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Lecture 1: The meaning of vectors

Because we inhabit a world with more than one spatial dimension, physical phenomena
frequently require us to distinguish between

Scalar : a quantity specified by a single number;

Vector : a quantity specified by a number (magnitude) and a direction;

e.g. speed is a scalar, velocity is a vector. Vector algebra is an essential physics tool for
describing vector quantities in a compact fashion. Modern notation is not that old: it was
invented in the 1880s by Gibbs and by Heaviside. Earlier physicists from Newton to Maxwell
had to work much harder to solve their problems.

Notation: Textbooks often denote vectors by boldface: A, or occasionally the arrow nota-
tion: ~A. But for writing vectors, the easiest notation is the underline: A. Denote a vector
by A and its magnitude by |A| or A. Always underline a vector to distinguish it from its

magnitude. A unit vector is often denoted by a hat Â = A /A and represents a direction.

The main intention of this course is to develop skill in using vector methods to solve problems
in physics. As such, it deliberately repeats some material that has been seen before. The
approach will be relatively informal; but this is no excuse for lack of rigour. It is important
to be able to derive the key results in the subject.

1.1 Geometrical view: position vectors

A vector is fundamentally a geometrical object, as can be seen by starting with the most
basic example, the position vector. This is drawn as a line between an origin and a given
point, with an arrow showing the direction. It is often convenient to picture this vector in a
concrete way, as a thin rod carrying a physical arrowhead.

O
r_

The position vector of a point relative to an origin O is normally
written r, which has length r (the radius of the point from the
origin) and points along the unit vector r̂.

Formally speaking, this ‘directed line segment’ is merely a representation of the more
abstract idea of a vector, and different kinds of vectors can be represented by a position
vector: e.g. for a velocity vector we would draw a position vector pointing in the same
direction as the velocity, and set the length proportional to the speed. This geometrical
viewpoint suffices to demonstrate some of the basic properties of vectors:

Independence of origin

Q

_ _

P R

S

A A

Vectors are unchanged by being transported: as drawn, both dis-
placements from P to Q and from R to S represent the same vector.
In effect, both are position vectors, but with P and R treated as
the origin: the choice of origin is arbitrary.
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Addition of vectors: parallelogram law

A_

_

_

B

_A+B
Q

P

A+B = B + A (commutative).

From this, we see that the vector A that points from P to Q is just the position vector of
the last point minus that of the first: we write this as PQ = OQ−OP = r

Q
− r

P
. We prove

this by treating A and A+B as the two position vectors in the above diagram.

This generalises to any number of vectors: the resultant is obtained by adding the vectors
nose to tail. This lets us prove that vector addition is associative:

B + C
C

A

A + B

A + B + C

B

A geometrical demonstration that (A+B) + C = A+ (B + C).

Multiplication by scalars

A vector may be multiplied by a scalar to give a new vector e.g.

(for (forα < 0)α > 0)A_ Aα _

Also

|αA| = |α||A|
α(A+B) = αA+ αB (distributive)

(α+ β)A = αA+ βA (distributive)

α(βA) = (αβ)A (associative).

In summary, as far as addition of vectors is concerned, or of multiplication by scalars, the
power of vector notation is just that you treat vectors as if they were just a number (a
‘directed number’). The important exception of multiplication of vectors will be dealt with
shortly. In the meantime, there are already some common mistakes to avoid:

1. You can add vectors, but you can’t add vectors and scalars.

2. Check that all quantities in a vector equation are of the same type: e.g. any equation
vector = scalar is clearly wrong. (The only exception to this is if we lazily write vector

= 0 when we mean 0.)

3. Never try to divide by a vector – there is no such operation.
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1.2 Coordinate geometry

Although the geometrical view of vectors is fundamental, in practice it is often easier to
convert vectors to a set of numbers: this is the approach to geometry pioneered by Descartes
in 1637 (hence Cartesian coordinates). Now, a position vector is represented by either a row
or column of numbers (row vector or column vector):

r = (x, y, z) or





x
y
z



 ,

assuming three dimensions for now. These numbers are the components of the vector.
When dealing with matrices, we will normally assume the column vector to be the primary
form – but in printed notes it is most convenient to use row vectors.

It should be clear that this xyz triplet is just a representation of the vector. But we will
commonly talk as if (x, y, z) is the vector itself. The coordinate representation makes it
easy to prove all the results considered above: to add two vectors, we just have to add the
coordinates. For example, associativity of vector addition then follows just because addition
of numbers is associative.

Example: epicycles

To illustrate the idea of shift of origin, consider the position vectors of two planets 1 & 2
(Earth and Mars, say) on circular orbits: r

1
= r1(cosω1t, sinω1t), r2

= r2(cosω2t, sinω2t).
The position vector of Mars as seen from Earth is

r
21

= r
2
− r

1
= (r2 cosω2t− r1 cosω1t, r2 sinω2t− r1 sinω1t).

��
��
��

��
��
��

��
��
��

��
��
��

epicycle

deferent

Mars moves on a small epicycle of radius r1 whose
centre is carried round a large circle of radius r2
(the deferent).

Although epicycles have had a bad press, notice that this is an exact description of Mars’s
motion, using the same number of free parameters as the heliocentric view. Fortunately,
planetary orbits are not circles, otherwise the debate over whether the Sun or the Earth
made the better origin might have continued much longer.

Basis vectors

A more explicit way of writing a Cartesian vector is to introduce basis vectors denoted by
either i, j and k or ex, e y and e z which point along the x, y and z-axes. These basis vectors
are orthonormal: i.e. they are all unit vectors that are mutually perpendicular. The e z

vector is related to ex and e y by the r.h. screw rule.

The key idea of basis vectors is that any vector can be written as a linear superposition
of different multiples of the basis vectors. If the components of a vector A are Ax, Ay, Az,
then we write

A = Ax i+ Ay j + Az k or A = Ax ex + Ay e y + Az e z .
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In row-vector notation, the basis vectors themselves are just

i = ex = (1, 0, 0) j = e y = (0, 1, 0) k = e z = (0, 0, 1)

1.3 Suffix or Index notation

A more systematic labelling of basis vectors is by e 1, e 2 and e 3. i.e. instead of i we write
e 1, instead of j we write e 2, instead of k we write e 3. This scheme is known as the suffix
notation. Its great advantages are that it generalises easily to any number of dimensions
and greatly simplifies manipulations and the verification of various identities (see later in
the course).

-
i

6k

�
��3
j

r = xi+ yj + zk

Old Notation

or

-
ex

6e z

�
��3

e y

r = xex + ye y + ze z

-
e 1

6e 3

�
��3

e 2

New Notation

r = x1e 1 + x2e 2 + x3e 3

Thus any vector A in N dimensions can be written in this new notation as

A = A1 e 1 + A2 e 2 + A3 e 3 + · · · =
N
∑

i=1

Ai e i .

Free and dummy indices

We have written the components of A as Ai. This can be a common source of confusion:
if we had written Aj instead, does that make any difference? In words, Ai means “the ith

component of A”. Thus, i is a free index: it means some integer that we have not yet
specified, and indeed we might as well have called it j. The only important thing is to be
consistent: if vectors A and B are equal, then all their individual components are equal, so
we can write Ai = Bi and get a relation that is implicitly true for any value i without having
to write them all out. The relation Aj = Bj expresses exactly the same result and is just a
good a choice. But Ai = Bj would be meaningless, because the indices don’t balance. Where

the value of an index is summed over, as in A =
∑N

i=1 Ai e i, all possible values of i are
used, and it is called a dummy index. Again, we can happily replace i by j or whatever,
provided it is done consistently:

A =
3
∑

i=1

Ai e i =
3
∑

j=1

Aj e j.

1.4 Vector physics: independence of basis

Although the coordinate approach is convenient and practical, expressing vectors as compo-
nents with respect to a basis is against the spirit of the power of vectors as a tool for physics
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– which is that physical laws relating vectors must be true independent of the coordinate

system being used. Consider the case of vector dynamics:

F = ma = m
d

dt
v = m

d2

dt2
r.

In one compact statement, this equation says that F = ma is obeyed separately by all the
components of F and a. The simplest case is where one of the basis vectors points in the
direction of F , in which case there is only one scalar equation to consider. But the vector
equation is true whatever basis we use. We will return to this point later when we consider
how the components of vectors alter when the basis used to describe them is changed.

Example: centripetal force

As an example of this point in action, consider again circular motion in 2D: r = r(cosωt, sinωt).
What force is needed to produce this motion? We get the acceleration by differentiating twice
w.r.t. t:

F = ma = m
d2

dt2
r = mr(−ω2 sinωt,−ω2 cosωt) = −mω2 r.

Although we have used an explicit set of components as an intermediate step, the final result
just says that the required force is mω2r, directed radially inwards.

Lecture 2: Multiplying vectors

So far, vector notation is completely pain-free: we just treat vectors as if they were numbers
and the algebra of addition or subtraction is identical. What about multiplication? What
could A B mean? To see this, we have to think geometrically, and there are two aspects
that resemble multiplication: the projection of one vector onto another, and the area of the
parallelogram formed by two vectors.

2.1 Scalar or dot product

The scalar product (also known as the dot product) between two vectors is defined as

(A ·B) ≡ AB cos θ, where θ is the angle between A and B

θ

.

_B

A_

(A ·B) is a scalar — i.e. a single number. By definition, the scalar
product is commutative: (A ·B) = (B · A).

The geometrical significance of the scalar product is that it projects one vector onto another:
A·B̂ is the component of A in the direction of the unit vector B̂, and its magnitude is A cos θ.
This viewpoint makes it easy to prove that the scalar product is
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Distributive over addition (A+B) · C = A · C +B · C .

B

A

C

A B

A + B

C
^
C

^

The components of A and B along C clearly add to make the com-
ponents of A+B along C.

Example: the cosine rule

Consider two position vectors A and B. They define a triangle, whose third side is the vector
C = A − B. C2 = (A − B)2 = (A − B) · (A − B) = A2 + B2 − 2A · B. Hence we have a
simple derivation of C2 = A2 +B2 − 2AB cos θ, where θ is the angle between A and B.

Scalar product in terms of components

You know very well that the scalar product is worked out in practice using the components
of the vector:

A ·B =
3
∑

i=1

Ai Bi ;

Let’s prove that these two definitions are identical; this requires the distributive property of
the scalar product. If A =

∑

iAie i, then

A · e 1 = (A1e 1 + A2e 2 + A3e 3) · e 1 = A1,

so the orthonormality of the basis vectors picks out the projection of A in the direction of
e 1, and similarly for the components A2 and A3. In general we may write

A · e i = e i · A ≡ Ai or sometimes (A)i.

If we now write B =
∑

iBie i, then A · B is the sum of 9 terms such as A1B2e 1 · e 2;
all but the 3 cases where the indices are the same vanish through orthonormality, leaving
A1B1 + A2B2 + A3B3. Thus we recover the standard formula for the scalar product based
on (i) distributivity; (ii) orthonormality of the basis.

Example: parallel and perpendicular components

A vector may be resolved with respect to some direction n̂ into a parallel component A‖ =

(n̂ ·A)n̂. There must therefore be a perpendicular component A⊥ = A−A‖. If this reasoning

makes sense, we should find that A‖ and A⊥ are at right angles. To prove this, evaluate

A⊥ · n̂ = (A− (n̂ · A)n̂) · n̂ = A · n̂− n̂ · A = 0

(because n̂ · n̂ = 1).
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Summary of properties of scalar product

(i) A ·B = B · A ; A · (B + C) = A ·B + A · C

(ii) n̂ · A = the scalar projection of A onto n̂, where n̂ is a unit vector

(iii) (n̂ · A) n̂ = the vector projection of A onto n̂

(iv) A · A = |A|2 which defines the magnitude of a vector. For a unit vector Â · Â = 1

2.2 The vector or ‘cross’ product

The vector product represents the fact that two vectors define a parallelogram. This geo-
metrical object has an area, but also an orientation in space – which can be represented by
a vector.

(A×B) ≡ AB sin θ n̂ , where n̂ in the ‘right-hand screw direction’

i.e. n̂ is a unit vector normal to the plane of A and B, in the direction of a right-handed
screw for rotation of A to B (through < π radians).

X_ _(A B)

_B

. _A

_n θ

v

(A×B) is a vector — i.e. it has a direction and a length.

It is important to note that the idea of the vector product is unique to three dimensions. In
2D, the area defined by two vectors is just a scalar: there is no choice about the orientation.
In N dimensions, it turns out that N(N − 1)/2 numbers are needed to specify the size and
orientation of an element of area. So representing this by a vector is only possible for N = 3.
The idea of such an ‘oriented area’ always exists, of course, and the general name for it is
the wedge product, denoted by A ∧ B. You can feel free to use this notation instead of
A×B, since they are the same thing in 3D.

The vector product shares a critical property with the scalar product, but unfortunately one
that is not as simple to prove; it is

Distributive over addition A× (B + C) = A×B + A× C .
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It is easy enough to see that A × (B + C) = A × B + A × C if
all three vectors lie in the same plane. The various parallelograms
of interest (shaded in this figure) differ by the triangles at top and
bottom, which are clearly of identical shape.
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When the three vectors are not in the same plane, the proof is more involved. What we shall
do for now is to assume that the result is true in general, and see where it takes us. We can
then work backwards at the end.

2.3 The vector product in terms of components

Because of the distributive property, when we write A × B in terms of components, the
expression comes down to a sum of products of the basis vectors with each other:

A×B =

(

3
∑

i=1

Ai e i

)

×
(

3
∑

j=1

Bj e j

)

=
3
∑

i=1

3
∑

j=1

Ai Bj (e i × e j) .

Almost all the cross products of basis vectors vanish. The only one we need is the one that
defines the z axis:

e 1 × e 2 = e 3,

and cyclic permutations of this. If the order is reversed, so is the sign: e 2 × e 1 = −e 3. In
this way, we get

A×B = e 1(A2B3 − A3B2) + e 2(A3B1 − A1B3) + e 3(A1B2 − A2B1)

from which we deduce that

(A×B)1 = (A2B3 − A3B2) , etc.

So finally, we have recovered the familiar expression in which the vector product is written
as a determinant:

A×B =

∣

∣

∣

∣

∣

∣

e 1 e 2 e 3

A1 A2 A3

B1 B2 B3

∣

∣

∣

∣

∣

∣

.

If we were to take this as the definition of the vector product, it is easy to see that the
distributive property is obeyed. But now, how do we know that the geometrical properties
of A×B are satisfied? One way of closing this loop is to derive the determinant expression in
another way. If A×B = C, then C must be perpendicular to both vectors: A·C = B ·C = 0.
With some effort, these simultaneous equations can be solved to find the components of C
(within some arbitrary scaling factor, since there are only two equations for three compo-
nents). Or we can start by assuming the determinant and show that A×B is perpendicular
to A and B and has magnitude AB sin θ. Again, this is quite a bit of algebra.

The simplest way out is to make an argument that we shall meet several times: coordinates
are arbitrary, so we can choose the ones that make life easiest. Suppose we choose A =
(A, 0, 0) along the x axis, and B = (B1, B2, 0) in the xy plane. This gives A×B = (0, 0, AB2),
which points in the z direction as required. From the scalar product, cos θ = AB1/AB =
B1/B (where B =

√

B2
1 +B2

2), so sin θ =
√

1 − cos2 θ =
√

1 −B2
1/B

2 = B2/B. Hence
AB2 = AB sin θ, as required.
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Angular momentum

The most important physical example of the use of the vector product is in the definition of
angular momentum. The scalar version of this is familiar: for a particle of mass m moving
in a circle of radius r at velocity v, the angular momentum is L = mvr = rp, where p is the
momentum. The vector equivalent of this is

L = r × p .

Let’s check that this makes sense. If the motion is in the xy plane, the position vector is
r = r(cosωt, sinωt, 0), and by differentiating we get v = rω(− sinωt, cosωt, 0). Thus the
angular momentum is

L = rp(0, 0, sin2 ωt+ cos2 ωt),

where we have used p = mv = mrω. This is of magnitude rp, as required, and points in the
direction perpendicular to the plane of motion, with a RH screw.

