ��� � . Determine � � ����� for all � � � .

A different constraint is that sources � ��� ��� and � ������� are zero for � � � and that � � �������� . Sources � ������� and � ������� undergo step transitions of +1 mA and +1 volt respectively at
time � � � . Determine � � ����� for all time.
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t

VL

-1.2V

Figure 10.109:

R1 = 1 kΩ

R3 = 2 kΩ

+

-
vO

0.5µF

0.5µF

0.5µF

0.5µF

iI(t) vI(t)
+
-

R2 = 1 kΩ

Figure 10.110:
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Solution:

The four � =  � � capacitors can be combined into one ��=� � � capacitor, which will be
called � .

For the whole problem � � ( � P � � ��=� 1� � .
First constraint (initial condition and no sources):
� � �J� � � ���
Second Constraint (sources and no initial condition):
� � � ��� � I �I � � � � �5W �2�6( � � � ��� � � I% � �B( � � � ��� � � �6( � � � ���
ANS:: First: � � �*� � � ��� , Second: � � ��6( � � � ��� � � � =  ms.

Problem 10.22 The neon bulb in the circuit shown in Figure 10.111 has the following
behavior: the bulb remains off and acts as an open circuit until the bulb voltage � reaches
a threshold voltage ] � � �0 5] . Once � reaches ] � , a discharge occurs and the bulb acts
like a simple resistor of value ( � ���W 6 ; the discharge is maintained as long as the bulb
current � remains above the value � �4� ���1� �

needed to sustain the discharge (even if the
voltage � drops below ] � ). As soon as � drops below 10 mA, the bulb again becomes an
open circuit.

90 V

R = 1 MΩ

v

i
+

-

+

-
C = 10 µF

Neon
bulb

Figure 10.111:

a) Sketch and dimension ��� ��� and � ����� , showing the first and second charging intervals.

b) Estimate the flashing rate.

Solution:

a) Charging ( � � ���5] ):�
�
� ( � � �2� � 6 � � ���
� � � � ��� �5=

�
� P � ��� � 	 � � ��� �2�B( � � � ��� � �
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Discharging ( � � � �'� �
):�

	
� ( � � � � I � � N I � �I � � � I � � ���
� � ����'� �

Note that when discharging � approaches ��� I � �I � � � I � �
� � � = Also note that � � � �

	
so the charging time is much longer than the discharging time.
�
	
� R � P � ��� � � �0 '� �

� ��� �
The minimum � when discharging is � � � 	 � � � � 	 <�( � ���'� � < ��W 6 ����0] .

See Figure 10.112.

t

v

65V

10V

90V

Figure 10.112:

b) Since the discharge time is so small in comparison to the charge time, we will only
consider the charge time.

After the first charging cycle, � � P � ��� � 	G� � ����� �2� ��( ��� �\� � � ��� � . The charging time,�
� is the amount of time it takes for � � P � ��� � 	G� to reach 65 V.
�
�
� ( �

�
��� � � K � @ �

� K � � ���5= �58 �5=
Therefore the flashing rate is once every 11.63 s.

ANS:: (b) ��< ���'= �58������

Problem 10.23 Because of the input resistance and capacitance of an oscilloscope, lab-
oratory observations of transients, such as the step response of the ( I ( � I circuit in
Figure 10.113 may have errors in them.
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vB
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-
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C1 C2
vA

+
-
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Displayed
on scope

Circuit being tested Scope input impedance

Figure 10.113:

a) Assuming that the effect of connecting the oscilloscope to the circuit under test is
to add ( % and � % as shown in Figure 10.113, find and sketch the step response that
will be observed at � � in the above circuit. Discuss the errors introduced by the
scope by comparing your result to what would be observed if the scope were ideal
( ( % C � T � % C � ). Assume zero initial state.

b) A common method of coping with the errors of part a) is to use a compensated at-
tenuator in series with the scope (see in Figure 10.114). For simplicity, we examine
what the compensated scope displays when it is connected directly to the unit step
without the ( I ( � I circuit of part a). Assume zero initial state before the step is
applied.

vB

+

-

R2

R3

C2
vA

+
-

Unit
step

Displayed
on scope

Compensated Scope input

C3

attenuator impedance

Figure 10.114:

i) What is �� immediately after the step is applied, i.e. at ��� � � ?

ii) What is �� as � C � ?

iii) Using your results, find � �'����� for all � .
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iv) What conditions on ( % T � % T ( � and � � must be satisfied in order that there be
no natural response component, i.e. no transient, in � �'����� ? What is �� ����� in
this case?

Solution:

a) � � � � I � � % � � ( I � ( % �
��� � � � , +, � � , +

�2�6( � � � ��� �
See Figure 10.115.

t

vB

VA
R2

R1 R2+
-------------------

Figure 10.115:

b) i) ��'��� � �'� �

ii) ���'��� C � � � � � , +, � � , +
iii) ���'����� � � �

, +, � � , +
� �6( � � � ��� �� � � � %

�
� � � � ( %

� (
�
� �� � % � � � �

, � , +, � � , +
iv) There will be no transients if � % ( % � � � ( � . In this case, �� ����� � � �

, +, � � , +

ANS:: (a) ��� � � �
, +, � � , +
�2� ( � � � ��� � , � � � � % � � � �

, � , +, � � , + (b) (i) ��'��� � � � � (ii)
��� � �[C � � � � � , +,�� � , + (iii) ��'����� � � �

, +, � � , +
� ��( � � � ��� � � � � � % � � � �

, � , +, � � , + (iv)
��� � ��� � � � , +, � � , +
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vI(t)
R

L
+
-

iL(t)

vI(t)

t

K1t

Figure 10.116:

Problem 10.24 The RL circuit shown in Figure 10.116 is driven with the ramp � ������� �
� I � , for � greater than zero, and � ��� ����� � T � � � .

a) Assuming � � ��� � � � � , sketch the current � � ����� . Also find an analytic expression
for � � ����� .

b) In some applications, such as generating a linear sweep for a magnetically deflected
cathode-ray tube, we want to make � �3����� a linear ramp as shown in Figure 10.117.

iL(t)

t

iL(t) = K2t

Figure 10.117:

Find a new input waveform � ��� ��� such that � �3������� � % � T � � � . Plot � ������� . Label all
values and slopes.

Solution:

a) � � � <�(
� �3� � � � � �
� �3� ���'� � � �, � �B( � � � ��� � : � � � � �, � � � �, � � � ��� ( � � �,
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� �3� ���'� � � �, ( � � �, �2�6( � � � ��� �
See Figure 10.118.

t

iL

Figure 10.118:

b) � � � � % �
� � � � 	

� �
	
� � � � %

� , � ( � � � ( � % �
� � �$� � � � , � � � % � ( � % �
See Figure 10.119.

ANS:: (a) � �"����� � � � �, ( � � �, �2� ( � � � ��� � � � � <�( (b) � � � � � � � , � � � % � ( � % �

Problem 10.25 For the RL circuit shown in Figure 10.120, sketch and label � , versus
time for � � � . Assume � �3� � � � � � � , and that � I is five times as long as the circuit time
constant.

Solution:

The until � � � I the input can be treated as a step of height
� < � I . During this time� , simply rises exponentially to

� < � I . The short pulse after � � � I will be treated as an
impulse of area

�
. Taking �/� � I to be our new �.� � and no initial state we have the

following.
� , � ( � 	

	
� �2�6( � � � ��� �'� ( � � � � � ��� � � ( � ��

�
� � � ���
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Figure 10.120:
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Add to this the initial condion that � , � � � �
�
�
� and we have � , � ( � �

�
�
� � � ��� .

See Figure 10.121.

t

vR

A
T1
------

4A
T1
-------–

Figure 10.121:

Problem 10.26 With the capacitor initially at rest ( �0`�� � � � � ) and disconnected, the
switch is closed to position (1) at time � � � in Figure 10.122.

a) Sketch the waveform �'` ����� for � � � . Label all relevant points on the figure and
calculate the time constant.

b) At a time � � � (at least five time constants later), the switch is thrown (instanta-
neously) to position (2). Sketch �5` ����� for � � � and label all relevant points on the
figure.

c) With ( I � ( % � ( � , is the time constant in part (a) greater than, less than or equal
to the time constant in part (b)?

Solution:
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vC(t)
+

-
R3

R1

CV
+
- R2

1 2

t = 0

Figure 10.122:

a) �1`������ �J] , +, � � , +
�2�6( � � � ��� �� � �

, � , +, � � , +
See Figure 10.123.

t

vC

V R2

R1 R2+
-------------------

Figure 10.123:

b) �1`������ �J] , +, � � , +
� � � ���� � � ( �

See Figure 10.124.

c) The time constant in part (a) is greater than the time constant in part (b).

Problem 10.27 For the circuit shown in Figure 10.125, sketch and label � , versus time.
Assume that � � � � I for a long time prior to � � � as illustrated in the figure.
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t

vC

V R2

R1 R2+
-------------------

Figure 10.124:

vI R
C

+
-

vR

vI

t

+

-

K3t

K1

K2

Figure 10.125:
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Note that this problem can be solved in a number of simple steps by breaking the prob-
lem down into parts and solving each part. There are several ways to do this breakdown,
all of roughly equal ease.

Solution:

For � � � , � � consists of a step of height � % plus a ramp of slope � � . We will use
superposition to solve this problem, treating the step, the ramp, and the initial condition
as three seperate inputs. Forthe entire problem, � � ( � .

Initial Condition:
� , I � ( �1` � ( � I � � � ���
Step:
� , % � � % � � � ���
Ramp:
� , � ��� � � �
� , � � � � � � �

� ��� : � � ( �
� � � � � ��� � � � � � � � � � �4( � � � ��� �

Total:
� , �� � % ( � I � � � � ��� � � � � � �4( � � � ��� �
See Figure 10.126.

t

vR

K3τ

K2 - K1

Figure 10.126:

ANS:: � , � � � % ( � I � � � � ��� � � � � �2�6( � � � ��� �
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Problem 10.28 You are given the RC circuit shown in Figure 10.127.

vI(t)

1 MΩ

+
- vO(t)

+

-

1 µF

Figure 10.127:

a) Suppose you observe that � � ����� is a triangular pulse, as shown in the sketch in
Figure 10.128. Find and draw the waveform � ������� which must be applied to produce
this output signal. Label times and magnitudes, and significant parameters of the
function.

vO  (V)

t (s)-10 10-5 5

-5

5

Figure 10.128:

b) Now the input signal is changed. You apply a ramp starting at � � � T � ������� ���+
� I � ��� , as the input signal � ������� . (Note that + � I ����� represents a unit step at ��� � .)

Sketch and label the output signal � � ����� for � � � �  .
c) Give an analytic expression for the output signal � � � ��� you sketched in (b).

Solution:

a) � � � ( � 	 )��
	
� � � �

� � � �  : � � �� � �
 � � � ��� : � � � (�� � �2����( ��� � �X( �
See Figure 10.129.
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Figure 10.129:

t

vO

4V

5s

Figure 10.130:
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b) See Figure 10.130.

c) � � ������� � � �6( � � � ��� � : � � � � � � � � ��� ( � �$� ( � �2�6( � � � ��� �� � ( � � ���
� � ������� � ( ��� � � �

ANS:: (a) � � � �  : � � � ��� � ,  � � � ��� : � � ��(����-�2���X( ��� � �2( � (c)� � ����� �$� ( ��� � � �

Problem 10.29 Consider the digital memory element shown in Figure 10.131. The volt-
age at the storage node with respect to ground is denoted � � . The figure also shows
a parasitic resistance ( � from the storage node to ground. This resistance will cause a
leakage of the charge stored in the memory.

The signal
�

is fed to an inverter and the inverter drives the input
:
� � of the memory

element. All inverters shown in the figure have a load resistor ( � and the on resistance of
the pulldown MOSFETs in each of the inverters is ( � � . Assume that the on resistance
of the switch driven by the Store signal is also ( � � . The supply voltage is ] � and the
threshold voltage for the MOSFETs is ] � . In doing this problem, assume that ( � is much
larger than either ( � � or (�� .

dOUTdIN

Store

CM

vMA

RP

Figure 10.131:

a) Suppose that a 0V to ] � step is applied at the Store input of the memory element at� � � . Sketch � � � ��� for � 
 � , assuming that � � ��� � � � � � , and that
�

is at 0V
throughout. Assuming that ( � � � � ( � , what is the maximum value attained by�
� ?
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b) Suppose, now, that a rectangular pulse of height ] � is applied at the Store input of
the memory element, and that

�
is at 0V throughout. The rising transition of the

pulse occurs at � � � and the falling transition at � � � . Determine the minimum
value of the pulse width � so that � � can charge up to ] � , where ] �� ] � ��
] � � , the high voltage threshold of the static discipline. Assume the following:�
�
����� � � � � ; ] � � ] � ; ] � � ] � ;

c) Let us now consider the case in which
�

is at ] � throughout, and � � � � � � � � ]�� .
Sketch � � ����� for � 
 � , when a 0V to ]�� step is applied at the Store input of the
memory element at ��� � . What is the minimum value attained by � � ?

d) Suppose, now, that a rectangular pulse of height ] � is applied at the Store input
of the memory element. The rising transition of the pulse occurs at � � � and the
falling transition at � � � . Determine the minimum value of the pulse width � so
that � � can discharge from ] � to ] � , where ] � � ] � � � ] � � , the low voltage
threshold of the static discipline. Assume as in (c) that

�
is at ] � throughout and

that � � ��� �
� �'� ]�� . Assume further that ] � � ] � and that ] � is greater than the
minimum value attainable by � � .

e) Suppose the memory element is storing a 1 (assume � � �^] � ) at ��� � and that
Store = 0. Assuming that no further Store signals occur, determine the period of
time for which the output (

: ��� � ) of the memory element will be valid. (Hint: the
output becomes invalid when

: ��� � switches from 1 to 0.)

Solution:

a) See Figure 10.132.
] �
Assuming ( � is much larger than (�� .

b) � � � 	 � ( � �
��(�� � ( � � � � �"� � ( b

�

b
�
�

c) See Figure 10.133.,
� 
,

� 
 � , � ]��

d) � � � 	 � ( � �
��( � � � , � 
 ,��,

� 
 � ,�� � ���3� b
� �

� � 
� � 
 � �
� b
�

� �
� � 
 � �

� b
�
�

e) ( � �
( � ���3� b

�
b
�
�

ANS:: (a) ]�� (b) � � � 	 � ( � �
� (�� � ( � � � ���3�2� ( b

�

b
�
� (c)

,
� 
,

� 
 � ,�� ]�� (d) � � � 	 �
( � �

��( � � � , � 
 ,��,
� 
 � ,�� � ��� � b

� �
� � 
� � 
 � �

� b
�

� �
� � 
 � �

� b
�
� (e) ( � �

( � ���3� b
�
b
�
�
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t

vM(t)

VS

t = CM(RL + RON)

Figure 10.132:

t

vM(t)

VS
Ron

Ron RL+
----------------------

t = CM(RON + RON||RL)

VS

Figure 10.133:



Chapter 11

Energy and Power in Digital Circuits

Exercises

Exercise 11.1 An inverter built using a NMOS transistor and a resistor ( � drives a capac-
itance � � . The power supply voltage is ] � and the on resistance of the MOSFET is ( � � .
The threshold voltage for the MOSFET is ] � . Assume that logical 0’s are represented
using 0V and logical 1’s using ] � volts.

a) Determine the steady-state power consumed by the inverter when a 0 is applied to
its input.

b) Determine the steady-state power consumed by the inverter when a 1 is applied to
its input.

c) Determine the static power and the dynamic power consumed by the inverter when
a sequence of the form � ��� � � ��� � !�!�! is applied to its input. Assume that signal
transitions (0 to 1, or 1 to 0) happen every � seconds. Assume further that � is
much greater than the circuit time constant.

d) Assuming the input in part (c), by what factor does the dynamic power decrease if
(i) � is increased by a factor of 2, (ii) ] � is decreased by a factor of 2, (iii) � � is
decreased by a factor of 2.

e) Suppose that the inverter must satisfy a static discipline with high and low voltage
thresholds ] � �� ]	� �� ] � and ] � � � ]	� � � ] � respectively. You are given
a MOSFET with on resistance ( � � and threshold ] � . Assume that ] � � ] � �
] � � ] � . Choose a value for (�� in terms of the other circuit parameters such that
the power consumed by the inverter is minimized.

361
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Solution:

a) The MOSFET is in cutoff and therefore acts as an open circuit - so in the steady
state, no current flows through it and therefore no power is consumed.

� R � � � 	 � � R �
� � � � K � �

b) The power can be calculated using the formula � � ] � , where ] is the supply
voltage, and � is the current that flows from supply to ground, which in this case
can be calculated using the formula ] � � ( . Therefore, the power is equal to b +, ,
where ( is the total resistance.

� R � � � 	 � � R �
� � � � I � b +�,

� 
 � ,��

c) The static power remains unchanged since in the steady state a capacitor acts as an
open circuit, providing a fundamentally identical system as before. Therefore the
static power is one-half the result derived in part B, because the circuit is only on
one-half of the time.

To calculate dynamic power, we use the circuit model shown in Figure 11.1.

VS

RL

RON

CL

Figure 11.1:

Since power is equal to energy change per unit time, the best way to calculate the
average total power (both static and dynamic) is to find the total energy dissipated
by each resistor per cycle, and divide by the total cycle length. Energy dissipation is
the integral of instantaneous power consumption, so we get the following equation:

� � � � � � � � % �
K
��] ��( �1`�� ��� � %

( �
: � � � % �

K
�1`������ %
( � 	

: � =

The function �5` ����� is shown in Figure 11.2
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vc(t)

t
V S

RON

RON RL+
------------------------

Vs

on off

τ RL RONCL= τ RLCL=

T 2T

Figure 11.2:

It consists of two exponentials with different time-constants, as shown. The inte-
gration is an exercise in elementary calculus, and results in the following:

� � � � � � � ] %� �
( � � � (�� �

]�%� ( %� � �
� (�� � ( � � � % =

If we divide through by the total interval � � , we get the following.

� � � � � � �
] %�

� ��( � � � (�� �
] � ( %� � �

��(�� � ( � � � % �
=

The static power is the first term, so the second term is the dynamic power. This
makes sense because if the capacitor were not there, the dynamic power consump-
tion would disappear.

� R � � ��� � � b +�% � , � � , � 
 �
T � 	 �\	

� � � � � b +�
, +� ` �� , � � , � 
 � +

�

d) i) � � � � � � 	 �\	
� I% � 	 �\	

ii) ] � � I% ]�� � � 	 �\	
� I� � 	 �\	

iii) � � � I% � � � � 	 �\	
� I% � 	 �\	

e) Power actually decreases with increasing (�� , so we can make (�� as large as pos-
sible without violating the static discipline. However, the problem arises when we
look at the dynamic behavior of the system - as (�� is made very large, the time con-
stant of the capacitor charging and discharging also becomes very large, making the
system very slow and therefore useless.
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ANS:: (a) � R � � � 	 � � R �
� � � � K � � T (b) � R � � � 	 � � R �

� � � � I � b +�,
� 
 � ,�� T (c) � R � � ��� � �

b +�% � ,�� � , � 
 �
T � 	 � 	

� � � � � b +�
, +� ` �� ,�� � , � 
 � +

� T (d) (i) halved, (ii) quartered, (iii) halved, (e) Maxi-
mize (�� while looking out for dynamic constraints.

Exercise 11.2 Determine Y for the functions given below. Express your answer in a
simplified sum of products form. (Hint: use DeMorgan’s laws).

a) Y � � ! �

b) Y � � � �

c) Y � � � �

Solution:

a) Y � � ! �

b) Y � � � �

c) Y � � � � � � ! �

ANS:: (a) Y � � ! � (b) Y � � � � (c) Y � � ! �

Exercise 11.3 Give a CMOS implementation (using NMOS and PMOS transistors only)
of the following logic functions. In doing these exercises, is the value of the on resistance
of the MOSFETs needed? Why or why not?

a)
� ! �

b)
� � �

c)
� � �

Solution:

a) See Figure 11.3

b) See Figure 11.4

c) � � � � � ! �
See Figure 11.5
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Figure 11.3:
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Figure 11.4:
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Figure 11.5:
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The value of the resistance is not needed, because by design CMOS implementation
satisfies the static discipline.

Exercise 11.4 Write a truth table and a boolean expression that describes the operation
of each of the digital circuits in Figure 11.6.

VS

A

B

A B

Z

C

C

(a)

VS

A

B

A B

Z

C

C

(b)

D

D

VS

A

B

A B

Z

C

C

(c)

D

D

VS

A

B

A B

Z

C

C

(d)

D

D

Figure 11.6:

Solution:

a)
� I � � � � �

b)
� % � � � � � �

c)
�
�
� � � � � � !�� � � � �

d)
� � � � � � � � !�� � � � �

a) See Table 11.4

b) See Table 11.1

c) See Table 11.1
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� � � � I
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

Table 11.1:� � � � � % �
�

� �
0 0 0 0 1 0 0
0 0 0 1 1 0 0
0 0 1 0 0 1 1
0 0 1 1 1 0 0
0 1 0 0 1 1 1
0 1 0 1 1 0 0
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 0 1 1
1 0 1 1 1 1 1
1 1 0 0 0 1 1
1 1 0 1 0 1 1
1 1 1 0 0 1 1
1 1 1 1 0 1 1
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d) See Table 11.1

Problems

Problem 11.1 This problem examines the power dissipated by a small digital logic cir-
cuit. The circuit comprises a series-connected inverter and NOR gate as shown in Fig-
ure 11.7. The circuit has two inputs, A and B, and one output, Z. The inputs are assumed
to be periodic with period � � as shown in the same figure. Assume that ( ��� for each
MOSFET is zero.

A B

VS VS

RL RL

CLCG

Z

t

t

A

B

0 V

5 V

0 V

5 V

T1
  T2

  T3

T4

Figure 11.7:
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a) Sketch and clearly label the waveform for the output Z for ��� � � � � . In doing so,
assume that � � and � � are both zero.

b) Derive the time-average static power consumed by the circuit in terms of ] � , ( � ,
� I , � % , � � and � � . Here, time-average power is defined as the total energy dissipated
by the gate during the period � � � � � � divided by � � .

c) Now assume that � � and � � are nonzero. Derive the time-average dynamic power
consumed by the circuit in terms of ] � , ( � , � � , � � , � I , � % , � � and � � . In doing so,
assume that the circuit time constants are all much smaller than � I , � % ( � I , � � ( � %
and � � ( � � .

d) Evaluate the time-average static and dynamic powers for ] �4�  V, ( � � ��� k 6 ,
� � � ����� fF, � � �� pF, � I � � ��� ns, � % �5����� ns, � � � 8���� ns and � � � ����� ns.

e) What is the amount of energy consumed by the circuit in 1 minute for the parameters
in part (d).

f) By what percentage does the total time-average power consumption drop if the
power supply voltage ] � drops by 30%?

Solution:

a) The waveform for the output Z for � � � � � � is given below in Figure 11.1.

The truth table: (see Table 11.2)

Table 11.2:� � �

0 0 0
0 1 0
1 0 1
1 1 1

b) Assuming ( � � � � , then: For � � � � � I only the first MOSFET is on, i.e.

� �
� � � �

�
� ] %�
(��

For � I � � � � % the first and the third MOSFET’s are on, i.e.

� �
� � � �

�
�5� ]/%�(��
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For � % � � � � � again only the first MOSFET is on, i.e.

� �
� � � �

�
� ] %�
(��

For � � � � � � � only the second MOSFET is on, i.e.

� �
� � � �

�
� ] %�
(��

Therefore, the time-average static power consumed by the circuit is given by

� �
� � � �

�
� ��� � � � I

� �
� ] %�
( � � ( � 	 � � � % ( � I

� �
� �'] %�
( � � � � � ( � %

� �
� ] %�
( � �

� � � ( � �
� �

� ] %�
(�� �

� ] %�
(�� � ( � I � � % � � �

� �
�

c) For � � � � � I the dynamic dissipation occurs while � � discharges, and � �
charges, i.e.

� ��� � � � � �
� � � ] %� � � � ] %�

� � I
For � I � � � � % the dynamic dissipation occurs while � � discharges, i.e.

� ��� � � � � �
� � � ] %�
� � � % ( � I �

For � % � � � � � the dynamic dissipation occurs while � � charges, i.e.

� ��� � � � � �
� � � ] %�
� � � � ( � % �

For � � � � � � � the dynamic dissipation occurs while � � , � � charges, and � �
discharges, i.e.

� ��� � � � � �
� � � ] %� � � � ] %�
� � � � ( � � �

Thus, the time-average dynamic power consumed by the circuit is given by

� ��� � � � � �
� ��� � � � I

� �
�

� � ] %� � � � ] %�
� � I � � � % ( � I

� �
�

� � ] %�
� � � % ( � I � �
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� � � ( � %
� �

�
� � ] %�
� � � � ( � % � � � � � ( � �

� �
�

� � ] %� � � � ] %�
� � � � ( � � � �

� ]/%�
� �
� � � � � � � �

d) Static:

� �
� � � �

�
� � � � �

] %�
( � � ( � 	

� ( � I � � % � � �
� �

�
�  �%
���?> ��� � � � �

(������ � ������� �����
����� �

� ��= � � �
Dynamic:

� � � � � � � �
� ��� � �

�
� �

� � � ] %� � � � ��] %� �
� �
�����?> ��� � � � �����F> ��� � I � !. % � �.! ��> � � � I % !9 % �

� � ��=� � �

e) � � � �
� � � R � � ��� � � � 	 �\	

� � � � � ����� �9��� �
� ��= � ����A

f) Since the power depends linearly on ] %� , 30% drop in ] � translates to a 51% drop
in the total time-average power consumption.

ANS:: (b) b +�,�� � � � � � � + � � 
� 
 � (c) b +�� 
 � � � � � � � � (d) � R � � ��� � � ��= � � � , � 	 � 	
� � � � �

� ��=  � � (e) ��= � �eA (f)51%

Problem 11.2 Implement the logic function
� � � � � � � � using NMOS transistors

alone. In other words, use an NMOS transistor in place of the pull-up resistor. Your
implementation must satisfy a static discipline with low and high voltage thresholds given
by ] � � � ]	� � � ] � and ] � �-� ] � �5� ] � , where � � ] � � ] � � ] � � ] � . ] � is
the power supply voltage. As your answer, specify the � < � values for the pullup and the
pulldown transistors.

For what combination of inputs does the circuit dissipate the greatest amount of static
power? Determine the static power dissipation for this combination of inputs.

Solution:
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VS

A B C

D

VO

Figure 11.8:

See Figure 11.8 for logic diagram.

Specify the � <�� values:

] � � ] � � � � <��-� � �
� � <��-� � � � � � � <��-� � 	

] � � ]�� �
I%
� � � � �

�	�
� � � � �

�	� � �

] �
] � �

�
I%
� � � � �

���
�� � � � �

���
�
�$�

� � <��-� � � �
� � < � � � 	

� � � � � �
] �
] � ( ���

Greatest power dissipated when total resistance is lowest. This occurs when all MOS-
FETS are on, i.e.,

� � � � � � � �� .
Static power dissipation:

� R � � ��� � �
] %�
( � � � �

] %�
( � � � %� ( � 	

ANS:: � R � � ��� � � b +�, �	� � +� , ���
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Problem 11.3 A circuit consists of 
 inverters, where 
 � � � . Each inverter is built
using a NMOS transistor and a resistor (�� . The power supply voltage is ] � and the on
resistance of the MOSFETs is ( � � . The threshold voltage for the MOSFETs is ] � .

a) Suppose we do not know how the inverters are connected to each other or to the
inputs and outputs of the circuit. How might you estimate the amount of static
power that the circuit is likely to consume?

b) Suppose it is known that the inverters are connected in series as one long chain.
Estimate the amount of static power dissipated by the circuit.

Solution:

a) To estimate static power, find all combinations of the circuit layout, and take the
average of the power output of the combinations of on-off.

b) On average,
�

% inverters will be dissipating power. So:

� R � � ��� � � 

� !

] %�
(�� � ( � 	

ANS:: (b) � R � � ��� � �
�

% ! b +�,�� � ,
� �

Problem 11.4 Consider the digital memory element illustrated in Figure 11.9. Assume
that the inverters are implemented using a pulldown NMOS transistor with on resistance( � � , and a pullup resistor (�� . The power supply voltage is ] � . What is the instanta-
neous power dissipated by the memory element when it stores a logical 1? What is the
instantaneous power dissipated by the memory element when it stores a logical 0?

dOUTdIN

Store

CM

*

Figure 11.9:
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Solution:

Instantaneous power dissipated:

– for logical 1:

� �
] %�

( � 	 � (��
– for logical 0:

� �
] %�

( � 	 � (��

ANS:: � � b +�,
� �
� ,�� for both

Problem 11.5 Give a CMOS implementation (using NMOS and PMOS transistors only)
of the following logic functions.

1. � � � � � !�� � � � �

2. � � � � � !�� � � � �

3.
� ! � ! � ! �

4. � � ! �-� � � ! �-�0� � ! � ! �
�

Solution:

1. � � � � � !�� � � � � See Figure 11.10(a)

2. � � � � � !�� � � � � See Figure 11.10(b)

3.
� ! � ! � ! � See Figure 11.10(c)

4. � � ! �-� � � ! �-�0� � ! � ! �
� = � � � �
��! � � � �
��! � � � � � �-� See Figure 11.10(d)

Problem 11.6

a) Express � in a simplified sum-of-products form given that � � � � � � � .

b) Implement the logic function � � � � � � � with an NMOS digital logic circuit
that obeys the static discipline defined by the low-level and high-level logic thresh-
olds ] � � � ]	� � � ] � and ] � � � ] � � � ] � , respectively. Assume the the supply
voltage is ]�� , and that the on-state resistance of the NMOS transistors is ( ��� . De-
termine the lowest value of the pull-up resistor ( � � for which the circuit will obey
the static discipline in terms of ( � � , ] � , ] � and ] � ; not all variables need appear
in your answer.
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VS

out

Y W

X W

Y X

W W

X

Y

W

X Y W

VS

out

A B C D

A

C

B

D

VS

out

A B

C D

A C

B D

VS

out

A B

C D

A C

B D

(a) (b)

(c) (d)

Figure 11.10:
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c) Implement the logic function � � � � � � � with a CMOS digital logic circuit.
Hint: make use of the result from Part (a).

d) Suppose that the NMOS and CMOS circuits above drive a capacitance � � . Assume
that the on-state resistance of both the PMOS and NMOS transistors is ( � � . For
both the NMOS and CMOS circuits determine the worst-case output rise time. For
the purpose of this problem, assume that the worst-case output rise time is the time
the output takes to go from 0 V to ] � . Sketch the form of the output for both the
NMOS and the CMOS circuit.

e) Suppose that the inputs are arranged such that � � � , � � � and � � � , and
that a 0V-to-5V square wave signal is applied to the input

�
. Assume the square

wave cycle time is � , and that � is large enough so that the output comes close to
its steady state value for both falling and rising transitions. Under these conditions,
compute the power consumed by the CMOS and NMOS circuits when driving the
capacitance � � load.

