# Foundations of Machine Learning Introduction to ML 

Mehryar Mohri<br>Courant Institute and Google Research mohri@cims.nyu.edu

## Logistics

- Prerequisites: basics in linear algebra, probability, and analysis of algorithms.
- Workload: about 3-4 homework assignments + project (topic of your choice).
- Mailing list: join as soon as possible.


## Course Material

- Textbook

Foundations of
Machine Learning

Mehryar Mohri,
Afshin Rostamizadeh,
and Ameet Talwalkar


- Slides: course web page.
http://www.cs.nyu.edu/~mohri/ml20


## This Lecture

- Basic definitions and concepts.
- Introduction to the problem of learning.
- Probability tools.


## Machine Learning

- Definition: computational methods using experience to improve performance.
- Experience: $\rightarrow$ data-driven task, thus statistics, probability, and optimization.
- Computer science: learning algorithms, analysis of complexity, theoretical guarantees.

■ Example: use document word counts to predict its topic.

## Examples of Learning Tasks

- Text: document classification, spam detection.
- Language: NLP tasks (e.g., morphological analysis, POS tagging, context-free parsing, dependency parsing).
- Speech: recognition, synthesis, verification.
- Image: annotation, face recognition, OCR, handwriting recognition.
- Games (e.g., chess, backgammon, go).
- Unassisted control of vehicles (robots, car).

■ Medical diagnosis, fraud detection, network intrusion.

## Some Broad ML Tasks

■ Classification: assign a category to each item (e.g., document classification).

- Regression: predict a real value for each item (prediction of stock values, economic variables).
- Ranking: order items according to some criterion (relevant web pages returned by a search engine).
- Clustering: partition data into 'homogenous' regions (analysis of very large data sets).
- Dimensionality reduction: find lower-dimensional manifold preserving some properties of the data.


## General Objectives of ML

- Theoretical questions:
- what can be learned, under what conditions?
- are there learning guarantees?
- analysis of learning algorithms.
- Algorithms:
- more efficient and more accurate algorithms.
- deal with large-scale problems.
- handle a variety of different learning problems.


## This Course

- Theoretical foundations:
- learning guarantees.
- analysis of algorithms.
- Algorithms:
- main mathematically well-studied algorithms.
- discussion of their extensions.
- Applications:
- illustration of their use.


## Topics

- Probability tools, concentration inequalities.
- PAC learning model, Rademacher complexity, VC-dimension, generalization bounds.
- Support vector machines (SVMs), margin bounds, kernel methods.
- Ensemble methods, boosting.
- Logistic regression and conditional maximum entropy models.

■ On-line learning, weighted majority algorithm, Perceptron algorithm, mistake bounds.

- Regression, generalization, algorithms.
- Ranking, generalization, algorithms.
- Reinforcement learning, MDPs, bandit problems and algorithm.


## Definitions and Terminology

- Example: item, instance of the data used.
- Features: attributes associated to an item, often represented as a vector (e.g., word counts).
- Labels: category (classification) or real value (regression) associated to an item.
- Data:
- training data (typically labeled).
- test data (labeled but labels not seen).
- validation data (labeled, for tuning parameters).


## General Learning Scenarios

- Settings:
- batch: learner receives full (training) sample, which he uses to make predictions for unseen points.
- on-line: learner receives one sample at a time and makes a prediction for that sample.
- Queries:
- active: the learner can request the label of a point.
- passive: the learner receives labeled points.


## Standard Batch Scenarios

■ Unsupervised learning: no labeled data.

- Supervised learning: uses labeled data for prediction on unseen points.
- Semi-supervised learning: uses labeled and unlabeled data for prediction on unseen points.
- Transduction: uses labeled and unlabeled data for prediction on seen points.


## Example - SPAM Detection

- Problem: classify each e-mail message as SPAM or nonSPAM (binary classification problem).
- Potential data: large collection of SPAM and non-SPAM messages (labeled examples).


## Learning Stages



## This Lecture

- Basic definitions and concepts.
- Introduction to the problem of learning.
- Probability tools.


## Definitions

- Spaces: input space $X$, output space $Y$.
- Loss function: $L: Y \times Y \rightarrow \mathbb{R}$.
- $L(\widehat{y}, y)$ : cost of predicting $\widehat{y}$ instead of $y$.
- binary classification: 0-1 loss, $L\left(y, y^{\prime}\right)=1_{y \neq y^{\prime}}$.
- regression $: Y \subseteq \mathbb{R}, l\left(y, y^{\prime}\right)=\left(y^{\prime}-y\right)^{2}$.
- Hypothesis set: $H \subseteq Y^{X}$, subset of functions out of which the learner selects his hypothesis.
- depends on features.
- represents prior knowledge about task.