Summary of properties of vector product

(i) A×B = −B × A

(ii) A×B = 0 if A,B are parallel

(iii) A× (B + C) = A×B + A× C

(iv) A× (αB) = αA×B

Lecture 3: More vector multiplication and geometrical

applications

3.1 The scalar triple product

By introducing a third vector, we extend the geometrical idea of an area to the volume of
the parallelipiped. The scalar triple product is defined as follows

(A,B,C) ≡ A · (B × C)

Properties

If A, B and C are three concurrent edges of a parallelepiped, the volume is (A,B,C).
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To see this, note that:

area of the base = area of parallelogram Obdc

= B C sin θ = |B × C|
height = A cosφ = n̂ · A

volume = area of base × height

= B C sin θ n̂ · A
= A · (B × C)

If we choose C,A to define the base then a similar calculation gives volume = B · (C × A)
We deduce the following symmetry/antisymmetry properties:

(A,B,C) = (B,C,A) = (C,A,B) = −(A,C,B) = −(B,A,C) = −(C,B,A)

In short, the scalar triple product is positive for three vectors that are related via a right-hand
screw, and negative if they are left-handed.

It is easy to write down an expression for the scalar triple product in terms of components:

A · (B × C) =
3
∑

i=1

Ai(B × C)i

= A1(B2C3 − C2B3) − A2(B1C3 − C1B3) + A3(B1C2 − C1B2)

=

∣

∣

∣

∣

∣

∣

A1 A2 A3

B1 B2 B3

C1 C2 C3

∣

∣

∣

∣

∣

∣

.

The symmetry properties of the scalar triple product may be deduced from this by noting
that interchanging two rows (or columns) changes the value by a factor −1.

3.2 Linear independence and dimensionality

The scalar triple product can be used to determine the dimensionality of the space defined
by a set of vectors.

Consider two vectors A and B that satisfy the equation αA + βB = 0. If this is satisfied
for non-zero α and β then we can solve the equation to find B = −α

β
A. Clearly A and B

are collinear (either parallel or anti-parallel), and then A and B are said to be linearly
dependent. Otherwise, A and B are linearly independent, and no λ can be found such
that B = λA. Similarly, in 3 dimensions three vectors are linearly dependent if we can find
non-trivial α, β, γ (i.e. not all zero) such that

αA+ βB + γC = 0,

otherwise A,B,C are linearly independent (no one is a linear combination of the other two).
The dimensionality of a space is then defined in these terms as follows: For a space of

dimension n one can find at most n linearly independent vectors.

Geometrically, it is obvious that three vectors that lie in a plane are linearly dependent, and
vice-versa. A quick way of testing for this property is to use the scalar triple product:
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If A,B and C are coplanar (i.e. all three vectors lie in the
same plane) then V = (A,B,C) = 0, and vice-versa.

Thus, if the triple scalar product of 3 vectors vanishes, they are linearly dependent. The
converse statement is easily proved algebraically: if αA + βB + γC = 0 then A is a linear
combination of B and C; but (B × C) is perpendicular to both B and C, so A · (B × C)
vanishes. If α = 0, then B and C are parallel, so (B × C) vanishes.

3.3 The vector triple product

There are several ways of combining 3 vectors to form a new vector.
e.g. A× (B × C); (A×B) × C, etc. Note carefully that brackets are important , since

A× (B × C) 6= (A×B) × C .

Expressions involving two (or more) vector products can be simplified by using the identity

A× (B × C) = B(A · C) − C(A ·B) .

This is a result you must memorise (say “back cab” and picture a ‘black cab’ taxi reversing).
If you worry that you may have misremembered the bracket order, remember that (A×B)×C
would have to be orthogonal to C and hence made up from A and B.

To prove this (or at least make it plausible), we can again exploit the freedom to choose
a basis, and take coordinates such that C = (C, 0, 0) points along the x axis and B =
(B1, B2, 0) lies in the

B × C =

∣

∣

∣

∣

∣

∣

e 1 e 2 e 3

B1 B2 0
C 0 0

∣

∣

∣

∣

∣

∣

= (0, 0,−CB2).

A× (B × C) =

∣

∣

∣

∣

∣

∣

e 1 e 2 e 3

A1 A2 A3

0 0 −CB2

∣

∣

∣

∣

∣

∣

= (−A2B2C,A1B2C, 0).

Finally, we write the result as a relation between vectors, in which case it becomes indepen-
dent of coordinates, in the same way as we deduced the centripetal force earlier.

3.4 Equations of lines and planes

The Equation of a Line

Suppose that P lies on a line which passes through a point A which has a position vector a
with respect to an origin O. Let P have position vector r relative to O and let b be a vector
through the origin in a direction parallel to the line.
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O

P

A

_

a_

b
r_ We may write

r = a+ λb

which is the parametric equation of the line i.e. as we vary
the parameter λ from −∞ to ∞, r describes all points on the
line.

Rearranging and using b× b = 0, we can also write this as

(r − a) × b = 0

or

r × b = c

where c = a× b is normal to the plane containing the line and origin. With this definition,
r × b = 0 is the equation of a line through the origin.

Notes

r×b = c is an implicit equation for a line. We have shown how to convert the parameteric
equation of a line into this form, but what about the opposite direction? Given r × b = c,
and assuming, r = a + λb, how do we get a? Again, think geometrically: a can have
components parallel and perpendicular to the line, but changing the parallel component just
changes the parameter λ. In that case, we may as well assume a · b = 0, so that a, b and c
make a right-handed set of vectors. Then obviously a ∝ b × c, and since c = ab, we need
a = (b× c)/b2.

Example: Two straight lines are specified by r× a = b and r× c = d. What is the distance
between the lines at closest approach?

The lines point along the vectors a and c. If we imagine the line segment connecting the
two points of closest approach, this must be perpendicular to both lines, i.e. proportional
to a× c. Thus the distance we need is D = |(r

1
− r

2
) · (â× ĉ)|. Using the parametric forms

for the lines, this is independent of the parameters, so we may as well take them to be zero,
and use r

1
= (a× b)/a2 and r

2
= (c× d)/c2. The final answer is then

D =

∣

∣(a× b− c× d) · (â× ĉ)
∣

∣

a2c2
=

∣

∣(a× b− c× d) · (a× c)
∣

∣

a3c3
.

The Equation of a Plane

_

_ _c

b

n

a r_ _

O

^

PA r is the position vector of an arbitrary point P on the plane
a is the position vector of a fixed point A in the plane
b and c are parallel to the plane but non-collinear: b× c 6= 0.

We can express the vector AP in terms of b and c, so that:

r = a+ AP = a+ λb+ µc

12



for some λ and µ. This is the parametric equation of the plane.

We define the unit normal to the plane

n̂ =
b× c

|b× c| .

Since b · n̂ = c · n̂ = 0, we have the implicit equation

(r − a) · n̂ = 0 .

Alternatively, we can write this as

r · n̂ = p ,

where p = a · n̂ is the perpendicular distance of the plane from the origin. Note: r · a = 0
is the equation for a plane through the origin (with unit normal a/|a|).

This is a very important equation which you must be able to recognise. In algebraic terms,
it means that ax+ by + cz + d = 0 is the equation of a plane.

Example: Are the following equations consistent?

r × b = c

r = a× c

Geometrical interpretation: the first equation is the (implicit) equation for a line whereas
the second equation is the (explicit) equation for a point. Thus the question is whether the
point is on the line. If we insert the 2nd into the into the l.h.s. of the first we find

r × b = (a× c) × b = −b× (a× c) = −a (b · c) + c (a · b)

Now b · c = b · (r × b) = 0 thus the previous equation becomes

r × b = c (a · b)

so that, on comparing with the first given equation, we require

a · b = 1

for the equations to be consistent.

Lecture 4: More on suffix notation

So far, we have been revising material that should have been relatively familiar. Now it
is time to introduce some more powerful tools – whose idea is to make vector calculations
quicker and easier to perform.

To revise the issues we face, consider the vector equation

A = (B · C)D,

13



which must hold for each component separately:

Ai = (B · C)Di i = 1, 2, 3.

The free index i occurs once and only once in each term of the equation. Every term in
the equation must be of the same kind i.e. have the same free indices. In order to write the
scalar product that appears in the second term in suffix notation, we must avoid using i as
a dummy index, since as we have already used it as a free index. It is better to write

Ai =

(

3
∑

k=1

BkCk

)

Di

since this can then be rewritten without the brackets as

Ai =
3
∑

k=1

BkCkDi.

4.1 The Kronecker delta symbol δij

We define the symbol δij (pronounced “delta i j”), where i and j can take on the values 1 to
3, such that

δij = 1 if i = j

= 0 if i 6= j

i.e. δ11 = δ22 = δ33 = 1 and δ12 = δ13 = δ23 = · · · = 0.

The equations satisfied by the orthonormal basis vectors e i can all now be written as

e i · e j = δij .

e.g. e 1 · e 2 = δ12 = 0 ; e 1 · e 1 = δ11 = 1

Notes

(i) Since there are two free indices i and j, e i · e j = δij is equivalent to 9 equations

(ii) δij = δji [ i.e. δij is symmetric in its indices. ]

(iii)
∑3

i=1 δii = 3 ( = δ11 + δ22 + δ33)

(iv)
∑3

j=1Ajδjk = A1δ1k + A2δ2k + A3δ3k

Remember that k is a free index. Thus if k = 1 then only the first term on the rhs
contributes and rhs = A1, similarly if k = 2 then rhs = A2 and if k = 2 then rhs = A3.
Thus we conclude that

∑3
j=1Ajδjk = Ak

In other words, the Kronecker delta picks out the kth term in the sum over j. This is
in particular true for the multiplication of two Kronecker deltas:
∑3

j=1 δijδjk = δi1δ1k + δi2δ2k + δi3δ3k = δik

14



Generalising the reasoning in (iv) implies the so-called sifting property:

∑3
j=1(anything )jδjk = (anything )k

where (anything)j denotes any expression that has a free index j. In effect, δij is a kind of
mathematical virus, whose main love in life is to replace the index you first thought of with
one of its own. Once you get used to this behaviour, it’s a very powerful trick.

Examples of the use of this symbol are:

1. A · e j =

(

3
∑

i=1

Aie i

)

· e j =
3
∑

i=1

Ai (e i · e j)

=
3
∑

i=1

Aiδij = Aj, since terms with i 6= j vanish.

2. A ·B =

(

3
∑

i=1

Aie i

)

·
(

3
∑

j=1

Bje j

)

=
3
∑

i=1

3
∑

j=1

AiBj (e i · e j) =
3
∑

i=1

3
∑

j=1

AiBjδij

=
3
∑

i=1

AiBi or
3
∑

j=1

AjBj.

Matrix representation of δij

We may label the elements of a (3 × 3) matrix M as Mij,

M =





M11 M12 M13

M21 M22 M23

M31 M32 M33



 .

Note the ‘double-underline’ convention that we shall use to denote matrices and distinguish
them from vectors and scalars. Textbooks normally use a different convention and denote a
matrix in bold, M, but this is not practical for writing matrices by hand.

Thus we see that δij are just the components of the identity matrix I (which it will sometimes

be better to write as δ).

δij =





1 0 0
0 1 0
0 0 1



 .

4.2 Levi-Civita symbol ǫijk

We saw in the last lecture how δij could be used to greatly simplify the writing out of the
orthonormality condition on basis vectors.
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We seek to make a similar simplification for the vector products of basis vectors i.e. we seek
a simple, uniform way of writing the equations

e 1 × e 2 = e 3 e 2 × e 1 = −e 3 e 1 × e 1 = 0 etc.

To do so we define the Levi-Civita symbol ǫijk (pronounced ‘epsilon i j k’), where i, j and k
can take on the values 1 to 3, such that

ǫijk = +1 if ijk is an even permutation of 123 ;

= −1 if ijk is an odd permutation of 123 ;

= 0 otherwise (i.e. 2 or more indices are the same) .

An even permutation consists of an even number of transpositions.
An odd permutations consists of an odd number of transpositions.

For example, ǫ123 = +1 ;

ǫ213 = −1 { since (123) → (213) under one transposition [1 ↔ 2]} ;

ǫ312 = +1 {(123) → (132) → (312); 2 transpositions; [2 ↔ 3][1 ↔ 3]} ;

ǫ113 = 0 ; ǫ111 = 0 ; etc.

ǫ123 = ǫ231 = ǫ312 = +1 ; ǫ213 = ǫ321 = ǫ132 = −1 ; all others = 0 .

4.3 Vector product

The equations satisfied by the vector products of the (right-handed) orthonormal basis vec-
tors e i can now be written uniformly as

e i × e j =
∑3

k=1 ǫijk e k (i, j = 1,2,3) .

For example,

e 1 × e 2 = ǫ121 e 1 + ǫ122 e 2 + ǫ123 e 3 = e 3 ; e 1 × e 1 = ǫ111 e 1 + ǫ112 e 2 + ǫ113 e 3 = 0

Also, A×B =
∑

i

Aie i ×
∑

j

Bje j =
∑

i,j

Ai Bj e i × e j =
∑

i,j,k

ǫijk AiBj e k

This gives the very important relation for the components of the vector product:

(A×B)k =
∑

i,j ǫijk AiBj

It also allows us to see directly that the definition of A × B in terms of a determinant is
correct: the general expression for a determinant of a 3 × 3 matrix M is

det(M) = |M | =
∑

i,j,k

ǫijkM1iM2jM3k,

with similar relations for matrices of different size (for a 2× 2 we need ǫ12 = +1, ǫ21 = −1).
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Example: differentiation of A×B

Suppose we want to differentiate A×B. For scalars, we have the product rule (d/dt)AB =
A(dB/dt)+(dA/dt)B. From this, you might guess (d/dt)(A×B) = A×(dB/dt)+(dA/dt)×B,
but this needs a proof. To proceed, write things using components:

d

dt
A×B =

d

dt

∑

i,j,k

(ǫijk AiBj e k),

but ǫijk and e k are not functions of time, so we can use the ordinary product rule on the
numbers Ai and Bj:

d

dt
A×B =

∑

i,j,k

(ǫijk ȦiBj e k) +
∑

i,j,k

(ǫijk AiḂj e k) = Ȧ×B + A× Ḃ.

This is often a fruitful approach: to prove a given vector result, write the expression of
interest out in full using components. Now all quantities are either just numbers, or constant
basis vectors. Having manipulated these quantities into a new form, re-express the answer
in general vector notation.

Lecture 5: Summation convention and co-ordinate trans-

formations

5.1 Einstein summation convention

As you will have noticed, the novelty of writing out summations in full soon wears thin.
A way to avoid this tedium is to adopt the Einstein summation convention; by adhering
strictly to the following rules the summation signs are suppressed.

Rules

(i) Omit summation signs

(ii) If a suffix appears twice, a summation is implied e.g. AiBi = A1B1 + A2B2 + A3B3

Here i is a dummy index.

(iii) If a suffix appears only once it can take any value e.g. Ai = Bi holds for i = 1, 2, 3
Here i is a free index. Note that there may be more than one free index. Always check
that the free indices match on both sides of an equation e.g. Aj = Bi is WRONG.

(iv) A given suffix must not appear more than twice in any term of an expression. Again,
always check that there are no multiple indices e.g. AiBiCi is WRONG.

Examples

17



A = Aie i here i is a dummy index.

A · e j = Aie i · e j = Aiδij = Aj here i is a dummy index but j is a free index.

A ·B = (Aie i) · (Bje j) = AiBjδij = AjBj here i,j are dummy indices.

(A ·B)(A · C) = AiBiAjCj again i,j are dummy indices.

Armed with the summation convention one can rewrite many of the equations of the previous
lecture without summation signs e.g. the sifting property of δij now becomes

(anything)jδjk = (anything)k

so that, for example, δijδjk = δik

From now on, except where indicated, the summation convention will be assumed.
You should make sure that you are completely at ease with it.

5.2 Linear transformation of basis

Suppose {e i} and {e i
′} are two different orthonormal bases. The new basis vectors must

have components in the old basis, so clearly e 1
′ can be written as a linear combination of

the vectors e 1, e 2, e 3:
e 1

′ = λ11e 1 + λ12e 2 + λ13e 3

with similar expressions for e 2
′ and e 3

′. In summary,

e i
′ = λij e j

(assuming summation convention) where λij (i = 1, 2, 3 and j = 1, 2, 3) are the 9 numbers
relating the basis vectors e 1

′, e 2
′ and e 3

′ to the basis vectors e 1, e 2 and e 3.