Solution:

a)
� � � � � � � � � � ! � � � � � � � � !�� � � � �

� � � � � � � � � � � � �

b) See Figure 11.11 for logic diagram

] � � ] � ! ��( � 	��( � 	 � ( � �
] �
�']�� ( � 	

�
�

��( � 	 � ( � �
��( � 	 ]��] � � ��( � 	 � ( � �

Smallest ( � � :
( � 	 �
�']��
] � ( ���

c) See Figure 11.12 for logic diagram

d) NMOS output rise time (worst-case):

� � ( � 	 � �
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VS

A B

C D

out

Figure 11.11:

VS

out

A C

B D

A A

C D

B B

C D

Figure 11.12:
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0 t

VH

NMOS

0 t

VH

CMOS

Figure 11.13:
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CMOS output rise time (worst-case):� �5��( � 	 � �

See Figure 11.13 for sketches

e) NMOS: Power consumed: Alternates between ] � !
�
+I � � + and ] � !JII � I

VS

Ron

Ron

Ron Ron

CL

Figure 11.14:

� � � �
� � 8 � ]���� % ($�

�
� ]���� % �

� � � � ] %� !
���
�����

CMOS: no power dissipated

ANS:: (a) � � � � � � � � � � � � � (b) ( � 	 � % b
�

b
�
( ��� (d) 
 � � � � � �( � 	 � � ,

� � � � � � � ��( � 	 � � (e) 
 � � � � � � � � ]�%� !XIMIIKMK , � � � � � � � � �



Chapter 12

Transients in Second Order Systems

Exercises

Exercise 12.1

a) Is the zero input response of the circuit shown in Figure 12.1 underdamped, over-
damped, or critically damped?

VS

R

+
+

-
L C

-
vC

R = 15 Ω L = 1 µH

C = 0.01 µF

Figure 12.1:

b) What is the form of the zero input response ( �5` ) for the same circuit? Make a rough
sketch.

c) Compare the envelope of the zero input response with the rate of delay of the zero
input response of the RC circuit in Figure 12.2:

How do they differ?

Solution:

381
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VS

R

++

-
C

-
vC

R = 15 Ω

C = 0.01 µF

Figure 12.2:

t

vC

“envelope”

e
αt–

Figure 12.3:
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a) 	 + ) d
	
� + � I, ` 	 ) d

	
� � I�5` � �

� ! � � I, `
� � % � I�'`

� � � � C UNDERDAMPED

b) �1` � � � � � � ! ���	��� �
	
! � �����

�
	
� 	 � � % ( � %

� ����� � � I � �
�
� �

� � � ���?> � �'@
� � 8�= 858F> � � @

c) (1) �1` in ( � circuit in zero-input case decays as � � � ��� �*� � � � , ` .

(2) �1` above in the RLC circuit decays with “envelope” as � � � � �*� � � � % , ` .

Therefore, the RC circuit zero-input response decays twice as fast as the RLC re-
sponse;
i.e. � , �5` �5� ! � , ` ;
RLC takes twice as long to decay.

ANS:: (a) � � � I, ` , � � % � I�5` , since � � � � , underdamped, (b) �'` �
�/� � � � ���	� � �

	
� ����� , � 	

� 	 � � % ( � % , � ���	� � � I � �
�
� � , � � � � � > ���1@ , � � 8 = 858?> ���'@ ,

(c) �1` in ( � circuit decays as � � � � ,
`

, while �'` in RLC circuit decays with “envelope”� � � � % , ` .

Exercise 12.2 For each of the circuits in Figure 12.4, find and sketch the indicated zero-
input response corresponding to the indicated initial conditions.

a) In Figure 12.4, find � % , assuming � I ���������] T � % ��� � � � .
b) In Figure 12.5, find � , assuming � ��� ��� � T ����� � ���]

c) Repeat (b), but with the resistor changed to  �6 .

Solution:

a) (1) ) �� � �-) � � ) +@ � � � I% � � � � 	 ) �
	
� � �

(2) � I ( � II � � � � 	 ) +
	
� ��������� � ( � % � � C � I � � % � I

�MKMKMK 	 ) +	 �
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vS

8 kΩ

+
+

- -
v1 v2

6 kΩ

1
24
------ µF

1
18
------ µF

+

-

Figure 12.4:

vS

1 mH

+

-
v 10 µF

+

-

i

100 Ω

Figure 12.5:

Plug (2) into (1), find
� % � � � � IKMKMK � � � � � � KMKMK �

Initial conditions allow us to find constants
�

and � :

� � � � � C from � % � � ��� �

� � � ( �8
� ( 8 � �� C from � I ��� � � � Volt

� � 8
�

� � ( 8
�

� % �
8
�
�!� � IKMKMK � ( � � � KMKMK � � ; � in seconds (a)
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b)
�2( �
����� � �

: �
: � ( � � �

( �4� �
: �
: � C

: �
: � � ( �

�

��� % � � ����� � � ����� ! ��� @ � �#� �

� I � % � ([ ����
� ��� �

�
� � T �������
� ��� �

�
�

C � � % � �
	
% � �

% � �'���� T �����

Thus, �#� �5= ��� � � � � KMK � ��� = � � �
���	� �
	
� ( � = �5 ����� �

	
��� (b)

c)

��� % � ��� T ����� � � �����?> � � @ �2�

� I � % � ( ����T �����

�#� � � � IK � KMKMK � � � �\� � IK � KMKMK �

Initial condition: ��� � ��� ��] C � � �

� � ( �������.! � �#� (��������

������ ( ���� � � � IK 
 � � �
� �\� � IK 
 � : �
� � � �

integrate by parts

� �����
� ���'� � ��� ������ � ! � � � C � � ( ��� � since

� � �

� � �2�6( � � � � � � IK 
 � (c)
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v4

L

R1
+

-

i1

10 V
+

-

i2
+ -

R2 i3 C

i4v1

R2 =  1
L = 1 H
C = 0.5 F
R1 = 2

Ω

Ω

Figure 12.6:

ANS:: (a) � % � �� �� � IKMKMK � (F� �
� KMKMK � � , (b) �#�-�5= ��� �9� � � KMK � ��� = � � � ���	� � 	

�'( � = �5 ����� �
	
��� ,

(c) �#��2�6( ���
� �\� � IK 
 �

Exercise 12.3 In the circuit in Figure 12.6, a constant voltage source of 10 volts is applied
at � � � . Find all branch voltages and all branch currents at � � � � and at � � � given� I � � � � �5� amps and � ����� � ���*S volts.

Solution:

At � � � � ,
� I � � % �^IK% �  �

Therefore, � � � � � �  �

� I �5� � �&% � � I � �0]��1- ���� % � 8 � �&% � � % � �0]��1- ����
�
�JS � �&% � �

�
�JS$]��1- ���

� � �� � �&% � � �JS$]��1- ���

At � � � ,

� I ���� � �&% � � I � � ( � behaves like a wire)� % � � � % � � (no current flows through ( I )�
�
���� � �&% � �

�
�-���0] �.- ���

� � � � � � �-���0] �.- ���

ANS:: � � � � � � I � � � T � I � �0] T � % � 8 � T � % � �0] T � � � S � T �
�
� S$] T � � �

� � T � � � S$] . At �.� � : � I � ��� � T � I � � T � % � � T � % � � T � � � ��� � T � � � ���0] T � � �� T � � � ���0]

Exercise 12.4 Is the zero-input response of the circuit in Figure 12.7 underdamped, over-
damped, or critically damped? (Provide some kind of justification of your answer, either
a calculation or a sentence of explanation.)
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� ���� � � � ��= � � � � and ( I � ( % ��� �6

L

R1 R2

C
+
-vS

Figure 12.7:

Solution:

For the zero-input case, we may treat the circuit as if ( I were not there.

�&( % � �'` � � � � �

( %
: �
: � �

: �1`
: �

� ��� �

�d

�
: � �
: �

� � � �

� N
� + �� � +

� � C � � % � ( %
�
� � �

� �
� � � �

� � �
( %
�

C � � �e=� F> ��� @

� � � � ��< � � �-���?> ��� @

� � � � , therefore the response is underdamped.

ANS:: � � ��=  F> ��� @ T � � � � � > ��� @ , so underdamped

Exercise 12.5 In the circuit in Figure 12.8, the inductor current and capacitor voltage
have been constrained by some external magic to be � � �  Amps, �'`*� ( � volts.
At �4� � , the external restraints are removed, and the natural response of the circuit is
allowed to evolve. Find the initial slopes of the state variables.

Solution:
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iL
R1=1 Ω vC

L = 3 H
R2 = 2 Ω

+ -

C=4 F

Figure 12.8:

�
: �1`
: � ( � � � �'`( %

C
: �'`
: � � � � K � �

� �
�
( �1`

� ( %
� �S �� �($�\(

�
� � ��� � Volts/s

( � � ( I ( �
: � �
: � ( �1` � �

: � �
: � � ��( � � ( I ( �1`��

�
�
� �8 Amp/s

ANS:: 	 ) d
	
� � � � K � � � Volts/s, 	

� �
	
� � I

� Amp/s

Exercise 12.6

a) Write the differential equations for the circuit in Figure 12.9 in state variable form.

L
R

C
+
-vC(t)

Figure 12.9:

b) Assuming �'` ��� � �� , sketch �'`������ for a very short pulse of height � � . Don’t work
it out: just show the form.
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Solution:

a) 	 ) d
	
� � � �`

	
� �
	
� � � � � � ��� ( � � (J( �1` � ! I�

b) See Figure 12.10.

t

vC

Figure 12.10:

ANS:: 	 ) d
	
� � � �` , 	

� �
	
� � � � � ����� ( � � ( ( �'` � ! I�

Exercise 12.7 Solve the following sets of coupled first-order state equations for � � �
with the indicated inputs and initial values. Plot the positions of the natural frequencies
in the complex plane. Sketch the state trajectories.

a)
: � I: � � ([8 � I � � %
: � %: � � � I ( 8 � %

� I ��� � � �
� % ��� � � �
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b)
: � I: � � ( S � %
: � %: � �JS � I
� I �������5�
� % ������� �

Solution:

a) � I �
�

� % � 8 � %
Note

�

� % � 	 � +
	
�
��� % � � � � � � � % � � C � % � � � � � � � � � � % �

� I ����� � ���5�/� ( S � ( � � �78 � � 8 �

� % � � � ����� ��� � � �

So,
� � ( �5T � ��5T which implies

� % � � � % � ( � � � �

� I �J� � % � �7� � � �

b)

� % � (
�

� IS C ��� % �$��� � � I � � C � I � % � � S �

� I � � � � � � � � � � � � �

� % ��� ��� � � ( �S �HS �
� ( S � � � C � � �

� I ��� � � ��� � � � C � � � ��
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� I � � � � � � � � � � � � C � I �5� ��� �US�� since ��� �
S�� � �!� � � � � � � � � � �
�

� % � ( �S ��( �HS1� � � � �BS���� C � % �5� � � � S��

ANS:: (a) � I �J� � % � � � � � � , � % � � � % � ( � � � � , (b) � I � � ���	�
S�� , � % �5� � ���BS��
Exercise 12.8 Find the roots of the characteristic polynomial (often called the network
natural frequencies) in each of the networks in Figure 12.11:

C

(a) (b)

(c) (d)

L C

R2

vS +
-vS

+
-vS

R1

+
-

L

R1 R2

L L
iS

R1 R2

L L

Figure 12.11:

Numerical values: ( I �-����6�T � � ���
� � T � �� �
� � T ( % � ��6
Solution:

a)
��� ( � �
( I

( � �F( ��` � �

Setting �� � � , and noting that � � �$�'` T � 	
� �
	
� � � �3T ��` � � 	 ) d

	
� , we find

� � % � �
( I �

� �
� �

� �1` � �
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� I � % � ([ ������ � � � T � �1S �

b)

���( �&( % ( � �F( �1` � �

� � % � ( %
�
� � �

� �
�2� � � C � I � % � (������ T ����� (double root)

c)

� I ( I � �
: � I: � � � C ( I � � � I � � C � I � ( ( I

�
� % ( % � �

: � %: � � � C � % � ( ( %
�� I � % � (��5T ����� T ����� ; ( ����� T �����

d)

� I � ( � % C �
: � I: � � � I ( I ( � % ( % ( �

: � %: � � � (first-order circuit)

� � ( ( I � ( %� �

� � ( ����� T �����

ANS:: (a) ( � � � �
	
�O"4�  2> ��� � rad/sec T � 	

�-��� � rad/sec, (b) ( � (double root) � � ���� � rad/sec, (c) ( � I TG( � % � � I � � �'@ rad/sec T � % � � > ��� � rad/sec, (d) one natural fre-
quency at ( � � � � �?> � � � rad/sec

Problems

Problem 12.1 Electrical networks are used to model physical systems governed by lin-
ear differential equations. The most important problems which arise in such modeling
concern the interplay of accuracy and simplicity. It is usually very important to know
when certain effects can safely be ignored in order to simplify the model and subsequent
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analysis. Such knowledge can be obtained by understanding the consequences of making
the simplifying assumptions.

Two networks which could be used to model an acoustic system are shown in Fig-
ure 12.12. It is known that the inductance � is small (specifically � � � ��( % � � <1S1� but
it is not known whether a circuit model with no inductances will be adequate. You are to
help answer this problem by determining the difference in the responses of the capacitor
voltage �'` for the two circuits. Specifically assume:

� � � ��� � � + � I � ��� (a step of amplitude I)
�1` ��� � � � �
� �3��� � � � �

Determine �'` ����� for � � � for both circuits. You should identify the effects of the
inductance on such characteristics of the response as the natural frequencies, approximate
behavior for small � , and asymptotic behavior.

You can greatly simplify the form of your results by making use of some assumptions
derived from Taylor’s theorem. For � � � � ,

	 �6( � � �6( ��<�� � (12.1)

and

� � � � � ( � (12.2)

+

-
vCRiS C

+

-
vCRiS C

L

Figure 12.12:

Solution:

A time-domain solution using differential equations is presented first:

We can write the following KCL equation:

� R �
� � � �1`
( � � � �` =
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We also know that:

� � � � � � ` � � � � � �` =
Substituting, we get:

(
� � � R � � � �� � ( � � �� � �

� �
�1` =

The roots of the characteristic equation are:

� � ( (
� �

�
(
� �

� � ( S �
( % �

=

Since we know that
� �
, + ` � � � , we can simplify to get the following roots:

� � ( (
�

T ( �
� �

=

We now have the following solution to the differential equation:

�1` � � � � ���d � � � � �� � � � (&=

By inspection, since the inductor acts as an open circuit at � � � , we know that�1`���� � � � and ��`���� ��� � �` � � � � � , so we substitute in those values, getting the following
conditions:

� � � � � (5� � T

( �
( �

( ( ( �
�
� � =

Solving for
�

and � , we get:

�1` � � ( �
( � � ( �
( % � ( �

� � ���d � � � (
( % � ( �

� � � � =

If we set the inductor to zero, we get the following:

�'` � � ( ( � ( � � ��.d =
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RiS

Ls

1
Cs
------

Figure 12.13:

An alternate, more elegant solution involves working in the frequency domain.

First, draw the impedance model as shown in Figure 12.13. From here, determine the
Thevenin equivalent of the left side.

The Thevenin impedance
� ��� is equal to ( � � � , while the Thevenin voltage is equal

to � �1( . A voltage-divider relationship ensues:

�1` � � ��� I` R
� ��� � I` R

=

This can be simplified to form an admittance transfer function:

�1`
� � �

,
�5`

� % � , � � � I�'`
=

We must find the roots of the denominator:

� � ( ( � � 	 ( % � % ( S � �
� � �

� ( (
� �

�
(
� �

� � ( S �
( % �

=

If we use the Taylor series approximation, we can simplify to get the following two
roots:

� I �
( (
�

T � % �
(��
( �

=

Our new approximate admittance function is therefore:

�1`
� � �

,
�5`

� % � � ,
� � I, ` � ��� I�'` =
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We substitute in that � � ����� � � + ����� , which corresponds to � � � ��� �
�

R when the Laplace
transform is taken. Our output function is therefore:

�1`��������
� ,
�5`

����� � , � � ��� � I, ` �
=

This can be simplified using partial fractions to get the following:

�'` � ��� � �
�� (
� �

�
� ,

�
� , + `��� , �

�
, � `
�
� , + `� � I, `

�� =

We convert this back into a time-domain expression by taking the inverse Laplace
transform:

�1` ������� � ( ( � � (
� ( ( % �

� � � �� � � ( � �
� ( ( % �

� � ���d =

Substituting in that I = 1, we get the following:

�1` ������� � ( ( � � (
� ( ( % �

� � � �� � � ( � �
� ( ( % �

� � ���d =

From here, we can make the following approximation if we leave out the inductor:

�'` ����� � � (#�2�6( � � ���d � =

Not coincidentally, these are the same results that we got using differential equations
in the time domain.

See Figures 12.14 and 12.15 for the transfer functions. Note that without the inductor,
the initial slope is nonzero, while with the inductor, the slope is zero. The natural frequen-
cies are changed by the presence of the inductor since without the inductor there is but
one natural frequency, and with the inductor there are two. For a very small inductor, the
second natural frequency is very low and therefore almost negligible in comparison to the
natural frequency caused by the capacitor. The asymptotic behavior is identical for both
since the inductor has no long-term steady state effect. No matter the size of the inductor,
the voltage across the capacitor approaches � ( asymptotically.

ANS:: with small inductor: �5` ����� � � ( (
� � ,
�
� , + ` �

� � �� � � , � `
�
� , + ` �

� ���d T without inductor:
�1`������ � � (#�2�B( � � ���d � =
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IR

initial slope is I
C
----

VC

t

No Inductor

Figure 12.14:

IR

initial slope is 0

VC

t

With Inductor

Figure 12.15:

+

-
v2C2

A
i

vA

+

-
v1 C1

+ - Switch closes
at t = 0

Figure 12.16:
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Problem 12.2 Capacitor � I has an initial voltage � I ��� � � ] . Capacitor � % is initially
uncharged, � % ��� ��� � . The voltage across element

�
tends to zero as time tends to infinity.

At time ��� � , the switch is closed.

See Figure 12.16.

a) Compute the initial charge of the system.

b) Find the voltage across both capacitors a long time after the switch has been closed.
Remember that the total charge of the system must be conserved.

c) Find the energy stored in the system after a long time.

d) Find the ratio of final stored energy to initial energy. Where did the rest of the
energy go?

e) Assume element
�

is a resistor ( . Find its voltage or current, and from that, find
out the energy lost in it.

f) Find the ratio of lost energy to initial energy. Is it what you expected? Does it
depend on ( ?

g) What would happen if an inductor was placed in series with ( ? Sketch the behavior
of the current. (No calculations are needed.)

Solution:

a) Again, only � I has any voltage. Thus, the total charge of the system is � � � � I ] .

b) We are told that the voltage across
�

tends to zero. Therefore, � I �5� % after a long
time. Let’s call this voltage � � . The final charge of the system is

� � � � I � � � � % � � � � � I � � % �2� �

Charge must be conserved since there is no place for charge to go. Thus, � � �
� � � � I ] . Substituting � I ] for � � , we have

� I ] � � � I � � % � � � � � � � � I
� I � � %

]

c) Since both capacitors have the same voltage, the energy as � C � is

� � � �� � I � %� �
�
� � % � %� �

�
� � � I � � % �2� %�

Substituting the expression we found for � � , we get

� � � �� � � I � � % � � %I� � I � � % � %
] % � ��

� %I
� I � � %

] %
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d)

� �
� � �

I%
` +�`
� � ` +

] %
I% � I ] %

� � I
� I � � %

The rest of the energy, namely
`
+`

� � ` + , must be dissipated in element
�

.

e) If
�

is a resistor ( , then the system is first order with � � ( `
�
`
+`

� � ` + , since � I and
� % are in series as seen from the resistor. We also know that the initial and final
voltage across ( is the difference in voltage of the two capacitors:

� , ������� ] T � , ��� C � � � �

From this information, we can obtain the voltage across ( :

� , � ��� � ]2� � � ��� T � � ( � I � %
� I � � %

The power lost across ( is

� , �
� %,
( �

] %
( � � � ��� T � � ( � I � %

� I � � %
The energy lost in ( is

� , � �



K
] %
( � � � ��� : � T � � ( � I � %

� I � � %
This integral yields

� , � ] %
�

� I � %
� I � � %

f)

� ,
� � �

b +%
`
�
`
+`

� � ` +I% � I ] %
� � %

� I � � %
The ratio can be checked by noting that

� , < � � � � � < � � � � , thus accounting for all
the energy in the system. surprisingly, the energy lost in the resistor is independent
from the value of its resistance.

g) If an inductor was placed in series with ( , the charge would oscillate between the
two capacitors until it reached equilibrium. At that point the current through the
inductor and the resistor would be zero. The energy lost in the resistor would be
the same as before, since our assumption about element

�
(in this case, a series

combination of an inductor and a resistor) still holds.
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ANS:: (a) � � � � I ] , (b) � I ] � � � I � � % � � � � � � � `
�`

� � ` +
] , (c)

� � �
I% � � I � � % �

` +�� ` � � ` + � +
] % � I%

` +�`
� � ` +

] % , (d) YD�1"�� � ��� � �
`
�`

� � ` + , (e)
� , � b +%

`
�
`
+`

� � ` + , (f)
YD�1"1� � , � � � `

+`
� � ` +

Problem 12.3 Shown in Figure 12.17 is one possible circuit model for a transformer,
for use where there can be a common ground between primary and secondary. Assume:
� I � ��=� � , � % � � = ���5 � , � � W 	 � I � % , where W � � , ( I � ��W 6 , ( % �-����6 .

+

-

v2M

i1

+
-

v1

+

-

vS

R1 i1

v2

+

-

R2

i2

Transformer

+

-

v1

L1-M L2-M

Figure 12.17:

a) Write the state equations for this network using � I and � % as state variables, and
using the given circuit model to represent the transformer.

b) Determine the behavior of the natural frequencies of the network as a function of
the coupling constant W . In particular, what are the natural frequencies in the limit
of small W , and in the so-called tight-coupling limit, where W approaches unity?

c) Assume that �� is a 1-volt square pulse of length 5 msec. Find � % � ��� for the case W#�= � � . Is the output a good replica of a square pulse, or are there obvious departures
from the square pulse shape?

Solution:

a) We write the following KVL equations:

�� � ( I � I � � � I ( � �2� � I � � � � � I � � � % ��� ( I � I � � I � � I � � � � % T
� � ( % � % � � � % ( � �2� � % � � ��� � I � � � % �'� ( % � % � � % � � % � � � � I =

These can be simplified to get the following state equations:



401

� � I � � %
� % ( � I � %

( I � I (
� ( %
�

� ( % � I � %
� � � % ( � I � % � � � % ( � %

� % ( � I � %
��
T

� � % � ( �

� % ( � I � %
( I � I �

( % � I
� % ( � I � %

� % �
�

� % ( � I � %
���
=

b) Since we are looking for the internal characteristics of the system, we do not need
to give it a driving condition, so we set � � � � =
The two state equations can be simplified to give the following result:

� � I � � % ( I
� % ( � I � %

� I (
( % �

� % ( � I � %
� % T

� � % � � I ( %
� % ( � I � %

� % (
( I �

� % ( � I � %
� I =

From here, we can eliminate � % and � � % using standard differential equation tech-
niques and get the following equation:

� � �I � ( � % ( I ( � I ( %
� % ( � I � %

� � I � ( ( I ( %
� % ( � I � %

� I � � =

This corresponds to a transfer function whose denominator is:

� % � � I ( % � � % ( I
� I � % ( � % � �

( I ( %
� I � % ( � % =

This can be written in terms of K:

� �6( � % � � � I � % ��� % � � � I ( % � � % ( I ��� � � ( I ( % � =

The transfer function can also be easily found in the frequency domain, using
Laplace transforms. This solution is demonstrated below.

First, we must draw the impedance model for this circuit, which is shown in Fig-
ure 12.18.

� I T � % T and
�
� are the impedances of the three inductors, and � I T � % T and�

� are the currents that go through them, as shown in the diagram.
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+
-

i1 i2

i3R1
R2

Z3

Z2Z1

(L1-M)s (L2-M)s

V2
MsVS

Figure 12.18:

First of all, � % is most easily calculated as a Thevenin equivalent voltage by a series
of Norton-to-Thevenin-to-Norton simplifications, as shown in Figure 12.19. The
last diagram in the figure is a voltage divider, and after simplification, the following
result ensues:

� % �
����( % �

�
( I ( % � ( I � % � ( I �

�
� ( % � I � ( % �

�
� � I � % � � I �

�
� � % �

�
=

From here, it is very easy to find � % , since it is the current going through resistor ( % ,
so it has current ( ) +, + .

�
� can be found by finding the voltage across

�
� , which is

the sum of the voltages across ( % and
� % .

�
�
� ( � %

� % � ( %
�
�

=

In order to find the natural frequencies, we find the roots of the denominator of the
system function, which is:

�2�6( � % �0� � I � % � � % � ��( I � % � ( % � I � � � ( I ( % =

This was derived in the time-domain previously.

If W is close to zero, then the denominator can be factored, and the two roots are:

� � ( ( I
� I

T�( ( %
� %

=

As W gets close to 1, one of the natural frequencies increases without bound, and
the other gets closer and closer to the following value:

� � ( ( I ( %
( I � % � ( % � I

=



403

+
-

R1+Z1

R2Z3

Z2

VS

R1+Z1 R2Z3

Z2

VS
R1 Z1+
--------------------

R2

Z2

VS
R1 Z1+
--------------------

R1Z3 Z1Z3+

R1 Z1 Z3+ +
------------------------------- +

-
R2

Z2

VSZ3

R1 Z1 Z3+ +
---------------------------------

R1Z3 Z1Z3+

R1 Z1 Z3+ +
-------------------------------

+
-

R2
VSZ3

R1 Z1 Z3+ +
---------------------------------

R1Z2 R+ 1Z3 Z1Z2 Z+ 1Z3 Z2Z3+ +

R1 Z1 Z3+ +
-----------------------------------------------------------------------------------------

V2

Figure 12.19:
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c) We can find the transfer function in the time domain by realizing that the response
to a square pulse is the response to a unit step, added to a response to another step
that is shifted in time.

We can find the two natural frequencies by substituting in to the characteristic equa-
tion previously derived. The two roots are � � ( ��� ��= � � and � � ( ��������� so the
response to a unit step will be of the following form:

� % ����� � � � � % K % � K % � � � � � % KMKMKMK � =

This for time � � � , of course. The initial value is zero, since the output voltage is
dependent on the current through a resistor, which is the same as the current through
an inductor, and the current through an inductor cannot change instantaneously.

We must find the final values of each of the exponentials. Since the output dies
away as � becomes very large,

�
and � must be equal in magnitude and opposite in

sign.

Therefore, we have:

� % � ��� � ] �� � % K % � K % � ( � � % KMKMKMK � � =

The derivative of our output is:

� �% ����� � � � ��� ��= � �0] � �!� � % K % � K % � ( � � % KMKMKMK � � =

The derivative at time �.� � is equal to � � ��� ��= � �0] � , and if we can find the initial
derivative another way without finding ] � , then we can use that result to find ] � .
That method is as follows:

Very shortly after time � � � , the inductors are so close to open circuits, that their
resistance is very high, and the two ordinary resistors may be neglected. The in-
ductors obey the rule ] � � 	

�

	
� , so the derivative of the current through any in-

ductor may be found using simple current-divider laws. In other words, we treat
the voltage-source as a voltage-source, and the inductors as resistors, and then re-
member that the “current” found through “resistor” � % is really the derivative of a
current.

This is an exercise in simple circuit analysis, and the easiest way to it is a Thevenin-
Norton conversion, and then one current divider. This is shown in Figure 12.20.

The result is:
: � � %: � �

��� �
� I � % ( � % =
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VS

L1 M–
---------------------- L2-M

Figure 12.20:

Then, we know that the resistor ( % obeys the law ] � � ( , so we know that ] � �
� � ( , so knowing � � , we can find ] � , which is equal to:

� �% ��� ��� ���1( % �
� I � % ( � % =

Substituting in the numbers, we get the following:

� �% ������� � � � =�� � =

From here, we can divide through by � � ��� ��= � � and get that ] � � = �0 
The final solution is therefore:

� % � � � � ��� � �\= �0 '� � % K % � K %
� ( = �5 '� � % KMKMKMK � � =

However, this is only the solution to the up-step. The solution to the down step must
be added. ( + ����� is the unit step function.)

� % ������� � % � � � ������+ � ��� ( � % � � � � � ( = ���0 ��\+ ��� ( = ���0 �� =

This solution can be done out with less sleight-of-mind in the frequency domain.

We have already found the transfer function ) +) � :
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� %
�� �

( % � 	 � I � % �
�2�6( � % �0� � I � % � � % � ��( I � % � ( % � I � � � ( I ( %

=

The input function, � � ����� can be expressed as the difference of two unit step func-
tions, one shifted in time. We could deal directly with such a function, but it is much
easier to deal with one unit step function, and, because superposition allows us to
do so in a linear time-invariant system, we shift the response in time correspond-
ingly. So we must find the response of the system to a unit step function. This is
done by multiplying the system function by the Laplace transform of the unit step:

� % �
( % � 	 � I � % �

�2�6( � % �0� � I � % � � % � ��( I � % � ( % � I � � � ( I ( %
�
� =

Substituting in numbers, we get:

� % � ��� �
�e= S$ 

= ��� �.S �5 �� % �  ������$��������� =

Finding the roots of the denominator and then doing partial fraction decomposition
gives us:

� % � ��� �
= �0 

� � ��� ��= � � (
= �0 

��� ��������� =

Then, an inverse Laplace transform results in:

� % � � � ����� ��\= �0 '� � % K % � K %
� ( = �0 '� � % KMKMKMK � ��+ ����� =

This is the response to only half of our input. We must add an inverted and shifted
unit step to this, to get our final value:

� % ������� � % � � � ������+ � ��� ( � % � � � � � ( = ���0 ��\+ ��� ( = ���0 �� =

The graph of the output is shown in Figure 12.21. This does not resemble a square
wave due to the fact that while the coupling constant is high enough to allow one
natural frequency to be extremely high, the second natural frequency, which is a
function of the sizes of the resistors and inductors, is too high and allows for a very
quick decay. The second natural frequency must be decreased enough to allow the
square wave to not dissipate quite as fast.
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Figure 12.21:

ANS:: (a) � � I � �

+� + � � � � +
( I � I ( � , +� � , +

�

�
�

+� � � + � � � � + � � � % (
�

+� + � � � � +
��
T � � % �

� �
� + � � � � +

( I � I �
, +
�

�
� + � � � � +

� % � �
� + � � � � +

���UT (c) � % ����� � �\= �0 '� � % K % � K % � (*= �5 '� � % KMKMKMK � �\+ ����� (
�\= �0 '� � % K % � K % � � � � KMK � � ( = �0 '� � % KMKMKMK � � � � KMK � � �\+ ��� ( = ���0 �� =

Problem 12.4 Assuming � ����� � � � R � , for each differential equation, find the particular
solution and the general form of the homogeneous solution. Plot the natural frequencies
in the complex plane.

Assume � , � , � K are constants. Do not worry about the dimensions of the right-hand
side. Assume � always has the appropriate dimension.

1) 	 �
	
� � �� �J�

2) 	 �
	
� � �� � 	 �

	
�

3) �� � �� � 	 �
	
�

4) 	 + �	
� + � �'%K � �J�

For 5) and 6), assume � and � K are both positive numbers.

5) 	 + �
	
� + � � � 	 �

	
� � � %K � �J� Assume � � � K .

6) 	 + �
	
� + � � � 	 �

	
� � � %K � � 	 �

	
� Assume � � � K .