## Supervised Learning Set-Up

- Training data: sample $S$ of size $m$ drawn i.i.d. from $X \times Y$ according to distribution $D$ :

$$
S=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right) .
$$

- Problem: find hypothesis $h \in H$ with small generalization error.
- deterministic case: output label deterministic function of input, $y=f(x)$.
- stochastic case: output probabilistic function of input.


## Errors

- Generalization error: for $h \in H$, it is defined by

$$
R(h)=\underset{(x, y) \sim D}{\mathrm{E}}[L(h(x), y)] .
$$

- Empirical error: for $h \in H$ and sample $S$, it is

$$
\widehat{R}(h)=\frac{1}{m} \sum_{i=1}^{m} L\left(h\left(x_{i}\right), y_{i}\right)
$$

- Bayes error:

$$
R^{\star}=\inf _{\substack{h \\ h \text { measurable }}} R(h) .
$$

- in deterministic case, $R^{\star}=0$.


## Noise

- Noise:
- in binary classification, for any $x \in X$,

$$
\operatorname{noise}(x)=\min \{\operatorname{Pr}[1 \mid x], \operatorname{Pr}[0 \mid x]\} .
$$

- observe that $\mathrm{E}[\operatorname{noise}(x)]=R^{*}$.


## Learning = Fitting



Notion of simplicity/complexity.
$\longrightarrow$ How do we define complexity?

## Generalization

- Observations:
- the best hypothesis on the sample may not be the best overall.
- generalization is not memorization.
- complex rules (very complex separation surfaces) can be poor predictors.
- trade-off: complexity of hypothesis set vs sample size (underfitting/overfitting).


## Model Selection

- General equality: for any $h \in H$, best in class

$$
R(h)-R^{*}=\underbrace{\left[R(h)-R\left(h^{*}\right)\right]}_{\text {estimation }}+\underbrace{\left[R\left(h^{*}\right)-R^{*}\right]}_{\text {approximation }} .
$$

- Approximation: not a random variable, only depends on $H$.
- Estimation: only term we can hope to bound.


## Empirical Risk Minimization

- Select hypothesis set $H$.
- Find hypothesis $h \in H$ minimizing empirical error:

$$
h=\underset{h \in H}{\operatorname{argmin}} \widehat{R}(h) .
$$

- but $H$ may be too complex.
- the sample size may not be large enough.


## Generalization Bounds

- Definition: upper bound on $\operatorname{Pr}\left[\sup _{h \in H}|R(h)-\widehat{R}(h)|>\epsilon\right]$.
- Bound on estimation error for hypothesis $h_{0}$ given by ERM:

$$
\begin{aligned}
R\left(h_{0}\right)-R\left(h^{*}\right) & =R\left(h_{0}\right)-\widehat{R}\left(h_{0}\right)+\widehat{R}\left(h_{0}\right)-R\left(h^{*}\right) \\
& \leq R\left(h_{0}\right)-\widehat{R}\left(h_{0}\right)+\widehat{R}\left(h^{*}\right)-R\left(h^{*}\right) \\
& \leq 2 \sup _{h \in H}|R(h)-\widehat{R}(h)| .
\end{aligned}
$$

$\longrightarrow$ How should we choose $H$ ? (model selection problem)

## Model Selection



## Structural Risk Minimization

- Principle: consider an infinite sequence of hypothesis sets ordered for inclusion,

$$
\begin{gathered}
H_{1} \subset H_{2} \subset \cdots \subset H_{n} \subset \cdots \\
h=\underset{h \in H_{n}, n \in \mathbb{N}}{\operatorname{argmin}} \widehat{R}(h)+\text { penalty }\left(H_{n}, m\right) .
\end{gathered}
$$

- strong theoretical guarantees.
- typically computationally hard.


## General Algorithm Families

- Empirical risk minimization (ERM):

$$
h=\underset{h \in H}{\operatorname{argmin}} \widehat{R}(h)
$$

- Structural risk minimization (SRM): $H_{n} \subseteq H_{n+1}$,

$$
h=\underset{h \in H_{n}, n \in \mathbb{N}}{\operatorname{argmin}} \widehat{R}(h)+\operatorname{penalty}\left(H_{n}, m\right)
$$

- Regularization-based algorithms: $\lambda \geq 0$,

$$
h=\underset{h \in H}{\operatorname{argmin}} \widehat{R}(h)+\lambda\|h\|^{2}
$$

## This Lecture

- Basic definitions and concepts.
- Introduction to the problem of learning.
- Probability tools.