Notes

(i) λij are nine numbers defining the change of basis or ‘linear transformation’. They are
sometimes known as ‘direction cosines’.

(i) Since e i
′ are orthonormal

e i
′ · e j

′ = δij .

Now the l.h.s. of this equation may be written as

(λik e k) · (λjℓ e ℓ) = λikλjℓ (e k · e ℓ) = λikλjℓδkℓ = λik λjk

(in the final step we have used the sifting property of δkℓ) and we deduce

λikλjk = δij
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(ii) In order to determine λij from the two bases consider

e i
′ · e j = (λik e k) · e j = λik δkj = λij .

Thus
e i

′ · e j = λij

5.3 Skew basis: an aside

Now, so far all our basis vectors have been orthogonal and normalised (of unit length): an
orthonormal basis. In fact, basis vectors need satisfy neither of these criteria. Even if the
basis vectors are unit (which is a simple matter of definition), they need not be orthogonal
– in which case we have a skew basis. How do we define components in such a case? It
turns out that there are two different ways of achieving this.

We can express the vector as a linear superposition:

V =
∑

i

V
(1)
i e

i
,

where e
i
are the basis vectors. But we are used to extracting components by taking the dot

product, so we might equally well want to define a second kind of component by

V
(2)
i = V · e

i
.

These numbers are not the same, as we see by inserting the first definition into the second:

V
(2)
i =

(

∑

j

V
(1)
j e

j

)

· e
i
.

This cannot be simplified further if we lack the usual orthonormal basis e
i
·e

j
= δij, in which

case a given type-2 component is a mixture of all the different type-1 components.

For (non-examinable) interest, the two types are named respectively contravariant and
covariant components. It isn’t possible to say that one of these definitions is better than
another: we sometimes want to use both types of component, as with the modulus-squared
of a vector:

V 2 = V · V = V ·
(

∑

i

V
(1)
i e

i

)

=
∑

i

V
(1)
i V

(2)
i .

This looks like the usual rule for the dot product, but both kinds of components are needed.

For the rest of this course, we will ignore this complication, and consider only coordinate
transformations that are in effect rotations, which turn one orthonormal basis into another.

5.4 Inverse relations

Consider expressing the unprimed basis in terms of the primed basis and suppose that

e i = µij e j
′.
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Then λki = e k
′ · e i = µij (e k

′ · e j
′) = µij δkj = µik so that

µij = λji

Note that e i · e j = δij = λki (e k
′ · e j) = λkiλkj and so we obtain a second relation

λkiλkj = δij .

5.5 The transformation matrix

We may label the elements of a 3 × 3 matrix M as Mij, where i labels the row and j labels

the column in which Mij appears:

M =





M11 M12 M13

M21 M22 M23

M31 M32 M33



 .

The summation convention can be used to describe matrix multiplication. The ij component
of a product of two 3 × 3 matrices M,N is given by

(MN)ij = Mi1N1j +Mi2N2j +Mi3N3j = Mik Nkj

Likewise, recalling the definition of the transpose of a matrix (MT )ij = Mji

(MTN)ij = (MT )ikNkj = MkiNkj

We can thus arrange the numbers λij as elements of a square matrix, denoted by λ and
known as the transformation matrix:

λ =





λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33





We denote the matrix transpose by λT and define it by (λT )ij = λji so we see that µ = λT

is the transformation matrix for the inverse transformation.

We also note that δij may be thought of as elements of a 3 × 3 unit matrix:





δ11 δ12 δ13
δ21 δ22 δ33
δ31 δ32 δ33



 =





1 0 0
0 1 0
0 0 1



 = I.

i.e. the matrix representation of the Kronecker delta symbol is the identity matrix I.

The inverse relation λikλjk = λkiλkj = δij can be written in matrix notation as
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λλT = λT λ = I , i.e. λ−1 = λT .

This is the definition of an orthogonal matrix and the transformation (from the e i basis
to the e i

′ basis) is called an orthogonal transformation.

Now from the properties of determinants, |λλT | = |I| = 1 = |λ| |λT | and |λT | = |λ|, we have

that |λ|2 = 1 hence
|λ| = ±1 .

If |λ| = +1 the orthogonal transformation is said to be ‘proper’

If |λ| = −1 the orthogonal transformation is said to be ‘improper’

Handedness of basis

An improper transformation has an unusual effect. In the usual Cartesian basis that we
have considered up to now, the basis vectors e 1, e 2, and e 3 form a right-handed basis, that
is, e 1 × e 2 = e 3, e 2 × e 3 = e 1 and e 3 × e 1 = e 2.

However, we could choose e 1 × e 2 = −e 3, and so on, in which case the basis is said to be
left-handed.

-
e 1

6e 3

�
��3

e 2

right handed

-
e 1

6e 2

�
��3

e 3

left handed

e 3 = e 1 × e 2

e 1 = e 2 × e 3

e 2 = e 3 × e 1

(e 1, e 2, e 3) = 1

e 3 = e 2 × e 1

e 1 = e 3 × e 2

e 2 = e 1 × e 3

(e 1, e 2, e 3) = −1

5.6 Examples of orthogonal transformations

Rotation about the e 3 axis. We have e 3
′ = e 3 and thus for a rotation through θ,

_

θ

θ

_e

e

e

e_

_

2
2

1

1
O

’

’ e 3
′ · e 1 = e 1

′ · e 3 = e 3
′ · e 2 = e 2

′ · e 3 = 0 , e 3
′ · e 3 = 1

e 1
′ · e 1 = cos θ

e 1
′ · e 2 = cos (π/2 − θ) = sin θ

e 2
′ · e 2 = cos θ

e 2
′ · e 1 = cos (π/2 + θ) = − sin θ

Thus

λ =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 .
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It is easy to check that λλT = I. Since |λ| = cos2 θ+ sin2 θ = 1, this is a proper transforma-

tion. Note that rotations cannot change the handedness of the basis vectors.

Inversion or Parity transformation. This is defined such that e i
′ = −e i.

i.e. λij = −δij or λ =





−1 0 0
0 −1 0
0 0 −1



 = −I .

Clearly λλT = I. Since |λ| = −1, this

is an improper transformation. Note
that the handedness of the basis is re-
versed: e 1

′ × e 2
′ = −e 3

′

e_
1

e_
2

e_3
l.h. basis

’

’

’

_

_e

e

e_
1

2

3

r.h. basis

Reflection. Consider reflection of the axes in e 2–e 3 plane so that e 1
′ = −e 1, e 2

′ = e 2 and
e 3

′ = e 3. The transformation matrix is

λ =





−1 0 0
0 1 0
0 0 1



 .

Since |λ| = −1, this is an improper transformation. Again the handedness of the basis
changes.

Lecture 6: Combined transformations, and transforma-

tions of vectors and scalars

6.1 Products of transformations

Consider a transformation λ to the basis {e i
′} followed by a transformation ρ to another

basis {e i
′′}

e i

λ
=⇒ e i

′
ρ

=⇒ e i
′′

Clearly there must be an orthogonal transformation e i

ξ
=⇒ e i

′′

Now

e i
′′ = ρije j

′ = ρijλjke k = (ρλ)ike k so ξ = ρ λ

Note the order of the product: the matrix corresponding to the first change of basis stands
to the right of that for the second change of basis. In general, transformations do not
commute so that ρ λ 6= λ ρ. Only the inversion and identity transformations commute with

all transformations.
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Example: Rotation of θ about e 3 then reflection in yz plane




−1 0 0
0 1 0
0 0 1









cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 =





− cos θ − sin θ 0
− sin θ cos θ 0

0 0 1





whereas, if we reverse the order,





cos θ sin θ 0
− sin θ cos θ 0

0 0 1









−1 0 0
0 1 0
0 0 1



 =





− cos θ sin θ 0
sin θ cos θ 0
0 0 1





6.2 Improper transformations

We may write any improper transformation ξ (for which |ξ| = −1) as ξ =
(

−I
)

λ where λ =

−ξ and |λ| = +1 Thus an improper transformation can always be expressed as a proper

transformation followed by an inversion.

e.g. consider ξ for a reflection in the 1 − 3 plane which may be written as

ξ =





1 0 0
0 −1 0
0 0 1



 =





−1 0 0
0 −1 0
0 0 −1









−1 0 0
0 1 0
0 0 −1





Identifying λ from ξ =
(

−I
)

λ we see that λ is a rotation of π about e 2.

This gives an explicit answer to an old puzzle: when you look in a mirror, why do you see
yourself swapped left to right, but not upside down? In the above, we have the mirror in
the xz plane, so the y axis sticks out of the mirror. If you are first inverted, this swaps your
L & R hands, makes you face away from the mirror, and turns you upside-down. But now
the rotation about the y axis places your head above your feet once again.

6.3 Transformation of vector components

Let A be any vector, with components Ai in the basis {e i} and A′
i in the basis {e i

′} i.e.

A = Ai e i = A′
i e i

′ .

The components are related as follows, taking care with dummy indices:

A′
i = A · e i

′ = (Aje j) · e i
′ = (e i

′ · e j)Aj = λijAj

A′
i = λijAj
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So the new components are related to the old ones by the same matrix transformation as
applies to the basis vectors. The inverse transformation works in a similar way:

Ai = A · e i = (A′
ke k

′) · e i = λkiA
′
k = (λT )ikA

′
k.

Note carefully that we do not put a prime on the vector itself – there is only one vector, A,
in the above discussion.

However, the components of this vector are different in different bases, and so are denoted
by Ai in the basis {e i}, A′

i in the basis {e i
′}, etc.

In matrix form we can write these relations as





A′
1

A′
2

A′
3



 =





λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33









A1

A2

A3



 = λ





A1

A2

A3





Example: Consider a rotation of the axes about e 3





A′
1

A′
2

A′
3



 =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1









A1

A2

A3



 =





cos θ A1 + sin θ A2

cos θ A2 − sin θ A1

A3





A direct check of this using trigonometric considerations is significantly harder!

6.4 The Transformation of the scalar product

Let A and B be vectors with components Ai and Bi in the basis {e i} and components A′
i

and B′
i in the basis {e i

′}. In the basis {e i}, the scalar product, denoted by (A ·B), is

(A ·B) = AiBi .

In the basis {e i
′}, we denote the scalar product by (A ·B) ′, and we have

(A ·B) ′ = A′
iB

′
i = λijAjλikBk = δjkAjBk

= AjBj = (A ·B) .

Thus the scalar product is the same evaluated in any basis. This is of course expected from
the geometrical definition of scalar product which is independent of basis. We say that the
scalar product is invariant under a change of basis.

Summary We have now obtained an algebraic definition of scalar and vector quantities.
Under the orthogonal transformation from the basis {e i} to the basis {e i

′}, defined by the
transformation matrix λ : e i

′ = λij e j, we have that

• A scalar is a single number φ which is invariant:

φ′ = φ .
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Of course, not all scalar quantities in physics are expressible as the scalar product of
two vectors e.g. mass, temperature.

• A vector is an ‘ordered triple’ of numbers Ai which transforms to A′
i :

A′
i = λijAj .

6.5 Transformation of the vector product

Improper transformations have an interesting effect on the vector product. Consider the case
of inversion, so that e i

′ = −e i, and all the signs of vector components are flipped: A′
i = −Ai

etc.

If we now calculate the vector product C = A × B in the new basis using the determinant
formula, we obtain

∣

∣

∣

∣

∣

∣

e 1
′ e 2

′ e 3
′

A′
1 A′

2 A′
3

B′
1 B′

2 B′
3

∣

∣

∣

∣

∣

∣

= (−)3

∣

∣

∣

∣

∣

∣

e 1 e 2 e 3

A1 A2 A3

B1 B2 B3

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

e 1 e 2 e 3

A1 A2 A3

B1 B2 B3

∣

∣

∣

∣

∣

∣

which is −C as calculated in the original basis. So inverting our coordinates has resulted
in the cross-product vector pointing in the opposite direction. Alternatively, since inver-
sion changes the sign of the components of all other vectors, we have the puzzle that the
components of C are un-changed by the transformation.

The determinant formula was derived by assuming (a) distributivity and (b) that the vector
product of the basis vectors obeyed e 1 × e 2 = e 3 and cyclic permutations. But with an
inverted basis, sticking to the geometrical definition of the cross product using the RH screw
rule would predict e 1

′ × e 2
′ = −e 3

′. Something has to give, and it is most normal to require
the basis vectors to have the usual relation – i.e. that the vector product is now re-defined
with a left-hand screw. So we keep the usual determinant expression, but have to live with
a pseudovector law for the transformation of the components of the vector product:

C ′
i = (detλ)λijCj.

A pseudovector behaves like a vector under proper transformations, for which detλ = +1,
but picks up an extra minus sign under improper transformations, for which detλ = −1.

Parity violation

Whichever basis we adopt, there is an important distinction between an ordinary vector such
as a position vector, and vectors involving cross products, such as angular momentum. Now
we ask not what happens to these quantities under coordinate transformations, but under
active transformations – where we really alter the positions of the particles that make
up a physical system. In contrast, a change of basis would be a passive transformation.
Specifically, consider a parity or inversion transformation, which flips the sign of all position
and momentum vectors: r → −r, p→ −p. Because the angular momentum is L = r× p, we
see that it is un-changed by this transformation. In short, when we look at a mirror image
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of the physical world, there are two kinds of vectors: polar vectors like r, which invert in
the mirror and axial vectors like L, which do not.

An alternative way to look at this is to ask what happens to the components of a vector under
improper transformations. You might think that active and passive transformations are all
the same thing: if you rotate the system and the basis, how can any change be measured?
So an active transformation ought to be equivalent to a passive transformation where the
passive transformation matrix is the inverse of the active one. For a normal polar vector P ,
the components will change as P ′

i = λijPj. But for an axial vector A, we have seen that
this given the wrong sign when inversions are involved. Instead, we have the pseudovector
transformation law:

A′
i = (detλ)λijAj.

Thus the terms axial vector and pseudovector tend to be used interchangeably.

But the distinction between active and passive transformations does matter, because physics
can be affected by symmetry transformations, of which inversion is an example. Suppose
we see a certain kind of physical process and look at it in a mirror: is this something that
might be seen in nature? In many cases, the answer is ‘yes’ – e.g. the equation of motion
for a particle in an inverse-square gravitational field, r̈ = −(Gm/|r|3) r, which is obviously
still satisfied if r → −r. But at the microscopic level, this is not true. Neutrinos are
particles that involve parity violation: they are purely left-handed and have their spin
angular momentum anti-parallel to their linear momentum. A mirror image of a neutrino
would cease to obey this rule, and is not something that occurs in nature. We can make
this distinction because of the polar/axial distinction between linear and angular momentum
vectors.

6.6 Summary of story so far

We take the opportunity to summarise some key points of what we have done so far. N.B.
this is NOT a list of everything you need to know.

Key points from geometrical approach

You should recognise on sight that

r × b = c is a line (r lies on a line)

r · a = d is a plane (r lies in a plane)

Useful properties of scalar and vector products to remember

a · b = 0 ⇔ vectors orthogonal

a× b = 0 ⇔ vectors collinear

a · (b× c) = 0 ⇔ vectors co-planar or linearly dependent

a× (b× c) = b(a · c) − c(a · b)

Key points of suffix notation
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We label orthonormal basis vectors e 1, e 2, e 3 and write the expansion of a vector A as

A =
3
∑

i=1

Aie i

The Kronecker delta δij can be used to express the orthonormality of the basis

e i · e j = δij

The Kronecker delta has a very useful sifting property

∑

j

[· · · ]jδjk = [· · · ]k

(e 1, e 2, e 3) = ±1 determines whether the basis is right- or left-handed

Key points of summation convention

Using the summation convention we have for example

A = Aie i

and the sifting property of δij becomes

[· · · ]jδjk = [· · · ]k

We introduce ǫijk to enable us to write the vector products of basis vectors in a r.h. basis in
a uniform way

e i × e j = ǫijke k

.