Solution:

The easiest way to do these would clearly be via a lookup table to get the form of the
homogeneous and particular solutions, but such a “solution” is not particularly insightful.
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One realizes that if the driving function � is of the form � � � then the particular solution
is of that form too. The homogeneous solution is determined also by inspection by sub-
stituting in � ��� � � and using elementary differential equation solving techniques. But
again, that solution is very mechanical and probably reveals no new insight.

The alternate approach involves Laplace transforms.

Due to the unfortunate choice of � as one of the parameter variables in this problem,
we will be doing the Laplace transforms in terms of � as always, but converting the form
of � into � � � � - note the distinction between capital and lowercase. Another convention is
as follows: if Y is a time domain function, then � is its frequency-domain equivalent. In
any answer identifying the form of the homogeneous and particular solutions, � and � 	
are arbitrary constants whose value are not held between problem parts. Finally, � � � � and
� � � � � represent initial values of a function and its derivative at zero, and are constants.

1)
: �: � � � � � � � � � =

Take the Laplace transform of this...

� � � � � � �
� ( �

� � � � � =

Simplify algebra to get:

� � �
� � � I� � ��� ( � � � � �����

��� I� =
A partial-fraction decomposition results in:

� �
� ( �
I� � � � � � � � � �

� � I� � �
I� � �

�
� ( �

=

This results in a time-domain solution of:

� �
� ( �
I� � � � � � � � � � � �� � �

I� � � �
� � =

The homogeneous solution is of the form � � � �
� and the particular solution is of the

form � � � � =
The natural frequencies of the function are � and (/I� , and are shown in Fig-
ure 12.22.
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s1
τ
---–

Figure 12.22:

2) If � ����� is of the form � � � � then � � � ��� is of the form � � �
� �

, and a solution can be
derived from the solution to part 1 by substituting � � for every instance of � .

� �
� ( � �
I� � � � � � � � � � � �� � � �

I� � � �
� � =

The final solutions are the same as for part 1.

The homogeneous solution is of the form � � � �
� and the particular solution is of the

form � � � � =
The natural frequencies of the function are � and (/I� , and are shown in Fig-
ure 12.23.

s1
τ
---–

Figure 12.23:

3) This equation can be expressed as:
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� � � �2��� � � � � � � =
There is no homogeneous solution, and the particular solution is of the form � � � � =
The natural frequency of the function is � as shown in Figure 12.24.

s

Figure 12.24:

4)
: % �: � % � � %� � � � � � � =

Taking the Laplace transform of this, one gets:

� % � ( � � ����� ( � � ����� � � %� � � �
�6( �

=

This can be rewritten as:

� � �
��� ( � � ��� % � � %� � �

� � � � � � � � ��� �
� % � � %� =

A partial-fraction decomposition results in the following:

� � � K
�
�6( �

� � I
�

� % � � %� � � %
� �

� % � � %� T

� K � �
� %� � � %

T
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� I �
( �

� %� � � %
� � ����� T

� % �
( � � I

� �� %� � � %
� � � ��� �

� �
=

This can be converted into a time-domain equation of the form:

� � �
� %� � � %

� � � �
� ( �
� %� � � %

� � � � � � �0���1� � ����� � � ( � � I
� �� %� � � %
� � � �����

� � � ��� � � � �2���
The homogeneous solution is of the form � I �0���1� � ����� � � % � � � � � ����� and the partic-
ular solution is of the form � � � � =
The natural frequencies of the function are � and � � � � , and are shown in Fig-
ure 12.25.

s

ω0

ω– 0

Figure 12.25:

5)

: % �: � % � � �

: �: � � � %� � � � � � � =

Converting this to the frequency domain, one gets:

� % � ( � � ����� ( � � ��� � � � �
� � � ( � ��� ��� � � %� � � �

�6( �
=
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This can be rewritten as:

� � �
��� ( � � ��� % � � � � � � %� � �

� ��� � � � � ����� � � � � � �
� % � � � � � � %�

A partial-fraction decomposition results in:

� � � K
�
� ( �

� � I
�

� % � � � � � � %� T

� K � �
� %� � � � � � � %

T

� I �
( � �4( � � � ( � �
� %� � � � � � � %

� ��� � � � � � ��� � � � � ��� � =
In order to properly take an inverse Laplace transform, the second term must be
written in the following form:

� ��� � � �
� % � � � ��� � %� �

�
�
� %� ( � %

� % � � � � � � %� =

When this is done, the following result is gotten:

� � ( �
� %� � � � � � � %

� � � � � T

� �
�

�
� %� ( � %

� ( � � ( � �
� %� � � � � � � %

� � � ��� � � � � ��� � � =
From this, an inverse Laplace transform can be taken. This intermediate step will
come in useful for part 6.

� � �/�
� � � � � � � � �����1�

�
� %� ( � % ��� �

�
�
� %� ( � %

� � � � ��� � � �
� %� ( � % ��� T

� � �
� %� � � � � � � %

T
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� �
( �

� %� � � � � � � %
� � ��� � T

� � ( � � ( � �
� %� � � � � � � %

� � � ��� � � � � ����� =
However, since � � � � � � ��� ,

�
� %� ( � % is imaginary, so we can write the previous

statement as:

� ���/�
� � � �

� � �
� � �!� � 	

� +� �
� + �7� � � 	

� +� �
� + � � �

� � � �
� � �� � 	

� +� �
� + ( � � � 	

� +� �
� + � =

This can be simplified to:

� ���/� R � �
� � �	 � + � � +�� � � � � 	 � + � � +� �

� ( �	 � + � � +�� � � � � 	 � + � � +� =

The homogeneous solution is of the form � I � � � � 	 � + � � +� � � % � � � � 	 � + � � +� and the
particular solution is of the form � � � � =

The natural frequencies of the function are � and ( � �
�

� % ( � %� , and are shown
in Figure 12.26.

s

α– α2 ω0
2

–+

α– α2 ω0
2

––

Figure 12.26:
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6) We start with this intermediate result derived in part 5:

� � �/�
� � � � � � � � �����1�

�
� %� ( � % ��� �

�
�
� %� ( � %

� � � � ��� � � �
� %� ( � % ��� T

� � �
� %� � � � � � � %

T

� �
( �

� %� � � � � � � %
� � ��� � T

� � ( � � ( � �
� %� � � � � � � %

� � � ��� � � � � ����� =
We must replace all instances of � with � � , which results in the following.

� � � �
� %� � � � � � � %

T

� �
( � �

� %� � � � � � � %
� � ��� � T

� � ( � � � ( � � %
� %� � � � � � � %

� � � ��� � � � � ����� =
The homogeneous solution is of the
form � I � � � �����1�

�
� %� ( � % ��� � � % � � � � � � �

�
� %� ( � % ��� and the particular solution

is of the form � � � � =
The natural frequencies of the function are � and ( � � �

�
� %� ( � % , and are shown

in Figure 12.27.

ANS:: (1) homogeneous: � � � �
� , particular: � � � � (2) homogeneous: � � � �

� , partic-
ular: � � � � (3) homogeneous: none, particular: � � � � (4) homogeneous: � I ������� � ����� �

� % � � � � � � ��� , particular: � � � � T (5) homogeneous: � I � � � � 	 � + � � +� � � % � � � � 	 � + � � +� , par-

ticular: � � � � , (6) homogeneous: � I � � � �����1�
�
� %� ( � % ��� � � % � � � ��� � �

�
� %� ( � % ��� , par-

ticular: � � � � =
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s

α– α2 ω0
2

–+

α– α2 ω0
2

––

Figure 12.27:

vA

RA

iSCA

+

-

+

-

CBvBRB

Figure 12.28:

Problem 12.5 The circuit in in Figure 12.28 is the electrical analogue of a temperature
control system.

Assuming � � � � � T � � �*S � T ( � � ��6�T ( � �*S�6�=
� �4��� ��] K ( ��� �2% where � �5�5 � <5]�%�T ] K �-�5= ��]

a) Write dynamical equations for this network in state form. Use � � and ��� as state
variables.

(As a check on your state equations, the stable steady-state value of � � is �9] . That
is, you should have

: � � < : ��� : �� < : � � � for ��� ���] .)

b) Now assume � � � ] � � � K and ��� � ] ��� ��� , where ] � and ]�� are the steady-state
values and � � and ��� are small variations. Determine a small-signal linear circuit
model in which � � and � � are the state variables.

c) Is the zero-input response of the small-signal circuit underdamped, overdamped, or
critically damped?

Solution:
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a) Two node equations:

� �
: � �
: � �

� � ( ��
( �

� � ��] K ( ����� % T � �
: ���
: � �

���
( � �

� � ( ��
( �

=

b) Since � � ��� ��] K ( ���� % , then the following small-signal approximation is valid:

� R
��� �

: � �
: ��� � ( � � �!] K (7] ��� =

� R � ( � � ��] K (7]���� ���

See Figure 12.29 for a small-signal model.

CA

RA

RB CB

= -2K(Vo-VB)vB

vBvA

+

-

+

-
iS

Figure 12.29:

c) First, write two new state equations using the small-signal model:

� �
: � �
: � �

� � ( ���
( � � ( � � ��] K (7] ���2���OT

� �
: ���
: � �

���
( � �

� � ( ���
( �

=

We substitute in the numerical values given, and get the following:

: � �
: � � � � ( ��� � ([ ����VT

S
: ���
: � � = �' ���� � � � ( ���V=
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We can eliminate � � , getting the following:

���
: % ���
: � % � � �

: ���
: � � � � � � =

This has the following characteristic equation:

� � � % � � ����� � � � ��=

Since � � % ( S � ��� �0� � ��� � � , the system is overdamped.

ANS:: (a) � � 	 )��
	
� � )�� � )��,

�
� � ��] K (#��� � % T � � 	 )��

	
� � )��,

�
� )�� � )��,

�
T (b) � R � ( � � ��] K (] � � ��� T (c) Overdamped.

Problem 12.6 In the circuit in Figure 12.30, the switch has been in position 1 for all� � � . At ��� � , the switch is moved to position 2 (and remains there for � � � ). Find and
sketch �'` ����� and � � ����� for � � � .

2
iL

2 V
+

-

+

-
.01 FvC

1 H10 Ω

1

Figure 12.30:

Solution:

At time � � � , the circuit becomes an LC oscillator.

The natural frequency � � is equal to
� I�'` . Since the capacitor starts out charged,

initially, the voltage across the capacitor is a cosine function with maximum amplitude of�5] . The current through the inductor is the same as the current through the capacitor, and
it is characterized by the capacitor I-V relation: ��` � � 	 ) d

	
� = Taking the derivative, we get

a negative sinusoidal relation.

ANS:: �'` � ���������
� I�'` ��� T � � � ( � � `

� � � � � � I�'` ��� =
See Figures 12.31 and 12.32 for the plots of these two functions.

Problem 12.7 Figure 10.75 (Problem 10.8 in the chapter on first order transients) illus-
trated a parasitic inductance associated with VLSI package pins. Figure 12.33 is a mod-
ification of Figure 10.75 and shows a lumped parasitic capacitor � � associated with the
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VC

t

0.628 s

2V

-2V

Figure 12.31:

iL

t

0.628 s

0.2A

-0.2A

Figure 12.32:
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power node within the VLSI chip. In this problem, we will study the combined effect of
the parasitic inductance � � and capacitance � � .

Assume that the input � is 0V at all times. Assume further that the input
�

has 0V
applied to it initially. At time � � � K , a 5V step is applied at the input

�
. Plot the form

of � � as a function of time for the underdamped and overdamped cases, assuming that� � �J]�� for � � � K . Clearly show the value of � � just prior to � K and just after � K . Assume
that the on resistance of a MOSFET is given by the relation

�

� ( 	 and that the MOSFET’s
threshold voltage is ] � � ] � . Also assume that ] � �  5] . Compare this result with that
for the inductor acting alone as computed in Problem 10.8 (Figure 10.75) in the chapter
on first order transients.

vP

C

VS

LP

R2
R1

A B = 0
W 1

L1
-------

W 2

L2
-------

CP

t
t0

0 V

vA

5 V

Figure 12.33:

Solution:

Before the switch occurs, the resistors ( I and ( % are floating. We are also given that
the voltage across the capacitor for � � � is ] � .

Next, the MOSFET is closed, and the voltage across the capacitor starts dropping,
since the inductor current cannot build up suddenly and so the capacitor supplies the
current. Note that resistor ( % is still floating.

This occurs with a time constant of � � � � ��( I � ( � � � . Soon the inductor current
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builds up and the voltage will rise again towards ] � . The lower envelope of this rise will
have a time constant � � �

, = If the system is overrdamped, then the solution is as shown
in Figure 12.34 while the underdamped case is shown in Figure 12.35.

t

VOUT

VS

t0

τ
LP

RT
------=

τ RT CP=

Overdamped Case

Figure 12.34:

t

VOUT

VS

t0

τ
LP

RT
------=

τ RT CP=

Underdamped Case

Figure 12.35:



Chapter 13

SSS: Impedance and Frequency
Response

Exercises

Exercise 13.1 Find the magnitude and phase of each of the following expressions

a) � � � � ��� �! '� � �MK � �0�!� � � �
� � � ����= 8 ( �1� = ���

b)
� � � � � � �

�
� � % K � � � + � �

� � @ K � � ����� IK
� � �

�
� � IK � �� % � � � + � � � � � � � � +

� �
�

c) ���5 '� � �MK � �0�2���'� � % � � �0�2��SX( � �98 � < �2�B( �����

d) � �985� � � I � � � � I � � � � � �5� � I � � �MK � � �

Solution:

a) � � � � ���������= �58 � � I � I � � N �
� � = 8 ( �1� = ����� ��= 8 � �5� � I � � � � 	 � N �
� � �-���� =��
� � � � � � �98 = �5 �� ���

b) � � �-� � � N % K N @ K N I% � N � � �*S$ �= S �
� � � � � � ��� � ( �5 � � � � � ( ��� � ( �'8 � �� � �

421
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c) � � �-� % � N IK N I � N I% � % � @ � � �98��
� � � � � �J8�� � � � � � ( S � � � �58 � � � �

�

d) ��85� � � I � � I � � � � !��'� � I � �MK � � �^I � N � � � � � � ��� � N @ N � �� � � �
� � �-�JS ��= 8
� � � � � � ( �� �

ANS:: (a) � � � � ����= � , � � � � � � �98 = �5 �� ��� , (b) � � � � S$ �= S � , � � � � � �� � � , (c) �
� � � � �98�� , � � � � � � � �

�
, (d) �

� � �*S �e= 8 , � � � � � � (��� �

Exercise 13.2 Find the real and imaginary parts of the following expressions

a) �8 � �e �� �HS0� � � K � �0� �'� � � % K � �

b) � ���5� � � K � �0�!� � % K � �

c) � ���5� � � K � �0�!� �

�
� �

d)
� � �

�
�
where

� � � � � � ���

Solution:

a)  e= �58'� � � � � !9S5� � � K � ! �'� � � % K � ����58�= ���'� � � � C ��=��'S � � � �58

b) � �5� � � K � C 8 = S1��� � � = S

c) � �5� � �
�
� � � K � C ��� � ���	� � � � �  �� � � � � � ���"� � � �  �� � � �

d) � � �.� � �
�
� �

� � C � � � � ���	� � � � � � � � � � ���"� � � � � ���

ANS:: (a) �e= �'S � � � �58 , (b) 8 = S1��� � � = S , (c) ��� � ���	��� � � �  �� � � � � � � ��� � � �  �� � � � , (d)
� � � � ���	� � � � � � � � � ������� � � � � ���

Exercise 13.3 Find the system function ] �U< � for the network shown in Figure 13.1. Then
find the response � �3� ��� for � � ��� � � ���	� � � under steady state conditions.

Solution:

] � � ( � � �
� � � (

C ] �
�
� ( � �

� � � (
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l

R

+

-

vL
i(t) L

Figure 13.1:

� ] �
�
��� ( � �� � � � � % � ( %

, angle of
] �
�
����� � � I � (

� �
� � �

� � ����� � ( � � �� � � � � % � ( %
! ���	��� � � � � �

ANS:: b
�
� � , � R� R � , , � �"� �����

, � �
�	 � �

� � +
� , +
! ���	��� � � � � � , � � ��� � � I � ,

�
� �

Exercise 13.4 Referring to Figure 13.2, given � � ��� � � K ���	� � � , where � K � 81� �
and

� � � �'@ rad/sec, determine ��� ��� in the sinusoidal steady state. Assume ( � ��W 6 and
� ��G� � .

R

+

-

v(t)i(t) L

Figure 13.2:

Solution:

] � � K � ��(
� ��� (

� � 8 � �
8
� �4�

8
	 �

� � � � �

Therefore,
� � ��� � 8

	 �
���	��� ��� @ ! � � S$ � �

ANS:: ��������� �� % ���	� �2���1@'! � �7S0 � �



424 CHAPTER 13. SSS: IMPEDANCE AND FREQUENCY RESPONSE

Exercise 13.5 The two-terminal linear network in Figure 13.3 is known to contain ex-
actly two elements. The magnitude of the impedance function is as shown, (log-log coor-
dinates).

ω

+

-
v(t)

i(t)

100

Linear
network

70.7

104 rad/sec

Slope

|Z(jω)|

= -1

Figure 13.3:

Draw a two-element circuit that has the impedance magnitude function indicated in
the sketch. Specify the numerical value of each element.

Solution:

+

–
R C

Figure 13.4:

� � ,
�

�
, ` � I

I, ` ���� � �1" : <��
(5�� ����6

� � ��� �

ANS::
� � ,

�

�
, ` � I , I, ` ���� � �'" : <�� , ( � ������6 , � ���� �

Exercise 13.6 For each of the circuits shown in Figure 13.5, select the magnitude of
the frequency response for the system function (i.e., impedance, admittance or transfer
function) from those given. It is not necessary to relate the critical frequencies to the
circuit parameters, and you may choose a magnitude response more than once.
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Please note that the magnitude responses, except (7), are sketched on a log-log scale,
with slopes labeled.

C

C R

v1

+

-

v1

R

+

- C

i1

L

CR

v2+- R

+

-

v1

i1

L R2

+

-

v1

R1

Y jω( )
I1 jω( )
V 1 jω( )
------------------= H jω( )

V 2 jω( )
V 1 jω( )
------------------= Z jω( )

V 1 jω( )
I1 jω( )
------------------= Z jω( )

V 1 jω( )
I1 jω( )
------------------=

(1) (4)(3)(2)

-1 +1 -1+1

log ω log ω log ω log ωω1 ω1 ω1 ω2

(5)

+1

log ωω1 ω2

(6)

-1

log ωω1

(8)

None of
the above

i1

(7)

ωω1

(a) (b) (c) (d)

Figure 13.5:

Solution:

a b c d
2 4 8 5

ANS:: (a) 2 (b) 4 (c) 8 (d) 5

Exercise 13.7 A linear network is excited with a sinusoidal voltage � ��� ��� �����	��� � ( ���
�
�

for all time, as shown in Figure 13.6.
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iI(t)

Z(s)+
-vI t( ) t

5π
8

------– 
 cos=

Figure 13.6:

The current observed under the sinusoidal steady-state conditions is � ��� ��� �
	 � ������� � � �

�
� .

What is
� � � � � ��� , the impedance of the network at an excitation frequency of one

radian per second?

Solution:

� � ]
�
� � � � � � ��� � � �
	 � � � � � � � � � � � � % �

since � � � ��� � �
�
� � ���	� � � � ( � ( � � � � ���	� ��� ( 8��

�
�

� R � � �
�
	 �

� � � � � � � �

ANS::
� R � � � I� % � �

� � � � � �

Exercise 13.8 Find � % ����� in the sinusoidal steady state in Figure 13.7. Assume � �-��� � ,( I �������6 , and ( % � ����6 .

Solution:

� %
� � �

� � ����( %
( I � � � ����( %

� � � � � � � �9� ���

where

� � � � � � ��� � ( % ��
� % � % � ( I � ( % � % � ( I % ( % %
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3 V cos (4t)

L v2R2

+

-

+
-

R1

Figure 13.7:

v(t)

i(t)

Network
-
+

Figure 13.8:

and

� � � <��[( ��� � � I � � � ��( I � ( % �( I ( % �
For � �JS , � �$� <1S , and � � � � � � ��� I

� � % ,

� % �������
�
	 �

���	� � S�� � � S �

ANS:: � % � ��� � I� % ���	� � S�� � � � �
Exercise 13.9 A sinusoidal test signal is applied to a linear network that is constructed
from exactly two circuit elements as shown in Figure 13.8.

The magnitude portion of the Bode plot for the impedance
� � � � � � b

� �

� �� � �

� �
is shown

in Figure 13.9.

Draw the network and find the element values.

Solution:

(
�
� �F> ��� @ �'" : <��

] � � � �
� � � � �

� ( � � � �
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ω105 106 107 108

103

104

105

V jω( )
I jω( )
----------------

Figure 13.9:

R 1000Ω=

L 0.001H=

Figure 13.10:

ANS::
,
� � �&> ���'@V�1" : <�� , b

� �

� �� � �

� �
� ( � � � �

Exercise 13.10 The circuit shown in Figure 13.11 is a highly simplified model of a power
transmission system.

+
-v1(t)

L1 L2

vL(t) v2(t)
+
-

1

2

+
-

Figure 13.11:

� I � ��� and � % � ��� are the voltages of two power generators:
� I � ] ���	� � � � % � ] ���	��� � � ��� �

Find the Thévenin equivalent of this circuit at the terminals 1-2 in terms of a complex
amplitude ] � � and a complex Thévenin impedance

� � P .
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Solution:

(���� � � ��� � � I � ( � % � �
� I � � � % �

� � I � % �
� I � � %

� � ���

By superposition,

] �
�
� ] I � % �

� I ��� � % �
� ] % � I �

� I � � � % �
� � % � � I �

���

� I � � %
!.]

ANS:: (���� � � ��� � �

�
�

+ R�
� � � + ,

] �
�
� � + �

�

�H� ����
� � � +

!9]

Exercise 13.11 Write expressions for
� � � � � � ] �V<5] � , its magnitude � � � � � � � and its

phase angle
� � � � � � , as a function of � in the four cases shown in Figure 13.12.

Solution:

(a) ] �
] � �

I` R
I` R � (

� �
( � � � �

� �
� � � ( � � % � �

� � �

� ����� � � I ��( ( � � �

(b) ] �
] � �

� �
� ��� (

� � �� � � � � % � ( %
� ���

� ����� � � I � (
� �
�

(c) ] �
] � �

(
( � I` R

� ( � �
( � � � �

� ( � �
� ��( � � � % � �

� � �

� ���	� � � I � �( � �
�

For � � ��� � and ( � ��� 6 ,

� � � � � � ��� �

	 � % � � and � � �	� � � I � �
�
�

(d) ] �
] � �

(
( � � �

� (
� � � � � % � ( %

� ���
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C

(a)

(b)

(c)

(d)

vi = ejωt

R

+
-

+

-
vo

L
vi =2 ejωt

R

+
-

+

-
vo

vi =5 ejωt

C = 1 µF = 10-6 F

+
-

+

-
vo

R =106 Ω

vi =10 ejωt

L = 1 H

+
-

+

-
vo

R =10 Ω

Figure 13.12:
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� � �	� � � I � ( � �
( �

For (5� � ��6 and � �-� Henry,

] �
] � �

���
	 � % � �����

� ���

� � ��� � � I ��( �

� � �

ANS:: (a) b �b �
� I	 �

�
, ` � + � I

� � � T � � ��� � � I ��( ( � � � , (b) b �b �
� �

�

	 �
�
�

� + � , +
� � � T � �

�	� � � I � ,
�
� � , (c) b �b �

� , `
�	 � , `
� � +

� I
� ��� T � � �	� � � I � I, `

� � , (d) b �b �
� ,
	 �

�
�

� + � , +
� � � T � �

�	� � � I � ( �
�

, �
Exercise 13.12 Plot the log magnitude and the phase angle, both as functions of fre-
quency (on a logarithmic scale), of the complex quantity.

� � � � ��� �6( � �

��� � �

Label all significant asymptotes, slopes and break points.

Solution:

*MAGNITUDE:
� � � � � � ��� 	 � % � � %

	 � % � � %
��

Or in decibels,
� � � � � � ��� ���.! � � � �
� � � � � � ��� � : �

*PHASE ANGLE:

� � � � � � � � � +,�����'"��2����( � : � � ��� � � "��2����� �\" � � I ( �� ( �\" � � I � �

� � � � � ��� ( �.! �\" � � I �

As � C � ,
� � � � � � C ( � � ��� � � C ( � ��� �
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As � C � , � � � � � � C ( � ��� � � C � �

As � �-� , the cutoff frequency,
� � � � � ��� ( � �S0 � � � ( ��� �

ANS::
� � � � ��� I � �

�I � �

�
, magnitude: � � � � � � � � � , or in decibels, � � � � � � � � � : � ,

phase angle:
� � � � � � � ( � ! �\" � � I �

Exercise 13.13 In the network shown in Figure 13.13,

C1

vo(t)
+

-

+
-

R

C2vi(t)

Figure 13.13:

(5�-��W ��-��1)U� � I � ���
� � � % � ���
� �

a) Determine the magnitude and phase of
� � � � � , the transfer function relating ] K <5] � .

b) Given � � � ��� � ���	�"� ����� � ���	�"� ��������� , determine the sinusoidal steady state output
voltage, � ������� .

Solution:

] �
] � �

I`
+ RI`

+ R
� ( � I`

� R
� �
��� `

+` � � ( � % �
� �
��� �

�� K

a)

] �
] � �

�
� � � � +IKMK +

� �� � � � �

� ���	� � � I �\( �

����� �

b) � � � ��� ,
] �
] � �

�
� 	 �

� � � � � � C � ������� � �
� 	 �

���	���2� ����� ( S$ � �
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� � ����T ����� ,
] �
] � �

�
����� = � � � �

� � � � � � C � ��� ����� �
����� = � � ���	��� ��� T ������� ( � � = S � �

� � ����� � �
� 	 �

���	� �2������� ( S$ � � � �
����� = � � ���	���2��� T ������� ( � ��= S � �

ANS:: (a) b �b �
� I�

I ��� +� � � +
�eI% � � � � T � � �	� � � I ��( �IKMK � , (b) � �������4� I% � % ���	��� ������� (

S$ � � � I% KMK � K I ���	��� ��� T ������� ( � � = S � �

Exercise 13.14 Find � % ����� in the sinusoidal steady state for the circuit in Figure 13.14.

� � ��� � ( I � ������6 ( % � ����6

L3 cos 4t
+
-

R2

+

-

v2

R1

Figure 13.14:

Solution:

� %
� � �

� � ����( %
( I � � � ����( %

� � � � � � � �9� ���

where

� � � � � � ��� � ( % ��
� % � % � ( I � ( % � % � ( I % ( % %

and

� � � <��[( ��� � � I � � � ��( I � ( % �( I ( % �
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For � �JS , � �$� <1S , and � � � � � � ��� I
�
� % ,

� % �������
�
	 �

���	� ��S�� � � S �

ANS:: � % � ��� � I� % ���	� � S�� � � � �
Exercise 13.15

a) Write the transfer function ] ������� <5] � ����� for the circuit in Figure 13.15.

vO(t)

+

-

vI(t)

iA(t)
Z1

Z2

Z3

Z4
+
-

Figure 13.15:

b) Write the transfer function � ������� <5] � ����� .

Solution:

a)

] �
] � �

� 	 � � 	 
 �
	
+	

+ �
	 � � 	 
 � 	 
	 � � 	 
 �� 	 � � 	 
 �

	
+	

+ �
	 � � 	 
 � � I

�
� % ! � �

� � % � �
�
� � ��� ! � I � � �

�
� � � � ! � %

b)

� ��� ���
] � � ��� �

� 	 � � 	 
 �
	
+	

+ �
	 � � 	 
� 	 � � 	 
 �
	
+	

+ �
	 � � 	 
 � � I

�
� %

� ��� ���
] � � ��� �

�
�
� � �

� �
�
� � ��� � % � � I � � % � �

�
� � �0�

ANS:: (a) b �b �
� 	

+ N 	 
� 	 + �
	 � � 	 
 � N 	 � � � 	 � � 	 
 � N 	 + , (b)

� � � R �
b �
� R �
� 	 � � 	 
� 	 � � 	 
 �

	
+ �
	
� � 	 + �

	 � � 	 
 �
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vO(t)

+

-

CvI(t)

iA(t)

R1 L

R2
+
-

Figure 13.16:

Exercise 13.16 Write the transfer functions ] ������� <5] � ����� T � ������� <5] � � ��� in the circuit in Fig-
ure 13.16.

Solution:

� I � � ��� ( %
� � � % � ( % � � � �

] � � ���
] � � ��� �

� I
( I � � I

� ( %
( % � � �

�
� ��� ���
] � � ��� �

� I
( I � � I

! � �

ANS:: b �
� R �

b �
� R �
� ���, � � ��� � , +, + � � R � ,

� � � R �
b �
� R �
� ���, � � ��� ! � �

Exercise 13.17 Write the transfer function � ��� ��� < � R � ��� for the circuit in Figure 13.17.

iS
Y2

Y3

Y4

iA

Y1

Figure 13.17:

Solution:

� �
�
� � ��� ! � %

� % � �
�
� � � �

�
���

� �������
� R � ���

�
�

���

�
��� � � I
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ANS::
� � � R �� � � R �
� �

� ��
� � � � �

Exercise 13.18 Find � ��< � R in the circuit in Figure 13.18.

L

iA(t)

R  (let G = 1/R)

C2iS(t) C1

Figure 13.18:

Solution:

�
��� � � ( � % � �$��� ! � �

� � % � % � ( � % ��� �

� �
� R
�

� ���

� ��� � I`
� R
� � I � � ���

� I � � ��� �$�

ANS::
� �
� �
� `

� R 	 � �`
� R 	 � � � I

Problems

Problem 13.1 For each of the networks shown in Figure 13.19:

a) Determine an expression for the indicated complex impedance or transfer function.

b) Sketch the magnitude and angle of the indicated quantity as a function of frequency.
You may use either linear or log-log coordinates, but it is recommended that you
learn to use both kinds of axes.

Solution:



437

CRZ LRZ

C2

RZ C1

Figure 13.19:

a) i)
� � ,

I � �

�
, `

ii)
� � �

�
, �, � �

�
�

iii)
� � �

�
, ` + � I�

�
`
� � � +

`
�
`
+ , � �

�
`
+

b) i) See Figure 13.20

log |Z|

ω

ω

Z∠

1
RC
--------

-45

-90

1
RC
--------

Figure 13.20:

ii) See Figure 13.21

iii) See Figure 13.22

ANS:: (a) (i)
� � ,

I � �

�
, ` (ii)

� � �

�
, �, � �

�
� (iii)

� � �

�
, ` + � I�

�
`
� � � +

`
�
`
+ , � �

�
`
+

Problem 13.2 Shown in Figure 13.23 is one possible circuit model for a transformer, for
use where there can be a common ground between primary and secondary.

Assume:

� I � �e=� � T � % � � = ���5 � T � � W 	 � I � % where W � �5T ( I �-��W 6�T ( % � � ��6 .

a) Determine an expression for the sinusoidal steady-state transfer function ] % <5] R .
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log |Z|

ω ω

Z∠

R
L
---

45

90

R
L
---

Figure 13.21:

log |Z|

ω

ω

Z∠

1
C1C2R
-----------------

-90

90

1
C1C2R
-------------------

Figure 13.22:

+

-

v2M

i1

+
-

v1

+

-

vS

R1 i1

v2

+

-

R2

i2

+

-

v1

L1-M L2-M

Figure 13.23:
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b) In the tight-coupling limit, W#C � , the two natural frequencies are far apart. (See
Problem 12.3 in the previous chapter.) For this specific case, sketch the magnitude
and angle of the transfer function on log-log scales.