## Basic Properties

- Union bound: $\operatorname{Pr}[A \vee B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$.
- Inversion: if $\operatorname{Pr}[X \geq \epsilon] \leq f(\epsilon)$, then, for any $\delta>0$, with probability at least $1-\delta, X \leq f^{-1}(\delta)$.
- Jensen's inequality: if $f$ is convex, $f(\mathrm{E}[X]) \leq \mathrm{E}[f(X)]$.
- Expectation: if $X \geq 0, \mathrm{E}[X]=\int_{0}^{+\infty} \operatorname{Pr}[X>t] d t$.


## Basic Inequalities

- Markov's inequality: if $X \geq 0$ and $\epsilon>0$, then

$$
\operatorname{Pr}[X \geq \epsilon] \leq \frac{\mathrm{E}[X]}{\epsilon}
$$

- Chebyshev's inequality: for any $\epsilon>0$,

$$
\operatorname{Pr}[|X-\mathrm{E}[X]| \geq \epsilon] \leq \frac{\sigma_{X}^{2}}{\epsilon^{2}}
$$

## Hoeffding's Inequality

- Theorem: Let $X_{1}, \ldots, X_{m}$ be indep. rand. variables with the same expectation $\mu$ and $X_{i} \in[a, b],(a<b)$. Then, for any $\epsilon>0$, the following inequalities hold:

$$
\begin{aligned}
& \operatorname{Pr}\left[\mu-\frac{1}{m} \sum_{i=1}^{m} X_{i}>\epsilon\right] \leq \exp \left(-\frac{2 m \epsilon^{2}}{(b-a)^{2}}\right) \\
& \operatorname{Pr}\left[\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mu>\epsilon\right] \leq \exp \left(-\frac{2 m \epsilon^{2}}{(b-a)^{2}}\right) .
\end{aligned}
$$

## McDiarmid's Inequality

(McDiarmid, 1989)

- Theorem: let $X_{1}, \ldots, X_{m}$ be independent random variables taking values in $U$ and $f: U^{m} \rightarrow \mathbb{R}$ a function verifying for all $i \in[1, m]$,

$$
\sup _{x_{1}, \ldots, x_{m}, x_{i}^{\prime}}\left|f\left(x_{1}, \ldots, x_{i}, \ldots, x_{m}\right)-f\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{m}\right)\right| \leq c_{i} .
$$

Then, for all $\epsilon>0$,

$$
\operatorname{Pr}\left[\left|f\left(X_{1}, \ldots, X_{m}\right)-\mathrm{E}\left[f\left(X_{1}, \ldots, X_{m}\right)\right]\right|>\epsilon\right] \leq 2 \exp \left(-\frac{2 \epsilon^{2}}{\sum_{i=1}^{m} c_{i}^{2}}\right) .
$$

## Appendix

## Markov's Inequality

- Theorem: let $X$ be a non-negative random variable with $\mathrm{E}[X]<\infty$, then, for all $t>0$,

$$
\operatorname{Pr}[X \geq t \mathrm{E}[X]] \leq \frac{1}{t}
$$

- Proof:

$$
\begin{aligned}
\operatorname{Pr}[X \geq t \mathrm{E}[X]] & =\sum_{x \geq t \mathrm{E}[X]} \operatorname{Pr}[X=x] \\
& \leq \sum_{x \geq t \mathrm{E}[X]} \operatorname{Pr}[X=x] \frac{x}{t \mathrm{E}[X]} \\
& \leq \sum_{x} \operatorname{Pr}[X=x] \frac{x}{t \mathrm{E}[X]} \\
& =\mathrm{E}\left[\frac{X}{t \mathrm{E}[X]}\right]=\frac{1}{t} .
\end{aligned}
$$

## Chebyshev's Inequality

- Theorem: let $X$ be a random variable with $\operatorname{Var}[X]<\infty$, then, for all $t>0$,

$$
\operatorname{Pr}\left[|X-\mathrm{E}[X]| \geq t \sigma_{X}\right] \leq \frac{1}{t^{2}}
$$

- Proof: Observe that

$$
\operatorname{Pr}\left[|X-\mathrm{E}[X]| \geq t \sigma_{X}\right]=\operatorname{Pr}\left[(X-\mathrm{E}[X])^{2} \geq t^{2} \sigma_{X}^{2}\right] .
$$

The result follows Markov's inequality.