The vector products and scalar triple products in a r.h. basis are

A×B =

∣

∣

∣

∣

∣

∣

e 1 e 2 e 3

A1 A2 A3

B1 B2 B3

∣

∣

∣

∣

∣

∣

or equivalently (A×B)i = ǫijkAjBk

A · (B × C) =

∣

∣

∣

∣

∣

∣

A1 A2 A3

B1 B2 B3

C1 C2 C3

∣

∣

∣

∣

∣

∣

or equivalently A · (B × C) = ǫijkAiBjCk

Key points of change of basis

The new basis is written in terms of the old through

e i
′ = λije j where λij are elements of a 3 × 3 transformation matrix λ

λ is an orthogonal matrix, the defining property of which is λ−1 = λT and this can be written
as

λλT = I or λikλjk = δij

|λ| = ±1 decides whether the transformation is proper or improper i.e. whether the hand-
edness of the basis is changed.
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Key points of algebraic approach

A scalar is defined as a number that is invariant under an orthogonal transformation

A vector is defined as an object A represented in a basis by numbers Ai which transform
to A′

i through
A′

i = λijAj.

or in matrix form




A′
1

A′
2

A′
3



 = λ





A1

A2

A3





Lecture 7: Tensors

Physical relations between vectors

The simplest physical laws are expressed in terms of scalar quantities that are independent
of our choice of basis e.g. the gas law P = nkT relating three scalar quantities (pressure,
number density and temperature), which will in general all vary with position.

At the next level of complexity are laws relating vector quantities, such as F = ma:

(i) These laws take the form vector = scalar × vector

(ii) They relate two vectors in the same direction

If we consider Newton’s Law, for instance, then in a particular Cartesian basis {e i}, a is
represented by its components {ai} and F by its components {Fi} and we can write

Fi = mai

In another such basis {e i
′}

F ′
i = ma′i

where the set of numbers, {a′i}, is in general different from the set {ai}. Likewise, the set
{F ′

i} differs from the set {Fi}, but of course

a′i = λijaj and F ′
i = λijFj

Thus we can think of F = ma as representing an infinite set of relations between measured
components in various bases. Because all vectors transform the same way under orthogonal
transformations, the relations have the same form in all bases. We say that Newton’s Law,
expressed in component form, is form invariant or covariant.

This is why our proof of the ‘BAC-CAB’ rule using a special coordinate system wasn’t a
cheat. Rather, it uses the principle of manifest covariance: if we write down a candidate
relation between two vectors A = B, we only need to show that it holds for one basis. The
case of changing basis involves a transformation matrix, which acts in the same way on each
side of the equation; so if two vectors are equal in one basis, they are always equal.
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7.1 Examples of more complicated laws

Physical laws often relate two vectors, but in general these may point in different directions.
We then have the case where there is a linear relation between the various components of
the vectors, and there are many physical examples of this.

Ohm’s law in an anisotropic medium

The vector form of Ohm’s Law says that an applied electric field E produces a current
density J (current per unit area) in the same direction: J = σE, where σ is the conductivity
(to see that this is the familiar V = RI, consider a tube of cross-sectional area A and length
L: I = JA, V = EL and R = L/(σA)). This only holds for conducting media that are
isotropic, i.e. the same in all directions. This is certainly not the case in crystalline media,
where the regular lattice will favour conduction in some directions more than in others.

The most general relation between J and E which is linear and is such that J vanishes when
E vanishes is of the form

Ji = GijEj

where Gij are the components of the conductivity tensor in the chosen basis, and characterise
the conduction properties when J and E are measured in that basis. Thus we need nine
numbers, Gij, to characterise the conductivity of an anisotropic medium.

Stress tensor

dS
Consider a surface acted on by the pressure of a fluid.
The force on an area element dS is F = −PdS for
isotropic pressure (a minus sign because the force acts
into the surface).

In general, we have
Fi = sij dSj,

where sij are the components of the stress tensor. Thus, where we deal only with pressure,
sij = −Pδij and the stress tensor is diagonal.

F

z

x

The most important example of anisotropic stress is in
a viscous shear flow. Suppose a fluid moves in the x
direction, but vx changes in the z direction. The force
per unit area acting in the x direction on a surface in
the xy plane is η dvx/dz, where η is the coefficient of
viscosity. In this case, the only non-zero component of
the stress tensor is

s13 = η dvx/dz.

7.2 Angular momentum and the inertia tensor

(i) Angular velocity
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Consider a particle of mass m in a rigid body rotating with angular velocity ω: |ω| is
the angular speed of rotation measured in radians per second and ω̂ lies along the axis of
rotation. Let the position vector of the point with respect to an origin O on the axis of
rotation be r.

O

_

_r

_ω

θ

v

You should convince yourself that v = ω × r by checking that this
gives the right direction for v; that it is perpendicular to the plane
of ω and r; that the magnitude |v| = ωr sin θ = ω× radius of circle
in which the point is travelling

(ii) Angular momentum

Now consider the angular momentum of the particle defined by L = r× (mv) where m is
the mass of the particle.

Using the above expression for v we obtain

L = mr × (ω × r) = m
[

ωr2 − r(r · ω)
]

where we have used the identity for the vector triple product. Note that L = 0 if ω and r
are parallel. Note also that only if r is perpendicular to ω do we obtain L = mωr2, which
means that only then are L and ω in the same direction.

(iii) Torque

This last result sounds peculiar, but makes a good example of how physical laws are inde-
pendent of coordinates. The torque or moment of a force about the origin G = r × F
where r is the position vector of the point where the force is acting and F is the force vector
through that point. Torque causes angular momentum to change:

d

dt
L = ṙ ×mv + r ×ma = 0 + r × F = G.

If the origin is in the centre of the circle, then the centripetal force generates zero torque
– but otherwise G is nonzero. This means that L has to change with time. Here, we have
assumed that the vector product obeys the product rule under differentiation.

The inertia tensor

Taking components of L = m
[

ωr2 − r(r · ω)
]

in an orthonormal basis {e i}, we find that

Li = m
[

ωi(r · r) − xi(r · ω)
]

= m
[

r2ωi − xixjωj

]

noting that r · ω = xjωj

= m
[

r2δij − xixj

]

ωj using ωi = δijωj

Thus

Li = Iij(O)ωj where Iij(O) = m [r2 δij − xixj]

Iij(O) are the components of the inertia tensor, relative to O, in the e i basis.
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Note that there is a potential confusion here, since I is often used to mean the identity

matrix. It should be clear from context what is intended, but we will often henceforth use
the alternative notation δ for the identity, since we have seen that its components are δij.

7.3 Rank of tensors

The set of nine numbers, Tij, representing a tensor of the above sort can be written as a
3 × 3 array, which are the components of a matrix:

T =





T11 T12 T13

T21 T22 T23

T31 T32 T33





Because it has 2 indices, this would be called a second rank tensor.

Scalars and vectors are called tensors of rank zero and one respectively, where rank = no.

of indices in a Cartesian basis. We can also define tensors of rank greater than two. Our
friend ǫijk is a tensor of rank three, whereas δij is another tensor of rank two.

7.4 Transformation properties of tensors

Suppose we consider an orthogonal transformation of basis. Simply changing basis cannot
alter the form of a physical law, which must be valid in any basis. Therefore, if our relation
reads Ai = TijBj, we must have

A′
i = T ′

ijB
′
j where A′

i = λijAj and B′
j = λjkBk

Thus we deduce that
λijAj = λijTjkBk = T ′

ijλjkBk

which we can rewrite as
(T ′

ijλjk − λijTjk)Bk = 0

This must be true for arbitrary vector B and hence T ′
ijλjk = λijTjk. In matrix notation,

this is just T ′ λ = λ T . If we multiply on the right by λT = λ−1, this gives the general law

for transforming the components of a second rank tensor:

T ′ = λT λT

In terms of components, this is written as

T ′
ij = λik Tkℓ (λT )ℓj = λikλjℓ Tkℓ.

Note that we get one instance of λ for each tensor index, according to the rule that applies
for vectors. This applies for tensors of any rank.

Notes

(i) It is not quite right to say that a second rank tensor is a matrix: the tensor is the
fundamental object and is represented in a given basis by a matrix.
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(ii) Nevertheless, it is reasonable to say informally that a tensor is a physical matrix: a
matrix that occurs in a physics equation relating two vectors, which must hold in any
basis.

(iii) But not all matrices are tensors: e.g. the transformation matrix λ is not a tensor but
nine numbers defining the transformation between two different bases.

(iv) Most tensors change components when the basis is changed, but some do not: δij and
ǫijk are isotropic tensors whose components are always the same (easy to prove for
δij, which is just the identity matrix).

Lecture 8: More on tensors

8.1 Invariants

Trace of a tensor: the trace of a tensor is defined as the sum of the diagonal elements Tii.
Consider the trace of the matrix representing the tensor in the transformed basis

T ′
ii = λirλisTrs

= δrsTrs = Trr

Thus the trace is the same, evaluated in any basis and is a scalar invariant.

Determinant: it can be shown that the determinant is also an invariant.

Symmetry of a tensor: if the matrix Tij representing the tensor is symmetric then

Tij = Tji

Under a change of basis

T ′
ij = λirλjsTrs

= λirλjsTsr using symmetry

= λisλjrTrs relabelling

= T ′
ji

Therefore a symmetric tensor remains symmetric under a change of basis. Similarly (exercise)
an antisymmetric tensor Tij = −Tji remains antisymmetric.

In fact one can decompose an arbitrary second rank tensor Tij into a symmetric part Sij and
an antisymmetric part Aij through

Sij =
1

2
[Tij + Tji] Aij =

1

2
[Tij − Tji]
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8.2 The inertia tensor

We saw earlier that for a single particle of mass m, located at position r with respect to an
origin O on the axis of rotation of a rigid body

Li = Iij(O)ωj where Iij(O) = m
{

r2 δij − xixj

}

where Iij(O) are the components of the inertia tensor, relative to O, in the basis {e i}.

For a collection of N particles of mass mα at rα, where α = 1 . . . N ,

Iij(O) =
∑N

α=1m
α
{

(rα· rα) δij − xα
i x

α
j

}

(1)

For a continuous body, the sums become integrals, giving

Iij(O) =
∫

V
ρ(r)

{

(r · r) δij − xixj

}

dV .

Here, ρ(r) is the density at position r. ρ(r) dV is the mass of the volume element dV at r. For
laminae (flat objects) and solid bodies, these are 2- and 3-dimensional integrals respectively.

If the basis is fixed relative to the body, the Iij(O) are constants in time.

Consider the diagonal term

I11(O) =
∑

α

mα
{

(rα· rα) − (xα
1 )2
}

=
∑

α

mα
{

(xα
2 )2 + (xα

3 )2
}

=
∑

α

mα (rα
⊥)2 ,

where rα
⊥ is the perpendicular distance of mα from the e 1 axis through O.

This term is called the moment of inertia about the e 1 axis. It is simply the mass of each
particle in the body, multiplied by the square of its distance from the e 1 axis, summed over
all of the particles. Similarly the other diagonal terms are moments of inertia.

The off-diagonal terms are called the products of inertia, having the form, for example

I12(O) = −
∑

α

mα xα
1 x

α
2 .

Example

Consider 4 masses m at the vertices of a square of side 2a.

(i) O at centre of the square.

-

6

e 1
a

e 2

a

O

r

r

r

r

(a, a, 0)

(a,−a, 0)

(−a, a, 0)

(−a,−a, 0)
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For m(1) = m at (a, a, 0), r(1) = ae 1 + ae 2, so r(1) · r(1) = 2a2, x
(1)
1 = a, x

(1)
2 = a and x

(1)
3 = 0

I(O) = m







2a2





1 0 0
0 1 0
0 0 1



− a2





1 1 0
1 1 0
0 0 0











= ma2





1 −1 0
−1 1 0

0 0 2



 .

For m(2) = m at (a,−a, 0), r(2) = ae 1 − ae 2, so r(2) · r(2) = 2a2, x
(2)
1 = a and x

(2)
2 = −a

I(O) = m







2a2





1 0 0
0 1 0
0 0 1



− a2





1 −1 0
−1 1 0

0 0 0











= ma2





1 1 0
1 1 0
0 0 2



 .

For m(3) = m at (−a,−a, 0), r(3) = −ae 1 −ae 2, so r(3) · r(3) = 2a2, x
(3)
1 = −a and x

(3)
2 = −a

I(O) = m







2a2





1 0 0
0 1 0
0 0 1



− a2





1 1 0
1 1 0
0 0 0











= ma2





1 −1 0
−1 1 0

0 0 2



 .

For m(4) = m at (−a, a, 0), r(4) = −ae 1 + ae 2, so r(4) · r(4) = 2a2, x
(4)
1 = −a and x

(4)
2 = a

I(O) = m







2a2





1 0 0
0 1 0
0 0 1



− a2





1 −1 0
−1 1 0

0 0 0











= ma2





1 1 0
1 1 0
0 0 2



 .

Adding up the four contributions gives the inertia tensor for all 4 particles as

I(O) = 4ma2





1 0 0
0 1 0
0 0 2



 .

Note that the final inertia tensor is diagonal and in this basis the products of inertia are all
zero (of course, there are other bases where the tensor is not diagonal). This implies the
basis vectors are eigenvectors of the inertia tensor. For example, if ω = ω(0, 0, 1) then
L(O) = 8mωa2(0, 0, 1).

In general L(O) is not parallel to ω. For example, if ω = ω(0, 1, 1) then L(O) =
4mωa2(0, 1, 2). Note that the inertia tensors for the individual masses are not diagonal.

8.3 The parallel axes theorem

If G is the centre of mass of the body its position vector R is given by

R =
∑

α

mαrα
/

M,

where rα are the position vectors relative to O and M =
∑

αm
α, is the total mass of the

system.

The parallel axes theorem states that
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Iij(O) = Iij(G) +M
{

(R ·R) δij −RiRj

}

,

Proof: Let sα be the position ofmα with respect toG, then O -
GR

�����
*
rα mα

r

�
��
�
sα

Iij(G) =
∑

α

mα
{

(sα· sα) δij − sα
i s

α
j

}

;

Iij(O) =
∑

α

mα
{

(rα· rα) δij − xα
i x

α
j

}

=
∑

α

mα
{

(R + sα)2 δij − (R + sα)i(R + sα)j

}

= M
{

R2δij −RiRj

}

+
∑

α

mα
{

(sα· sα) δij − sα
i s

α
j

}

+2 δij R ·
∑

α

mαsα −Ri

∑

α

mαsα
j −Rj

∑

α

mαsα
i

= M
{

R2δij −RiRj

}

+ Iij(G)

the cross terms vanishing since

∑

α

mαsα
i =

∑

α

mα (rα
i −Ri) = 0 .

Example: use of the parallel axes theorem

Consider the same arrangement of masses as before but
with O at one corner of the square i.e. a (massless)
lamina of side 2a, with masses m at each corner and the
origin O at the bottom, left so that the masses are at
(0, 0, 0), (2a, 0, 0), (0, 2a, 0) and (2a, 2a, 0)

-

6

e 12a

e 2

2a

O
r r

r r

We have M = 4m and

OG = R =
1

4m
{m(0, 0, 0) +m(2a, 0, 0) +m(0, 2a, 0) +m(2a, 2a, 0)}

= (a, a, 0)

and so G is at the centre of the square and R2 = 2a2 . We can now use the parallel axis
theorem to relate the inertia tensor of the previous example to that of the present

I(O) − I(G) = 4m







2a2





1 0 0
0 1 0
0 0 1



− a2





1 1 0
1 1 0
0 0 0











= 4ma2





1 −1 0
−1 1 0

0 0 2



 .

35



From the previous example,

I(G) = 4ma2





1 0 0
0 1 0
0 0 2



 and hence

I(O) = 4ma2





1 + 1 0 − 1 0
0 − 1 1 + 1 0

0 0 2 + 2



 = 4ma2





2 −1 0
−1 2 0

0 0 4





Lecture 9: Eigenvectors of real, symmetric tensors

If T is a (2nd-rank) tensor an eigenvector n of T obeys (in any basis)

T n = t n .

The tensor acts on the eigenvector to produce a vector in the same direction, but changed
in length by a factor t (the eigenvalue).

9.1 Construction of the eigenvectors

The matrix equation to solve is simply rearranged to one with a zero rhs:
(

T − t I
)

n = 0.

You should know the standard result that such a matrix equation has a nontrivial solution
(n nonzero) if and only if

det
(

T − t I
)

≡ 0 .

i.e.
∣

∣

∣

∣

∣

∣

T11 − t T12 T13

T21 T22 − t T23

T31 T32 T33 − t

∣

∣

∣

∣

∣

∣

= 0 .