Solution:

a) b +b �
� �

� �, � , + � � +
� � + � � � � + � � �

�
� , � � + � , +

�
� �

b) See figures on the following pages.

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

log(ω)

 
V

2/V
s 

Figure 13.24:

ANS:: (a) b +b �
� �

� �, � , + � � +
� � + � � � � + � � �

�
� , � � + � , +

�

� �
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10
0

10
1

10
2

10
3

10
4

0

10

20

30

40

50

60

70

80

90

log(ω)

∠
 V

2/V
s

Figure 13.25:
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Problem 13.3 An electrical system has the transfer function

� � � � � �
� � � � �

� � � � �
� ��� � � ����� � � � � ��������� � � �
� � � � � � �2� ��� � � � �0�2��������� � � � � (13.1)

a) Plot the magnitude of
� � � � � in decibels versus the logarithm of frequency, labeling

all 8 : � points.

b) Sketch the phase of
� � � � � versus the logarithm of frequency.

c) For what values of � does the magnitude of
� � � � � equal � : � ? What is the rela-

tionship between the magnitudes of � � � � � and
� � � � � at these frequencies?

d) List the frequencies at which the phase of
� � � � � equals 45 degrees.

Solution:

a) See Figure 13.26.

t

20

40

60

10-1 100 101 102 103 1040

Figure 13.26:

b) See Figure 13.27.

c) The magnitude of
� � � � � equals � : � at � �-��� � . Here,

� � �

� �� � �

� �
�^I% .

d) 1; 10; 100; 1,000; 10,000
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t

-60

-40

-20

10-1 100 101 102 103 104

0

-80

Figure 13.27:

ANS:: (c)
� � � � ��� � : � at � � ���

�

(d) � � ��� � � ��� � �5T ����� � � � T �����

Problem 13.4 Refer to Figure 13.28 for this problem. Assume ( I � ��W 6 and � I ����'� � .

V1

R1
+

-

R L

+
-

L1

Vo

Figure 13.28:

a) Find the transfer function
� � � � ��� ] I <5] � .

b) Find ( so that the � � gain is �9< ��� .
c) Find a value of � so that the response at high frequencies is equal to response at

� � .

d) Plot
� � � � � (magnitude and phase) vs. log � for the values of ( and � found above.
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Solution:

a)
� � � � � � , � � �

�
� �� , � � , � � �

�
� � � � � �

b) ( � �0W 6

c) � � ���'� �

d) See figure.

ANS:: (a)
� � � � ��� , � � �

�
� �� , � � , � � �

�
� � � � � � (b) ( � �0W 6 (c) � � ���'� �

Problem 13.5 This problem examines the simple door-bell circuit commonly used in
homes (Figure 13.29).

+

-

V2M

I1

+
-

V1

+

-

I1

V2

+

-

I2

+

-

V1

L1-M L2-M

Bell transformer  Power line

Door
bell

Push-button
switchM I2

Circuit model for
bell transformer

    120 V AC, 60 Hz

Figure 13.29:

Data for the transformer in Figure 13.29 is given below:

� I � �e=� � T � % � = � �' � T � � W 	 � I � % , where W � � .

a) In the limit W � � , what is the voltage ] % with the push-button switch not pressed
(open)? You should use root-mean-square amplitudes for all quantities. The voltage
source is given as �����5] root-mean-square.

b) The door bell operates by repetitive making and breaking of a contact and can nor-
mally be modeled as a � ��6 resistance at ��� ��� . Determine the magnitude of the
root-mean-square primary current � I under normal door bell operation (push button
closed, door bell = ����6 ) in the limit of W � � .
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c) An important safety issue in such circuits is the prevention of fire in the event that
the door bell should accidently stick with its contact closed, thus becoming equal
to a short circuit. This can be accomplished by adjusting the value of W . Find the
value of W that will limit the root-mean-square primary current to  ����'� �

for the
case where the push button is pressed and the door bell acts like a short circuit.

Solution:

a) � is approximately � = �5 .

] I � ] �
� � �

� ]
�
� � � I ( �5�

: �
: � � �

: �
: �

: �
: � �

] I
� I

] % � �
: �
: � �

� ] I
� I
� 8��
�e=� ����

b) See Figure 13.30.

+
-

V1 10Ω

I1

Im

I2Z1 Z3

Z2

60j(L1-M) 60j(L2-M)

60jM

Figure 13.30:

� � ������� � % ( ��� � � �$��� ������� �
����� � % �$���

� ����� � � I ( �5�

� 8������ � % ( 8������ � I � % � ������� � I
����� � % �$���

� ����� � � I
����� � % � ���

� �
��� � � % � ����� ] I
������� � I

�
� �������78������ �.����= � �' % � � ] I �

����� � � I
� 	 S ����5 
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+
-

V1 10Ω

I1

Im

I2Z1 Z3

Z2

Figure 13.31:

c) See Figure 13.31.

� � ������� � % ( ��� � � ������� �������� � %
� ����� � I ( ��� � �

� ���0W % � I ( ��� � I
�

� ( ��� � I � ��W % ( ���

Therefore we have b �@ K � � � � + � I �
� � =  , and I % K� � � W % ( � . Finally, W �

� I �
� .

ANS:: (a) 12 (b) � �
� � K �% � (c) W �

� I �
�

Problem 13.6 In the circuit in Figure 13.32, the switch has been in Position (1) for a long
time. At � � � , the switch is moved instantly to Position (2). For the particular parameter
values of this circuit, the complete output waveform for all time greater than zero is

Vc(t)
+

-

R

CVo
-
+

(1)

(2)
+

-v(t)=V1cos (ωt )

Figure 13.32:

�
�
����� � � ]

�
� ���	��� � � � � � (13.2)

a) Find � ] � � and � in terms of ] I T � T (&T and � .
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b) Find ] � in terms of � ] � ��T � T ( and � required to produce the � � ����� waveform.

Solution:

a) � ]
�
��� b �	 I � � �

, ` � +
� � ( ��� � �	� ��� � ( � �

b) ] � � b �I � � �
, ` � +

ANS:: (a) � ] � ��� b �	 I � � �
, ` � +

T � � ( ��� � �	� ��� � ( � � (b) ] �'� b �I � � �
, ` � +



Chapter 14

SSS: Resonance

Exercises

Exercise 14.1

a) For the circuit in Figure 14.1, assume a sinusoidal steady state at a fixed frequency
� K . Determine an equivalent circuit for the (Z( � parallel combination (

� I ) in terms
of a resistor ( � in series with a suitable inductance � � .

Z Z
L’

R’RL

Z2 Z1 Z2 Z1

Figure 14.1:

b) Determine the impedance
�

that must be added in series with
� I such that the total

impedance
� % is equivalent to a pure resistance at frequency � K . What is this value

of this resistance?

Solution:

a)

� � � ��(
� � � (

� � � � � � ( �
447
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� � � � :
� ( � � �

� � � � � (
� � � � � � � ( � � � % ( � � % � ( % � � � �

� � � � � % � ( %

Equating real and imaginary parts above,

� � � ( % �
� � � � � % � ( %

( � � � � % � % (
� � � � � % � ( %

b) Add the capacitor in series with

� �
( % � � � � � � %
( % � � % �

ANS:: (a) � � � , + �� �
� � � +

� , + T (
� � � � +

� + ,� �
� � � +

� , + , (b) � �
, + � � � �

�

� +, + � � +
�

Exercise 14.2 For a parallel RLC network with (5� �9W 6�T � ��9< ��� � T � ��9<'8
� � , find
� K T Y K T � T � K T � 	

T � I T � % and � � � % ( � I . ( � I and � % are the half-power frequencies.)

Solution:

ω1 ω2ωρ

ωρ ω0.707=

2α

H jω( )( )

ωlog

Figure 14.2:

� � � � �
� �
� �������'�1" : <�� � ��� Y �
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L v(t)

+

-

R Ci(t)

Figure 14.3:

Y � � �0 1S = � ���

� � �
�
( �

C � ��� ����'�'" : <��

� � � � �

� �
� � � ( � � �

�
	
% � � � % ( �

%
�
	
�  �T ��� �1�'" : <��

� I � ( � � ( � �*S � �'S5�1" : <��

� % � � � � � � ��� �1S5�'" : <��
� �J8������'�1" : <��

� � � � ��! � ��� �
S � %
� � T � �1S5�'" : <��

ANS:: Y �4� � = �0 5W � � T � 	
�^ �=��0W rad/sec T � % � �e= � �5W rad/sec T � � �5=  rad/sec T � I �SU= � �0W rad/sec T � �J85W rad/sec T � � �5�

Exercise 14.3 A parallel resonant RLC circuit (Figure 14.3) driven by a current source,
0.2 cos � � , (units of amperes) shows a maximum voltage response amplitude of ���0] at
� �5�5 ���� rad/sec. and S��0] at 2200 rad/sec. Find (&T � T and � .

Solution:

For this circuit, ]-� � ! � � � � �

� � � � = � � �&% �
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Peak response occurs at

� �'� � �
� �

� I � %
and at this � ,

� ] ��� � � !�( � ���0]
� � � � � � � � C (

Therefore, (5� S ����6

� ] �
�
� % % KMK �JS��0]
�

�
�
�
�
�

� � R`
� % � R, ` � I�5`

�
�
�
�
�

�
�
�
�
�
�

S5S ���e< �
� � % ( � % � % % KMK �� KMK `

�
�
�
�
�

� S5S ���e< �
�5= S � > � � @ � � � � �`

� � � =��' ��
� �

� � % � �
� �
� ���5 ���� � %

� �5�18 =��.� )

ANS:: (5� S ����6�T � � �'8 = �1� � T � � � = ���
� �

Exercise 14.4 Find an expression for the value of � that will balance the bridge (Fig-
ure 14.4) to make � I ( � % � � , for an input voltage ] cos � � .

L
v2

R C

Vcos (ωt)
+
-

R
v1

Figure 14.4:

Solution:

We need to meet the following condition:

� �
( �

(
I` R
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� � ( % ! �

ANS:: � � ( % �

Exercise 14.5 One or two of the following statements made about the second-order RLC
network in Figure 14.5 is/are inconsistent with the rest. Circle the inconsistent state-
ment(s).

i(t)

vS
+
-

RLC
network

Figure 14.5:

a) The natural frequencies � I and � % of this circuit are as shown in the complex plane
(see Figure 14.6).

jω

j12

j12

-5

x

x

σ

Figure 14.6:

b) � �-�5= �

c) The admittance function
� � � � ��� � � � � � <'] R � � � ��� ��� � < � �2������( � % � � � ��� � �
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d) The step response for � � � is of the form:

� ����� � � � � � � cos � ����� ����� (14.1)

e) The steady state response to � R ������� � cos �5 �� is of the form:

� � ��� � � cos � �5 �� � � � (14.2)

Solution:

(b) is inconsistent with the other statements.

� ��5= 8 actually.

� � % � �
% � �

	
% C � I � % � ( � � �

	
�

� �
� �

� �
� �98
� �� �� �-�5= 8

ANS:: (b) is inconsistent with the other statements, � � �5= 8 actually

Exercise 14.6 Consider the network shown in Figure 14.7.

L1 FiC(t)
vI(t)

1 Ω1 Ω
iI(t)

iL(t)

+
-

Figure 14.7:

a) Show that by proper choice of the value of � , the impedance b �
� R �� � � R �
� � � ����� can be

made independent of � . What value of � satisfies this condition?

b) With � as determined in part a), what is the value of
� � ?

c) Assume that the capacitor voltage and the inductor current are both zero for � � � .
Determine ��` ����� for � � � when � ������� is a unit step.

Solution:
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a)

� � � ��( � I` R � � (�� � ���
(�� I` R � ( � � �

� � ( � ��� ���0��( � � ��� ! � �
� �1� ��( � � � ��� � � � % �

� � � ��� �
( � � � � % � � , + ` � �, � � �$� �

� � � % � ��( � � �$�

We need
, + ` � �, � ��( � for

� � � ��� to be independent of � .
Choose � � ( % � to accomplish this.

� �-� if (5� � � � .

b)
� � � (

c) ��`������ � I, � � � � , `

ANS:: (a) � �� if (5� � � � , (b)
� � � ( , (c) ��` ����� � I, � � � � , `

Exercise 14.7 Each of the following parts makes a statement about a second-order sys-
tem. Indicate whether the statement is true or false.

a) The network shown in Figure 14.8 (with both ( ’s and � ’s positive) can exhibit
natural responses of the form � � � � sin � � .

vO(t)C1vI(t)
+
-

R1
+

C2

R2

-

Figure 14.8:

b) The natural response of a RLC network is given by: � ������� �5�' '� � � � �����1�2������ � < ��� .
The � of the network is 1.2.

c) For the circuit shown in Figure 14.9, the output voltage under sinusoidal steady
state conditions is zero.
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vO(t)R

+

C

-

L
IS

t

LC
------------ 

 cos

Figure 14.9:

iS(t) R C
L1

L2

Figure 14.10:

d) The circuit shown in Figure 14.10 contains 3 energy storage elements and thus has
3 natural frequencies.

Solution:

a) False. The roots are purely real and negative from the characteristic equation.

b) False.
�
	
�-��� and � �  

So, � � � 	 �
	
% � � % � �98

� � � �% � � �5= 8
���5= �

c) True.
� � ����� ] R

� R
� (#� � � � % � ���

� � � % � ( � � �$�

So at
� � �

	 � �
,

� � � � � � ��� �

d) False. � I and � % are in series, so their combination is equivalent to one inductor of
value � I � � % .
Thus the system is second order and cannot have 3 natural frequencies.
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1 10

Slope = +1
5

1

Slope = -1

Slope = -2
(log scale)

(log scale)
 rad/s

V o

V i
------ jω( )

ω

Figure 14.11:

ANS:: (a) False (roots are real and negative), (b) False (Q = 1.3), (c) True (at � �
�

� �'` T� � � � � � ��� � ), (d) False. (system is second order)

Exercise 14.8 The voltage transfer ratio of a certain network is shown in Figure 14.11 in
Bode-plot form.

This transfer ratio can be expressed in the form

] � � ���
] � � ��� �

� �
� � % � ��� K < � � � %K �0� � � � ��� (14.3)

Determine the parameters � T � T � K , and � .

Solution:
� � � ���'" : <�� ; it is the resonant peak frequency.

The pole at � � ��� is due to � � � � ��� factor in the denominator.

At � �-��� , � � �-� so that � � ��� � ��� 	 � .� ���< ���
� is the ratio of the resonant peak to the asymptotic intersection, � �J .

� � � �/! ��� ���  /� � �
� � � � % ( � % � % � � �� �� � % !

� ��� � � � � %

� �-�5= ���0 
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ANS:: � �-�5= ���0 , � �  , � � ��G�'" : <�� , � � �9< ���
Exercise 14.9

a) In the circuit in Figure 14.12, find an expression for the complex amplitude ] � as
a function of ] � after transients have died out, assuming � � is a sinusoid: � � �] � cos � � .

vo

R
+

C

-

L
vi

+
-

Figure 14.12:

b) Find � ������� at the frequency � K � I� �'` .

Solution:

a)

] � � ��� � ��� � � � %
��� ( � � � � � � %

!.] � �����

b) At � � � I� �5` , � � ����� � � .

ANS:: (a) ] � � ��� � I � �'` R +I � , ` R � �5` R + ] � � ��� , (b) � ������� � �

Exercise 14.10 The impedance of the network shown in Figure 14.13 is found to be �5W 6
and is purely real at all frequencies. The value of the inductor is one � � as shown. What
are the values of ( and � ?

Solution:

� � ��( � I` R � � (�� � ���
��( � I` R � � �

� (#� � � � % � �
�

, � ( � ��� �$���
� � � % � ��( � ��� �

In order for
�

to always be purely real,

� �( � ( � � � ��( �
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Z(jω)
R

+

C

-

1 mH

R

Figure 14.13:

� � ( % �

Then
� � ( �5�������

independent of � . = ��� � � ������� % �

� �5�e=� ! ��� � IK � "0�1" : �

ANS:: (5� ������� and � � �e=� ! ��� � IK Farads

Problems

Problem 14.1 For the series-resonant circuit in Figure 14.14, draw the impedance model,
and find the transfer function ] �O<5] � . Sketch the Bode plot of log magnitude and phase
of this function versus log frequency by sketching the asymptotes, then sketching the
function. This is a second-order low-pass filter.

For this topology, the maximum amplitude does not occur at the resonant frequency
� K (prove this, but don’t work out all the math). However, this is a small effect for all but
very low � . Find expressions for the resonant frequency (defined as the frequency where
the � % and the � K terms cancel in the denominator) and the � .

Solution:

Impedance Model (Figure 14.15):

Transfer Function:
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R
+

C

-

L

+
-vI(t) vO(t)

Figure 14.14:

R +

-

+
-VI Vo

Ls

1
Cs
------

Figure 14.15:

] �
] � �

I` R
� � � (�� I` R

� �
� � � % � ( � ��� �

� �
� � ( � % � � � � � � ( �

Bode Plot:

� � ( �	� � � I � � ( �
�6( � % � �

�

� K �
�
	 � �

See Figure 14.16 for plot.

Resonant Frequency:
� � � �

	 � �
Check if max amplitude occurs at � K :

�
� � � ] �] � � � ( �1( � � � � � �� � � ( � % � � � � � � ( � � %

at � K : �
� � � ] �] � �

�
�
�
�

� �
� ( �1( � � � 	 � �

� ��( � `
� � %

�� �
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0

ω0( )log

V O

V I
-------log

ω( )log

ω 1≈

ω 1

ω2
LC

---------------–≈

0

ω0( )log
ω( )log

ϕ

π–
2

------

π–

Figure 14.16:
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So, � K not maximum amplitude.

� �
� �
( �

�
( � �

�

ANS:: b �b �
� I� I � � +

�5`
� � �

�
, ` , � K � I� �5` , � � I,

� �`

Problem 14.2 Consider the circuit in Figure 14.17.

L C v(t)i(t)
+

-
R

Figure 14.17:

a) Draw the Bode plot of � � �H�.� � for ( � � � � �-� . What is the resonant frequency?

b) Draw the Bode plot of � � �� � � for ( � �5T � � � � � . What is the resonant
frequency?

c) Comment on the results of part a) and part b).

Solution:

Find � � � � � � :
� � � ��� �

� ��� I, � I� R
� ( � �
( � � � % � � � � (

� � � ( �
(#�2�6( � % � � � � � � �

� � � � � ��� � ( �� ( % � � ( � % � � � % � � % � %

a) ( � � , � � � , � �-�
� � � � � ��� �

� � � ( � % � % � � %
� K ��

Bode Plot: see Figure 14.18
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0

Z ω( )log

ω( )log

Z ω( ) ω≈
Z ω( ) 1

ω
----≈

0

Z ω0( ) 1=

-1

Figure 14.18:

b) ( � � , � � � , � � �

� � � � � ��� � �
� �2�6( S � % � % �7S � %

� K �
�
�

0

ω0( )log

Z ω( )log

ω( )log

Z ω( ) 2ω≈
Z ω( ) 1

2ω
--------≈

0

Z ω0( ) 1=

-1

Figure 14.19:

Bode Plot: see Figure 14.19

c) The resonant frequency drops from 1 to I% . As a result, the Bode plot for � � � � � � just
shifts to the left by an amount -���� ��I% � .
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ANS:: (a) � K �� , (b) � K � I%

Problem 14.3 The circuit shown in Figure 14.20 has an input voltage � � 	 I ����� �] I cos �������3� , and � �  ����'� � T � � ��� � Y3T ( �  ���6�=

VoVin

+

-

R sL

1
sC

+
-

Figure 14.20:

a) Compute the transfer function
� � ����� ] ������� <5] � 	 I � ��� .

b) Set � � 	 I � ���'� � . What is the equivalent complex impedance of the circuit evaluated
between ] � and ground?

c) Parts a) and b) might lead you to believe that Thévenin’s Theorem also applies to
complex impedances. If this is true then we can replace the circuit between ] � and
ground by a complex Thévenin impedance (

� � P ) and a complex open circuit voltage
( ] � � ). Taking � � 	 I � ���'� �����������������3� compute

� � P and ] � � .
d) Having represented the circuit by its Thévenin’s equivalent we wish to connect it to

another circuit having � � 	 % ������� ����������������� as shown in Figure 14.21.

Vo

Voc

RsL

1
sC

+
-

Zth

Vin2
+

-

Figure 14.21:

1) Are there any problems with this approach? If so state them explicitly.

2) Compute the complex ] � for this circuit.
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3) Now let � � 	 I � � � 	 % � � ���0����������� � . Evaluate ] � for this case.

4) If � � 	 I � ��� � � � 	 % � ���'�-�����������������3� compute the real output voltage ����� ��� .

Solution:

a)
� � ����� �

� � � % � ( � ��� �
� �
�2�6( � % � � � � � � ( �

R LS

1
Cs
------ Req

Figure 14.22:

b) See Figure 14.22

� ��� �
�

I, � R � � � �
� (�� � �

� � � % � ( � ��� �
� (�� � � �
�2�6( � % � � � � � � ( �

c) � � 	 I ����� ���� ��� � � �������3���
] �
�
� � � ��� !.] � 	 I �

�
� �6( � % � � � � � � ( �

���'� � � I % K � � �

� ���'� � � I % K � � � � � � � � � �.d� � � + � d �� � �6( � % � � � % � � % ( % � %

� ���5� � � I % K � � �
S = � �1� � � � K � � IMI �

] �
�
� ��= �'85� � � I % K � � � K � � IMI �

� � P �
(�� � � �

� � ( � % � � � � � � ( �

for � � ������� :
� � P �

� �0 1� � � I � � IMI �
SU= � �'� � � � K � � IMI �

� 8 � = �5� � � I � @ % % �
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ANS:: (a) I� I � � +
�5`

� � �

�
, ` (b)

� � � �
, � �

�
�

� I � � +
�'`

� � �

�
, ` (c) ] � � � �e= �58'� � � I % K � � � K � � IMI � ,

� � P �J8�� = �'� � � I � @ % % �

Problem 14.4

a) Determine � �GT � T � 	
T � I for each of the circuits in Figure 14.23 ( � I � � �O<�� � ).

LR1 CZ1
L

R2
C

Z2

Figure 14.23:

b) Assume � ���� � T � � ���
� � . Find values of ( I and ( % that will yield � I � ��� .
What is the ratio of ( I to ( % ?

c) Make a parallel � � ( ( � equivalent circuit for the � ( ( % series combination (as in
Exercise 14.1) and use this equivalent circuit to calculate what the ratio of ( I and( % in part b should be for � I � ��� in both circuits. How large is the discrepancy,
if any?

d) Using the values for ( I and ( % found in part b), make plots of � � I � and � � % � versus
frequency and

� � I and
� � % versus frequency. Identify the following features of

your plot:

i) The maximum impedance, the frequency � � at which this occurs, and the
phase angle at � � .

ii) The frequencies � I and � % at which � � � is ��< 	 � smaller than the maximum,
and the phase angles at � I and � % . Calculate the quantity � % � � � < � � % ( � I � .

e) Now suppose that you have just been given a “parallel resonant” circuit
�

, but
you don’t know whether it is of the

� I form or the
� % form. Suggest a step-by-

step experimental procedure based on measurements of � � � and perhaps
� �

as a
function of frequency to determine

i) which of the two forms of parallel resonant circuit is the best model, and

ii) specific values for the three elements, (&T � T � .

Solution:
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a) 1) First circuit:
� ����� � � ] � � ]

( � � �

� � ����� � � ] � � � ] �
( � � � � � � ] � � � ] �

( � ]
�

�
�
� � � ��� � ] � � � ] �

( �
� ]

� �
General form: � % � � � ��� � %K � � , so:

� % � �
( �
� � �

� �
� �

� �
�
��( �

� K �
�
	 � �

�
	
� � %K ( �

% � �
� �

( �
S ( % � %

� I �
� K
� �
� � K ( � � ( � �

�
� (

� K �
2) Second Circuit: � � ���'� � ] � � � �

Find ] � :
� � � � ] ( ( � �

�
]-� � � � � � ( � �
] � � � � � �� � ( � � �

Substitute: � ����� � � � � � �� � ( � � � � � � �
�

� �
� ����� � � � �� � (

�
� � � � �

� �
� �

General form: � % � � � ��� � %K � � , so:

� �
(
� �

� K �
�
	 � �
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�
	
� �

� �
( ( %S � %

� I �
� K
� �
� � K �
( � �( � �

�

b) From part (a), the values of ( I and ( % that yield � I � ��� are: ( I � ������6 and( % ���6 . The ratio is then:
, �, +
� ����� .

R’ L’
R

L

Figure 14.24:

c) See Figure 14.24

� � P � ( % � � � �
� �� P � �

I, � I
�

�
� �
� � � � � ( �

� � � � � ( � � � % � � % ( � � � � � � ( � %
� % � � % � ( � %

We want
� � P � � �� P , so:

( % �
� % � � % ( �

� % � � % � ( � %
� � � � ( � %

� % � � % � ( � %
�'% � �
( � � ( %�
( � � � % � � �

( %
Substituting:

( % �
� % � � % � � + � � �, + �

� % � � % � �

 � � + � +, ++

� ( % �'% �
� �

( %% � � % � %

� � � ( %% � �'% � %
� % �
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( � � ( %% � � % � %
( %

Find new � I :
� I �

( �
� K � �

� I �
� % �
� K ( %

� � K �
( %

( I � ������6 and ( % � ��6 . The ratio is unchanged at
, �, +
� ����� , so there is no

discrepancy from part (b).

ωr 10
4

=

Z1 ω( )

ω

100Ω

ω2 10512.5=

maximum impedance

ω1 9512.5=

ωr

Z1∠

ω
ω2ω1

90

45

0

-45

-90

Figure 14.25:

d) See Figure 14.25 for plots.
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� I �
�

I, � � I
�

�
� � � � �

� I �
� � � ( I

( I �2�6( � % � � � � � � �
� � � ( I �

� ���
+ �� ( % I �2�6( � % � � � % � � % � % �

� � � � � � � �

�

� � � � � � + � d � �

� � � ( I� ( % I �2�B( � % � � � % � � % � %
� � � � � � � � � � � � � � + � d �

�

� �

� � I ���
� = ���

� ��� � �2�B( ��� � � � % � % � � � � @ � %
� �

� � ��� � ( ��� � � � % � % � � � � � � %

� � I � �	� � � I � ����� � �B( ��� � � � % �� ! � � � � � 	 ���	� � � I � ��� � � �B( ��� � � � % �� 	
See Figure 14.26 for plots.

� % �
�

I, + � �

�
� � � � �

� ( % � � � �
� � ( � % � � � � � � ( % �

�
� ( %% � � % � % � � � � � � � � � �� �

� �2�6( � % � � � % � � % ( %% � % �
� � � � � � � � � + d� � � + � d �

� � % ���
���� � � ��� � @ � %
� �B( ��� � � � % � % � ��� � IK � %

� � % � �	� � � I �2� � � � � � ( ��� � � I � ��� � � �
� ( � � � � � % �

e) i) Measure
� �

close to � � � . If
� � Q ��� � , then

� I is the best model, if
� � Q5� , then

� % is the best model.

ii) Measure � � � to find � K and � , then solve the resulting system of equations for( , � , � :

if
� I : � K � I� �'` , � �

,
� �
� , ( � � � �

�

if
� % : � K � I� �'` , � � � �

�

, , �	� �"� � � ( ��� � � � � � � � K �

ANS:: (a) (i) � � I% , ` , � K � I� �'` , � 	
� I�5` ( I� , + ` + , � I �

,
� �
� (ii) � �

,
% � ,

� K � I� �5` , � 	
� I�5` ( , +� � + , � I � I,

� �` (b)
, �, +
� ����� (c)

, �, +
�-�����
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ωr 10
4

=

Z2 ω( )

ω

100.5Ω

ω2 10512.5=

maximum impedance

ω1 9512.5=

ωr

Z2∠

ω
ω2ω1

90

39

0
-5.7

-90

1Ω

-50.4

Figure 14.26:

+

vI(t)
+
-

R

-

C

L vO(t)

iI(t)

Figure 14.27:
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Problem 14.5

a) Write down the differential equation describing the circuit in Figure 14.27.

b) Write the transfer function ] ������� <5] � ����� .
c) Solve for � ��� ��� assuming � ��� ��� � ������� � (let � �-� ).

d) Plot the roots of the characteristic polynomial (from part b) on the complex s-plane
(Assume ( % � % � S � � .)

Solution:

a)
� ��������� ( ��� �

�
� � � �

� �� ������� � � � � � ( � � � ��
�
�
� �� ����� � � � � � (

�
� � � �

� �
�

b) Transfer function:

] �������
] ������� �

� �
(�� I` R � � �

� � � � %
� � � % � ( � � �$�

c) � � � ���	� � ���J� � �
, and � � �

� � (�� �
� �

� � �

� ����� � � � �
( � I` �

� � �

� � �$� � �
� � ( � � � � ( � �

� � � � � �
+ � � � �

� �2�6( � � � % � ( % � % � � � � � � � � ��d� � � d �
� ����� � �� �2�6( � � � % � ( % � %

� � � � � �

+ �
� � 	 � � � ��d� � � d � �

� ����� � �� �2�6( � � � % � ( % � %
���	� � � � �\" � � I � �6( � �

( �
� 	
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1
LC
------- R

2

4L
2

---------–

1
LC
------- R

2

4L
2

---------––

R
2L
------–

two solutions
for s

Figure 14.28:

d) See Figure 14.28
� % � (

�
��� �

� �
� �

� � ( (� �
�
�
� � ( %� % ( S

� �
� ( (� �

� � � �
� �

( ( %S � %

ANS:: (a) I� � �� � ����� � � � � , � � � � I�'` � (b)
�'` R +�5` R + � , ` R � I (c) � ����� �

`
	 � I � �'` � + � , + ` +

���	� � � �
�\" � � I � I � �5`, ` � 	 (d) ( ,% � � �

� I�'` ( , +� � +

Problem 14.6

a) In the circuit in Figure 14.29, given that � � � ]�� cos � � , where � � � �5@ rad/sec.
Design a lossless coupling network containing one inductor and one capacitor that
will maximize the power transferred to the antenna at frequency � .

b) Now suppose that � � � ] � cos � � � � �0���98 � � , where � represents a small amount
of third harmonic distortion introduced by nonlinearities somewhere in the trans-
mitter. Since the FCC forbids the broadcast of harmonics, it is important to check
that coupling networks do not inadvertently favor the coupling of harmonics to the
transmitter. For your design in a), calculate how much third harmonic reaches the
antenna.

Solution:
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vS
+
-

RL

RS
Lossless

coupling

network

RS = 50 Ω

RL = 1 Ω

Transmitter Antenna

Figure 14.29:

vS
+
-

RL

RS

RS=50Ω

RL=1Ω

Zeq

LC

Figure 14.30:

a) ��� � ] � ���	� � � , � � � �'@ See Figure 14.30 for network structure.