## Weak Law of Large Numbers

- Theorem: let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of independent random variables with the same mean $\mu$ and variance $\sigma^{2}<\infty$ and let $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, then, for any $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left|\bar{X}_{n}-\mu\right| \geq \epsilon\right]=0
$$

- Proof: Since the variables are independent,

$$
\operatorname{Var}\left[\bar{X}_{n}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[\frac{X_{i}}{n}\right]=\frac{n \sigma^{2}}{n^{2}}=\frac{\sigma^{2}}{n}
$$

- Thus, by Chebyshev's inequality,

$$
\operatorname{Pr}\left[\left|\bar{X}_{n}-\mu\right| \geq \epsilon\right] \leq \frac{\sigma^{2}}{n \epsilon^{2}}
$$

## Concentration Inequalities

- Some general tools for error analysis and bounds:
- Hoeffding's inequality (additive).
- Chernoff bounds (multiplicative).
- McDiarmid's inequality (more general).


## Hoeffding's Lemma

- Lemma: Let $X \in[a, b]$ be a random variable with $\mathrm{E}[X]=0$ and $b \neq a$. Then for any $t>0$,

$$
\mathrm{E}\left[e^{t X}\right] \leq e^{\frac{t^{2}(b-a)^{2}}{8}}
$$

- Proof: by convexity of $x \mapsto e^{t x}$, for all $a \leq x \leq b$,

$$
e^{t x} \leq \frac{b-x}{b-a} e^{t a}+\frac{x-a}{b-a} e^{t b}
$$

Thus,

$$
\mathrm{E}\left[e^{t X}\right] \leq \mathrm{E}\left[\frac{b-X}{b-a} e^{t a}+\frac{X-a}{b-a} e^{t b}\right]=\frac{b}{b-a} e^{t a}+\frac{-a}{b-a} e^{t b}=e^{\phi(t)},
$$

with,

$$
\phi(t)=\log \left(\frac{b}{b-a} e^{t a}+\frac{-a}{b-a} e^{t b}\right)=t a+\log \left(\frac{b}{b-a}+\frac{-a}{b-a} e^{t(b-a)}\right) .
$$

- Taking the derivative gives:

$$
\phi^{\prime}(t)=a-\frac{a e^{t(b-a)}}{\frac{b}{b-a}-\frac{a}{b-a} e^{t(b-a)}}=a-\frac{a}{\frac{b}{b-a} e^{-t(b-a)}-\frac{a}{b-a}} .
$$

- Note that: $\phi(0)=0$ and $\phi^{\prime}(0)=0$. Furthermore,

$$
\begin{aligned}
\Phi^{\prime \prime}(t) & =\frac{-a b e^{-t(b-a)}}{\left[\frac{b}{b-a} e^{-t(b-a)}-\frac{a}{b-a}\right]^{2}} \\
& =\frac{\alpha(1-\alpha) e^{-t(b-a)}(b-a)^{2}}{\left[(1-\alpha) e^{-t(b-a)}+\alpha\right]^{2}} \\
& =\frac{\alpha}{\left[(1-\alpha) e^{-t(b-a)}+\alpha\right]} \frac{(1-\alpha) e^{-t(b-a)}}{\left[(1-\alpha) e^{-t(b-a)}+\alpha\right]}(b-a)^{2} \\
& =u(1-u)(b-a)^{2} \leq \frac{(b-a)^{2}}{4}
\end{aligned}
$$

with $\alpha=\frac{-a}{b-a}$. There exists $0 \leq \theta \leq t$ such that:

$$
\phi(t)=\phi(0)+t \phi^{\prime}(0)+\frac{t^{2}}{2} \phi^{\prime \prime}(\theta) \leq t^{2} \frac{(b-a)^{2}}{8}
$$

## Hoeffding's Theorem

- Theorem: Let $X_{1}, \ldots, X_{m}$ be independent random variables. Then for $X_{i} \in\left[a_{i}, b_{i}\right]$, the following inequalities hold for $S_{m}=\sum_{i=1}^{m} X_{i}$, for any $\epsilon>0$,

$$
\begin{aligned}
& \operatorname{Pr}\left[S_{m}-\mathrm{E}\left[S_{m}\right] \geq \epsilon\right] \leq e^{-2 \epsilon^{2} / \sum_{i=1}^{m}\left(b_{i}-a_{i}\right)^{2}} \\
& \operatorname{Pr}\left[S_{m}-\mathrm{E}\left[S_{m}\right] \leq-\epsilon\right] \leq e^{-2 \epsilon^{2} / \sum_{i=1}^{m}\left(b_{i}-a_{i}\right)^{2}} .
\end{aligned}
$$

- Proof: The proof is based on Chernoff's bounding technique: for any random variable $X$ and $t>0$, apply Markov's inequality and select $t$ to minimize

$$
\operatorname{Pr}[X \geq \epsilon]=\operatorname{Pr}\left[e^{t X} \geq e^{t \epsilon}\right] \leq \frac{\mathrm{E}\left[e^{t X}\right]}{e^{t \epsilon}} .
$$