This equation, known as the characteristic or secular equation, is a cubic in t, giving 3
real solutions t(1), t(2) and t(3) and corresponding eigenvectors n(1), n(2) and n(3).

Example:

T =





1 1 0
1 0 1
0 1 1



 .

The characteristic equation reads

∣

∣

∣

∣

∣

∣

1 − t 1 0
1 −t 1
0 1 1 − t

∣

∣

∣

∣

∣

∣

= 0.
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Thus (1 − t){t(t− 1) − 1} − {(1 − t) − 0} = 0

and so
(1 − t){t2 − t− 2} = (1 − t)(t− 2)(t+ 1) = 0.

Thus the solutions are t = 1, t = 2 and t = −1.

We now find the eigenvector for each of these eigenvalues, writing n = (n1, n2, n3):

(1 − t)n1 + n2 = 0
n1 − t n2 + n3 = 0

n2 + (1 − t)n3 = 0.

For t = t(1) = 1, this is

n2 = 0
n1 − n2 + n3 = 0

n2 = 0







=⇒ n2 = 0 ;n3 = −n1 .

Note that we only get two equations: we could never expect the components to be determined
completely, since any multiple of n will also be an eigenvector. Thus n1 : n2 : n3 = 1 : 0 : −1
and a unit vector in the direction of n(1) is

n̂(1) =
1√
2
(1, 0,−1) .

For t = t(2) = 2, we have

−n1 + n2 = 0
n1 − 2n2 + n3 = 0

n2 − n3 = 0







=⇒ n2 = n3 = n1 .

Thus n1 : n2 : n3 = 1 : 1 : 1 and a unit vector in the direction of n(2) is

n̂(2) =
1√
3
(1, 1, 1) .

For t = t(3) = −1, a similar calculation (exercise) gives

n̂(3) =
1√
6
(1,−2, 1) .

Notes:

(1) We can equally well replace n by −n in any case.

(2) n̂(1) · n̂(2) = n̂(1) · n̂(3) = n̂(2) · n̂(3) = 0, so the eigenvectors are mutually orthogonal.
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9.2 Important theorem and proof

Theorem: If Tij is real and symmetric, its eigenvalues are real. The eigenvectors corre-
sponding to distinct eigenvalues are orthogonal.

Proof: Let A and B be eigenvectors, with eigenvalues a and b respectively, then

TijAj = aAi

TijBj = bBi

We multiply the first equation by B∗
i , and sum over i, giving

TijAjB
∗
i = aAiB

∗
i

We now take the complex conjugate of the second equation, multiply by Ai and sum over i,
to give

T ∗
ijB

∗
jAi = b∗B∗

iAi

Suppose Tij is Hermitian, T ∗
ij = Tji (which includes the special case of real and symmetric):

we have then created TijAjB
∗
i twice. Subtracting the two right-hand sides gives

(a− b∗)AiB
∗
i = 0 .

Case 1: If we choose B = A, AiA
∗
i =

∑3
i=1 |Ai|2 > 0, so

a = a∗ .

Thus, we have shown that the eigenvalues are real.

Since a is real and Tij are real, real Ai can be found: if A were complex, the real and
imaginary parts would make separate real eigenvectors having the same eigenvalue.

Case 2: If we choose B 6= A, and assume for now that a 6= b, then (a − b∗) is non-zero,
implying

A ·B = 0 .

Thus the eigenvectors are orthogonal if the eigenvalues are distinct.

9.3 Degenerate eigenvalues

This neat proof won’t always work. If the characteristic equation for the eigenvalue, t, takes
the form

(t(1) − t)(t(2) − t)2 = 0,

there is a repeated root and we have a doubly degenerate eigenvalue t(2).
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Claim: In the case of a real, symmetric tensor we can nevertheless always find TWO
mutually orthogonal solutions for n(2) (which are both orthogonal to n(1)).

Example

T =





0 1 1
1 0 1
1 1 0



 ⇒
∣

∣

∣
T − tI

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

−t 1 1
1 −t 1
1 1 −t

∣

∣

∣

∣

∣

∣

= 0 ⇒ t = 2 and t = −1 (twice) .

For t = t(1) = 2 with eigenvector n(1)

−2n1 + n2 + n3 = 0
n1 − 2n2 + n3 = 0
n1 + n2 − 2n3 = 0







=⇒







n2 = n3 = n1

n̂(1) = 1√
3
(1, 1, 1) .

For t = t(2) = −1 with eigenvector n(2)

n
(2)
1 + n

(2)
2 + n

(2)
3 = 0

is the only independent equation. This can be written as n(1) ·n(2) = 0 which is the equation
for a plane normal to n(1). Thus any vector orthogonal to n(1) is an eigenvector with eigen-
value −1. It is clearly possible to choose an infinite number of different pairs of orthogonal
vectors that are restricted to this plane, and thus orthogonal also to n(1).

If the characteristic equation is of form

(t(1) − t)3 = 0

then we have a triply degenerate eigenvalue t(1). In fact, this only occurs if the tensor is equal
to t(1)δij which means it is ‘isotropic’ and any direction is an eigenvector with eigenvalue t(1).

9.4 Diagonalisation of a real, symmetric tensor

In the basis {e i} the tensor Tij is, in general, non-diagonal. i.e. Tij is non-zero for i 6= j. But
we now show that it is always possible to find a basis in which the tensor becomes diagonal.
Moreover, this basis is such that the we use the normalised eigenvectors (the principal
axes) as the basis vectors.

It is relatively easy to see that this works, by considering the action of T on a vector V :

T V = T
∑

i

Vi ei
=
∑

i

Vi T e
i
.

If the basis vectors are eigenvectors with eigenvalues t(i), then

T V =
∑

i

Vi t
(i) e

i
,

so the effect of T is to multiply the components of the vector by the eigenvalues. From this,

it is easy to solve for the components of T : e.g. T · (1, 0, 0) = t(1)(1, 0, 0), so that T11 = t(1),

T21 = T31 = 0 etc. Thus, with respect to a basis defined by the eigenvectors or principal axes

39



of the tensor, the tensor has diagonal form. [ i.e. T ′ = diag{t(1), t(2), t(3)}. ] The diagonal

basis is often referred to as the ‘principal axes basis’:

T =





t(1) 0 0
0 t(2) 0
0 0 t(3)



 .

How do we get there? We want to convert to the basis where e i
′ = n(i), the normalised

eigenvectors of T . Thus the elements of the transformation matrix are

λij = e i
′ · e j = n(i) · e j = n

(i)
j ;

i.e. the rows of λ are the components of the normalised eigenvectors of T .

Note: In the diagonal basis the trace of a tensor is the sum of the eigenvalues; the deter-
minant of the tensor is the product of the eigenvalues. Since the trace and determinant are
invariants this means that in any basis the trace and determinant are the sum and products
of the eigenvalues respectively.

Example: Diagonalisation of the inertia tensor Consider the inertia tensor studied
earlier: four masses arranged in a square with the origin at the left hand corner

I(O) = 4ma2





2 −1 0
−1 2 0

0 0 4





It is easy to check (exercise) that the eigenvectors (or principal axes of inertia) are (e 1 + e 2)
(eigenvalue 4ma2), (e 1 − e 2) (eigenvalue 12ma2) and e 3 (eigenvalue 16ma2).

-

6

�
�

�
�

���

@
@

@
@

@@I e 1
′e 2

′

e 1
2a

e 2

2a

O
u u

u u

Defining the e i
′ basis as normalised eigenvectors: e 1

′ = 1√
2
(e 1 + e 2) ; e 2

′ = 1√
2
(−e 1 + e 2) ;

e 3
′ = e 3 , one obtains

λ =





1√
2

1√
2

0
−1√

2
1√
2

0

0 0 1



 ( a rotation of π/4 about e 3 axis)

and the inertia tensor in the basis {e i
′} has components I ′ij(O) =

(

λ I(O)λT
)

ij
so that

I ′(O) = 4ma2





1√
2

1√
2

0
−1√

2
1√
2

0

0 0 1









2 −1 0
−1 2 0

0 0 4









1√
2

−1√
2

0
1√
2

1√
2

0

0 0 1





= 4ma2





1 0 0
0 3 0
0 0 4



 .
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We see that the tensor is diagonal with diagonal elements which are the eigenvalues (principal
moments of inertia).

Remark: Diagonalisability is a very special and useful property of real, symmetric tensors.
It is a property also shared by the more general class of Hermitian operators which you will
meet in quantum mechanics in third year. A general tensor does not share the property. For
example a real non-symmetric tensor cannot be diagonalised.

Lecture 10: Fields

In physics we often have to consider properties that vary in some region of space e.g. tem-
perature of a body. To do this we require the concept of fields.

If to each point r in some region of ordinary 3D space there corresponds a scalar φ(x1, x2, x3),
then φ(r) is a scalar field.

Examples: temperature distribution in a body T (r), pressure in the atmosphere P (r),
electric charge density or mass density ρ(r), electrostatic potential φ(r).

Similarly a vector field assigns a vector V (x1, x2, x3) to each point r of some region.

Examples: velocity in a fluid v(r), electric current density J(r), electric field E(r), magnetic
field B(r)

A vector field in 2D can be represented graphically, at a carefully selected set of points r, by
an arrow whose length and direction is proportional to V (r) e.g. wind velocity on a weather
forecast chart.

10.1 Level surfaces of a scalar field

If φ(r) is a non-constant scalar field, then the equation φ(r) = c where c is a constant, defines
a level surface (or equipotential) of the field. Level surfaces do not intersect (otherwise φ
would be multi-valued at the point of intersection).

Familiar examples in two dimensions, where they are level curves rather than level surfaces,
are the contours of constant height on a geographical map, h(x1, x2) = c . Also isobars on a
weather map are level curves of pressure P (x1, x2) = c.

Examples in three dimensions:

(i) Suppose that
φ(r) = x2

1 + x2
2 + x2

3 = x2 + y2 + z2

The level surface φ(r) = c is a sphere of radius
√
c centred on the origin. As c is varied, we

obtain a family of level surfaces which are concentric spheres.

(ii) Electrostatic potential due to a point charge q situated at the point a is

φ(r) =
q

4πǫ0

1

|r − a|

The level surfaces are concentric spheres centred on the point a.
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(iii) Let φ(r) = k · r . The level surfaces are planes k · r = constant with normal k.

(iv) Let φ(r) = exp(ik · r) . Note that this a complex scalar field. Since k · r = constant is
the equation for a plane, the level surfaces are planes.

10.2 Gradient of a scalar field

How does a scalar field change as we change position? As an example think of a 2D contour
map of the height h = h(x, y) of a hill. If we are on the hill and move in the x−y plane then
the change in height will depend on the direction in which we move. In particular, there
will be a direction in which the height increases most steeply (‘straight up the hill’) We now
introduce a formalism to describe how a scalar field φ(r) changes as a function of r.

Let φ(r) be a scalar field. Consider 2 nearby points: P (position vector r) and Q (position
vector r + δr). Assume P and Q lie on different level surfaces as shown:

O

P

Q

r_ φ =

φ =

constant 2

constant 1

r_δ

Now use a Taylor series for a function of 3 variables to evaluate the change in φ as we move
from P to Q

δφ ≡ φ(r + δr) − φ(r)

= φ(x1 + δx1, x2 + δx2, x3 + δx3) − φ(x1, x2, x3)

=
∂φ(r)

∂x1

δx1 +
∂φ(r)

∂x2

δx2 +
∂φ(r)

∂x3

δx3 +O( δx2
i ).

We have of course assumed that all the partial derivatives exist. Neglecting terms of order
( δx2

i ) we can write

δφ = ∇ φ(r) · δr

where the 3 quantities
(

∇ φ(r)
)

i
=
∂φ(r)

∂xi

form the Cartesian components of a vector field. We write

∇ φ(r) ≡ e i

∂φ(r)

∂xi

= e 1

∂φ(r)

∂x1

+ e 2

∂φ(r)

∂x2

+ e 3

∂φ(r)

∂x3
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or in the old ‘x, y, z’ notation (where x1 = x, x2 = y and x3 = z)

∇ φ(r) = e 1

∂φ(r)

∂x
+ e 2

∂φ(r)

∂y
+ e 3

∂φ(r)

∂z

The vector field ∇φ(r), pronounced ‘grad phi’, is called the gradient of φ(r).

10.3 The operator ‘del’

We can think of the vector operator ∇ (pronounced ‘del’) acting on the scalar field φ(r)
to produce the vector field ∇φ(r).

In Cartesians: ∇ = e i

∂

∂xi

= e 1

∂

∂x1

+ e 2

∂

∂x2

+ e 3

∂

∂x3

We call ∇ an ‘operator’ since it operates on something to its right. It is a vector operator
since it has vector transformation properties.

10.4 Interpretation of the gradient

In deriving the expression for δφ above, we assumed that the points P and Q lie on different

level surfaces. Now consider the situation where P and Q are nearby points on the same

level surface. In that case δφ = 0 and so

δφ = ∇φ(r) · δr = 0

P

Q
r_δ

∆_φ

.

The infinitesimal vector δr lies in the level surface at r, and the above equation holds for all
such δr, hence

∇φ(r) is normal to the level surface at r.

Example Let φ = a · r where a is a constant vector.

∇ (a · r) =

(

e i

∂

∂xi

)

(ajxj) = e i ajδij = a

Here we have used the important property of partial derivatives
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∂xi

∂xj

= δij

Thus the level surfaces of a · r = c are planes orthogonal to a.

10.5 Directional derivative

Now consider the change, δφ, produced in φ by moving distance δs in some direction say ŝ.

Then δr = ŝ δs and
δφ = ∇φ(r) · δr = (∇φ(r) · ŝ) δs

As δs→ 0, the rate of change of φ as we move in the direction of ŝ is

dφ(r)

ds
= ŝ · ∇φ(r) = |∇φ(r)| cos θ (2)

where θ is the angle between ŝ and the normal to the level surface at r.

ŝ · ∇φ(r) is the directional derivative of the scalar field φ in the direction of ŝ.

Note that the directional derivative has its maximum value when s is parallel to ∇φ(r), and
is zero when s lies in the level surface. Therefore

∇φ points in the direction of the maximum rate of increase in φ

Also recall that this direction is normal to the level surface. For a familiar example think of
the contour lines on a map. The steepest direction is perpendicular to the contour lines.

Example: calculate the gradient of φ = r2 = x2 + y2 + z2

∇φ(r) =

(

e 1

∂

∂x
+ e 2

∂

∂y
+ e 3

∂

∂z

)

(x2 + y2 + z2)

= 2x e 1 + 2y e 2 + 2z e 3 = 2r

Example: Find the directional derivative of φ = xy(x + z) at point (1, 2,−1) in the (e 1 +
e 2)/

√
2 direction.

∇φ = (2xy + yz)e 1 + x(x+ z)e 2 + xye 3 = 2e 1 + 2e 3

at (1, 2,−1). Thus at this point

1√
2

(e 1 + e 2) · ∇φ =
√

2

Physical example: Let T (r) be the temperature of the atmosphere at the point r. An
object flies through the atmosphere with velocity v. Obtain an expression for the rate of
change of temperature experienced by the object.
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As the object moves from r to r + δr in time δt, it sees a change in temperature

δT (r) = ∇T (r) · δr.

For a small time interval, δT ≃ (dT/dt)δt and δr ≃ v δt, so dividing by δt gives

dT (r)

dt
= v · ∇T (r)

Lecture 11: More on differentiation of fields

11.1 Maxima and minima

From this reasoning, it is easy to see the criterion that has to be satisfied at a maximum or
minimum of a field f(r) (or a stationary point):

∇f = 0.

A more interesting case is a conditional extremum: find a stationary point of f subject to
the condition that some other function g(r) is constant. In effect, we need to see how f
varies as we move along a level line of the function g. If dr lies in that level line, then we
have

∇f · dr = ∇g · dr = 0.

But if dr points in a different direction, then ∇f · dr would be non-zero in general: this is
the difference between conditional and unconditional extrema.

BA

f(x,y)
dr

g(x,y) = const   

Consider the function f , which has a maximum at point
A. If we follow the dotted level line, on which the func-
tion g is a constant, the value of f constrained in this
way reaches a maximum at point B. Here, the direc-
tional derivative of f is zero along a vector dr that is
tangent to the level line: i.e. ∇f · dr = 0.