Specify � , � :
� � � �

�
I, � I� R � � �

� ( � �
(#� � � � % � ��� � � �

make � � ��% �$� � � so that
� � � � ( , then:

�6( � � � % � �

� � �
�
� % � ��> ��� � I %

� ���� � ���> ��� � � �

� �� � � ��X> ��� �
�

�

b) ��� � ] � ���	� � � � � ��� �,8 � �
See Figure 14.31 for equivalent circuit.

� � P �
�

I� R � � �
� � �

� � � % � �



473

vS
+
-

RL

RS

RS=50Ω

RL=1ΩZth

Figure 14.31:

RSRS

L L RP

Simple model of a
physical inductor More complex model

Figure 14.32:

From (a), � � � I
� +

. At � � �e8 � ,

� � P �
�$8 � �

( � � % � � � �
� � P �

8��������
( �

� (48 �5 � � 8 �' � � � ���
+ �� ��� �

��� �

�
�
�
� � � �

Amount that reaches the antenna: use � � � P � :
�

( � � 	 � � ,��	 � � � ,��
! � � � P (��

� � P � (��
� � �� ��

��� �

ANS:: (b) I ���� @ �

Problem 14.7 Refer to the figure in Figure 14.32 for this problem.

The � of a physical energy storage element may be defined as

� I � � � � � �
( �1� � � (14.4)
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where
�

is the terminal impedance of the element. The � may also be defined in
terms of energy as

� % �
��� � � �
�
	
� R�R � � � � � � (14.5)

where � � � is the average stored energy and
�
	
� R�R � � � � � � is the energy dissipated per

cycle.

a) For the simple inductor model, calculate and compare � I and � % as functions of
frequency.

b) For the more complex model, and assuming ( � � � (�� , sketch � I as a function of
� making reasonable approximations.

c) Suppose two inductors with the same � I and ( � IK ) are connected in series. Express
� I for the series combination in terms of � IK .

Solution:

a) Simple Model: Find � I :
� � ( ��� � � �

� I � � � � � �
( �1� � � �

� �
( �

Find � % :
� � �� � � %�

� � � �
I% � � � �!� � � 	 �

%� : �
� �����&� :

where the Period = %
�

�
:

� � � � � �
S��

�
� �� � � 	

� %� : �
�
	
� R�R � � %� (��

�
	
� R!R � � � � � � � ( �

�
� �!� � � 	

� %� : �

� % �
��� � � �
�
	
� R�R � � � � � �

� � �
��( �

To compare � I and � % , find the ratio � �
� +
� � .
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b) More complex model:

� � ( ��� �
I

�

�
� � I, �

� ( � � � � ( � �
( � � � � �

� � ( � � � � ( � � ��( � ( � � � �
( %� � � % � %

� ( ��� ( � � % � %
( %� � � % � %

� �
( %

� � �
( %� � � % � %

� I � � � � � �
( �1� � � �

( %
� � �

(���( %� � ( � � % � % � ( � � % � %
assuming ( �

� (�� :

� I Q
( � � �

( �1( � � � % � %

See Figure 14.33

Q1

ω

Figure 14.33:

c)

ANS:: (a) � I �
�

�,�� , � % �
�

�% ,�� (b) � I Q
, � �

�,�� , � � � + � +
Problem 14.8 Communications receivers require high-Q circuits to separate signals
broadcast on adjacent channels. Due to losses, modeled by the parallel resistance � , there
is a limit to the � that can be achieved with passive components. In the amplifier circuit
in Figure 14.34, a variable resistor ( � has been added which has the effect of increasing
the � of the passive tuned circuit.
(��4� ��W 6�TV�/�����������6�T � � IKMK

�
� � T � ����5T
( � and � variable

a) Consider first the tuned circuit by itself, disconnected from the amplifier. If � is
chosen so that the circuit has a � � � �

resonant frequency, what is its � ?
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RS

L

RF

Source

C r vO

+

-

i βivS
+
-

Amplifier Tuned circuit

Figure 14.34:

b) Determine the overall transfer function
� �������J] �V<5] R .

c) Select values for � and ( � so that the overall frequency response is peaked at a
frequency ��� � �

and has a half-power band width of �5W ��� . (Note, the half-power
bandwidth = � � ). What is the � in this case?

Solution:

a)
� � � K � � �

�
� � K
�  ��

b) See Figure 14.35 for reference.

RS

L

RF

C r vO

+

-

i βivS
+
-

Z

1 γβ–( )i

αβiγβi

Figure 14.35:

� � �
I� � I

�

�
� � � � �

� � � � �
� �2�B( � % � � � � � � �

� �
,��,�� � 	 , � �

	
,�� � 	

Find ] � : ] � � � ���&(��
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Find � : ] R � �2�6( � � �2� ( �

� � ] R
�2�6( � � ��( �

Substitute:
] � � � � (�� ] R

�2�6( � � ��( R
] �
] R
� � � (��
� �6( � � �2( �

� �
� � � �

(�� � � � ( � % � � � � � � ( � � � � � � �
� ������� ] �

] R
� � � � (�� � �
( �1(�� � �2�6( � % � � � � � � ( � (�� � � � � ( �0� � ( � � � ( �'� �

c)
� � �

�
( � �

� K �
�
	 � �

� �
��=  
� > ��� � � � � ��= ���?> ��� � IK �

( � �������T ������6
(�� Q � �0W 6

With these values, � �  ����

ANS:: (a) � �  �� (b)
� � ��� � �

�
� ,�� � �, � , � � � I � � +

�5`
� � �

�
, � , � � � �

�
, � � � � �

�
� , � � � (c) � �

��= ���?> ��� � IK � , (�� Q � �0W 6 , � �  ����

Problem 14.9

a) Consider the two circuits in Figure 14.36.

Determine the transfer functions

� I ������� � I < � R and
� % � ����� � % < � R
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LR

i1

iS C L

i2

iS C

Figure 14.36:

b) Given � R � �����J+
� I ����� , draw the circuits as they would appear in steady-state. (Recall

that + � I � ��� represents a unit step at time � �*� ). What are the “forced responses”� � I and �
�

% ?

c) Calculate the “natural responses” �
�

I and �
�

% . Assume:
� �3��� ��� � T
�'` ��� ��� ��T-( � �

�
� <.S �

Why is �
�

% not the complete steady-state response of the second circuit?

d) Write the step response � I � �
�

I � �
�

I and � % � �
�

% � �
�

% in terms of � K and � .

Answer:

� I � ��� � �6( � � � �
� � % � � �� �

� � � � � � � ���	� � �����
� % � ��� � �6( ���	� � ���

e) � % ����� reaches maxima/minima at ��� 	 �
� �
T � � � T �5T ��T�= = = For what value of

�
does

� � I � 	
�

� �
� I
�
� �% � 	

�

� �
� .

For � �  eT  �� T  ���� calculate

� � I � %
�

� �
�

� �% � %
�

� �
� (14.6)

Sketch � I ����� for � �J �� .

Solution:

a) First Circuit:

� I � �����
� I
� � �

I�� � ` R
I�� � ` R � � �

�
,

I � , ` R,
I � , ` R � � �
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� I �������
(

(�� ( � � � ( � � � %
Second Circuit:

� % � ��� �
� %
� � �

I` R
I` R � � �

� �
��� � � � %

b) � �4�*+
� I � ���

LR

i1=iS

iS C L
iS C

i2=iS

Figure 14.37:

See Figure 14.37 for circuit diagrams
First Circuit: �

�

I ��
Second Circuit: �

�

% ��

c) First Circuit: � �
�
� ] � � � ] �

( �
� ]

� �
Since ( �

� ��\` � � Q � K :
]-� � � � � � � � � � � K � � � ���	� � K ���
� � I � � � � � � � � ��� � K � � � ���	� � K ���
� � I ��� ��� (�� � � � (��

� � �I � � ��� ��� ( � � � � � K � �

Since � � � �% � :
� � ( �

� K
� ( �� �

� � I � ([� � � � � �� �
� � � � K � � ���	� � K ���

Second Circuit: � �% �
� ����� � K � � � ���	� � K �

� �% ��� ��� (�� � � � (��
� � �% ������� ��� � � K � � � �

� �% � ( ��� � � K �
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d) With � � � �% � :

� I � ���'�$�
�

I � �
�

I � �6( � � � �
� � % � � �� �

� � � � �2� � ���	� � �����
� % ����� � �

�

% � �
�

% ��6( ���	� � ���
e) ???

ANS:: (a)
� I ����� �

,, � , � R � , �5` R + ,
� % ����� � II � �'` R + (b) �

�

I � � , �
�

% � � (c) �
�

I �(4� � � � � I% � ����� � K � � ���	� � K ��� , � �% � ( ���	� � K � (d) � I � �������(X� � � �
� � % � �[I% � � ��� � ��� � ��� � � ����� ,

� % � ������6( ���	� � �2�
Problem 14.10 The circuit in Figure 14.38a is to be used as a bandpass filter having
the magnitude-frequency curve shown in Figure 14.38b (linear coordinates). The input
voltage is

� R � ��� � ] R ���	� � �
and

�
�
� � > ��� @ �1" : ��" � ��<��9���

� � � �5= �5 &> ��� @
� � � � = �5 &> ��� @

(14.7)

a) Find the appropriate values of � and � .
Using the values found in a):

i) Sketch
� � �F] � vs. � .

ii) Let �� � ��� ��� �"���'@ � . Calculate �'` ����� T � ����� T � � ����� .
iii) For ���-� ��� ���	� ��� @ � , determine the total stored energy � R and the time-

averaged power dissipated.

Solution:
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L

R = 100 Ω vO
iS(t)

C

+
-

+

-

+ -
vC

i

vS(t) = VS cos (ωt)

1

0.707

ω
ω− ωc ω+

ω

V o

V s
------

<Vo

(a)

(b)

Figure 14.38:
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a)

� �
�
�

� � ( � �
����

� K �
�
	 � �

� ��> ��� @

� �
� K �
(

Solve for � and � :
� �-��� �

� � ��> ��� �
�

�

i) See Figure 14.39 for plot

]	�
] � �

(
I

�

�
` � � � � � (

� � � ( �
�2�6( � % � � � � � � ( �

� � ( � � � � �
+ � �

� � � � � � ��d� � � + � d � �
� �2�6( � % � � � % � � � ( � � %

� ] � � �	� � � I � �6( � % � �
� ( �

�

ωr

V0∠

ω
ω

+
ω

-

0.80

0

-0.77

π 2⁄

π 2⁄–

Figure 14.39:
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ii) ���4�� � ���	�3���1@ � Find � � ����� :

�
�
����� � � � ���	� �2���'@�� ( �

% �
� ( �

�-����� ��� ���2� � @ � ( � � �
Find � � ��� :

� � ��� � �� � ���
�
� ���5� �

�
�

I
�

�
� � � � � � (

� ��� � � � � � � �

�
�

�2�6( � % � � � � � � ( �

at � K :
� ����� � � �5�

�

�
�

( � � = � ���	� �2��� @ ���
Find � � � ��� : � � ���������� ���	��� ��� @ ���

iii) Total stored energy:

� � �� � ] % � ��� � � % �  F> ��� � @ ���	� % � ��� @ ( � � � �  ?> ��� � @ ���	� % �2��� @ ���
� �  &> ��� � @ A

Average power dissipated:

� � � % ( � ���	� % � ��� @ ���
� � � � � =� 

ANS:: (a) � � ��� � , � � ��> ��� �
�

� (i)
� ] � � �	� � � I � I � � + �'`

�
, ` � (ii) � � ����� �

����� ���	��� ���'@�� ( �

% � , � ����� � ��= � ��� � � ���'@ ��� , � � � ��� � ��� ���	��� ���'@ ��� (iii) � �  > � � � @GA ,
� � � � � =� 

Problem 14.11 An RLC circuit is shown in Figure 14.40.

The magnitude of
� �
b �
� � � � is measured and is as plotted in Figure 14.41 (on log-log

coordinates).

a) What is the value of � ?

b) What is the value of ( ?

c) What is the value of
� � ?
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R

vO(t)vI(t) C+
-

iI(t) L = 1 mH

Figure 14.40:

0.01 S

106 rad/s
ω

I i

V i
----- jω( )

∆ω

Slope = -1
Slope =

 +1

0.01 S
2

Figure 14.41:
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d) The circuit is now excited with a unit step of voltage. The values of � ������� and � � �����
are zero prior to time � � � .
Sketch the signal � ������� for � greater than zero, labeling important features.

Solution:

a)
� K ���� @

� � � � �
�

�

b) at resonance:
( �

�
�
�
�

] �
� �

�
�
�
�
�� ����6

c)

� �
� K �
( �� �

� �
� K

� �
�-���

� � �������T ����� �1"
:
�

d) See Figure 14.42 for plot of � �
�
�
� �� ����� � � � � � (

�
� � � �

� �
�

� % � (
�
��� �

� �
� �

� � ( (� �
� � � �

� �
( ( %S � %

� ([ �������� � � � � ��T �1S � �
� � � �

�� � ��R � � �

� � � � � : �
�
�

�

� �
� R � � � � � ��6( � � � KMKMK � � � ������� � ��� � � ��� ��� � �����
� � � � ��� � � � ��

� �� ������� � �  ������ � ( � � � � � � � � = ���0 
� � ����� � �6( � � � KMKMK � � � = ���0 � ��� � ��� � T �1S ����� � ���	��� � � � T �.S ����� �
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t

vO

e
5000t–

T
2π
ω
------ 6.29 10

6–
sec×≈=

1V

2V

Figure 14.42:

vB

+

-
RL

L

Power line Customer
load

Power
plant

vA
+
- C

Figure 14.43:
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ANS:: (a) � � � � � � � (b) ( � ������6 (c)
� � � ����� T ����� � � 	R (d) � � ����� � � (� � � KMKMK � � ��= ���5 �����3� � � ��T �1S ����� � ���	��� ��� � T �1S ����� �

Problem 14.12 Refer to Figure 14.43 for this problem.
� � � � ���	�
S ����� � � ��S ��W ��-������1- ���5T � � � = �5 �

This problem examines a simple model of an electric power system. The source � �
represents the generator in the power plant. The inductance L represents the net effect of
all power lines and transformers. The customer’s load is represented by resistance ( � to
which the capacitor � is added in parts b) and c).

a) No capacitor. (�� � ������6 . Find the magnitude of � � and the average power
dissipated in (�� .

b) In an attempt to improve on the situation in part a), the customer adds a capacitor
in parallel with his load. He finds that a �' � � capacitor works well. Find the
magnitude of �� and the power dissipated in (�� for (�� �� ����6 and � � �5 � � .

c) The customer is now very happy. However, before going home for the night, he
turns off 90% of his load (making (�� � ��W 6 ), at which point sparks and smoke
begin to appear in the equipment still connected to the power line. The customer
calls you in as a consultant to straighten things out:

i) Why did sparks appear when the customer tried to turn off 90% of the load?

ii Assuming a variable (�� in the range ����� � (�� � ��������6 provide the cus-
tomer with a simple formula he can use to calculate the right value of � so
that the magnitude of � � is always equal to ��S �9WU] .

Solution:

a) No capacitor:
� � � � � � (��
� � ] �
(�� � � � �

��� � (�� ] �
(�� � � � �

� (��
� � �

�
�

(�� � � � �
� �� ��� (�� �

� ( %� � � % � %
� ��� =��'WU]

Average power dissipated:

� � � � ��
� ��� � %
( � �

�
�
(�� � %

( %� � � % � %
�*S ��=�� � �
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b) Capacitor, with � � �5 � �
� � � � � �

�
I,�� � � � �

� � � � �
(��

� � � � (�� �
� (��3�2�6( � % � � � � � � �

� � � � (�� �

Let � be the total current entering the load R-C circuit, and � , be the current through
the resistor:

� � �2� � � � (�� � �
(��3�2�6( � % � � � � � � �

� �

From the current divider law:

� , �
I

�

�
�

I
�

�
` � (�� � �

�
��� � � (�� �

�

� , �
� �

(��"� �6( � % � � � � � � �
Since � �� ��� (�� ! � � , � , and � � � ��� �

:

� ��� ��� (�� ! �
� ( %� � � ( � % � � � � � % � %

� �GS ��WU]

Power dissipated:

� � � � ��
� �� � %
(�� � � � = S � �

c) i) Immediately after the customer changes the load, the voltage on the capacitor
cannot change, so the voltage across the resistor also stays the same. As a
result, the current increases by a factor of 100, and so the power dissipated in
the resistor increases by a factor of 100 briefly, overloading the resistor.

ii) From the expression for � � � � derived in part (b), we see that for � � � �#�
�GS ��WU]-� �

, we require that:

( �
� ( %� � � ( � % � � � � � % � %

� �

( %� � � ( � % � � � � � % � % � ( %�
( %� ( � � % � ( %� � � � � % � % � ( %�

� � % � ( %� � � � � % � %

� � �
( %�

With � � � = �5 � :

� �
�

S ( %�
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ANS:: (a) � �� ��� � � = �5WU] , � � � � S � = � � � (b) � �� ��� ��S ��WU] , � � � � ��� = S � �

(ii) � � I� , +�

Problem 14.13 Refer to Figure 14.44 for this problem.

+

-

R
L

vC(t)

+

- C

iL(t)

i(t) v(t)

Figure 14.44:
,
% � �-� I�'` � � (5�J I, ` ��

a) Assume that � ����� � � for � � � , and that � �3��� � � � T �1`������ � ] � . Find �'` �����
for � � � . Simplify your answer, and make a rough sketch of �0`������ showing its
behavior.

b) Find the transfer function (system function) relating ] � ��� to � � ��� .
c) When � � ��� � �'� � � � , it is known that the voltage ������� can be expressed as

������� � � � R � � � � � R + � � � � � � � (14.8)

Find � I T � % and � . (You need not find
�

and � ).

Solution:

a) See Figure 14.45 for plot

Given: I�5` �-��� ; , � ���� ; (5� �5 
� � %K � ��� � � � � ��� �

� �  
� � (� 	 �5 �( �������$( � T�( � �
�1` � � � � % � � � � � � �

�1`������'� � � � � ] K � ([8 � � ] K � � � ( ] K8
: �1`������
: � � ��� ( � � ( � � � � � ( S � � � � S$] K8

Substituting:
�1` � S$] K8 � � % � ( ] K8 � �

� �
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t

vC

e
t–

2π

V0

-V0

4π

Figure 14.45:

b) Transfer function:
] �����
� � ���

� � � ��� ��( �
�

� �
� � � � !�� (�� I` R �

� � � � (�� I` R �

� (/� % � R`
� % � , � � � I�5`

� ( � � � % � � �
� � � % � ( � ��� �

c) From part (a), � I � ( � , � % � ( � . From the transfer function in part (b), we have
that:

: % �
: � % �

(
�
: �
: � �

�
� �
�#� (

: % �
: � % �

�
�

With the values given in the problem:
: % �
: � % � � �

: �
: � �$�����4� �5 

: % �
: � % �7S ���

We also have: � �5�'� � � �
�4� � � � � �

We can find the first and second derivatives in a straightforward manner. Substitut-
ing, we then have:

� � � ��� !��\(48 � � �$��� � � �5 ! � � � S � !��\( � �

Solving for D:
� � ( S1�
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ANS:: (a) �'` �
�
b��� � � %

� ( b��� � �
� �

(b)
, �5` R + � � R�'` R + � , ` R � I (c) � I � ( � , � % � ( � , � � ( S1�

Problem 14.14 Refer to Figure 14.46 for this problem.

VI
+
-

R

VS

vO
vi

+
-

L C

+

-

vI

+

-

Figure 14.46:

] � ���] � �� � � <5] %

a) For � � ����� a small sinusoidal voltage, choose ] �9T (&T � and � to give a resonance at
� � � � � radians/sec, � � ��� , and an incremental gain � � <�� � at resonance of -2.
Use the incremental model.

Solution:

MOSFET small signal model (Figure 14.47):

ZLgmvi+
-

vi

Figure 14.47:

� � � � ��] � ( ] � �
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] �
� � � ( �

� � �!]��X(7] � �

We need the following features: Resonance: � K � I� �5` � ��� � � � 	 �
� 	 RR � �

Quality: � K ( � �-���

Gain: ( � (�� � � �!] � ( ] � � � ( � , at resonance

Calculate � �
� � first:

�
� � ( � � � � �

� �
�

�
�

� �( � �
� �

� � � � � ��� ( � ( � � � %
( � �

�
�#� ( � � �

� � � � ( � ( � � � %

� �
� ��� ( � �� ��(*( ( � � � % � � � � � � %

Substitute in � � I� �5` :

� �
� ���

, �
� �5`

� � (*( , �5`�'` � % � � �� �'` � %
�
( � �`

� � +�5`
� (

(Note: This is expected: at resonance, the effects of the capacitor and inductor cancel out
perfectly.)

From the resonance constraint:
�
	 � �

���� � � � � � ��� � IK

Choose � � SU= � > � � � � � , � � ��= ��> ��� � � � . These are standard element values for
inductors and capacitors, and as a result are readily available. (This was not asked for
in the problem, so this is one of many possible answers). These choices give � � �
�5= �58'S?> ��� � IK , an error of 3.4%.

From the quality factor:
� K ( � ����

� =��58?> ��� � !�( !���= �F> ��� � � ���� � ��= � �58?> ��� � � !�(5� ���
(5� �

��= ���58F> ��� � � Q SU= �?> ��� � 6

To again choose a standard value, choose ( �JSU= �5W 6 .
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From the gain expression:

(4S =��F> ��� � �2��� � � � �!] � ( �����5�

] � ( � � �SU= �
] � Q �5= S1���0]

Summary of choices:

] �BQ �5= S1���0] T ( �*SU= �5W 6�T � �JSU= �F> ��� � � � T � � �e= �F> ��� � � �

ANS:: ] � Q �5= S1���0] T ( �JSU= �5W 6�T � � SU= �?> � � � � � T � �5��= �&> ��� � � �

Problem 14.15 The two networks shown in Figure 14.48 are driven in sinusoidal steady
state by the voltage � � ����� � ]�� ���	��� � ��� . Their outputs take the form � � ����� � ]�� ���	��� � � �
� � .

+

-

vO (t)

+

-

vO (t)

+

-

vI (t)

+

-

vI (t) L
C

RR
L

C

Figure 14.48:

a) For both networks, find ]�� and � as functions of ]�� and � using impedance meth-
ods.

b) For both networks, let (�*�������.6 , � � S � mH and � � SU=�� nF. Plot and clearly
label ] �a<5]�� for ��� > ��� � ��� �,< � � � � ��� > ��� � � � �,< � ; use a linear axis for]��a<5]�� , and a logarithmic axis for � . You need only plot enough points to outline
the dependence of ] �;<5]�� on � .

c) Describe the filtering function of each network, and how each network acts to per-
form its function.

Solution:
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+

-

VI Vo

Ls

1
Cs
------

+

-

RR

Figure 14.49:

a) First circuit:

Impedance model (Figure 14.49).

By voltage-divider:

] ������� � � � � � I` R
� � � I` R � (

� ] � � � � � � % �$�
� � � % � ( � � �$�

� ] �������

]	� � � � � � � �6( � � � %
�2�6( � � � % � � � � ( �

� ] ��� � � �
Find magnitude � ]	��� :

� ] ��� � � � ��� �6( � � �'%
� � �6( � � � % � % � � � ( � � %

� ] ��� � � � �

Since ] � � � � � � ( � �1] �a� � �
�
� � � � � , and ] ��� � � ��� ( � �1] � � � �

�
� � � :

]	� � � �6( � � � %
� � �6( � � � % � % � � � ( � � %

� ] �

Find phase:

� � � ]	��� � � ��� � �\" � � I � � � ( �\" � � I � � ( �
�6( � � � % � 	 � � ] �

� � ( �\" � � I � � ( �
� ( � � � % �

Second circuit:

Impedance model (Figure 14.50).
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+

-

VI VoLs

+

-

R

1
Cs
------

Figure 14.50:

By voltage-divider:

] ��� ��� � � � R
I � �5` R +� R

I � �5` R + � (
� ] ��������� � � �

� � � ( � ( � � � %
� ] ��� ���

] � � � � ��� � � � �
� (*( ( � � � % � � � � �

� ] ��� � � �
Magnitude:

]	� � � ] ��� � � � ��� � � �� ( % � �6( � � � % � % � � � � � %
� ] �

Phase:
� � � ] � � � � ��� � � ( �\" � � I � � �

(#� �6( � � � % � �
b) First circuit: See Figure 14.51

]	�
] � �

� � � % �$�
� � � % � ( � � �$�

� ]	� �
� ] � � �

�6( � � � %
� � � ( � � � % � % � � � ( � � %

Second circuit: See Figure 14.52

]	�
] � �

� �
� ( � � � � % � � � � (

� ]	� �
� ] ��� � � � �� ( % � � ( � � � % � % � � � � � %

�
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ωlog

V O

V I
-------

ω0
1

LC
------- 6.7 10

4×= =

Figure 14.51:

ωlog

V O

V I
-------

ω0
1

LC
------- 6.7 10

4×= =

Figure 14.52:
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c) First circuit: Notch filter. Takes voltage across 2 elements.

Second circuit: Band-pass filter.

ANS:: (a) (i) ]	�-� � I � �5` � +	 � I � �'` � + � +
� �

�
, ` � +

� ] � , �5� ( �\" � � I � �
, `

I � �'` � +
� (ii) ] �-�

� ]	��� � � � ��� � �
�

	 , + � I � �5` � + � +
� �

�
�

� +
� ] � , � � � ] � � � � �'� �

% ( �\"
� � I � �

�

, � I � �'` � + �
� �

�\" � � I � , � I � �'` � + �
�
� � (c) (i) notch (ii) band-pass

Problem 14.16 This problem examines the very simple tuner for an AM radio shown
in Figure 14.53. Here, the tuner is the parallel inductor and capacitor. The injection of
radio signals into the tuner by the antenna is modeled by a current source, while the Nor-
ton resistance of the antenna in parallel with the remainder of the radio is modeled by a
resistor. (You can learn more about antenna modeling in follow-on courses in Electro-
magnetic Waves.) The AM radio band extends from 540 kHz through 1600 kHz. The
information transmitted by each radio station is constrained to be within �  kHz of its
center frequency. (You can learn more about AM radio transmission in courses in signals
and systems.) To prevent frequency overlap of neighboring stations, the center frequency
of each station is constrained to be a multiple of 10 kHz. Therefore, the purpose of the
tuner is to pass all frequencies within 5 kHz of the center frequency of the selected station,
while attenuating all other frequencies.

I(t) v(t)
+

-
C RLv(t)

+

-
CL

Remainder
  of  radio

Antenna

Tuner
Figure 14.53:

a) Assume that � � ��� � � ���	��� � ��� . Find ������� where ������� � ] ���	� � � � ��� � , and both ]
and � are functions of � . Note that � � ��� is the output of the tuner, namely the signal
that is passed on to the remainder of the radio.

b) For a given combination of � , � , � and ( , at what frequency is V maximized?
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c) Assume that � = 365 � H. Over what range of capacitance must � vary so that the
frequency of maximum ] < � may be tuned over the entire AM band. Not that tuning
the frequency of maximum ] < � to the center frequency of a particular station tunes
in that station.

d) As a compromise between passing all frequencies within 5 kHz of a center fre-
quency and rejecting all frequencies outside that band, let the design of ( be such
that ] �2������� �  ������� <5] �2���������XQ � = �5 when the tuner is tuned to 1 MHz.
Given this design criterion, determine R.

e) Given your design for R, determine ] � ���	��� � ��� �
����� <5] �2���	����� . Also, deter-
mine � for the tuner and its load resistor when the tuner is tuned to 1 MHz.

Solution:

a) Impedance of each element:
� , � ( ,

�
�4� � � , � ` � I` R

Voltage across the capacitor: ]-� � ` � `
By the current divider law:

� ` �
�
�

� ,
�
�

� ` � �
�

� , � � ` � ,
! �

]-� � ` � ` �
�
�

� , � `
�
�

� ` � �
�

� , � � ` � ,
! � � � (

�`
�` � ( � � � ,` R

� � (
�` � �

( ( � � % � � �
�` � ,`

]-� ( � � �
( ( � � % � � � � � (

! �

� ] ��� ( � �� ��(J( ( � � � % � % � � � � � %

� � � � ( �\"
� � I � � �

(#� � ( � � � % � �
������� � � ] � ������� � � ��� �
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b) By inspection, and from previous examples, the frequency at which V is maximized
is: � �

� I�5` . A more rigorous proof follows:

We are allowed to maximize only what is in the square-root, since the square-root
function is monotonically increasing:

] � ( � �� ��( ( ( � � � % � % � � � � � %

�
���� ( % � % � %
� (*( ( � � � % � % � � � � � %

This expression is maximized when its reciprocal is minimized:

� ( % �2�6( � � � % � � % � % � � ( � % � � % � � % � � � � � % � � % � �2�6( � � � % � % � ( � %

� � � % � � % �2�6( � � � � % � � % � % �
� � � ( � %

� � % � � %� �
`
� � � % �'%� ( � % is minimized when its derivative with respect to � � � ,

so take derivative:

( � � � % � � � � � � % � � � � � � % � � � � � % � � � � % � � % � �
�
� � � � �

� �

c) � �J8��0 � � , AM band: 540 kHz to 1600 kHz.

We want � K to vary over the AM band:

� K � � �
�8��0 F> ��� � @ � � ! �

�5� �'8 � = � � �
�

i) upper bound for C:

� K �  1S �?> ��� � � � �5� �'8�� =�� � �
�

� � �5��=  �F> ��� � � �

ii) lower bound for C:

� K ��������F> � � � � � � � �18 � = � � �� � � � �e= �58?> ��� � @ �

So:
��= �'8F> ��� � @ � � � �e=� �F> � � � �



500 CHAPTER 14. SSS: RESONANCE

d) First, let us find values for � and � that give this tuning:

�
	 � �

���� � � � � � ��� � I
�

Choose: � ���� �
�
, � �� � � IK

Now, an expression for b �
� ���

b � � � �
��� :

] IKMKMK] � � � ��5= ���0 !
� ( % �2�6( � = � � � % � � = �?> � � �

	 � � @ � �
� = �5 

Solve for R: 8�= � �?> � � � �5	 ��� � � ( % � � = � > ��� � �
�'= S �5 ?> ��� � ���� � � !�( %
( � �5= ���F> ��� @ 6

e) ] � � K] IKMKMK
� � = ����� ! 	 ��� @

� ( % � � ( �2��� � I � � � ��= �?> ��� @ � % � � �2��� � � � � ��= �F> ��� @ � %

� � = � ��� ! ��� �
� �2�5= ���&> ��� @ � % � �6( � = � � � % � � � =��F> ��� � �

� � ���
�e= S?> ��� � � � = �1S �0 

Quality factor:

� � � K ( � � �2���
� � � �5= ���&> ��� @ �0�2��� � IK ����5= ���F> ��� �

ANS:: (a) � ] � � , �
�	 � , � , �'` � + � +

� � �
� � +

, � �
�

% ( �\"
� � I � �

�, � I � �5` � + �
� (b) � �

� I�5` (c)
��= �58?> ��� � @ � � � ��=  �F> ��� � � (d) ( ��5= ���&> ���'@ 6 (e) ��= �'S��0 , � �-�5= ���?> ���

�



Chapter 15

The Operational Amplifier Abstraction

Exercises

Exercise 15.1 Find the Thévenin equivalent for the circuit in Figure 15.1. The circuit
contains two resistors and a dependent current source.

gv1

R1

v1 R2

i

v

+

-

+

-

Figure 15.1:

Solution:

KCL:
(6� ! � I � � �

�X( � I
( %

� �

� I
� � ( � P �

( %� ( % �$�
� �,` � �

501
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ANS:: ( � P �
, +� , + � I

T � � P � �

Exercise 15.2 Calculate � � in terms of � I T ] I T ] % , in Figure 15.2. You may assume the
operational amplifier has ideal characteristics.