- Using this scheme and the independence of the random variables gives $\operatorname{Pr}\left[S_{m}-\mathrm{E}\left[S_{m}\right] \geq \epsilon\right]$

$$
\begin{aligned}
& \leq e^{-t \epsilon} \mathrm{E}\left[e^{t\left(S_{m}-\mathrm{E}\left[S_{m}\right]\right)}\right] \\
& =e^{-t \epsilon} \prod_{i=1}^{m} \mathrm{E}\left[e^{t\left(X_{i}-\mathrm{E}\left[X_{i}\right]\right)}\right]
\end{aligned}
$$

(lemma applied to $\left.X_{i}-\mathrm{E}\left[X_{i}\right]\right) \leq e^{-t \epsilon} \Pi_{i=1}^{m} e^{t^{2}\left(b_{i}-a_{i}\right)^{2} / 8}$

$$
\begin{aligned}
& =e^{-t \epsilon} e^{t^{2} \sum_{i=1}^{m}\left(b_{i}-a_{i}\right)^{2} / 8} \\
& \leq e^{-2 \epsilon^{2} / \sum_{i=1}^{m}\left(b_{i}-a_{i}\right)^{2}}
\end{aligned}
$$

choosing $t=4 \epsilon / \sum_{i=1}^{m}\left(b_{i}-a_{i}\right)^{2}$.

- The second inequality is proved in a similar way.


## Hoeffding's Inequality

- Corollary: for any $\epsilon>0$, any distribution $D$ and any hypothesis $h: X \rightarrow\{0,1\}$, the following inequalities hold:

$$
\begin{aligned}
& \operatorname{Pr}[\widehat{R}(h)-R(h) \geq \epsilon] \leq e^{-2 m \epsilon^{2}} \\
& \operatorname{Pr}[\widehat{R}(h)-R(h) \leq-\epsilon] \leq e^{-2 m \epsilon^{2}} .
\end{aligned}
$$

- Proof: follows directly Hoeffding's theorem.
- Combining these one-sided inequalities yields

$$
\operatorname{Pr}[|\widehat{R}(h)-R(h)| \geq \epsilon] \leq 2 e^{-2 m \epsilon^{2}} .
$$

## Chernoff's Inequality

- Theorem: for any $\epsilon>0$, any distribution $D$ and any hypothesis $h: X \rightarrow\{0,1\}$, the following inequalities hold:
- Proof: proof based on Chernoff's bounding technique.

$$
\begin{aligned}
& \operatorname{Pr}[\widehat{R}(h)\geq(1+\epsilon) R(h)] \leq e^{-m R(h) \epsilon^{2} / 3} \\
& \operatorname{Pr}[\widehat{R}(h) \leq(1-\epsilon) R(h)] \leq e^{-m R(h) \epsilon^{2} / 2}
\end{aligned}
$$

## McDiarmid's Inequality

(McDiarmid, 1989)

- Theorem: let $X_{1}, \ldots, X_{m}$ be independent random variables taking values in $U$ and $f: U^{m} \rightarrow \mathbb{R}$ a function verifying for all $i \in[1, m]$,

$$
\sup _{x_{1}, \ldots, x_{m}, x_{i}^{\prime}}\left|f\left(x_{1}, \ldots, x_{i}, \ldots, x_{m}\right)-f\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{m}\right)\right| \leq c_{i} .
$$

Then, for all $\epsilon>0$,

$$
\operatorname{Pr}\left[\left|f\left(X_{1}, \ldots, X_{m}\right)-\mathrm{E}\left[f\left(X_{1}, \ldots, X_{m}\right)\right]\right|>\epsilon\right] \leq 2 \exp \left(-\frac{2 \epsilon^{2}}{\sum_{i=1}^{m} c_{i}^{2}}\right) .
$$

- Comments:
- Proof: uses Hoeffding's lemma.
- Hoeffding's inequality is a special case of McDiarmid's with

$$
f\left(x_{1}, \ldots, x_{m}\right)=\frac{1}{m} \sum_{i=1}^{m} x_{i} \quad \text { and } \quad c_{i}=\frac{\left|b_{i}-a_{i}\right|}{m}
$$

## Jensen's Inequality

- Theorem: let $X$ be a random variable and $f$ a measurable convex function. Then,

$$
f(\mathrm{E}[X]) \leq \mathrm{E}[f(X)] .
$$

- Proof: definition of convexity, continuity of convex functions, and density of finite distributions.