However, there is a very neat way of converting the problem into an unconditional one. Just
write

∇(f + λg) = 0,

where the constant λ is called a Lagrange multiplier. We want to choose it so that
∇(f + λg) · dr = 0 for any dr. Clearly it is satisfied for the initial case where dr lies in the
level line of g, in which case dr is perpendicular to ∇g – and also to ∇f . To make a general
vector, we have to add a component in the direction of ∇g – but the effect of moving in this
direction will be zero if we choose

λ = −(∇f · ∇g) / |∇g|2,

evaluated at the desired solution. Since we don’t know this in advance, λ is called an
undetermined multiplier.
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Example If we don’t know λ, what use is it? The answer is we find it out at the end.
Consider f = r2 and find a stationary point subject to the condition g = x+y = 1. We have
∇(x2 + y2 + z2 + λ[x + y]) = 0; in components, this is (2x + λ, 2y + λ, 2z) = 0, so we learn
z = 0 and x = y = −λ/2. Now, since x + y = 1, this requires λ = −1, and so the required
stationary point is (1/2, 1/2, 0).

11.2 Identities for gradients

If φ(r) and ψ(r) are real scalar fields, then:

1. Distributive law

∇
(

φ(r) + ψ(r)
)

= ∇φ(r) + ∇ψ(r)

Proof:

∇
(

φ(r) + ψ(r)
)

= e i

∂

∂xi

(

φ(r) + ψ(r)
)

= ∇φ(r) + ∇ψ(r)

2. Product rule

∇
(

φ(r) ψ(r)
)

= ψ(r) ∇φ(r) + φ(r) ∇ψ(r)

Proof:

∇
(

φ(r) ψ(r)
)

= e i

∂

∂xi

(

φ(r) ψ(r)
)

= e i

(

ψ(r)
∂φ(r)

∂xi

+ φ(r)
∂ψ(r)

∂xi

)

= ψ(r) ∇φ(r) + φ(r) ∇ψ(r)

3. Chain rule: If F (φ(r)) is a scalar field, then

∇F (φ(r)) =
∂F (φ)

∂φ
∇φ(r)

Proof:

∇F (φ(r)) = e i

∂

∂xi

F (φ(r)) = e i

∂F (φ)

∂φ

∂φ(r)

∂xi

=
∂F (φ)

∂φ
∇φ(r)

Example of Chain Rule: If φ(r) = r and F (φ(r)) = φ(r)n = rn, then

∇ (rn) = (n rn−1) r̂ = (n rn−2) r.
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11.3 More on vector operators

We have seen how ∇ acts on a scalar field to produce a vector field. We can make products
of the vector operator ∇ with other vector quantities to produce new operators and fields in
the same way as we could make scalar and vector products of two vectors. But great care is
required with the order in products since, in general, products involving operators are not
commutative.

For example, recall that the directional derivative of φ in direction ŝ was given by ŝ · ∇φ.
Generally, we can interpret A · ∇ as a scalar operator:

A · ∇ = Ai
∂

∂xi

i.e. A · ∇ acts on a scalar field to its right to produce another scalar field

(A · ∇) φ(r) = Ai

∂φ(r)

∂xi

= A1

∂φ(r)

∂x1

+ A2

∂φ(r)

∂x2

+ A3

∂φ(r)

∂x3

Actually we can also act with this operator on a vector field to get another vector field.

(A · ∇) V (r) = Ai
∂

∂xi

V (r) = Ai
∂

∂xi

(

Vj(r) e j

)

= e 1 (A · ∇)V1(r) + e 2 (A · ∇)V2(r) + e 3 (A · ∇)V3(r)

The alternative expression A ·
(

∇V (r)
)

is undefined because ∇V (r) doesn’t make sense.

11.4 The Laplacian operator ∇2

We may take the divergence of the gradient of a scalar field φ(r)

∇ · (∇φ(r)) =
∂

∂xi

∂

∂xi

φ(r) ≡ ∇2φ(r)

∇2 is the Laplacian operator, pronounced ‘del-squared’. In Cartesian coordinates

∇2 =
∂

∂xi

∂

∂xi

More explicitly

∇2 φ(r) =
∂2φ

∂x2
1

+
∂2φ

∂x2
2

+
∂2φ

∂x2
3

or
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂x2

Example

∇2 r2 =
∂

∂xi

∂

∂xi

xjxj =
∂

∂xi

(2xi) = 2δii = 6 .

In Cartesian coordinates, the effect of the Laplacian on a vector field A is defined to be

∇2A(r) =
∂

∂xi

∂

∂xi

A(r) =
∂2

∂x2
1

A(r) +
∂2

∂x2
2

A(r) +
∂2

∂x2
3

A(r)

The Laplacian acts on a vector field to produce another vector field.
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11.5 Divergence

We define the divergence of a vector field A (pronounced ‘div A’ ) as

divA(r) ≡ ∇ · A(r)

In Cartesian coordinates

∇ · A(r) =
∂

∂xi

Ai(r) =
∂A1(r)

∂x1

+
∂A2(r)

∂x2

+
∂A3(r)

∂x3

or
∂Ax(r)

∂x
+
∂Ay(r)

∂y
+
∂Az(r)

∂z
in x, y, z notation

Example: A(r) = r ⇒ ∇ · r = 3 a very useful & important result

∇ · r =
∂x1

∂x1

+
∂x2

∂x2

+
∂x3

∂x3

= 1 + 1 + 1 = 3

In suffix notation

∇ · r =
∂xi

∂xi

= δii = 3.

Lecture 12: Curl and its meaning

12.1 Curl

We define the curl of a vector field, curlA, as the vector field

curlA(r) ≡ ∇× A(r)

In Cartesian coordinates, this means that the ith component of ∇× A is

(

∇× A
)

i
= ǫijk

∂

∂xj

Ak

More explicitly, we can use a determinant form (cf. the expression of the vector product)

∇× A =

∣

∣

∣

∣

∣

∣

∣

e 1 e 2 e 3

∂
∂x1

∂
∂x2

∂
∂x3

A1 A2 A3

∣

∣

∣

∣

∣

∣

∣

or

∣

∣

∣

∣

∣

∣

∣

ex e y e z

∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣

∣

∣

∣

∣

∣

∣

.
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Example: A(r) = r ⇒ ∇× r = 0 another very useful & important result

∇× r = e i ǫijk
∂

∂xj

xk

= e i ǫijk δjk = e i ǫijj = 0

or, using the determinant formula, ∇× r =

∣

∣

∣

∣

∣

∣

∣

e 1 e 2 e 3

∂
∂x1

∂
∂x2

∂
∂x3

x1 x2 x3

∣

∣

∣

∣

∣

∣

∣

≡ 0

Example: Compute the curl of V = x2ye 1 + y2xe 2 + xyze 3:

∇× V =

∣

∣

∣

∣

∣

∣

∣

∣

e 1 e 2 e 3

∂
∂x

∂
∂y

∂
∂z

x2y y2x xyz

∣

∣

∣

∣

∣

∣

∣

∣

= e 1(xz − 0) − e 2(yz − 0) + e 3(y
2 − x2)

12.2 Physical interpretation of ‘div’ and ‘curl’

Full interpretations of the divergence and curl of a vector field are best left until after we have
studied the Divergence Theorem and Stokes’ Theorem respectively. However, we can gain
some intuitive understanding by looking at simple examples where div and/or curl vanish.

First consider the radial field A = r ; ∇ ·A = 3 ; ∇×A = 0.
We sketch the vector field A(r) by drawing at selected points
vectors of the appropriate direction and magnitude. These
give the tangents of ‘flow lines’. Roughly speaking, in this
example the divergence is positive because bigger arrows come
out of a point than go in. So the field ‘diverges’. (Once the
concept of flux of a vector field is understood this will make
more sense.)

v

v_

_

Now consider the field v = ω × r where ω is a constant
vector. One can think of v as the velocity of a point in
a rigid rotating body. We sketch a cross-section of the
field v with ω chosen to point out of the page. We can
calculate ∇× v as follows:

To evaluate a triple vector product like ∇ ×
(

ω × r
)

, our first instinct is to reach for the
BAC−CAB rule. We can do this, but need to be careful about the order. Since A is the
del operator, we can’t shift it to the right of any non-constant vector (C) here. So our
BAC−CAB rule should be written as

A× (B × C) = B(A · C) − (B · A)C not B(A · C) − C(A ·B).
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In the current case, this becomes

∇× (ω × r) = ω(∇ · r) − (ω · ∇)r.

The first term is 3ω. The second is −ωi(∂/∂xi)(xje j) = −ωiδije j = −ω.

Thus we obtain yet another very useful & important result:

∇×
(

ω × r
)

= 2ω

To understand intuitively the non-zero curl imagine that the flow lines are those of a rotating
fluid with a small ball centred on a flow line of the field. The centre of the ball will follow
the flow line. However the effect of the neighbouring flow lines is to make the ball rotate.
Therefore the field has non-zero ‘curl’ and the axis of rotation gives the direction of the curl.

For this rotation-like field, the divergence is zero. To prove this, write the components of
∇ · (ω × r) as

∂

∂xi

ǫijkωjrk = ǫijkωjδik = ǫijiωj = 0,

where we have differentiated rk to get δik and used the fact that ǫijk = 0 if two indices
are equal. So our two examples are complementary: one has zero curl, the other has zero
divergence.

Terminology:

1. If ∇ · A(r) = 0 in some region R, A is said to be solenoidal in R.

2. If ∇× A(r) = 0 in some region R, A is said to be irrotational in R.

12.3 Vector operator identities

There are many identities involving div, grad, and curl. It is not necessary to know all of
these, but you are advised to be able to produce from memory expressions for ∇r, ∇ · r,
∇× r, ∇φ(r), ∇(a · r), ∇× (a× r), ∇(fg), and first four identities given below. You should
be familiar with the rest and to be able to derive and use them when necessary.

Most importantly you should be at ease with div, grad and curl. This only comes through
practice and deriving the various identities gives you just that. In these derivations the
advantages of suffix notation, the summation convention and ǫijk will become apparent.

In what follows, φ(r) is a scalar field; A(r) and B(r) are vector fields.

12.3.1 Distributive laws

1. ∇ · (A + B) = ∇ · A + ∇ ·B

2. ∇× (A + B) = ∇× A + ∇×B

The proofs of these are straightforward using suffix or ‘x y z’ notation and follow from the
fact that div and curl are linear operations.
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12.3.2 Product laws

The results of taking the div or curl of products of vector and scalar fields are predictable
but need a little care:

3. ∇ · (φA) = φ ∇ · A + A · ∇φ

4. ∇× (φA) = φ (∇× A) + (∇φ) × A = φ (∇× A) − A×∇φ

Proof of (4):

∇× (φA) = e i ǫijk
∂

∂xj

(φAk)

= e i ǫijk

(

φ

(

∂Ak

∂xj

)

+

(

∂φ

∂xj

)

Ak

)

= φ (∇× A) + (∇φ) × A.

12.3.3 Products of two vector fields

5. ∇ · (A×B) = B · (∇× A) − A · (∇×B)

6. ∇× (A×B) = A (∇ ·B) − B (∇ · A) + (B · ∇)A − (A · ∇)B

The trickiest of these is the one involving the triple vector product. Remembering ‘BAC–
CAB’, we might be tempted to write ∇× (A × B) = A (∇ · B) − B (∇ · A); where do the
extra terms come from? To see this, write things in components, keeping terms in order. So
the ‘BAC–CAB’ rule actually says

[A× (B × C)]i = AjBiCj − AjBjCi.

When Ai = ∂/∂xi, the derivative ‘looks right’ and makes two terms from differentiating a
product.

12.3.4 Identities involving 2 gradients

7. ∇× (∇φ) = 0 curl grad φ is always zero.

8. ∇ · (∇× A) = 0 div curl A is always zero.

9. ∇× (∇× A) = ∇(∇ · A) − ∇2A

Proofs are easily obtained in Cartesian coordinates using suffix notation:

Proof of (7)
∇× (∇φ) = e i ǫijk

∂

∂xj

(∇φ)k = e i ǫijk
∂

∂xj

∂

∂xk

φ.

Now, partial derivatives commute, and so we will get the same contribution (∂/∂xj) (∂/∂xk)
twice, with the order of j and k reversed in ǫijk. This changes the sign of ǫijk, and so the
two terms exactly cancel each other.

Proof of (9) [A× (B × C)]i = AjBiCj − AjBjCi.

So now if the first two terms are derivatives, there is no product rule to apply. Moreover,
Aj and Bi will commute, since partial derivative commute. This immediately lets us prove
the result.
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Lecture 13: Integrals over Fields

13.1 Polar co-ordinate systems

Before commencing with integral vector calculus we review here polar co-ordinate systems.
Here dV indicates a volume element and dA an area element. Note that different conventions,
e.g. for the angles φ and θ, are sometimes used.

Plane polar co-ordinates

x = r cos
y = r sin

φ φ
φ

y

x

d
r

rd

dr
φdA = r dr d

φ
φ

Cylindrical polar co-ordinates

x y

sin

z

dz

dφ
φ

dφ

z = z
ρ

dρ

ρ

y = 
x =  

dV = 

ρ
ρ

ρ ρd dφdz

φcos
φ

Spherical polar co-ordinates

x y

2

z

φ
dφ

dr

r

rdθ

r sinθ d

θ
dθ

φ

x = r sin θ cosφ
y = r sinθ sinφ
z = r cosθ

dV = r sinθ dr dθ dφ

13.2 Volume integrals of scalar and vector fields

You should already be familiar with integration in IR1, IR2, IR3. Here we review integration
of a scalar field with an example.
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Consider a hemisphere of radius a centred on the e 3 axis and with bottom face at z = 0. If
the mass density (a scalar field) is ρ(r) = σ/r where σ is a constant, then what is the total
mass?

It is most convenient to use spherical polars, so that

M =

∫

hemisphere

ρ(r)dV =

∫ a

0

r2ρ(r)dr

∫ π/2

0

sin θdθ

∫ 2π

0

dφ = 2πσ

∫ a

0

rdr = πσa2

Now consider the centre of mass vector

MR =

∫

V

rρ(r)dV

This is our first example of integrating a vector field (here rρ(r)). To do so simply integrate
each component using r = r sin θ cosφe 1 + r sin θ sinφe 2 + r cos θe 3

MX =

∫ a

0

r3ρ(r)dr

∫ π/2

0

sin2 θdθ

∫ 2π

0

cosφ dφ = 0 since φ integral gives 0

MY =

∫ a

0

r3ρ(r)dr

∫ π/2

0

sin2 θdθ

∫ 2π

0

sinφ dφ = 0 since φ integral gives 0

MZ =

∫ a

0

r3ρ(r)dr

∫ π/2

0

sin θ cos θdθ

∫ 2π

0

dφ = 2πσ

∫ a

0

r2dr

∫ π/2

0

sin 2θ

2
dθ

=
2πσa3

3

[− cos 2θ

4

]π/2

0

=
πσa3

3
⇒ R =

a

3
e 3

13.3 Line integrals

P

Q

r

F(r)_ _

_

O

C _dr

As an example, consider a particle constrained to move
on a wire. Only the component of the force along the
wire does any work. Therefore the work done in moving
the particle from r to r + dr is

dW = F · dr .

The total work done in moving particle along a wire
which follows some curve C between two points P,Q is

WC =

∫ Q

P

dW =

∫

C

F (r) · dr .

This is a line integral along the curve C.

More generally let A(r) be a vector field defined in the region R, and let C be a curve in R
joining two points P and Q. r is the position vector at some point on the curve; dr is an
infinitesimal vector along the curve at r.

The magnitude of dr is the infinitesimal arc length: ds =
√

dr · dr.

We define t̂ to be the unit vector tangent to the curve at r (points in the direction of dr)

t̂ =
dr

ds
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In Cartesian coordinates, we have
∫

C

A · dr =

∫

C

Aidxi =

∫

C

(A1dx1 + A2dx2 + A3dx3) .

Note that, in general,

∫

C

A · dr depends on the path joining P and Q. For example, the

A1 component is A1(x1, x2, x3) and all three coordinates will generally change at once along
the path. Therefore, you can’t compute

∫

A1 dx1 just as a simple integral over x1 holding x2

and x3 constant. That would only be correct if the path also held x2 and x3 constant. This
is a common source of mistakes.