+

-
vO

+R1 V1
V2

R3

R2 R4

I1
-

+
- +

-

Figure 15.2:

Solution:

] K � ( ( �( %
!�] I (

(��
(
�
!�] %

ANS:: � � � ( , 
, +
] I (

, 
,�� ] %

Exercise 15.3 Calculate the sensitivity of the gain, dG/G, as a function of fractional
change in Op Amp gain, dA/A for the inverting Op Amp connection shown in Figure 15.3.

Solution:
: �
�
� �
��� � N , �,

�
� ,

�

ANS:: 	
�
�
� II � � , � � � , � � , � �

Exercise 15.4 The circuit in Figure 15.4 is called a differential amplifier.

a) Using the ideal Op Amp model, derive an expression for the output voltage � � in
terms of � I T � % T ( I T ( % T ( � and (�� .
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vi

vo

Ra

Rb

+

-

(a)

vi

A(v+- v-)

Ra

Rb

+

-

(b)

v-

v+

-

+

-

+

vo

Figure 15.3: Inverting Op Amp

+

-

vO
+

v2

R1

R4

R2

+

+
-

-

-

-15 V

+15 V

R3
v1 741

Figure 15.4:
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b) Does connecting a load resistor (�� between the output and ground change the above
expression for � � ? Why?

c) Let � I � � % and ( I ���W 6�T ( % �*8��0W 6�T (
�
�-�5=� 'W 6 . Find (�� so that � � � � .

d) Let � % � � and � I � � volt. Using the resistor values above (including that com-
puted for (�� ), find � � .

Solution:

a) Assuming � � � � � � �J] % ! � , 
, � � ,	
 � , KCL at node � � yields:

� ] I ( ] % (��
(
�
� (�� � �( I � � ] K ( � ] % ( �

(
�
� (�� � 	 �( % � �

] K �
� ( I � ( % � !�(��
� (
�
� (���� !�( I

! � % (
( %
( I
! � I

b) No. The derivation for ] K is not affected by the addition of (�� .
c) (�� �JS$ 'W 6

d) ] K � ( �9 5] �.- ��� , since the op. amp. saturates here. ] K cannot be more negative!

ANS:: (a) � � � � , � � , + � , 
� ,	� � , 
 � , �
� % (

, +, � � I , (b) No, (c) ( � �JS$ 'W 6 , (d) ( �9 5]

Exercise 15.5 For the circuit shown in Figure 15.5, D is a silicon diode, where� � � ���� � ) � 	 �
� ( ��� , W � < � � ��� mV, and

�
is between 1 and 2.

a) Find � � in terms of � I and ( I .

b) Make a quick sketch of the answer to (a).

Solution:
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+

-

vO

+

R1

v1

 v

D

+ -

-

i

+
-

Figure 15.5:

a)

� � � ( � !.W ! �
�

! ��� � � I
� R !�( I

�$� �

b) See Figure 15.6.

IS– R1⋅

vo

v1

.018  n.

.028  n.

IS R1⋅ 2 IS R1⋅ ⋅

.018  n.

Figure 15.6:

ANS:: � � � � 	 �
�

�
- � � ) �� � , � � � �

Exercise 15.6 Refer to the figure in Figure 15.7 for this problem.
( I �-�����0W 6 , ( % � �0W 6 , ( � ���W 6 .

Given that �� �5��������� � (in volts), make a sketch of � � ����� through one complete cycle.
Be sure to label the dimensions of the voltage and time axes and identify characteristic
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-

+
vO

R1

vS
+
-

R3

R2

+15 V

-15 V

Figure 15.7:

waveform shapes with suitable expressions. (Make reasonable assumptions based on your
lab experience.)

Solution:

15

20

-20

-15

t ondssec[ ]

volts( )

2π
ω
------

vo t( )

Figure 15.8:

���4� ] K !
(
�

( % � ( �
since no current flows through ( I and � � � � � � ���
� K � ���.!���� �5��� ���	� � �
ANS:: � K ���� !����4� ��� ���	� � �

Exercise 15.7 Refer to the figure in Figure 15.9 for this problem.



507

+

-
v2

R

vD

+15 V

-15 V

+ -

v1
iD

Figure 15.9:

Diode data ��_ � � � �!� � ) c � � � ( ���
where � �4� � � � I % �
and W � < � � �5 1� ]

For � I in the range � � I � � =� �' volts, how should the value of ( be chosen to keep the
Op Amp in the linear region? Make reasonable approximations.

Solution:

Since � � � � � � � � ,
��_ � � R �V� � b � � � � ( � � �

� (7] %
(

*To stay in the linear region, � ] % � �
�� 5]��1- ��� , or

($! � R �V� � b � � � � ( � � �-�� 
] I � � =  �5 5]��1- ���
( �
�9 '8 ��6

ANS:: ( �
�� 18 ��6

Exercise 15.8 Find the Norton equivalent circuit to the left of terminal pair a-a’ in Fig-
ure 15.10.

Solution:
(���� �  ���6

� � � � � ( ������
 �� � � � ����
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va

ia

100 Ω

a

5ia 100 Ω

100 Ω

+
-

+
-

a’

Figure 15.10:

� �.` �
 �� � ( �
����� � � �

�������

ANS:: (�� P �  ���6 , � �.` � ) �% KMKMK

Exercise 15.9 In the circuits (a) and (b) shown in Figure 15.11 the operational amplifiers
are ideal and have infinite gain. If the input to each amplifier is � ��� � volt, what is the
output voltage � � for (a) and for (b).

+

-
vO

1 kΩ
+

-
vI = 1 V

1 kΩ

1 kΩ
+

-
vO

1 kΩ
+

-
vI = 1 V

1 kΩ

1 kΩ
(a) (b)

Figure 15.11:

Solution:

(a)
� � � � � � � �
KCL: � � ( �

��W 6 � � ��( ���W 6 � �
� � � ( � �

(b)

KVL: � ������� � ! ��� � � � �2� ����� � ! � � �
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� � ( � �
������� �

� ( � �
�������

� � � �� ! � �

ANS:: (a) � � � ( � � , (b) � � � (ZI% � �

Exercise 15.10 You may assume that the operational amplifiers used in the connections
shown in Figure 15.12 have very high gain and input resistance, and low output resistance
when operating in the linear region.

+

-
vO

1 kΩ

+vI

3 kΩ

(a)

-

+15 V

-15 V

-

+
vO

1 kΩ

+vI

3 kΩ

(b)

-

+15 V

-15 V

Figure 15.12:

The input signals have the form shown in Figure 15.13:

vI(t)

1

A

-A

3 4 t (s)2

Figure 15.13:

a) Plot the output voltage � � for the circuit of Figure 15.12a for A = 1 volt. Note:
In all of your plots, be sure to clearly indicate peak values and times when signals
change character abruptly.

b) Plot the output voltage � � for the circuit of Figure 15.12a for A = 10 volts.
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c) Plot the output voltage � � for the circuit of Figure 15.12b for A = 10 volts.

Solution:

2s 4s

-3

+3

+15

-15

1/2 1 1 1/2 2 2 1/2 3 3 1/2t t
(sec)

+15

-15

2.5s t

V 0
+

Note that the

axis is flipped!v0

i.e. v0 3– vI⋅=

v0 v0 v0

+30

-30

OP AMP saturates!

(a) (b) (c)

Figure 15.14:

a) See Figure 15.14

Note � � axis is flipped!

b) See Figure 15.14

c) See Figure 15.14

Exercise 15.11 For the circuit shown in Figure 15.15 (which includes a voltage con-
trolled voltage source) determine:

a) The input resistance � � <�� � .
b) The Thévenin equivalent resistance at the terminals " � .
Solution:
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1 Ω

vI

a

-
+

iI

b

2 Ω

2 Ω 1Ω

vA
-

+ vA

2
-----

-

+

Figure 15.15:

a) KCL:

� � � � (7] �
� �

� ( b �% (7] � �� ��� ��� � �

� � � ] �

KVL: ] � ( � ��� ��6 � (7] � � �
� � � ] � ( � �

] �
� � � ( � � � � � � ��6

1Ω

2Ω

2Ω 1Ω

vA

2
-----

vtest

itest

vI 0=

A

B

+
–

vA +
-

+
-

Figure 15.16:

b) Apply ] � � R � at terminals " ( � and measure b ��� ���� ����� � � (����

KCL at A: �!] � � R � (7] � �
� � � � ( ] � �

� � � � (7] � �
� � �

] � � ] � � R �S
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KCL at B:
� � � R � �

��(�] � <�� (7] � � R � �� � �!] � (7] � � R � �� � �

] � � ] � � R �S

] � � R �� �\��� � � (���� �
�
8 6

ANS:: (a) ��6 , (b) �5<18�6

Exercise 15.12 Find and label clearly the Thévenin equivalent for the network in Fig-
ure 15.17.

i

R1v

R2

+

-

gv

Figure 15.17:

Solution:

� ( � ! � � � (7]
( I

� �

]
� � (���� �

( I
��� ( I !G�

]	�,` � �

ANS:: (�� P �
, �I � , �H� , ]	�,` � �
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-

+

R3

R2

v

R1i

R4

+
-

Figure 15.18:

Exercise 15.13 Find � in terms of � for the linear network in Figure 15.18. Assume an
idealized operational amplifier.

Solution:

� � � � � � � � K !
(��

(
�
� ( �

So,

� K �
� � � (

�
� (����
(��

KCL:

� K ( � �
( %

� ��( �
�

( I
� �

Eliminating � K from the above two equations, we solve for � � to get

� � � � ( % ( �
( % ( � ( ( I ( �

� � ��( �
�

( I
� � (

�
( I ( � ( ( % (��

ANS:: � � �
,	�, � ,	� � , + , 
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vS

ia

R1

a

aia
+
-

+
-

a’

R2

R3

Figure 15.19:

Exercise 15.14 Determine the Thévenin equivalent for the circuit shown in Figure 15.19,
to the left of terminal pair a-a’. The circuit contains a current-controlled voltage source.

Solution:

(���� � ( % ( �
( % � ( �

since ] � � ��� � � in this case to find ( ��� .

� � � ]��X( �
( I

]	�,` � � � � !
(
�

( % � ( �
] �,` � ���! � ( �

( I ��( % � ( � �

ANS:: (�� P � ( % � (
� , ] �3` � )

�, � �
,	�, + � ,	�

Exercise 15.15

a) Draw a circuit model for the Op Amp circuit in Figure 15.20.

b) Write the node equations for the � � and the � � nodes, and enough more independent
relations to specify ��� in terms of � � . Do not solve.

Solution:

a)
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+

-

vo

R2

vi

R1

R4
+
-

R3

va +

-

v-

Figure 15.20:

vi

va

R1

R2

R3
R4

v

+

–

v
+ voA v v–( )–

+

–

+
-

+
-

Figure 15.21:
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b) (1) ��� � ( � � �
( I

� � � � ( � � �(
�

� � � K ( � � �( %
� �

(2) � � � ( � � �
(
�

� � ��( � � �(�� � �

Also: � K � � � � � ( � � � and � � � �
or, � � Q � � and � � � �

ANS:: � � � ( � ����� I � ��� � ( � ���M� � � ��� ��( � � �M� % � � and � � �;( � � ��� � � ��� ( � � �M� � � � ,
and either � � � � � � � ( � � � and � � � � , or � � Q
� � and � � � � .

Exercise 15.16 For the circuit in Figure 15.22 find � � � � as a function of � I T � % T ( � and ( �
in the limit of very high Op Amp gain. Assume input resistance � � ��� T output resistance� � � � , and non-saturated operation.

+

-
v1

Ra Rb
vout

Ra Rb

+
-

-
+v2

Figure 15.22:

Solution:

� � Q � � Q ] % !
( �

( � � ( �

] I ( � �
( � � � � � � ( � �( � � �

� �
� � �

( �
( � � � % ( � I �

ANS:: � � � � � , �, � � � % ( � I �
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Exercise 15.17 For the circuit in Figure 15.23 find � I as a function of � � T ( I T ( % and the
Op Amp gain A. Assume input resistance � � � � T output resistance � � � � and non-
saturated operations.

-

+

R1vi

i1

R2

+
-

Figure 15.23:

Solution:

� � Q � � Q5� �
� K

( I � ( %
� � I

� I �
� �
( %

assuming
�

is infinite.
� � � ( %

( I � ( %
! � K

With
�

finite,
� I �

� � � � ( � � �
( I � ( %
� � � � �

� � � � � � � ( � � � ( %
( I � ( %

Therefore,
� � �

� !�� � !�( %
( I � ( % � � ( %

� I �
� ! � �

( I � �2��� � ��( %
Note: limit as

� C � checks with the above answer.

ANS:: � I �
�, � � � I � � � , +

� �
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+

-

R3

i2 R2

+

-

i1 R1 RL-VSS

+VSS

vO

Figure 15.24:

Exercise 15.18 Consider the circuit illustrated in Figure 15.24.

Assume that the operational amplifier is ideal with input resistance � � very large and
output resistance � � negligibly small, so that � � �5� T � � �5� , and � � � � ��� � ( � � � , with
A very large. Assume it is operating in its linear range.

a) Draw a linear equivalent circuit for this circuit valid for operation with the Op Amp
in its linear range.

b) Derive an expression for � � as a function of � I T � % , and the resistors in the circuit.

Solution:

R1 R2

R3

v

+

–

v
+

vo

A v v–( )–i1 RLi2

+
-

Figure 15.25:

a)

b) � � � � � � �$� % !�( %
KCL:

� I �
��� ( � % ( % �
( I

� ��� K ( � % ( % ��( � � �
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� K � ( � I ( � � � % � ( % � ( I � ( � �( I �
ANS:: � K � ( � I ( � � � % �

, + � , � � ,�� �, �
�

Exercise 15.19 In the circuit in Figure 15.26 determine the voltage gain �-� � �O<�� � :

+

-

R

10R

vi

R

vo
R

+
-

x

a

b

+

-

Figure 15.26:

a) when terminal x is connected to terminal a.

b) when terminal x is connected to terminal b. Assume the Op Amp is ideal.

Solution:

a)

� � � ( � �
( � ��� K ( � �� ��( � �

since � � � � � � � �
�-� � K� � � (����

b) Since � � Q � � Q5� ,

� I �
� ( ��!�( ��� (
(�� ( ����(

( ��� (5� (X<��
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vi

R

R

R

+A v v–( )–

e1

10R

v –
+v +

–

vo

+
-

+
-

Figure 15.27:

� I � � � <'8

KCL: )��
�
( �
( � � K ( �� ��( � �

�-� � K� � � ( ���8

ANS:: (a) � � � (������ � , (b) � � � (�IK
�
� �

Exercise 15.20 For the amplifier shown in Figure 15.28, find the current transfer ratio� �O<�� R . Assume that the Op Amp is ideal.

+

-

RF

is
io

RO

Figure 15.28:

Solution:

At node � � � � � � Q
� ,
KCL:

� R �
� � � ( K ( � �
(�� � �
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� �
� R
� ( (��( K

ANS:: � � � ( � R ,��,
�

Exercise 15.21 Find the Theévenin output resistance of the circuit shown in Figure 15.29.
That is, find the resistance seen looking in at the terminals X X, the terminals that drive the
load resistance (�� . (Resistor (�� should not be included when you make this calculation.)
DO NOT assume � � � � � , as it leads to trouble here. Now state a condition on the value
of ( � to ensure that the circuit acts as a current source driving ( � .

+

-

RL

vi

RS
X X- +vout

-
+

Figure 15.29:

Solution:

viturn off      :

0 vi=
RS

v–

vtest

+A v v–( )– itest

+–

+
-

+
-

Figure 15.30:

Apply ] � � R � and measure b ��� ���� ������� � (���� :

� � � ( � � � R � � � ��� � ( � � �

� � � �

* � � �2��� � �'� ( � � � R �
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Therefore,
� � � ( � � � R �� ��� � �

� � � R � �
� ( � �
( R

� � � � R ��2��� � ��( R
� � � R �� � � R �

� � � � � �3( R � (����

RS

vi

v–
voc +

–

+A v v–( )– A– vi⋅( )=

+
- +

-

Figure 15.31:

Now find ]	�,` :
� � �$� � , since no current flows through ( �

] �,` � ( � � � ( � �
] �3` � ( � � � � �$���

Now connect (�� to the Thévenin Equivalent of the circuit:

* � is current driving (�� :

� �
( � � �2��� � �

(���� ��� � � � (��

For the circuit to act as current source (i.e. current is constant regardless of ( � ),

( ���2� � � � � (��

ANS:: (���� � �2��� � �"( � ,

( ���2� � � � � (��
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RL

I

RTH 1 A+( )RS=
voc vi–( ) 1 A+( )= +

-

Figure 15.32:

+

-

R2

iin

R1

R3

+

-
vout

Figure 15.33:

Exercise 15.22 For the Op Amp circuit in Figure 15.33:

a) Assume that the Op Amp is ideal (very large gain A, zero output resistance, infi-
nite input resistance, operating in the linear region) and find � � � � as a function of� � 	 T ( I T ( % and ( � .

b) Draw the circuit model, assuming the Op Amp has finite A, keeping the other as-
sumptions from a).

c) Analyze the circuit and find an expression for � � � � as a function of � � 	 T ( I T ( % and(
� and (finite) A.

Solution:

a) � � � � � ( � � � !�( % since no current flows through ( �
b) Circuit model:

c) KCL:
� � 	 �

� ��� � ( � � � ( � �
( %

� �
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R1

R2

R3

v

+

–

v +
–

+ voutA v v–( )–

+

–

iIN

Figure 15.34:

� � � �

Therefore,
� � � � � 	 !�( %��� �

� �
� � � � � � � ( � � � � ( � � �

� �
� � �

( � � � 	 !�( %��� �

Note: The answer in (c) checks with the answer in (a) in the limit as
� C � .

ANS:: (a) � � � � � ( � � 	 ( % , (c) � � � � ��� � � � �

, +I � �

Exercise 15.23 The operational amplifier circuit shown in Figure 15.35 is driven with a
ramp:

vI (t)

-+

vO(t)+

-

-
+

1 µF

1 kΩ

2 kΩ

vI(t) = 0, t < 0

vI(t) = 103 s-1 t  V, t < 0

Figure 15.35:
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You may assume that the operational amplifier has infinite open-loop gain, zero output
resistance, and infinite input resistance, and that the capacitor voltage is zero for � � � .
What are the value of � � ����� at � � � � and ����G� � ?

Solution:

KCL at node � � :

� ������� ( �
������� � �

: � ��� ���
: � � � K ����� ( �������� � � , since � � � �

� � �

Therefore, � ��� �������������� ,
: � ��� ���
: � �-������� , so

� K � ����� ( �������.! � ( � � ���1- ��� �

� K � � � � � � � ( �5] �.- ���
� K � � �-��� ���'� (4S$]��1- ���
ANS:: � K � � � � � ��� ( �5] �.- ��� and � K � � ���� ����� ( S Volts

Exercise 15.24 An operational amplifier is connected as shown in Figure 15.36.

vI

-

+

vO(t)
+

-

-
+

R1

500 Ω

C = 0.02 µF

R2 = 5 kΩ

Figure 15.36:

a) What is the gain of the amplifier for � � � .
b) Find the expression for ] ��� � � � <5] � � � � � .
c) At what frequency does � ] ��� fall to 0.707 of its low-frequency value?
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Solution:

a) The input is in the form of
� � �

�
�
. When � � � , the input is a DC signal

�
.

For DC inputs, we may treat the capacitor as an open circuit:

� �
 ���� �

� �
 ������ � �

� �
� � � (����

b)

] �
] � �

( ( % ���&I` R
( I

] ��� � � �
] � � � � � � ( ( %

( I � � � ( % � �$���

c) � ] � � has the low frequency value of
, +, � , so �

��� � � � � is such that

��=���� � ( %( I
� � ( %
( I � � � ( % � � ��� �

	 �/� � � � ( % � � % �$�

�
��� � � � � �

�
( % �

ANS:: (a) ) �)�� � (���� , (b) b �
� �

� �b �
� �

� �
� ( , +, � � �

�
, +
` � I � , (c) � � � � � � � � I, + `

Exercise 15.25 For the circuit shown above, determine ] � � � � ��� in terms of ] � 	 � ��� .
Solution:

In general if we have the set-up shown in the figure,

we know from voltage dividers that

] % �
� I

� I � � %
!.] �

] I �
� %

� I � � %
!.] �
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vIN -

+

vOUT

-

+

-
+

R1 C1

R2

C2

Figure 15.37:

+
–

V 2

V 1
+
–

+
–

Z1

Z2

V T

Figure 15.38:
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Therefore
] � �

� I � � %
� I

] % �
� I � � %

� %
] I

So we may conclude here that
] % �

� I
� %

] I

In this problem
� I �

, �`
� R( I � I`

� R
� ( I
( I � I � �$�

� % � ( % �
�

� % �
� ( % � % � �$�

� % �

and ] � � � ��� ] � �% above and ] � 	 ��� ] � �I above.

Therefore,
] �
� � �

( I � % �
� ( I � I � �$��� � ( % � % ��� ���

!.] � 	
since

] �
� � �

� I
� %

] � 	

ANS:: ] � � � � , � ` + R� , � ` � R � I � � , + ` + R � I �
!.] � 	

vB

R

C

L

vA

R2

+
-

Figure 15.39:

Exercise 15.26 ( I � ( % � ����6 � � ��= S � � � � ��= �5 .� �

Find the system function
� � ����� ] �M<5] � for the circuit in Figure 15.39.

Solution:

� � ����� ] �
] � � � � � � % � ( %

�
� � �

� �
�
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� � � � � � � � since no current flows through ( I

ANS::
� � ����� � � � � % � , +� � � I�5` �

Exercise 15.27 For the circuit shown in Figure 15.40, select the magnitude of the fre-
quency response for the system function given. It is not necessary to relate the critical
frequencies to the circuit parameters.

Please note that the magnitude responses, except (7), are sketched on a log-log scale,
with slopes labeled.

v2

C

R2

+
-

R1v1

H jω( )
V 2 jω( )
V 1 jω( )
------------------=

(1) (4)(3)(2)

-1 +1 -1+1

log ω log ω log ω log ωω1 ω1 ω1 ω2

(5)

+1

log ωω1 ω2

(6)

-1

log ωω1

(8)

None of
the above

(7)

ωω1

Figure 15.40:

Solution:

(2)

ANS:: (2)
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Problems

Problem 15.1 The circuit shown in Figure 15.41 is very similar to the standard non-
inverting Op Amp except that (�� is some external resistor, and we are interested in show-
ing that the current through (�� is nearly constant, regardless of the value of (�� , that is,
the circuit acts like a current source for driving (�� .

-

+

vI -
+ RL

R2

iL
A

A’

Figure 15.41:

a) Using the ideal Op Amp assumption of large gain, zero output resistance, infinite
input resistance, show that the expression for � � as a function of � � is independent
(or weakly dependent) on (�� .

b) To verify the “current source” action more directly, find the Thévenin equivalent
resistance looking to the left of terminals AA’, with ( � an open circuit.

Solution:

a) See Figure 15.42.
� � � )�� � � ��, +,��
� � � � � � � ( � � ( % �
� � (�� � � � � � ( � � ( % � ( � � ( %
� � � � ) �� , + � , + � , �

Q ) �, + ANS:: � � �
� ) �� , + � , + � , �

Q ) �, +
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-

+

vI -
+ RL

R2

iL
A

A’

+

-

vo

Figure 15.42:

-

+

vI -
+

R2

itest
A

A’

+

-

vtest
itest

Figure 15.43:
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b) See Figure 15.43.
� � � � � � � ��� � � � � � � � ( % �
Set independent sources to zero: � � � �
� � � � � � � � � � � ��( %
) ��� � �� ��� � � � � ( % � ( ��� � b �

� � � ANS::
� ( %

Problem 15.2 Zener diodes are most often used to establish stable reference voltages,
independent of power supply variations, and independent of any lingering AC signals that
may be present in the power supply.

a) For the characteristics shown in Figure 15.44, find � � assuming � � is a clean DC
voltage of value �� 5] .

+

-
vA R

10 kΩ

-15

-

+ iD

-vZ
vO

Zener diode

+15

Zener

vD

iD

vD

vZ = 6.2 V,   RZ = 7 Ω

Slope
~1/Rz

Figure 15.44:

b) Determine the sensitivity of � � to changes in � � . That is, find
: � �;< : � � . If � � has� = ��] of DC drift or so of ����� � � AC ripple, how much drift or ripple shows up on� � ?

Solution:

a) ��_ � � )��IK � � � (��5=  1� �
from graph: � � Q ( � = �5]

b) small signal model of diode is resistor ��� ��6

	 )��
	 )��
� �

�

IKMKMKMK
ripple is reduced to �F> ��� � � ]
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Figure 15.45: � � � � = ��] and �� � � = �5]

ANS:: (a) � � Q ( � = �5] (b) ripple is reduced to
�

IKMKMKMK of original value.

Problem 15.3 Consider the circuit in Figure 15.45.

Find � � assuming that all Op Amps are ideal and operating in the linear region.

Solution:
� � � ([ > � )��I � � � )��I � � � > (����0W 6
� � �  ��?> ��� � � �� ��� 15 volts

ANS:: 15 volts

Problem 15.4 You are faced with the problem of constructing a current transmitter, a
circuit that forces a load current � � into a load under accurate control of a source voltage��� , independent of variations in load resistance. That is, you need a voltage-controlled
current source.

The design requirements for your problem are to achieve

� � � ( � ���

where � ����1� � <5] for the ranges � �� � � ��] T (�� � ��W 6 .

While looking through a handbook of practical circuits, you come across the
schematic in Figure 15.46 as a proposed solution to your problem. The question is, will
it work?

a) As a first step, analyze the basic principle of operation of the above circuit. Show
explicitly whether it is capable of performing the desired function.

b) Next, determine whether there will be any problems in selecting resistor values ( I
and ( % to meet the specifications for your particular application. You should draw
on experience with Op Amp limitations. Can you meet the specs?

NOTE: Part a) is easy. Part b) is endless, so look only for the larger issues, i.e.,
major sources of error or failure.



534 CHAPTER 15. THE OPERATIONAL AMPLIFIER ABSTRACTION
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-
+

R1

R2

R2 RL

iL

+15 V

-15 V

Control voltage Current transmitter Load

Figure 15.46:

Solution:

a) See Figure 15.47.
� � (�� � � �
) �, +
� �
�
� � � , �, +� % � � �3� ���
,��, +
�

� � (�� � � % ( % � � �
) � � ) �, � � ) � � ) �, �
� � � � ) �, +

b) Since � ����'� � <5] , we must set ( % �������6 .

However, for the worst case ( � � � ��] " � : (�� � ��W 6 ), � � � ���0] . This will not
work since the opamp can only output �4�� 5] .

ANS:: (a) � � � � )
�, +

Problem 15.5 Find the Norton equivalent of the circuit in Figure 15.48 looking into ter-
minals

�
and

� �
.

Solution:
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Figure 15.47:
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Figure 15.48:
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-

vI

R

-
+

R

R

R

vO

iI

Figure 15.49:

See Figure 15.49.
� � �$� � � �
� � � ) � � ),
� � � � ( � � (5� ���2( � �
� � ) � )��, � )�� � ),
� �,` � � � � � K �$� �
� �.` � � � ) � K � )��,
(���� � )�� d� � d � (
ANS:: ��� � ) �, T (���� � (

Problem 15.6 You are asked to design the circuit shown in Figure 15.50 so that the output
voltage � � is the weighted sum of � I and � % ; specifically.

� � �J8�� I �  �� %
It is known that the magnitudes of � I and � % are never larger than � volt.

a) Determine the values for ( I T ( % T ( � , and ( � that will make the circuit perform that
sum.

b) Given that the op amp is powered from � �� and (��� volts, and has output current
limits of �4�G� �

and (���� �
, redesign if necessary to meet these additional design

constraints.
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-

+

v1

R2
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+

R1
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Ra

vOv2
+
-

+
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Figure 15.50:

c) How would you change the design to perform the sum:

� � � (48�� I (  �� %
using only one Op Amp (given Figure 15.50, a two-op amp design is obviously
trivial, but unnecessarily complicated).

Solution:

v1

R2

-

+

R1

Rb

Ra vO

v2
+
-

+
-

I1 I2

IOUT

+
-

V+

V-

A(V+ - V-)
*

ROUT

Figure 15.51:

First, draw the op-amp as a voltage-controlled voltage source, as shown in Fig-
ure 15.51. Then, find � � , and from there find � � and � ��� � .

� I ( � I ( I � � % ( � % ( % � �
� =
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� I � ( � % =

From here, one can eliminate � I and � % , and solve for ] �
, getting that

� � � � I ( % � � % ( I( I � ( %
=

To find � � and � ��� � , use the following voltage divider relations:

� ��� � � � � � �

� � �7� �
� ��� � �7� � �7� � =

Then a voltage divider relationship:

� � � � � � � � �
� ��� � � � � �7� � =

To find � � � � , use the definition of the operational amplifier:

� � � � � � ��� � ( � � � =

We have expressions for � � and � � , so plug in and solve for � � � � , and then use the
voltage divider to get the following:

� � � � � � ��( � � ( � � ��� I ( % � � % ( I �
� ( I � ( % � � ( ��� � � ( � � � � �$� � (�� � =

a) Assuming the op-amp is ideal, A is so high that any non-A terms can be omitted,
and ( � � � � � .

� ��� � � � ( � � ( � � ��] I ( % � ] % ( I �
� ( I � ( % �2( �

=

We want to satisfy the following two criteria:

( � � ( �
( �

( %
( I � ( %

�J8�=

( � � ( �
( �

( I
( I � ( %

�  e=
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Anticipating the next parts, we choose values in a careful manner. The worst pos-
sible scenario for possible voltage or current overload is when ] I � � and ] % � � .
The following limiting situations occur.

�9] ��( � � ( � � � ( I � ( % �
��( I � ( % ��( �

� �� 5] =

��]
(�� � ���

� =

This implies that ( � � ��W 6�= Choose �5=  5W 6 for a healthy margin.

From dividing the other two equations, we get that
, +, � � �� .

Using standard values, choose ( % � SU= ����S$W 6 (Use SU= �5W 6���� 8580W 6 ) and ( I � � = �5W 6�=
This gives a ratio of .60500, which is well within tolerance.

Solving further, we find that ( � � (��
(�� � � =

This is well within tolerance. This also implies that
,
�,
�
� � , which means that( � �-��� =  5W 6 , which can be approximated quite well by ���0W 6 � S ����6 in series.

b) Of course it meets the constraints - part A was done specifically with that in mind.

c) We need an inverting configuration, so start by grounding the positive terminal. Set
up the configuration that is shown in Figure 15.52. If the op-amp is ideal, then� � � � . Use the following two node equations:

� I
( I

� � %( %
� � ��� � =

� ��� � � ( ( �/� � I( I
� � %( %

� =

This implies that we need to set
, �, � � 8 and

, �, +
�J .

Let ( � � ���0W 6 . This allows us to set ( I � 8 = 85W 6 with very small error, and( % �5�5W 6 , which can easily be attained either as ��W 6 �$��W 6 or �e= �5W 6���� ���5W 6 .

ANS:: (a) ( I � � =��0W 6�T ( % ��S =��5W 6���� 8'80W 6�T ( � � ���0W 6 � S ����6�T (�� � �5=  5W 6�T c)( � �� �0W 6�T ( I � 8 = 80W 6�T ( % �-��W 6 � ��W 6�=
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Figure 15.52:

Problem 15.7 For the circuit in Figure 15.53, assuming an ideal Op Amp with large
�

,

a) Calculate � � in terms of � � and the resistor values.

b) Find � in terms of � � and the resistor values.

c) For what resistor values in a) will the voltage gain become infinite? Explain why
this occurs (one sentence).

d) Find the limits on the solutions in the a) and b) imposed by using a real Op Amp.

Solution:

The best way to do the problem is to deal with a non-ideal op-amp, with finite gain
and nonzero output resistance, so that part D may be analyzed correctly.

See the voltage-source model in Figure 15.54.

Four equations to start out with are:

� I � � % � � � � � =

� � � ( I � ��� � � ( % � � �( I � ( %
=

� � � (�� � ��� �(
�
� (�� =
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Figure 15.54:
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� ��� � � � � � � ( � � � ( � % ( ��� � =

Then, some node equations to set up the currents in terms of voltages:

� I �
� � � ( � � � �
( I � ( %

=

�
�
� � ��� �
(
�
� (�� =

From here, we can eliminate � % , and substitute in for � � and � � , getting � ��� � in terms
of itself and � � � .

We create the following definitions: ( I % � ( I � ( % , ( � � � ( � � ( � , and (��$�( I � ( % � ( � � (�� .

� ��� � � � � ( I � ��� � � ( % � � �( I %
( (�� � ��� �(

�
� � ( ( ��� � � � ��� � ( � � �( I %

( � ��� �(
�
� � =

This can be solved for � � � � .

� ��� � � � � � � ( % ( � � � ( ��� � ( � �
( I % ( � � ( � ��( I ( � � ( ( ��( I % � � ( ��� � ( �

=

To find the current asked for, which is ( � I , use the equation

� � � ��� � ( � � �( I %
=

Substituting the previously derived expression for � ��� � and simplifying, one gets that

� �$� � �
� (
�
( I % ( ( � � � ( ( I %

� ��( ��( I % ( ( I ( � �0� � ( I % ( � � � ( ��� � (��

a) Assuming that A is so large that any terms lacking it may be neglected, and that( ��� � � � , we get the following value for � ��� � .

� ��� � � � � � ��( % � ��( � � (��0�( ( I ��( � � (��0� � (�����( I � ( % �
=
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b) Finding the limiting case again, we get that:

� �$� � � (
�( ( I � ( � � (��0� � (�����( I � ( % �

=

c) The voltage gain becomes infinite when the denominator is zero. In the ideal case,
this occurs when

( I ��( � � ( ��� � (���� ( I � ( % � =

This can be simplified to get that

( I ( � � ( % ( �

This occurs due to the presence of positive feedback.

d) For a non-ideal op-amp, the voltage will never actually exceed the supply voltage,
and for a set of resistor parameter ranges, the op-amp will rail. This set of param-
eters may be calculated by finding the internal voltage of the op-amp (without the
drop across the output resistance), and seeing for what values of ( I T ( % T ( � T (�� and�

it exceeds the supply voltage.

ANS:: (a) � ��� � � � � � � , + � � ,�� � , 
 �� , � � ,�� � , 
 � � , 
 � , � � , +�� , b) � � � � �
,��

� , � � ,�� � , 
 � � , 
 � , � � , +�� , c)( I ( � � ( % (��

Problem 15.8 Choose values for ( I through ( � in Figure 15.55 so that

� � � �/��� I (7 �� % ( � � ( 8�� �

You may assume the operational amplifier has ideal characteristics.

Solution:

See Figure 15.56.
� � �$� � � ) � , �, 
 � , �

� � ) 
 � ) �, � � ) � � ) �, +
� ) + � ) �,��

� � � � � ( �&( @
Combining these, we get:
� � � b �

,
�,�
 � , �

� ��� , L, � � , L, + � , L, � � ( ( @ � b 
, � � b
�, +
� b +, � � =
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Figure 15.56:
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One possible set of values is:
( I �-���0W 6�T ( % �J8��0W 6�T (

�
� �5W 6�T (�� � �5W 6�T ( � � �5W 6�T ( @ �J8��0W 6 .

These resistances can all be easily synthesized using common values.

ANS:: ( I � � �0W 6�T ( % � 8585W 6���� 858��0W 6�T (
�
� � =��0W 6���� S �5W 6�T (�� � � =��0W 6 �

������6�T ( @ �J8580W 6���� 8'8��0W 6

Problem 15.9 For the circuit in Figure 15.57, find � � in terms of � � . Analyze with literal
resistor values, then substitute numbers: ( I � ( % � ( � ���� kilohms. ( � ������ ohms.

+

-

vI

R1

-
+

R2

vO

R3

R4

Figure 15.57:

Solution:

Since � � � � � � � , one can redraw the circuit as shown in Figure 15.58.

+

-

vI

R1

-
+

R2

vO

R3

R4

Note: ground shaded regions

Figure 15.58:

From here, one can find the equivalent resistance of ( � �-� ( % ��� (���� and then realize
that this is a simple inverting-amplifier configuration.
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ANS:: ]	��� �
� � � � ( ��(/����� (�S1� � ( 8( � � ( �'= ����� �5=

Problem 15.10 This question concerns the circuit illustrated in Figure 15.59:

-

+

vS -
+

RLvO

i+

+

-

+Vss

-Vss

Figure 15.59:

The operational amplifier is a high gain unit (
� � � � � ) with high input resistance, � � ,

and negligibly low output resistance, � � . Assume that it is operating in its linear region.

The following data is given:

��� � ��]
� � � ��� % � �-��� � IMI �
(�� � ��W 6

a) What is � � ? (Accurate to within 1%).

b) i) What is the power delivered by the source � � ?
ii) What is the power dissipated in the load resistor, (�� ?

c) The power dissipated in the load resistor, (�� , is much larger than the power supplied
by the source, �� . Where does this additional power come from?

Solution:

a) � � Q5��� ��9]

b) i) � �������/�$�� � � ���� � IMI � " � ���
ii) � �������/� ) +�, � �� � � � � "�� ���
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c) The additional power comes from the power supply!!! ( �X] ��� ).

ANS:: (a) � � Q ��� � ��] T (b) i) � �.�[��� � �� � � �*� � � IMI � " � ��� , ii) � ������� � ) +�,�� �
��� � � � "�� ��� , () from the op-amp power supply ] � �U=

Problem 15.11 The equivalent circuit of an amplifier is shown in Figure 15.60.

iS R1 i1
vS R2

a

a’

+

-

b

b’

βi1

Figure 15.60:

a) Find the input resistance seen by the current source � � at the input terminals "�( " � .
b) Find the output resistance seen at the output terminals �U( � � (with the current source

shut off).

Solution:

a) ( � 	 � )
�� �

��� � ( � I ( I
� � � � I � ��� I
( � � � , �I � �

b) � �4� �
��� I � ( � I
� I � �
( ��� � � ( %

ANS:: (a) ( � � �
, �I � � , (b) ( ��� � � ( %
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Figure 15.61:

Problem 15.12 For the circuit in Figure 15.61 find � � in terms of � I and � % . You can use
in your analysis the ideal Op Amp model.

Solution:

Since the ideal opamp has infinite input impedance, � � � � � �*� . The resistors ( �
and ( @ can thus be disregarded (set to 0).

We then find the Thevenin equivalent of the left side, as shown in Figure 15.62. From
there, the problem is identical to Problem 15.7.

The open-circuit voltage was found in Problem 15.6, and is:

� ��� � � I ( % � � % ( I( I � ( %
=

The Thevenin resistance is ��( I ��� ( % � � ( � .

� ��� � ( I ( % � ( I ( � � ( % ( �( I � ( %
=

We import the following formula from Problem 15.7, changing the parameter names
to suit this exact configuration.

� ��� � � � ��� (���� ( � � ( � �
( � ��( ��� � (��0� ( ( ��� ��( � � ( � �

=
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Figure 15.62:

Substituting and simplifying, one gets:

ANS:: ]	��� � � , 
 � ) � , + � ) + , � � � , � � , +��, � ,�
 , �
� , + ,	
 , � �

, � , + , � � , � , � , � � , + , � , �

=

Problem 15.13 An operational amplifier circuit is shown in Figure 15.63.

v1 -
+

v2 -
+

R

2R

2R

+

-

vO

R -

+

Figure 15.63:

You may assume that the operational amplifier has ideal characteristics, including zero
input current and output resistance and further make the simplifying assumption that its
open-loop gain is infinite. Also, assume that the amplifier does not saturate.
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a) With � % � � , what is the value of the gain � � <�� I ?
b) Voltage � % is now made 3 volts. Plot the � � vs. � I characteristics. Be sure to show

important values and slopes.

Solution:

The bias applied to the non-inverting terminal has a Thevenin voltage of ) +� . Therefore,
the voltage at the inverting terminal is also ) +� . Use the following KVL equations.

� I ( �&( ( ��� (5� � � =

� I ( � , �
� %8 =

Eliminating � , one gets that

� � � ( ��� � � 8 =

a) We set � % � � and get a standard inverting amplifier, as is expected.

� �
� I
� ( �e=

b) See Figure 15.64.

ANS:: (a) ) �) � � ( ��=

Problem 15.14 By combining Op Amps with RC circuits, we can make circuits which
perform elementary mathematical operations, such as integration and differentiation. The
circuit in Figure 15.65 is, over some range, an integrator.

a) Use the ideal Op Amp model to determiner the ideal function performed by this
circuit.

b) Based on your knowledge of Op Amp limitations, indicate the constraints that must
be placed on the component values R and C to achieve satisfactory operation, as-
suming that the input is a sine wave with angular frequency � and peak amplitude�

.

Express your answer as a constraint on the RC product imposed by the voltage limit,
and a separate constraint imposed by the current limit.



551

3V

1.5V

vout

vin

slope = -2

Figure 15.64:
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Figure 15.65:



552 CHAPTER 15. THE OPERATIONAL AMPLIFIER ABSTRACTION

c) For practical reasons, R usually should not be greater than 1 megohm. Calculate
the value of � required to meet the voltage constraint listed above for operation at
20 Hz and above, and

� � � volt.

Solution:

a) See Figure 15.66.

vI
+
vO-

+

R C

-

+

-

iC
vC+ -

Figure 15.66:

� � � � � � �
��` � � 	 ) d

	
� � ( � 	 ) �

	
� � ) �,

� � � � I, ` � � � : �

b) � � � � � ���"� � ���
� � � � �

�
, ` ���	��� � ���

Assume opamp has voltage limit �*] � �
� .

( � � �

�5b
� � �

��` � �, �����3� � ���
Assume opamp has current limit � � � � � .
� , � � � � �

c) � � ��� Y 
 S����
( �
��� 6
� � �

�
,
b
� � �

Assuming that ] � � � = 15 volts:

� �  '8�� % �
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ANS:: (a) � � � � I, ` � � � : � , (b) ( � � �

�'b
� � � , (c) � �  '8�� % �

Problem 15.15 The capacitor you calculated in Problem 15.14c is (or should be) much
larger than the maximum capacitor that can be included on a VLSI chip. For this reason,
the circuit in Figure 15.65 must usually be built of Op Amps, discrete ( ’s and � ’s. To
allow the circuit to be built on a chip, the resistor is replaced by a switched capacitor,
which can produce a very large “effective resistor” with reasonable capacitor values. This
circuit is shown in Figure 15.67.

-

+
vI C1

C2

-

+

vO

1 2

+

-

Figure 15.67:

At time � � � I , the switch moves to position (1), and � I charges (instantly) to voltage� I ��� I � . Then at time � % , the switch moves to position (2), and � I discharges into � % . As-
suming that the usual Op Amp approximation of ( � � ( � � ) �5� can still be used, calculate
the charge that is “dumped” at each cycle, hence the average current (a function of both� � and the switching frequency Y

� ), and hence the effective resistance of the switched
capacitor. Also, show that the overall system equation relating � � to � � is the same as in
Problem 15.14.

Solution:

� 	 �
��� � 	
� � I � I � I If the switching frequency is much faster than the frequency of � � ,

then:
� �
b
� � Y

� � I � �
The effective resistance is then I� � ` � .
� � � � I`

+ �
� �
b
�
: �

� � � � � � ` �`
+ � � � : �
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This is the same function as in problem 14 when I� � ` � � ( .

Problem 15.16 In Fig. 15.67, what are the constraints on � I and � % set by the Op Amp
voltage and current limits? Calculate the appropriate values of � I T � % and Y � for operation
at 20 Hz and above. Can the circuit now be built on an IC chip if we replace the switch
by MOS transistors, and � � � � � � ��� % � ?

Solution:

The effective resistance of the capacitor can be calculated as follows. The capacitor is
instantly charged when the switch is set to connect it with the voltage source. The amount
of charge on the capacitance can be calculated by the formula � � � I � � . When the
switch is moved to the second position, all this charge is immediately released due to the
capacitor now being connected to an effective ground. Therefore, the rate of current move
is � � � Y.` , which is �.� � I � � Y.` . From this, we can calculate the effective resistance) �� � ( � Y;Y � I`

�
� d =

From here, we have a simple inverting amplifier configuration. The maximum voltage
gain is equal to I`

+ , �
� � R , which is equal to

`
�
�

`
+ R . If our maximum voltage limit is ] � � � ,

our maximum current limit is � � � � and our maximum input voltage is � � � � � � � , then
we have the following relations:

� � �
� � � � � I Y1`S ��� � %

� ]
� � � =

� � �
� � � � � I Y1` � � � � �[=

This can be simplified to the following:

A typical IC configuration will support an op-amp with a voltage rail of ����=� volts,
and a maximum current of 1 milliampere. The input signal that needs to be amplified can
be assumed to be much less than the bias voltages necessary to make the op-amp work
correctly, given only a �� '] supply and a ground. Therefore, we can assume ] � � � � � �

to be �5 1� ] .

Given this, we can find the numerical values for the constraints on � I Y.` .

� I Y1` � S � T � I Y1` � S ������� � % =

Clearly the second criterion is much more restrictive. If we let � % be the maximum
allowed value of 100 picofarads, this implies that

� I Y.` � S������ � � =
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We would like this to run at a sufficiently high rate, of at least 100KHz, so we setY1` � ����� � � � , which gives us � I � S�� ��� � I � . This clock rate is very modest, and
probably would not be effective for anything much higher than the 20Hz signals expected.
It is difficult to design for both low and high frequency response simultaneously.

ANS:: � I �-�5= �' �� � ��� � ��� � T � % �� � � ��� � TOY1` ������ � � � =

Problem 15.17 Design a differentiator circuit out of RC circuits and Op Amps.

Calculate the constraints as in Problem 15.14b.

Solution:

a) See Figure 15.68.

vi

+

-
vo

C

R

i

Figure 15.68:

� � � � � � �
� � � 	 )��

	
�

� � � ( ( � 	 )��
	
�

b) Assume voltage limit ] � , current limit � � .
� � � � � ���"� � ���
	 )��
	
� � � � ��� ��� � ���

� � � � � � � � � � � �

� �
� �

�
�] � � � � � ( � � � � ] �

( � � b
�

�
�

� �
� �

�
�

; ( � � b
�

�
�

ANS:: � �
� �

�
�

; ( � � b
�

�
�
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Problem 15.18 This problem deals with switched-capacitor circuits introduced in Prob-
lem 15.15. Referring to Figure 15.69, assume both � I switches are closed for time ��<��5Y K
with � % open, and � % closed for ��<��5Y K with � I open. Assume no overlap, i.e., and � I and
� % switches are never both closed at the same time.

vA

S1

+

-

S2

S1

C2

C1
vB

Figure 15.69:

a) For � � � �
volts (constant), go through one complete clock cycle, identifying the

charge on each capacitor and the voltage at each node.

b) Now assume � � � �
cos � � where � � � ��� Y K . Sketch ��� . In the circuit as

constructed, �� is zero half the time. During the other half cycles, � � and � � are
related by a simple gain expression, just as in a normal inverting amplifier. What is
the “gain”?

Solution:

a) First, switch � I is closed, so the second capacitor is discharged to ground, and the
first capacitor is charged to � � . The output voltage is zero as well.

Then, when � % is closed, the first capacitor discharges onto the second one, so the
voltage across the first capacitor is now 0, and the voltage across the second is ( � � .
By the conservation of charge, � � � I � ( �� � % , so �� � ( )�� ` �`

+
=

b) See Figure 15.70.

From the previous expression, the gain can be calculated to be:

( ( � I
� %

=
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t

va

A

t

vb

1
f 0
-----

C2

C2
------ A

Figure 15.70:

ANS:: (b) ( �
`
�`
+
=

Problem 15.19 Figure 15.71 is a practical implementation of a switched capacitor circuit
(see Problem 15.15). As in the previous problem, it is useful to examine the behavior of
an “average �� ” over a clock cycle.

vA

S1

+

-

S2

S1

C1
vB

S2

C2

C3

Figure 15.71:

a) Show that if � � � �
volts (constant), the cycle-average of � � has a steady-state

value equal to ( � � I < � % � � . In other words, for low-frequency signals, the circuit
behaves like a non-inverting amplifier with gain ( � � I < � % � .
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b) Show, for � � a step of amplitude A volts, and assuming � � is initially zero, that
the cycle average of �� “charges up” to its steady-state value with time constant� � �

�
<5Y K � % . That is, show that the cycle-average of � � obeys a first order linear

differential equation with time constant � � <5Y K � % .

Solution:

a) Both switched capacitors can be modeled as resistors, and the impedance model
drawn as shown in Figure 15.72. This is a standard inverting op-amp with effective
gain:

vA

+

-
vB

+
-

1
C1 f 0
------------ 1

C2 f 0
------------

1
C3s
---------

Figure 15.72:

��" � � � � I` � R � ` +
�

�I`
�
�

�
� ( � I Y K

� � ��� � % Y K
=

For a low signal � � � � � � Y K , the � � � term drops out, and the device becomes an
amplifier with gain (

`
�`
+
=

b) The natural frequency in the denominator of the transfer function is
`
+
�

�� � , which
implies a time constant of

` �`
+
�

�
=

Problem 15.20 a) Use the ideal Op Amp model to determine the ideal function per-
formed by the circuit in Figure 15.73.
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v1

+

-
v2

C

R

+15 V

-15 V

Figure 15.73:

b) Based on your knowledge of Op Amp limitations, discuss the accuracy with which
the circuit will perform the intended function, or indicate any constraints that must
be placed on the component values R and C to achieve satisfactory operation, as-
suming that the input is:

i: A sine wave with angular frequency � and peak amplitude
�

.

ii: A triangle wave with period � and peak amplitude
�

.

iii: A square wave with period � and peak amplitude
�

.

c) The leakage of an actual capacitor can often be modeled by a large resistor in par-
allel with an ideal capacitor. What effects on circuit performance would capacitor
leakage have?

Solution:

Model the capacitor as non-ideal by placing it in parallel with a leak resistor ( � . See
Figure 15.74.

v1

+

-
v2

C

R1

+
-

RL

Figure 15.74:

The best way to do this problem is by superposition. We can place the voltage source
onto the capacitor by itself, and then onto the resistor by itself. The resistor causes the
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circuit to act as an inverting amplifier and the capacitor, as an inverter. The sum of them
is as follows:

( (�� � % ����� � (.(�� �
: � I �����: � � ( � I � ��� =

a) In the ideal case, the terms with no (�� factor may be dropped since the leak resistor
is an open circuit with an infinite resistance.

� % ����� � ( ( �
: � I �����: �

b) i) � I � � � � ��� � ���
� � � � � ���	��� � ���
� � � � � � � � � �
� % � ( ( � � � ��� ��� � ���
( � � � � ] � �

�
� �

ii) � � � � � �
�\` �
� � � � � � � ��\` � ,� � ] � �

�
���

Furthermore, since the triangle is a function whose derivative is not defined at
the switching points, the op-amp will rail alternatingly at the negative supply
value (when the switch is from up to down) and the positive supply value
(when the switch is from down to up), once each per period.

iii) The derivative of a square wave consists of impulses. The opamp limits on
voltage and current prevent the circuit from performing the intended function
accurately.

c) The non-idealness will cause an extra term that is proportional to the input to be
added to the derivative of the input.

� % ����� � ( ( �
: � I � ���: � ( ((�� � I ����� =

ANS:: (a) � % � ���'� ( ( � 	 ) �
� � �

	
� , (c) � % � ��� � ( ( � 	 ) �

� � �
	
� ( ,,�� � I � ��� =

Problem 15.21 a) Using the “ideal operational amplifier” assumption, i.e., infinite
gain, infinite input resistance, and zero output resistance, determine the relationship
between � � � ��� and � ��� ��� in Figure 15.75.
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vI +

-

vO

R = 10 kΩ

+
-

C = 10 µF

+

-

Figure 15.75:

0,0 100 ms t

10 VvI

Figure 15.76:

b) If the signal � ��� ��� is the rectangular pulse in Figure 15.76, sketch � ������� for � � � ,
assuming that � ����� � � � .

Solution:

a) � � � � � � �
� � )��, � ( � 	 )��

	
�

� � � ( ��� � � � : �

b) See Figure 15.77.

ANS:: (a) � � � (���� � � � : �

Problem 15.22 An operational amplifier is connected as shown in Figure 15.78.

The voltage � � is 2 volts for � � � � � ms, and 0 otherwise. Assuming that � � � �
for � � � , sketch � � for � � � .

Solution:

First, draw the full impedance model of the voltage-source, as shown in Fig-
ure Figure15.79.
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vO(t)

100ms

t

0,0

-10V

Figure 15.77:

+

-
+
-

2 kΩ

2 kΩ

2 kΩ

2 kΩ2 µF

+

-

vO

vI

Figure 15.78:
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+
-

+
-

R1

VIN

R2

I1

I2

I1

VAMP

V+

V-

A(V+-V-)

R3

I3

IZ

Z

VOUT

IOUT

ZL

Figure 15.79:

Let
�
� be an arbitrary output load impedance, and

�
be the impedance of the resistor

and capacitor in parallel, which is
, 
, 
 ` R � I =

From here, we can get the following three node equations:

� � ( � �
( I

� � � ( � � � �

( %
T

� � � � ( � �
(
�

� � �
�
� � �

�
�

T

� � � � � � � � ��( � � � =

Simplifying these three, we can get the following relation:

� �
� � �

( ( % � �
�

( I ( � �
� � ( I ( � � ( ( % � �

�

=

Substituting in for
�

and simplifying more...

� �
� � �

( ( % (�� �
�

( I ( � �
� ��( � � ��� ��� � ( I ( � (�� ( ( % ( � �

�

=
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Then, even though the notation of the problem would indicate otherwise (filled out-
put nodes), we assume that

�
� is infinitely large. We substitute in the given values of( I T ( % T ( � T (���T and � , to get that

� � ������� ( �5 ��
� � ������� =

Taking the inverse Laplace transform of this, we get:

� � � ��� � ( �' �� � � ��� ��� : � =

The corresponding graph is shown in Figure Figure15.80.

vO(t)

1ms

t

0,0

1
2
---V–

Figure 15.80:

Problem 15.23 Consider the following two circuits in Figure 15.81.

vI +

-

vO

R1

+
-

C1

+

-

vI +

-

vO

R1

+
- C2

+

-

Figure 15.81:

Use the Op Amp model to find the transfer function � �a<�� � for the two circuits.
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Assume only moderate gain (say 100) for the Op Amp so you cannot assume � � � � � .
How large does � % have to be compared to � I in order for the two circuits to behave the
same? The increase in the effective size of � I because of the gain of the amplifier is called
the “Miller Effect”, and is used in Op Amp design.

Solution:

Both amplifiers have output � � � ( � � � . The node equation for the first one is as
follows:

� � ( � �
( I

� � � ( � �I`
� R

=

These two equations can be combined to yield the following result:

� �
� � �

( �
( I � I ��� � � ��� �$� =

The second amplifier has a voltage-divider at the input:

� �
� � �

I`
+ R( I � I`
+ R
=

This, combined with the amplifier gain model, results in the following transfer func-
tion:

� �
� � �

( �
( I � % � �$�

=

Comparing these two, we get the following relation:

( I � % � � ( I � I �1� � � ��� =

This can be simplified to:

ANS:: � % � � I � � � ��� =

Problem 15.24 Assuming an ideal Op Amp: (large gain, � � � � � , � � 	 infinite, � � � � zero,
but including amplifier saturation effects.)

a) Plot a curve of � � � versus � � � between -20 and +20 volts for the circuit in Fig-
ure 15.82, assuming ( % � ( � . Dimension your plot.
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R2

vO

R1

+
-

+15 V

-15 V

R3

A

A

vIN

iIN -

+

Figure 15.82:

R2 = R3

R1

+

-

+15 V

-15 V

R3

C vC

-

+

+

-
1 V

1 2

Figure 15.83:
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b) A capacitor is initially charged to 1 volt (switch in position (1)) in Figure 15.83, then
connected to the circuit at � � � (switch in position (2)). Sketch and dimension the
waveform �'`�� ��� for � greater than zero.

Solution:

a) First, draw the input as shown in Figure 15.84.

vIN

+

-
vOUT

R1

+
-

iIN

R2

R3

vIN

Figure 15.84:

The current is derived as follows:

� � � � � � � ( � ��� �
( I

=

If the op-amp is not railed, then by a simple voltage-divider rule, � ��� � � ��� � � . If
the op-amp is railed, then either � ��� �$� �� 5] , or � ��� � � (��� 5] = The current is
therefore characterized as follows:

� � � � � � 
 �$�� 
( I

Y ����� � � � ( ��=  5] T � � �

� ( � � �( I
T Y ���[( �e=� 5] � � � � � ��=  5] TO" �;: � � � � � � � ( �� 

( I
Y ����� � � � ��=  5]

See Figure 15.85 for the relevant �2( � plot.
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iIN

vIN

-15V

-7.5V -15V

-7.5V

1
R1
------

1
R1
------

1
R1
------–

Figure 15.85:

b) While the voltage across the capacitor is between -7.5V and 7.5V, the circuit will
act as a simple RC circuit, but with a negative resistance. Therefore, the voltage
across the circuit will increase exponentially with a time constant of ( � ( I . When
the voltage hits 7.5V, the device will start acting like an ordinary resistor, which
attempts to discharge the capacitor. This immediately drops the voltage below 7.5V,
which then increases it again. Therefore, once the voltage hits 7.5V, it will never
change.

See Figure 15.86 for the plot of voltage as a function of time.

t

VC

7.5

τ R– 1C=

1

Figure 15.86:

ANS:: (a) � � � � )��
� � I �, � Y ����� � � � ( ��=  5] T � � � � ( )�� 
, � T Y��.� ( �e=� 5] � � � � �
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��=  5] TO" �;: � � � � )�� � � I �, � Y ����� � � � ��=  5] =

Problem 15.25 An operational amplifier is connected as shown in Figure 15.87.

vO(t)

vI(t)
+

-

+
-

10 kΩ

10 µF

Figure 15.87:

a) Assuming that the amplifier has infinite gain and infinite input resistance and zero
output resistance, determine the relationship between � � ����� and � ������� .

b) The signal � ��� ��� is a rectangular pulse as Figure 15.88.

0,0 100 ms t

10 VvI

Figure 15.88:

Assuming that � � � � ��� � , draw � � � ��� T for � � � .
c) The operational amplifier is now connected as in Figure 15.89.

The voltage � � ����� is held at zero (by some means not shown) for � � � . The switch
is initially in the up position, connecting the ���0W 6 resistor to a fixed voltage ] � . At
time � � �����1� � , the switch is thrown to the down position. The observed voltage� � ����� is shown in Figure 15.90.

Determine the relationship between ] � and � , the time required for � � ����� to return
to zero volts.

Solution:
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vO(t)
10 kΩ

10 µF

VF

-10 V

+

-

Figure 15.89:

vO(t)

100 ms

t

0,0

Figure 15.90:
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a) � � � � � � �
� ����� � ) � � � �, � ( � 	 ) �

� � �
	
�

� � ������� � I, ` � � ������� : �
� � ������� (���� � � ��� ��� : �

b) See Figure 15.91.

vO(t)

100ms

t

0,0

-10V

Figure 15.91:

c) � � � � � (����?>#] � > �����'� �
(����?> ( � � > � �J] �� � b

�

IKMK

ANS:: (c) � � b
�

IKMK

Problem 15.26 We wish to show that the circuit shown in Figure 15.92 behaves in a
manner very similar to an RLC circuit.

a) Write the node equations for � % and � � .

b) Simplify these equations by using the Op Amp assumption, i.e., � � � � � . This
allows you to neglect � � terms compared to � � terms, and 	 )

�
	
� terms compared to 	 ) +

	
�

and 	 )



	
� terms, provided � I and � % are comparable. (You must later check on this

last assumption.)

c) Find the characteristic equation. Compare with the RLC case.

d) For the numerical values given below, is the circuit under, over, or critically
damped? What is the � of the circuit, in literal form?
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v1

+

-
v4

C2

R2

R1

C1

v3v2

Figure 15.92:

� I � � % � = � ��� �( I �����6( % ���W 6

Solution:

First, draw the voltage-source impedance model of the op-amp, since it will come in
useful in part b. See Figure 15.93.

+
-

+
-

R1

V1

R2

I3I2

I1

V4

V2

V3
1

C1s
---------

1
C2s
--------- -AV3

Figure 15.93:
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a)

� I ( � %
( I

� � � ( � �( %
� �
�
% ( � ��I`
+

T �
�
% ( � ��I`
+
� � � ( � �( %

=

b) The third necessary condition is � � � ( � �
� . With these three equations, we can

derive the following result:

( �� � � ( � � (
�
� � �� ( % � % ( ( I � � I � % � (

�
� � �� ( ( I � � I � � % �2�

�� �
�
� ( I � % ( % � � I � � % � �

� �� � ( % � % �
�
I (
�
� � � �� ( I � % � �

� �� ( I � I =

Here is where the condition of capacitor size similarity comes in. Ordinarily, one
would cancel out all the terms involving I� , since

�
is infinite in an ideal op-amp.

However, in a real op-amp,
�

is only about � � @ , and it is quite possible for � I andI� � % to be of comparable size, which devalidates the principle behind the cancella-
tion. Therefore, we must give the condition that the capacitors are of “comparable
size”, meaning that the ratio of their magnitudes is far less than

�
.

Given that, we may cancel several terms to get the following result:

� � I ( % � % � ( � � �� ( I ( % � I � % ( � � ( � �� ( I � I ( � �� ( I � % =

c) We now let � I and � � be of the form � R � .
We can solve for the ratio )



) � , getting the following, which corresponds to the trans-

fer function of an RLC circuit.

� �
� I
� ( ( % � % �
( I � I ( % � % � % � ( I � � I � � % ��� �$�

=

d) The damping can be found using the discriminant. For the denominator of the form� � % � � � � � , the discriminant is � % ( S � � . In our case, we plug in the numbers
and get a negative term, meaning that the circuit is overdamped.