13.4 Parametric representation of a line integral

Often a curve in 3D can be parameterised by a single parameter e.g. if the curve were the
trajectory of a particle then time would be the parameter. Sometimes the parameter of a
line integral is chosen to be the arc-length s along the curve C.

Generally for parameterisation by λ (varying from λP to λQ)

xi = xi(λ), with λP ≤ λ ≤ λQ

then
∫

C

A · dr =

∫ λQ

λP

(

A · dr
dλ

)

dλ =

∫ λQ

λP

(

A1
dx1

dλ
+ A2

dx2

dλ
+ A3

dx3

dλ

)

dλ

If necessary, the curve C may be subdivided into sections, each with a different parameteri-
sation (piecewise smooth curve).

Example: A = (3x2 + 6y) e 1 − 14yze 2 + 20xz2e 3. Evaluate

∫

C

A · dr between the points

with Cartesian coordinates (0, 0, 0) and (1, 1, 1), along the paths C:

1. (0, 0, 0) → (1, 0, 0) → (1, 1, 0) → (1, 1, 1) (straight lines).

2. x = λ, y = λ2 z = λ3; from λ = 0 to λ = 1.

1. • Along the line from (0, 0, 0) to (1, 0, 0), we have y = z = 0, so dy = dz = 0,
hence dr = e 1 dx and A = 3x2 e 1, (here the parameter is x):

∫ (1,0,0)

(0,0,0)

A · dr =

∫ x=1

x=0

3x2 dx =
[

x3
]1

0
= 1

• Along the line from (1, 0, 0) to (1, 1, 0), we have x = 1, dx = 0, z = dz = 0,
so dr = e 2 dy (here the parameter is y) and

A =
(

3x2 + 6y
)∣

∣

x=1
e 1 = (3 + 6y) e 1.

∫ (1,1,0)

(1,0,0)

A · dr =

∫ y=1

y=0

(3 + 6y) e 1 · e 2 dy = 0.
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x

y

z

(1,0,0)

(1,1,0)

(1,1,1)

O

path 2

path 1

• Along the line from (1, 1, 0) to (1, 1, 1), we have x = y = 1, dx = dy = 0,
and hence dr = e 3 dz and A = 9 e 1 − 14z e 2 + 20z2 e 3, therefore

∫ (1,1,1)

(1,1,0)

A · dr =

∫ z=1

z=0

20z2 dz =

[

20

3
z3

]1

0

=
20

3

Adding up the 3 contributions we get

∫

C

A · dr = 1 + 0 +
20

3
=

23

3
along path (1)

2. To integrate A = (3x2+6y) e 1−14yze 2 +20xz2e 3 along path (2) (where the parameter
is λ), we write

r = λ e 1 + λ2 e 2 + λ3 e 3

dr

dλ
= e 1 + 2λ e 2 + 3λ2 e 3

A =
(

3λ2 + 6λ2
)

e 1 − 14λ5 e 2 + 20λ7 e 3 so that

∫

C

(

A · dr
dλ

)

dλ =

∫ λ=1

λ=0

(

9λ2 − 28λ6 + 60λ9
)

dλ =
[

3λ3 − 4λ7 + 6λ10
]1

0
= 5

Hence

∫

C

A · dr = 5 along path (2)

In this case, the integral of A from (0, 0, 0) to (1, 1, 1) depends on the path taken.

The line integral

∫

C

A ·dr is a scalar quantity. Another scalar line integral is

∫

C

f ds where

f(r) is a scalar field and ds is the infinitesimal arc-length introduced earlier.

Line integrals around a simple (doesn’t intersect itself) closed curve C are denoted by

∮

C

e.g.

∮

C

A · dr ≡ the circulation of A around C

We can also define vector line integrals e.g.
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1.

∫

C

A ds = e i

∫

C

Ai ds in Cartesian coordinates.

2.

∫

C

A× dr = e i ǫijk

∫

C

Aj dxk in Cartesians.

Example : Consider a current of magnitude I flowing along a wire following a closed path
C. The magnetic force on an element dr of the wire is Idr × B where B is the magnetic

field at r. Let B(r) = x e 1 + y e 2. Evaluate

∮

C

B × dr for a circular current loop of radius

a in the x− y plane, centred on the origin.

B = a cosφ e 1 + a sinφ e 2

dr = (−a sinφ e 1 + a cosφ e 2) dφ

Hence

∮

C

B × dr =

∫ 2π

0

(

a2 cos2 φ + a2 sin2 φ
)

e 3 dφ = e 3 a
2

∫ 2π

0

dφ = 2πa2 e 3

Lecture 14: The scalar potential

Consider again the work done by a force. If the force is conservative, i.e. total energy is
conserved, then the work done is equal to minus the change in potential energy

dV = −dW = −F · dr = −Fidxi

Now we can also write dV as

dV =
∂V

∂xi

dxi = (∇V )idxi

Therefore we can identify F = −∇V

Thus the force is minus the gradient of the (scalar) potential. The minus sign is conventional
and chosen so that potential energy decreases as the force does work.

In this example we knew that a potential existed (we postulated conservation of energy).
More generally we would like to know under what conditions can a vector field A(r) be
written as the gradient of a scalar field φ, i.e. when does A(r) = (±)∇φ(r) hold?

Aside: A simply connected region, R, is one for which every closed curve in R can be
shrunk continuously to a point while remaining entirely in R. The inside of a sphere is simply
connected while the region between two concentric cylinders is not simply connected: it is
doubly connected. For this course we shall be concerned with simply connected regions.

14.1 Theorems on scalar potentials

For a vector field A(r) defined in a simply connected region R, the following three statements
are equivalent, i.e. any one implies the other two:

1. A(r) can be written as the gradient of a scalar potential φ(r)
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A(r) = ∇φ(r) with φ(r) =

∫ r

r
0

A(r′) · dr′

where r
0

is some arbitrary fixed point in R.

2. (a)

∮

C

A(r′) · dr′ = 0, where C is any closed curve in R

(b) φ(r) ≡
∫ r
r

0

A(r′) · dr′ does not depend on the path between r
0

and r.

3. ∇× A(r) = 0 for all points r ∈ R

Proof that (2) implies (1)
Consider two neighbouring points r and r + dr, define the potential as an integral that is
independent of path:

φ(r) =

∫ r

r
0

A(r′) · dr′.

The starting point, r
0

is arbitrary, so the potential can always have an arbitrary constant
added to it. Now, the change in φ corresponding to a change in r is

dφ(r) = A(r) · dr.

But, by Taylor’s theorem, we also have

dφ(r) =
∂φ(r)

∂xi

dxi = ∇φ(r) · dr

Comparing the two different equations for dφ(r), which hold for all dr, we deduce

A(r) = ∇φ(r)

Thus we have shown that path independence implies the existence of a scalar potential φ
for the vector field A. (Also path independence implies 2(a) ).

Proof that (1) implies (3) (the easy bit)

A = ∇φ ⇒ ∇× A = ∇×
(

∇φ
)

≡ 0

because curl (grad φ) is identically zero (ie it is zero for any scalar field φ).

Proof that (3) implies (2) (the hard bit)
We defer the proof until we have met Stokes’ theorem.

Terminology: A vector field is

• irrotational if ∇× A(r) = 0.

• conservative if A(r) = ∇φ .

• For simply connected regions we have shown irrotational and conservative are synony-
mous. But note that for a multiply connected region this is not the case.

57



14.2 Finding scalar potentials

We have shown that the scalar potential φ(r) for a conservative vector field A(r) can be
constructed from a line integral which is independent of the path of integration between the
endpoints. Therefore, a convenient way of evaluating such integrals is to integrate along a
straight line between the points r

0
and r. Choosing r

0
= 0, we can write this integral in

parametric form as follows:

r′ = λ r where {0 ≤ λ ≤ 1} so dr′ = dλ r and therefore

φ(r) =

∫ λ=1

λ=0

A(λ r) · (dλ r)

Example: Let A(r) = 2 (a · r) r + r2 a where a is a constant vector.

It is straightforward to show that ∇× A = 0. Thus

φ(r) =

∫ r

0

A(r′) · dr′ =

∫ 1

0

A(λ r) · (dλ r)

=

∫ 1

0

[

2 (a · λ r)λ r + λ2r2 a

]

· (dλ r)

=

[

2 (a · r) r · r + r2 (a · r)
] ∫ 1

0

λ2 dλ

= r2 (a · r)

Sometimes it is possible to see the answer without constructing it:

A(r) = 2 (a · r) r + r2 a = (a · r)∇r2 + r2 ∇(a · r) = ∇
(

(a · r) r2 + const

)

in agreement with what we had before if we choose const = 0. While this method is not as
systematic as Method 1, it can be quicker if you spot the trick.

14.3 Conservative forces: conservation of energy

Let us now see how the name conservative field arises. Consider a vector field F (r) corre-
sponding to the only force acting on some test particle of mass m. We will show that for a
conservative force (where we can write F = −∇V ) the total energy is constant in time.

Proof: The particle moves under the influence of Newton’s Second Law:

mr̈ = F (r).

Consider a small displacement dr along the path taking time dt. Then

mr̈ · dr = F (r) · dr = −∇V (r) · dr.

Integrating this expression along the path from r
A

at time t = tA to r
B

at time t = tB yields

m

∫ r
B

r
A

r̈ · dr = −
∫ r

B

r
A

∇V (r) · dr.
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We can simplify the left-hand side of this equation to obtain

m

∫ r
B

r
A

r̈ · dr = m

∫ tB

tA

r̈ · ṙ dt = m

∫ tB

tA

1
2

d
dt
ṙ2dt = 1

2
m[v2

B − v2
A],

where vA and vB are the magnitudes of the velocities at points A and B respectively.

The right-hand side simply gives

−
∫ r

B

r
A

∇V (r) · dr = −
∫ r

B

r
A

dV = VA − VB

where VA and VB are the values of the potential V at r
A

and r
B
, respectively. Therefore

1

2
mv2

A + VA =
1

2
mv2

B + VB

and the total energy E = 1
2
mv2 + V is conserved, i.e. constant in time.

14.4 Physical examples of conservative forces

Newtonian Gravity and the electrostatic force are both conservative. Frictional forces are not
conservative; energy is dissipated and work is done in traversing a closed path. In general,
time-dependent forces are not conservative.

The foundation of Newtonian Gravity is Newton’s Law of Gravitation. The force F on
a particle of mass m1 at r due to a particle of mass m at the origin is given by

F = − Gmm1

r2
r̂,

where G ≃ 6.673 × 10−11 N m2 kg2 is Newton’s Gravitational Constant.

The gravitational field G(r) (due to the mass at the origin) is formally defined as

G(r) = lim
m1→0

F (r)

m1

.

so that the gravitational field due to the test mass m1 can be ignored. The gravitational
potential can be obtained by spotting the direct integration for G = −∇φ

φ = −Gm
r

.

Alternatively, to calculate by a line integral choose r
0

= ∞ then

φ(r) = −
∫ r

∞
G(r′) · dr′ = −

∫ 1

∞
G(λr) · dλr

=

∫ 1

∞

Gm (r̂ · r)
r2

dλ

λ2
= −Gm

r

NB In this example the vector field G is singular at the origin r = 0. This implies we have
to exclude the origin and it is not possible to obtain the scalar potential at r by integration
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along a path from the origin. Instead we integrate from infinity, which in turn means that
the gravitational potential at infinity is zero.

NB Since F = m1G = −∇(m1φ) the potential energy of the mass m1 is V = m1φ. The
distinction (a convention) between potential and potential energy is a common source of
confusion.

Electrostatics: Coulomb’s Law states that the force F on a particle of charge q1 at r in
the electric field E due to a particle of charge q at the origin is given by

F = q1E =
q1 q

4πǫ0 r2
r̂

where ǫ0 = 8.854 187 817 · · · × 10−12C2N−1m−2 is the Permittivity of Free Space and
the 4π is conventional. More strictly,

E(r) = lim
q1→0

F (r)

q1
.

The electrostatic potential is taken as φ = 1/(4πǫ0r) (obtained by integrating E = −∇φ
from infinity to r) and the potential energy of a charge q1 in the electric field is V = q1φ.

Note that mathematically electrostatics and gravitation are very similar, the only real dif-
ference being that gravity between two masses is always attractive, whereas like charges
repel.

Lecture 15: Surface integrals

S

S

d

n̂_ Let S be a two-sided surface in ordinary three-
dimensional space as shown. If an infinitesimal element
of surface with (scalar) area dS has unit normal n̂, then
the infinitesimal vector element of area is defined by

dS = n̂ dS

Example: if S lies in the (x, y) plane, then dS = e 3 dx dy in Cartesian coordinates.

Physical interpretation: dS · â gives the projected (scalar) element of area onto the plane
with unit normal â.

For closed surfaces (e.g. a sphere) we choose n̂ to be the outward normal. For open
surfaces, the sense of n̂ is arbitrary — except that it is chosen in the same sense for all
elements of the surface.
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If A(r) is a vector field defined on S, we define the (normal) surface integral

∫

S

A · dS =

∫

S

(

A · n̂
)

dS = lim
m→ ∞
δS → 0

m
∑

i=1

(

A(r i) · n̂ i
)

δSi

where we have formed the Riemann sum by dividing the surface S into m small areas, the ith
area having vector area δS i. Clearly, the quantity A(r i) · n̂ i is the component of A normal

to the surface at the point r i

Note that the integral over S is really a double integral, since it is an integral over a 2D

surface. Sometimes the integral over a closed surface is denoted by

∮

S

A · dS.

15.1 Parametric form of the surface integral

Often, we will need to carry out surface integrals explicitly, and we need a procedure for
turning them into double integrals. Suppose the points on a surface S are defined by two
real parameters u and v:-

r = r(u, v) = (x(u, v), y(u, v), z(u, v)) then

• the lines r(u, v) for fixed u, variable v, and

• the lines r(u, v) for fixed v, variable u

are parametric lines and form a grid on the surface S as shown. In other words, u and v
form a coordinate system on the surface – although usually not a Cartesian one.
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If we change u and v by du and dv respectively, then r changes by dr:-

dr =
∂r

∂u
du +

∂r

∂v
dv,

so that there are two linearly independent vectors generated by varying either u or v. The
vector element of area, dS, generated by these two vectors has magnitude equal to the area of
the infinitesimal parallelogram shown in the figure, and points perpendicular to the surface:

dS =

(

∂r

∂u
du

)

×
(

∂r

∂v
dv

)

=

(

∂r

∂u
× ∂r

∂v

)

du dv

dS =
(

∂r
∂u

× ∂r
∂v

)

du dv

Finally, our integral is parameterised as

∫

S

A · dS =

∫

v

∫

u

A ·
(

∂r

∂u
× ∂r

∂v

)

du dv.

Fortunately, most practical cases don’t need the detailed form of this expression, since we
tend to use orthogonal coordinates, where the vectors ∂r/∂u and ∂r/∂v are perpendicular
to each other. It is normally clear from the geometry of the situation whether this is the
case, as it is in spherical polars:
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θ

φ

r

e
e

e_

_

_

e

e

_

_1

2

e_
3

r

φ

θ

dS

The normalised vectors (shown in the figure)

e θ =
∂r

∂θ

/∣

∣

∣

∣

∂r

∂θ

∣

∣

∣

∣

; eφ =
∂r

∂φ

/∣

∣

∣

∣

∂r

∂φ

∣

∣

∣

∣

; e r = r̂

form an orthonormal set. This is the basis for spherical polar co-ordinates and is an example
of a non-Cartesian basis since the e θ, eφ, e r depend on position r. In this case, taking u = θ
and v = φ, the element of area is obviously

dS =

∣

∣

∣

∣

∂r

∂θ

∣

∣

∣

∣

∣

∣

∣

∣

∂r

∂φ

∣

∣

∣

∣

dθ dφ e r.

The length of an arc in the θ direction is rdθ and in the φ direction is r sin θ dφ. Thus the
vector element of area is

dS = r2 sin θ dθ dφ e r.