In order to find � , we recall that for a general transfer function whose denominator
is of the form

� � % � � � � � T � �
� � `� + . This implies that for our case,

� �
���� � � I � ( % � %
� � I � � % � % ( I

=

The circuit is overdamped.
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ANS:: (a) ) � � ) +, � �*) + � )



�d + �
�-) + � ) ��d + �

T�) + � ) ��d + �
� ) � � ) 
, +

= (b) � I ( % � % �.� ( � ��( I ( % � I � % � % (
� �B( � � ( I � I �[( � ��( I � % �5= (c) )



) � � � , +

`
+ R, � ` � , + ` + R + � , � � ` � � ` + � R � I (d) � �

� � ` � � , + ` +� ` � � ` + � + , � , and

the circuit is overdamped.

Problem 15.27 What is the differential equation relating to � � to � � in the network in
Figure 15.94? Assume the Op Amps are ideal.

+
-

vO

6 kΩ

+
-

4 kΩ4 kΩ

+
-

3 kΩ

250 kΩ

250 kΩ

vI

20 mH

8 kΩ

2 kΩ

Figure 15.94:

Solution: Label the output of the bottom amplifier before the 80W 6 resistor as node� � . By superposition, the first op-amp is an inverting amplifier which calculates the sum( �% � � ( ��� � . The second op-amp is also a differentiator, with gain ( � K %� KMKMK � ( I% KMKMKMKMK on
the derivative of the input. We now know that � � � I% KMKMKMKMK � �5=  ��

�
� � ��� �� � =

The input to the next op-amp is almost an ideal voltage divider, since most of the
current going through the �0W 6 resistor is channeled to ground, so the input to the op-amp
can be approximated by = ��� � = The third op-amp is merely an inverter, so we can calculate
that � � � (�= ��� � .

We now have:

� � � �
����������� �2�5=  ��

�
� ( = S�� �� � =

This can be simplified to:

� � ( � � ��� � @ � �� � ��=  � ��� � @ � �� =
ANS:: � ��( � � � � � @ 	 )��

	
� � ��=  � � � � @ 	 )��

	
� =
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Problem 15.28 The circuit in Figure 15.95 behaves in a manner very similar to an RLC
circuit.

a) Write the node equations.

b) Assume � � � ]��G� R � T ��� � ] �M� R � , and find the characteristic equation.

c) Find � and � � in terms of � I T � % T � I T � % .

vI +

-
vO

C2

R2

C1 vB

vA

R2

Figure 15.95:

Solution:

This is done most easily by using the impedance model. See Figure 15.96 for the
impedance model of this circuit.

vI

+

-
vO

vB

vA

+
-

R1

1
C1s
---------

1
C2s
---------

R2

Figure 15.96:

a) If we let � I and � % be the conductances (the reciprocals of the resistances) corre-
sponding to the two resistors, we get the following two node equations.

� � � ( � � � � I � � � � � ( ����� � % � � � � � ( � �"� � % T ��� � I � � � � ( ��� � � % �5=
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b) If the op-amp is ideal, then � � �5��� due to the negative feedback. Simplifying the
three equations that we have, we get that:

��
� I
� � I � % ( I ( % � %

� I � % ( I ( % � % � ( % � % ��� �
=

c) For a transfer function with denominator
� ��%�� � � � � , � is defined to be one-half

the bandwidth, which is
�
% � , and the resonance frequency � � is

� `
� . For our case,

we get the following values.

� �
� I
� � %

T � � � � � I � %
� I � %

=

ANS:: (a) � � �6( � � � � I � � � � � ( ����� � % � ���� � ( � ��� � % T �� � I � � � � ( ��� � � % � , (b)
)��) � �

`
�
`
+ , � , + R +`

�
`
+ , � , + R + � , + ` + R � I , (c) � �

� �% ` +
T � � � � � � � +`

�
`
+
=

Problem 15.29 a) Find
� I � � ��� ] I <5] R in Figure 15.97. Plot and dimension log � � I �

and
� � I vs. log � .

vs

-

+

v1

+
-

-
+

R1

C1

R2

C2

+

-
v2

R1 = 10 kΩ R2 = 1 kΩ

C1 = 1 µF C2 = 0.01 µF

Figure 15.97:

b) Find
� % � � ��� ] % <5] I . Plot and dimension log � � % � and

� � % vs. log � .

c) Find
� � � � ��� ] % <5] R � � I � � � � % � � � . Plot and dimension log � � � � and

� � � vs. log
� . Compare with the plots you obtained in parts a) and b).

Solution:

a) See Figure soln-fig:18-29-a.
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ω

H1∠

-45

-90

1
R1C1
-------------

log |H1|

ω
1

R1C1
-------------

20 db/dec

Figure 15.98:

ω

H2∠

-45

-90

1
R2C2
-------------

log |H2|

ω
1

R2C2
-------------

20 db/dec

Figure 15.99:
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ω

H3∠

-90

-180

1
R2C2
-------------

log |H3|

ω
1

R2C2
-------------

40 db/dec

20 db/dec

1
R1C1
-------------

1
R1C1
-------------

Figure 15.100:

b) See Figure soln-fig:18-29-b.

c) See Figure soln-fig:18-29-c.

Problem 15.30 a) Find the transfer function for the network in Figure 15.101.

vO

R1

C2

R2 C1

vIN
+

-

Figure 15.101:

b) Synthesize the function b �b � �

� ( ����� S1� < � ��� ��� using the above circuit. That is,
find values of ( I T ( % T � I , and � % which satisfy ] �O<'] � 	 . You may use capacitors of��� � .

Solution:

a) b �b � �

� � 	 �	 � 

�
� � � ( % ���4IR ` +
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� � � ( I ���[IR ` +
] �
] � 	
� ( � ��( I ( % � % � ( I �
��( I ( % � I � ( %

b) Given the previous derivation, we see that we must let � I and � % be the same, since
the magnitude of � must be the same. We use ��� � capacitors, because we can.

Plugging this in and simplifying, we get the following:

( � � IK L, +� � IK L, �
� ( � � S
� � � =

This implies that ( % � �5 ��0W 6�T ( I �*��� �5W 6�= In order to synthesize these, we can
use a �����0W 6 in series with a 8585W 6 , or if more precision is needed, �����0W 6 in series
with the parallel combination of a 8580W 6 and a 858��0W 6 . ( % can be made from a�����0W 6 in parallel with a � ���0W 6 , which turns out to be remarkably precise.

� I ���� � T � % �-��� � T
( I �5�����0W 6���� � ���0W 6�T

( % �5�����5W 6 � �!8585W 6���� 858��0W 6 � =

ANS:: (a) b �b � �

� � � R , � , + ` + � , � �R , � , + ` � � , + , (b) � I � � � � T � % � ��� � T ( I �
�����5W 6���� � ���0W 6�T ( % �5�����0W 6 � �!8580W 6���� 8'8��0W 6 � =

Problem 15.31 The circuit shown in Figure 15.102 is a capacitance multiplier. It may
be incorporated into circuits which might otherwise require unrealistically large physical
capacitors. You may assume that the operational amplifier has ideal characteristics.

a) Find the impedance Z looking into terminal A-A’ for the circuit.

b) Show that the model on the right corresponds to an impedance equivalent to the
result obtained in part a).

c) For ( I � ( % � ��� � 6�T ( � � ��W 6 , what is � � � in terms of � ?

Solution:

See Figure 15.103.
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A
R1

R2

C

+
-

R3

A’
Z

B
Req

Zeq

B’Ceq

Figure 15.102:

A

R1

R2

C

+
-

R3

A’

It(s)

Va(s)
V-(s)

V+(s)

+

-
Vt(s)

Figure 15.103:
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a) ] � � ] �
� � � � , therefore ] � � ] �
Analyze the current � � from test voltage with complex amplitude ] � .
] � � �� d, � � �� d

] �
� � � b � � b

�, � � b � � b
�, �

� � � �
,��, � � ,	� �BIR ` � ( I �

b)
� � � � IR ` ��� � ( ���

c) ( ��� �
, � ,	�,	� � , �

� ��� � � > ,�� � , �,	�
� ��� � � > ������� �

Problem 15.32 Show that the Op Amp circuit in Figure 15.104 has the same form of
transfer function as the circuit in Problem 14.1 (shown on the left hand side of Fig-
ure 15.104). Find expressions for the resonant frequency and the � .

R
+

C

-

L

+
-

vO(t)

R1

C2
vI(t)

+
-

-
+

C1

R2

vI(t) vO(t)

+

-

Figure 15.104:

Solution:

This is actually the same as Problem 15.28 but with the resistors and the capacitors
switched. We recall the equation derived in Problem 15.28, part B:

� I � I � % � % � � K � I � % � % � � K � I � % ��� � K � I � % =

We replace the admittances as necessary:

� I � � � I T � % � � � % T � I � � I �5T � % � � % �5=
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From that, we get the following transfer function:

� �
� � �

� I � %
� I � % � % � � % � % � � � I � %

=

This is equivalent to pulling the voltage across a capacitor in a series RLC circuit. The
resonance frequency of a transfer function with denominator of the form

� ��% � � � � �
is

� `
� , and � is

� � `� + = We substitute, getting the following values:

ANS:: � � �
� I, � , +

`
�
`
+
T � �

� `
+ , +`
� , � =

Problem 15.33 The circuit in Figure 15.105 is a switched capacitor filter. The switches
� I and � % are driven by nonoverlapping clocks as in Problem 15.15. Both � I switches
are closed for time ��<��5Y � with � % open, and � % closed for ��<��5Y � with � I open. ] � 	 �� ��� � � � T � � � ��� Y K .

Op Amp 2

R

V3

-

C1

+
-

+ -
+

-
+

-

+

C2

R

R

2R
R

V2

V1

S2 S1

S1 S2

Op Amp 3

Op Amp 1
Vin

R2
C

R1
C

Figure 15.105:

a) Find (in the sinusoidal steady state) the transfer functions ] � <'] % and ] % <5] I . Refer
to Problem 15.15 to see how to handle the switches. Note that there are no switches
across � I and � % .

b) Now find a simple equation to describe the operation of Op Amp 1, i.e., find an
expression for ] I in terms of ] % T ] � 	 T and ]

� . Note that in all of our impedance
calculations, we have been implicitly assuming that the relation among V’s for such
a circuit is the same as the relation among the time variables ������� .
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c) Now substitute from a) into b) to find the overall transfer function ] % <5] � 	 . Find
expressions for the resonant frequency � K and the bandwidth

� � in terms of the
circuit constants. The easiest way to do this is to get the transfer function into the
form

] � � � R ] � 	� % � � � ��� � %K (15.1)

and work by analogy to the parallel RLC case. How does the resonant frequency
� K depend on the clock frequency Y � ?

Solution:

First, let the effective resistances of the switched capacitors be ( I and ( % .

a) The second and third op-amps are both integrators, and have the following transfer
characteristics:

] %] I
� ( �
( I � I �

T ] �] %
� ( �
( % � % �

=

b) The first op-amp is similar to the one detailed in Problem 15.8, except has only two
inputs instead of three. Therefore, it has the following transfer characteristic.
] I � b +

,
% , � , � ��� ,, � ,, � ( ( � b �, � b � 
, � =

This simplifies to:

] I � ] % (7]
�
(7] � �6=

c) We substitute into the previous equation, getting:

] % ( I � I � � ] % (
] %
( % � % �

(7] � �B=

This can be transformed into:
] %] � � �

( % � % �
( I ( % � I � % � % ( ( % � % � �$�

=

From here, we can get the resonant frequency � K and the bandwidth
� � �����G��" ,

since for any transfer function with denominator
� ��% � � � � � , the resonant fre-

quency is
� `
� and the bandwidth is

�
� .

] %] � � �
( % � % �

( I ( % � I � % � % ( ( % � % � � �
T � � � �

( I � I
T � K � � �

( I ( % � I � %
=



584 CHAPTER 15. THE OPERATIONAL AMPLIFIER ABSTRACTION

ANS:: (a) b +b �
� � I, � ` � R T b

�
b +
� � I, + ` + R , (b) ] I � ] % ( ]

�
( ] � � , c) b +b � 


�
, +
`
+ R, � , +

`
�
`
+ R + � , + ` + R � I

T � � � I, � ` � T � K �
� I, � , +

`
�
`
+
=

Problem 15.34 The circuit shown in Figure 15.106 behaves like an RLC circuit.

V4

C1

-
+

-

+

C2

V1

-
+

R2

R1

Figure 15.106:

a) Find the transfer function ] � <5] I . (You may assume that the Op Amp is ideal, i.e.] � � ] � to simplify your calculations.)

b) Sketch the magnitude of the transfer function � ] � <5] I � versus frequency. Indicate
the frequency at which the peak occurs, the magnitude of the transfer function at
the peak, and the Q of the resonance. Use the following numerical values:

� I � � % � � = � ��� � ( I �� ��6 ( % ���W 6

c) This circuit is known as an RC active filter. Is it a low-pass, high-pass, or hand-
pass filter? What is the expression for bandwidth in terms at ( I T � I T etc.? That is,

� � � % ( � I where � I and � % are the half power frequencies?

Solution:

This is a continuation of Problem 15.26.

a) From Problem 15.26, part C, we get the transfer function:

� �
� I
� ( ( % � % �
( I � I ( % � % � % � ( I � � I � � % � � �$�
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b) See Figure soln-fig:18-34-same-as-38.

ω

V 4

V 1
------∠

90

-90
ω

20 db/dec

V 4

V 1
------log

7.1 10
4×

7.1 10
4×

-20 db/dec

Figure 15.107:

c) Since the numerator contains a linear term in � and the denominator a quadratic,
this is a band-pass filter. The bandwidth for any function with the denominator� � % � � � � � is

�
� , so in this case we get a bandwidth of:

� I � � %
( I � I � %

=

ANS:: (a) )


) � � � , +

`
+ R, � ` � , + ` + R + � , � � ` � � ` +�� R � I , (b)

`
� � ` +, � ` � ` +

=

Problem 15.35 a) Find an expression for the complex amplitude ratio ] �O<5] � for the
active filter circuit in Figure 15.108, given that ( % �*����( I . Sketch the Bode plot,
� ] �V<5] � � versus � and ] �O<5] � versus � .

b) An equivalent filter can be made with the circuit shown in Figure 15.109. Find the
value of � % needed to make a filter equivalent to that in part a), assuming that ( I
and ( % are the same here as for part a). How does the value of � � here compare to
that of � in the filter of part a)?

Solution:

a) b �b �
� � 	 �	 � 


� � , + ��� �� d, �
b �b �
� , +R ` , + , � � , �

Given that ( % �� ��( I , we substitute in, getting:
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Vo

C

-
+

-

+

Vi

-
+

R2

R1

Figure 15.108:

Vo

Cx
-
+

-

+

Vi

-
+

R2

1/2 R1 1/2 R1

Figure 15.109:
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] �
] � �

( � �
����( I � � �$�

=

See Figure soln-fig:18-35 for the Bode plot.

ω

V O

V I
-------∠

-45

-90

1
R1C
----------

ω
1

R1C
----------

20 db/dec

V o

V I
------

Figure 15.110:

b) First, find the Thevenin equivalent of the input. The open-circuit voltage is given
by a voltage divider rule:

] ��� � ] � I`
� RI% ( I � I`
� R
=

This can be simplified to:

] ��� � ] � �
( I � �

��� � =

The Thevenin impedance is found by shorting out the voltage source:

� ��� � �� ( I � �
�
� ( I ���

�
� �
� � =

This simplifies to:

� ��� � ( % I � �
���7S ( I

��( I � �
���7S =
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This is now a standard inverting amplifier configuration:

] � � ] ��� ( ( %
� ���

=

Substituting in, we get:

]	�
] � �

(4S ( %
( % I � �

� �7S�( I
� ( S �
( I � �

���7S =

Comparing this result to that derived in part A, we get that:

� �
�JS�� � =

ANS:: (a) b �b �
� � IKIK , � ` R � I = , (b) � �

�JS � � =

Problem 15.36 The circuit shown in Figure 15.111 behaves in a way very similar to an
RLC circuit.

Vo

C1

-
+

-

+

Vi

R2

+

-

C2

R1

Va

Vb

Figure 15.111:

a) Write the sinusoidal steady state node equations for the complex amplitudes ] � and] � .
b) Solve for ] �O<5] � using the results in a), and noting that ] � � ] � .
c) Assuming the circuit is underdamped, sketch the magnitude of the transfer function

� ] �V<5] � � versus frequency. Indicate the frequency at which the peak occurs, the
magnitude of the transfer function at the peak, and the Q of the resonance.
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Solution:

a) b � � b
�

�� d �
� b

� � b
�

�� d +
� b � � b

�, +
� �

b
� � b

�

�� d +
( b

�, � � �

b) Doing a bit of algebra, one gets that:

] �
] � �

( I ( % � I � % � %
( I ( % � I � % � % � ( % � � I � � % ��� �$�

=

c) See Figure soln-fig:18-36.

ω

V O

V I
-------∠

-90

-180
ω

1

R1R2C1C2

------------------------------

40 db/dec

V o

V I
------ 1

R1R2C1C2

------------------------------

Figure 15.112:

The frequency at which the peak occurs is the resonance frequency, � � , and can be
determined from the transfer function whose denominator is

� � % � � � � � by find-
ing

� `
� , which turns out to be

� I, � , +
`
�
`
+ . To find the magnitude at this frequency,

substitute in for � , remembering that � � � � , and after a bit of simplification, get-
ting:

] �
] � � � �

� � ( I( % 	 � I � %
� I � � %

=

The value of � can be determined by finding
� � `� + , and it turns out to be the square

of the magnitude of the peak.
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� � � � �
( I ( % � I � %

T ] �] � � � �
� � ( I( % 	 � I � %

� I � � %
T � � � I � % ( I

� � I � � % � % ( %
=

ANS:: (b) b �b �
� , � , +

`
�
`
+ R +, � , +

`
�
`
+ R + � , + � ` � � ` + � R � I

= , (c) � � � � I, � , +
`
�
`
+
T b �b �

�
� �
�

� , �, +
� `

�
`
+`

� � ` +
T � �

`
�
`
+ , �� ` � � ` + � + , +

=

Problem 15.37 Plot the frequency response (magnitude and phase) of the active filter
shown in Figure 15.113. Assume the Op Amp is ideal.

Vo

C1

Vi
R

+

-
L2

L1

C2

Figure 15.113:

Solution: First, redraw the impedance model of the op-amps shown in Figure 15.114.
� I T (&T and � I can be omitted since no current ever flows through them. This is a standard
non-inverting op-amp configuration. The voltage at node ] � is equal to ] � since the op-
amp is assumed to be ideal, and there is negative feedback. A simple voltage-divider
relationship ensues.

Vo

Vi

+

-
L2s

1
C2s
---------

+
- Vx

Figure 15.114:

] � � ] � � % �
� % � � I`

+ R
=
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This can be solved for ] � and simplified:

ANS:: ] � � ] � ` + � + R + � I`
+
�

+ R +
=

See Figure soln-fig:18-37-2 for the frequency response.

ω
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-180

1
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ω
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40 db/dec

V o

V I
------log

Figure 15.115:

Problem 15.38 The circuit shown in Figure 15.116 has a resonance very similar to an
RLC circuit.

v4

C1

v1(t)

-

+
v2

R1

C2

R2

v3
+
-

Figure 15.116:

a) Write the sinusoidal steady-state equations for ] % and ] � .
b) Solve for ] � <'] I using the results in a), and noting that ] � � ([] � < � , where the Op

Amp gain
�

can be assumed to be very large.
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c) Assuming now that � I � � % � � = ��� � , ( I � ����6 , ( % � ��W 6 , sketch the mag-
nitude of the transfer function � ] � <'] I � versus frequency. Indicate the frequency at
which the peak occurs, the magnitude of the transfer function at the peak, and the

� of the resonance.

Solution:

a) This has been already done in Problem 15.26.

� I ( � %
( I

� � % ( � �I`
+ R

� � % ( � �I`
+ R

T � % ( � �I`
+ R
� � � ( � �( %

=

b) This was also done in Problem 15.26. This intermediate result was derived.

�2��� ( I � % � � ( I � I ���0�\(
�
� � � ( � � (

�
� � � ( % � % ��� �

��� I (
�
� � � ( I � % � � � ��( I � I ���0��( % � % ��� =

If we assume that the capacitors are of comparable magnitude, then we may cancel
several terms to get the following result:

� �
� I
� ( ( % � % �
( I � I ( % � % � % � ( I � � I � � % � � �$�

c) Substituting in the values given, we get a transfer characteristic of:

� �
� I
� ( � � � � �
� � � IK � % � � � � � � @ � �$� =

For any transfer function whose denominator is of the form
� � % � � � � � , the

frequency of the peak � � is given by
� `
� T the magnitude at the peak may be found

by substitution, and the factor � can be found by finding � � ��� �
`
� + = For our function,

we get:

� �'�� � � T � �� I
�
� �
�  �� T � � �5 �� =

See Figure 15.117 for the Bode plot.
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Figure 15.117:
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Figure 15.118:
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ANS:: (a) ) � � ) +, � � ) + � )



�d + �
�) + � ) ��d + �

T�) + � ) ��d + �
� ) � � ) 
, +

= , (b) )


) � � � , +

`
+ R, � ` � , + ` + R + � , � � ` � � ` +�� R � I ,

(c) � � ���� � T ) 
) � � � �
�  �� T � � �5 �� =

Problem 15.39 For the circuit in the figure in Figure 15.118

a) Find a set of equations which, if solved, would give ] �O<5] � .
b) Assuming that these equations, when solved, yield

] � <5] � � � � � � I � � � � � % �
� I � % � � � � � I � � % � � % � � � � � % � I � % (15.2)

Find the expression for the undamped resonant frequency ( � K ) of the circuit.

c) Find an expression for the low-frequency asymptote of ] �O<'] � . (Zero is not an ac-
ceptable answer.)

d) Find an expression for the high-frequency asymptote of ] �V<5] � . (Zero is not an
acceptable answer.)

e) Assuming � � �9<�� , sketch the magnitude and phase of ] � <5] � versus � . Specify
coordinates, and dimension key features.

Solution:

a) This was already done in Problem 15.36. The equation derived there will be used
here, except with resistors ( I and ( % switched.

] �
] � �

( I ( % � I � % � %
( I ( % � I � % � % � ( I � � I � � % ��� �$�

=

b) The assumption is valid. The resonance frequency of any transfer function with
denominator of the form

� � � � � % � � � � � � is given by
� `
� = In this case, it is:

� � � � � I � %
� I � %

=

c) Since this is a high-pass filter, the asymptote in a linear plot is indeed zero, but in a
logarithmic plot, it is a line with a non-zero slope. Since the filter is second-order,
the slope will be 2.
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We also know that the low-frequency and high-frequency asymptotes cross at the
resonance value, and the high frequency asymptote is a horizontal line with value
1, we can find the line, since it goes through the point � � � T ��� and has slope 2. The
line is:

�
�
�
�

] �
] �

�
�
�
�
� � � � ( � � � �$�5=

d) The high-pass filter will reach a constant value, and since the � � � � % coefficient of
the numerator and the denominator are the same, this constant is one.

�
�
�
�

] �
] �

�
�
�
�
�-�5=

e) See Figure soln-fig:18-39.
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Figure 15.119:

ANS:: (a) b �b �
� , � , +

`
�
`
+ R +, � , +

`
�
`
+ R + � , � � ` � � ` + � R � I , (b) � � �

� � � � +`
�
`
+ , (c)

�
�
� b �b �

�
�
�
�5� � � ( � � � � � ,

(d)
�
�
� b �b �

�
�
�
� �'=

Problem 15.40 Tech Hi-Fi advertises a car stereo system that can deliver 10 watts aver-
age power into a 4 6 -speaker. Given your demonstrated proficiency in electronics, you
decide to build one using an (hefty) Op Amp. To save yourself the problems associated
with designing the receiver you plan to use a small transistor AM-FM radio as the signal
source.

You try the circuit shown in Figure 15.120.

In the following parts, you may assume that the hefty Op Amp has very high open-
loop gain, zero output resistance, infinite input resistance, and other good features.
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+12 V

vI

-

+

Rf

+
-

Ci

CL
(From

1 kΩ

1 kΩ

1 kΩ
4 Ω speaker

radio)

12 V (Battery) Cf

Figure 15.120:

a) What is the operating point value of the voltage at the output of the operational
amplifier?

b) Why is capacitor � � included?

c) Assume that the maximum signal from your radio is 1 volt peak to peak. What is
the maximum value of ( � that insures the operational amplifier will remain in the
linear region?

d) What is the maximum average power that can be delivered to the 4 6 speaker with� � is a constant amplitude sinusoid?

e) In spite of your answer to parts b) and c), assume that you choose ( � � ���0W 6 and
that capacitor � � is very large. In order to reduce low frequency noise, you decide
that you should make the lower half-power frequency 100 radians per second. What
value of � � should be selected? You also want to filter high frequency noise by
making the upper half-power frequency � � � radians per second. What value of � �

should be selected?

Solution:

a) 6 volts

b) � � is included because all items have a load capacitance associated with them.

c) The output voltage of the opamp must be between 0 and 12 volts. Therefore, the
maximum value of ( � is:

12 k 6 .
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d) Maximum output signal is 12 volts peak-to-peak. This equals @� % volts RMS.

Power � b +� � �,

8 	 �����1- ����( � � TVSU=  1�[" � ���5=

e) The gain of the amplifier can be calculated using the impedance model shown in
Figure 15.121 to be:

vIN

+

-
vOUT

+
-

R
1

Cis
--------+

R f

R f C f s 1+
-------------------------

RSCLs 1+

CLs
-------------------------6V +

-

Figure 15.121:

� � � �
� � 


� (���� � � � �
��� � � � � � � % �$��� � � � � � � � � � � � �$�

=

We must set the magnitude of this gain to be
� I% times the magnitude at resonance,

which is 1. Plugging in � � � � and simplifying, we come up with the following:

� � �
��� � � �

T �
� � � � �

=

Plugging in the desired half-power frequencies, we get the following:

� � �-��� �
�

� T � � �� � �  � =

ANS:: (a) 6 volts, (b) � � is included because all items have a load capacitance associ-
ated with them, (c) 12 k 6 , (d) 8 	 �����.- ����( � � T SU=� .��"�� ��� , (e) � � � ��� �

�

� T � � ���� �  � =
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Vo
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-
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-
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-
+

R2

R1
Va Vb

C1

Figure 15.122:

Problem 15.41 a) Using the ideal Op Amp assumptions, write the node equations for
the complex voltage for the circuit in Figure 15.122. Solve for ] � .

b) Assume ] � is of the form

] � � � �#] �
� % � � � ��� � %K (15.3)

If a short pulse is now applied to this circuit, the output voltage after the pulse is

� ��� ���'�J85� � IKMK � �����3�2��������� � ��� � � (15.4)

For � � S���� � �9��� � I � find the response � � ����� in the steady state to a 1 volt cosine
wave at the resonant frequency:

� ������� � � ��� � � K � (15.5)

(Provide numbers for � K etc.)

c) Repeat b), for a one volt cosine wave at the lower 0.707 frequency � I .
Solution:

a) This was already done in Problem 15.38, except with capacitors � I and � %
switched. Interestingly, the switch does not change our answer at all.
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] �
] � �

( ( % � I �
( I ( % � I � � I � � % � � % � ( I � % � �$�

=

b) The transfer function is the response of a system to an impulse, so we can find the
frequency-domain equivalent of the response, and from there match up the con-
stants.

� � ����� �*85� � IKMK � ��� � � ��������� � � � =

L is a non-relevant offset, since it will just change the amplitude, which we will be
given anyway. We can rewrite the time-domain equation as:

� � � ��� �J85� � IKMK � �� � �!� IKMKMK
� � ( � � IKMKMK � � � =

From this we can ascertain that the natural frequencies are � �-����� � ��������� .

We now find a quadratic equation with those roots:

� % � ���������$��� � � ��� @ =

From this we can determine � �� ��� and � � � � � ��� ���
� �$���'@ , or about 1005.

Our transfer function is as follows:

� �
� � �

S���� �
� % � ���������$��� ��������� =

The steady-state response to a cosine can be found by plugging in � �*�����5 � , and
finding the magnitude and phase of the resulting cosine output.

The constant and quadratic terms cancel out due to resonance, so we can simply
find the gain by dividing 400 by 200. There is also no phase shift at resonance, so
our output is also a cosine.

� � ����� �5�������1� �����0 ���� =

c) The lower half-power frequency can be found by subtracting the half-bandwidth �

from the resonance frequency. This turns out to be approximately 905 radians/sec.
The magnitude and phase can be found in a similar manner as the last time. The
magnitude ends up being about 1.3758, and the phase shift about 47.5 degrees.

� � ��������5= 8 �5 ���0���1�2�����0 �� ( S ��=  : �G�e�1�9����� =
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C2

-
+

-

+

vI(t)

+
-

R1
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vX(t)
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Figure 15.123:

ANS:: (a) b �b �
� � , +

`
� R, � , +

`
� � ` � � ` + � R + � , � ` + R � I , (b) � � � ��� � ���0���1�2�����5 ���� = , (c) � � � ��� �

�5= 8 �5 ���0���1�2�����5 �� ( S ��=  : �G�e�'�9����� =

Problem 15.42 a) For the circuit in Figure 15.123 write the node equations needed to
find ] ��� ��� in terms of ] � ����� . Your answer must be arranged with the source terms on
the left, the unknown variables on the right, and must use conductances � � �-��<�(/� .

b) Solving these equations, you should obtain for � I � � % ,

] ��� ��� � ��% ] �
� % � � %, +

` � I, � , + ` +
(15.6)

For ( I � ��W 6 , find the values of ( % and � which give a � of 10 and a resonant
frequency defined as the frequency where the ��% term and the � K term cancel in the
denominator of the above expression) of � � �� ����� radians/second.

Solution:

a) From Problem 15.28:

� � � ( � � � � I � �� � � ( � � � � % � � ����� ( � ��� � I T

��� � % � � � � ( ��� � � % �5=

These can be rewritten in the desired form as follows:



601

� I � I � � � � � I � � � � I ��� � � � % ��� � � � I ( ��� � % �5=

��� ( � � � % ��� ��� � % � ��� � % �0=

b) For any transfer function whose denominator is
� � % � � � � � , the resonant fre-

quency is defined as
� `
� and the � factor is

� � `� + =
We get the following two equations:

� %K �
�

��������( % � %
T

� % �
�
, ++
` +IIKMKMK , + ` +

=

This implies that ( % �*S�����6 and � �-�5=  � ��� � � � � @ � =
The resistor can be synthesized quite nicely by putting a 858���6 resistor in series
with a � ��6 resistor, while the capacitor can be made from a �5=  � ��� � @ � capacitor
in parallel with a � = � � ��� � � � capacitor with pretty reasonable margin of error.

ANS:: (b) ( % � 8'8���6 � � ��6�T � ��5=  � ��� � @ ��� ��= � � ��� � � =

Problem 15.43 For the network shown in Figure 15.124:
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-

+
-

+

-
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R1

vI vO

C

Find Vo/Vi

Figure 15.124:
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a) Determine an expression for the indicated transfer function.

b) Sketch the magnitude and angle of the indicated quantity as a function of frequency.
You may use either linear or log-log coordinates, but it is recommended that you
learn to use both kinds of axes.

Solution:

a) b �b �
� � , +�

�
, � , +

` � , �
b) See Figure 15.125

log |Z|

ω

ω

Z∠

1
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Figure 15.125:

ANS:: (a) b �)�� � � , +�

�
, � , +

` � , �
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