To prove this less intuitively, write down the explicit position vector using spherical polar
co-ordinates θ and φ:

r = r sin θ cosφ e 1 + r sin θ sinφ e 2 + r cos θ e 3 {0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π}

so
∂r

∂θ
= r cos θ cosφ e 1 + r cos θ sinφ e 2 − r sin θ e 3

and
∂r

∂φ
= −r sin θ sinφ e 1 + r sin θ cosφ e 2 + 0 e 3

Therefore

∂r

∂θ
× ∂r

∂φ
=

∣

∣

∣

∣

∣

∣

e 1 e 2 e 3

a cos θ cosφ a cos θ sinφ −a sin θ
−a sin θ sinφ +a sin θ cosφ 0

∣

∣

∣

∣

∣

∣

= a2 sin2 θ cosφ e 1 + a2 sin2 θ sinφ e 2 + a2 sin θ cos θ
[

cos2 φ+ sin2 φ
]

e 3

= a2 sin θ (sin θ cosφ e 1 + sin θ sinφ e 2 + cos θ e 3)

= a2 sin θ r̂

⇒ dS =
∂r

∂θ
× ∂r

∂φ
dθ dφ = a2 sin θdθ dφ r̂
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Example Evaluate separately the scalar and vector areas of the upper hemisphere of a
sphere of radius a. This means

∫

|dS| and
∫

dS respectively. In the former case, we know
the answer should be half that of the sphere, i.e. 2πa2. In detail, |dS| = a2 sin θ dθ dφ, so

∫

|dS| =

∫ π/2

0

∫ 2π

0

a2 sin θ dθ dφ = 2πa2

∫ π/2

0

sin θ dθ = 2πa2

For the vector case, we really need to write r̂ = (sin θ cosφ, sin θ sinφ, cos θ) and find all three
components. But clearly the x and y components will vanish by symmetry, so we just need
the e 3 component:

∫

dS = e 3

∫ π/2

0

∫ 2π

0

a2 sin θ cos θ dθ dφ = e 3 2πa2

∫ π/2

0

sin θ cos θ dθ

The final integral uses the standard double-angle formula sin 2θ = 2 sin θ cos θ, so this gives

us
∫ π/2

0
sin θ cos θ dθ =

∫ π

0
sinα dα/4 = 1/2 and the required vector area is πa2e 3. Note that

this is exactly the negative of the circle that forms the base of the hemisphere. Thus, if we
carried out the integral over the whole surface of hemisphere = circular cap, the result is
zero. This is no accident, and we will shortly prove that the vector area of a closed surface
is always zero:

∮

dS = 0.

15.2 The concept of flux

θ

dS_
v_

dS cosθ

Let v(r) be the velocity at a point r in a moving fluid.
In a small region, where v is approximately constant,
the volume of fluid crossing the element of vector area
dS = n̂ dS in time dt is

(∣

∣v
∣

∣ dt
)

(dS cos θ) =
(

v · dS
)

dt

since the area normal to the direction of flow is v̂ · dS =
dS cos θ.

Therefore

v · dS = volume per unit time of fluid crossing dS

hence

∫

S

v · dS = volume per unit time of fluid crossing a finite surface S

More generally, for a vector field A(r):

The surface integral

∫

S

A · dS is called the flux of A through the surface S.

The concept of flux is useful in many different contexts e.g. flux of molecules in an gas;
electromagnetic flux etc
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Example: Let S be the surface of sphere x2 + y2 + z2 = a2. Evaluate the total flux of the
vector field A = r̂/r2 out of the sphere.

This is easy, since A and dS are parallel, so A·dS = dS/r2. Therefore, we want the total area
of the surface of the sphere, divided by r2, giving 4π. Let’s now prove this more pedantically,
using the explicit expression for dS and carrying out the integral. We have

dS =
∂r

∂θ
× ∂r

∂φ
dθ dφ = r2 sin θdθ dφ r̂.

On the surface S, r = a and the vector field A(r) = r̂/a2. Thus the flux of A is

∫

S

A · dS =

∫ π

0

sin θdθ

∫ 2π

0

dφ = 4π

Lecture 16: Volume integrals and the divergence theo-

rem

16.1 Parametric form of volume integrals

Here we discuss the parametric form of volume integrals. Suppose we can write r in terms
of three real parameters u, v and w, so that r = r(u, v, w). If we make a small change in
each of these parameters, then r changes by

dr =
∂r

∂u
du +

∂r

∂v
dv +

∂r

∂w
dw

Along the curves {v = constant, w = constant}, we have dv = 0 and dw = 0, so dr is simply

dr
u

=
∂r

∂u
du

with dr
v

and dr
w

having analogous definitions.

dr_

_dr

u

w dr_
v

The vectors dr
u
, dr

v
and dr

w
form the sides of an in-

finitesimal parallelepiped of volume

dV =
∣

∣dr
u
· dr

v
× dr

w

∣

∣

dV =

∣

∣

∣

∣

∂r

∂u
· ∂r
∂v

× ∂r

∂w

∣

∣

∣

∣

du dv dw

Example: Consider a circular cylinder of radius a, height c. We can parameterise r using
cylindrical polar coordinates. Within the cylinder, we have

r = ρ cosφ e 1 + ρ sinφ e 2 + ze 3 {0 ≤ ρ ≤ a, 0 ≤ φ ≤ 2π, 0 ≤ z ≤ c}
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Thus
∂r

∂ρ
= cosφ e 1 + sinφ e 2

∂r

∂φ
= −ρ sinφ e 1 + ρ cosφ e 2

∂r

∂z
= e 3

and so dV =

∣

∣

∣

∣

∂r

∂ρ
· ∂r
∂φ

× ∂r

∂z

∣

∣

∣

∣

dρ dφ dz = ρ dρ dφ dz

φ

ρ

z

e

e

ee

e_ e

_

_

_ z

1 2
_

_
3

ρ

φ

c

0

dV

The volume of the cylinder is

∫

V

dV =

∫ z=c

z=0

∫ φ=2π

φ=0

∫ ρ=a

ρ=0

ρ dρ dφ dz = π a2c.

Cylindrical basis: the normalised vectors (shown on the figure) form a non-Cartesian basis
where

e ρ =
∂r

∂ρ

/∣

∣

∣

∣

∂r

∂ρ

∣

∣

∣

∣

; eφ =
∂r

∂φ

/∣

∣

∣

∣

∂r

∂φ

∣

∣

∣

∣

; e z =
∂r

∂z

/∣

∣

∣

∣

∂r

∂z

∣

∣

∣

∣

Exercise: For Spherical Polars r = r sin θ cosφ e 1 + r sin θ sinφ e 2 + r cos θ e 3 show that

dV =

∣

∣

∣

∣

∂r

∂r
· ∂r
∂θ

× ∂r

∂φ

∣

∣

∣

∣

dr dθ dφ = r2 sin θ dr dθ dφ

Example Consider the integrals

I1 =

∫

V

(x+ y + z) dV , I2 =

∫

V

z dV ,

where the volume V is the positive octant of the unit sphere:

x2 + y2 + z2 ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0 .

Explain why I1 = 3I2 and use spherical polar co-ordinates coordinates to evaluate I2 and
hence I1. Evaluate the centre of mass vector for such an octant of uniform mass density.

In Cartesian co-ordinates dV = dx dy dz and so we see that under the cyclic permutation of
co-ordinates x→ y → z → x etc. and the region of integration remains unchanged so that

∫

V

x dx dy dz =

∫

V

y dy dz dx =

∫

V

z dz dx dy

and thus I1 = 3I2.

66



In spherical polar co-ordinates z = r cos θ and dV = r2 sin θ dr dθ dφ

I2 =

∫

V

z dV =

∫ 1

0

r3 dr

∫ π/2

0

cos θ sin θ dθ

∫ π/2

0

dφ

Now

∫ 1

0

r3 dr =

[

r4

4

]1

0

=
1

4
,

∫ π/2

0

dφ =
π

2
∫ π/2

0

cos θ sin θ dθ =
1

2

∫ π/2

0

sin 2θ dθ =
1

4
[− cos 2θ]π/2

0 =
1

2

Putting it all together gives the result : I2 = π
16

.

The total mass is given in general by

M =

∫

V

ρ(r) dV

but here ρ is a constant and hence

M = ρ

∫

V

dV = ρ

∫ 1

0

r2dr

∫ π/2

0

sin θdθ

∫ π/2

0

dφ = ρ
1

3
× 1 × π

2
=
ρπ

6

Now consider the centre of mass vector

MR =

∫

V

rρ(r) dV = ρ

∫

V

r dV

Taking Cartesian components gives

MX = ρ

∫

V

x dV = ρ I2

MY = ρ

∫

V

y dV = ρ I2

MZ = ρ

∫

V

z dV = ρ I2

Thus

X = Y = Z =
ρ I2
M

=
6M

π

1

M

π

16
=

3

8

16.2 Integral definition of divergence

If A is a vector field in the region R, and P is a point in R, then the divergence of A at P
may be defined by

divA = lim
V→0

1

V

∫

S

A·dS
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where S is a closed surface in R which encloses the volume V . The limit must be taken so
that the point P is within V .

This definition of divA is basis independent.

We now prove that our original definition of div is recovered in Cartesian co-ordinates

Let P be a point with Cartesian coordinates
(x0, y0, z0) situated at the centre of a small
rectangular block of size δ1 × δ2 × δ3, so its
volume is δV = δ1 δ2 δ3.

• On the front face of the block, orthog-
onal to the x axis at x = x0 + δ1/2
we have outward normal n̂ = e 1 and so
dS = e 1 dy dz

• On the back face of the block orthog-
onal to the x axis at x = x0 − δ1/2 we
have outward normal n̂ = −e 1 and so
dS = −e 1 dy dz

O

dS

dS_

_

dz

dy

P

δ1

δ2

δ
3

z

y

x

Hence A · dS = ±A1 dy dz on these two faces. Let us denote the two surfaces orthogonal to
the e 1 axis by S1.

The contribution of these two surfaces to the integral

∫

S

A · dS is given by

∫

S1

A · dS =

∫

z

∫

y

{

A1(x0 + δ1/2, y, z) − A1(x0 − δ1/2, y, z)

}

dy dz

=

∫

z

∫

y

{[

A1(x0, y, z) +
δ1
2

∂A1(x0, y, z)

∂x
+ O(δ2

1)

]

−
[

A1(x0, y, z) − δ1
2

∂A1(x0, y, z)

∂x
+ O(δ2

1)

]}

dy dz

=

∫

z

∫

y

δ1
∂A1(x0, y, z)

∂x
dy dz

where we have dropped terms of O(δ2
1) in the Taylor expansion of A1 about (x0, y, z).

So
1

δV

∫

S1

A · dS =
1

δ2 δ3

∫

z

∫

y

∂A1(x0, y, z)

∂x
dy dz

As we take the limit δ1, δ2, δ3 → 0 the integral tends to ∂A1(x0,y0,z0)
∂x

δ2 δ3 and we obtain

lim
δV →0

1

δV

∫

S1

A · dS =
∂A1(x0, y0, z0)

∂x

With similar contributions from the other 4 faces, we find

divA =
∂A1

∂x
+
∂A2

∂y
+
∂A3

∂z
= ∇ · A

in agreement with our original definition in Cartesian co-ordinates.
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Lecture 17: The divergence theorem and continuity

Note that the integral definition gives an intuitive understanding of the divergence in terms
of net flux leaving a small volume around a point r. In pictures: for a small volume dV

dV dV dV

(flux in = flux out)
div A >  0 div A < 0 div A = 0___

We now show that this connection holds for any volume.

17.1 The divergence theorem (Gauss’s theorem)

If A is a vector field in a volume V , and S is the closed surface bounding V , then

∫

V

∇ · A dV =

∫

S

A · dS

Proof : We derive the divergence theorem by making use of the integral definition of div A

divA = lim
V→0

1

V

∫

S

A · dS.

Since this definition of div A is valid for volumes of arbitrary shape, we can build a smooth
surface S from a large number, N , of blocks of volume ∆V i and surface ∆Si. We have

divA(ri) =
1

∆V i

∫

∆Si

A · dS + (ǫi)

where ǫi → 0 as ∆V i → 0. Now multiply both sides by ∆V i and sum over all i

N
∑

i=1

divA(ri) ∆V i =
N
∑

i=1

∫

∆Si

A · dS +
N
∑

i=1

ǫi ∆V i

On rhs the contributions from surface elements interior to S cancel. This is because where
two blocks touch, the outward normals are in opposite directions, implying that the contri-
butions to the respective integrals cancel.

Taking the limit N → ∞ we have, as claimed,

∫

V

∇ · A dV =

∫

S

A · dS .

69



17.2 Examples of the divergence theorem

Volume of a body:

Consider the volume of a body:

V =

∫

V

dV

Recalling that ∇ · r = 3 we can write

V =
1

3

∫

V

∇ · r dV

which using the divergence theorem becomes

V =
1

3

∫

S

r · dS

Example: Consider the hemisphere x2 + y2 + z2 ≤ a2 centred on e 3 with bottom face at
z = 0. Recalling that the divergence theorem holds for a closed surface, the above equation
for the volume of the hemisphere tells us

V =
1

3

[∫

hemisphere

r · dS +

∫

bottom

r · dS
]

.

On the bottom face dS = −e 3 dS so that r · dS = −z dS = 0 since z = 0. Hence the only
contribution comes from the (open) surface of the hemisphere and we see that

V =
1

3

∫

hemisphere

r · dS .

We can evaluate this by using spherical polars for the surface integral. As was derived above,
for a hemisphere of radius a

dS = a2 sin θ dθ dφ e r .

On the hemisphere r · dS = a3 sin θ dθ dφ so that

∫

S

r · dS = a3

∫ π/2

0

sin θ dθ

∫ 2π

0

dφ = 2πa3

giving the anticipated result

V =
2πa3

3
.

17.3 Continuity equation

Consider a fluid with density field ρ(r) and velocity field v(r). We have seen previously that
the volume flux (volume per unit time) flowing across a surface is given by

∫

S
v · dS. The

corresponding mass flux (mass per unit time) is given by

∫

S

ρv · dS ≡
∫

S

J · dS

where J = ρv is called the mass current.
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Now consider a volume V bounded by the closed surface S containing no sources or sinks of
fluid. Conservation of mass means that the outward mass flux through the surface S must
be equal to the rate of decrease of mass contained in the volume V .

∫

S

J · dS = −∂M
∂t

.

The mass in V may be written as M =
∫

V
ρ dV . Therefore we have

∂

∂t

∫

V

ρ dV +

∫

S

J · dS = 0 .

We now use the divergence theorem to rewrite the second term as a volume integral and we
obtain

∫

V

[

∂ρ

∂t
+ ∇ · J

]

dV = 0

Now since this holds for arbitrary V we must have that

∂ρ

∂t
+ ∇ · J = 0 .

This equation, known as the continuity equation, appears in many different contexts since
it holds for any conserved quantity. Here we considered mass density ρ and mass current J
of a fluid; but equally it could have been number density of molecules in a gas and current
of molecules; electric charge density and electric current vector; thermal energy density and
heat current vector; or even more abstract conserved quantities such as probability density.

17.4 Sources and sinks

Static case: Consider time independent behaviour where ∂ρ/∂t = 0. The continuity equa-
tion tells us that for the density to be constant in time we must have ∇ · J = 0 so that flux
into a point equals flux out.

However if we have a source or a sink of the field, the divergence is not zero at that point.
In general the quantity 1

V

∫

S

A · dS

tells us whether there are sources or sinks of the vector field A within V : if V contains

• a source, then

∫

S

A · dS =

∫

V

∇ · A dV > 0

• a sink, then

∫

S

A · dS =

∫

V

∇ · A dV < 0

If S contains neither sources nor sinks, then

∫

S

A · dS = 0.

As an example consider electrostatics. You will have learned that electric field lines are
conserved and can only start and stop at charges. A positive charge is a source of electric
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field (i.e. creates a positive flux) and a negative charge is a sink (i.e. absorbs flux or creates
a negative flux).

The electric field due to a charge q at the origin is

E =
q

4πǫ0r2
r̂.

It is easy to verify that ∇ · E = 0 except at the origin where the field is singular.

The flux integral for this type of field across a sphere (of any radius) around the origin was
evaluated previously and we find the flux out of the sphere as:

∫

S

E · dS =
q

ǫ0

Now since ∇ · E = 0 away from the origin the results holds for any surface enclosing the

origin. Moreover if we have several charges enclosed by S then

∫

S

E · dS =
∑

i

qi
ǫ0
.

This recovers Gauss’ Law of electrostatics.

We can go further and consider a charge density of ρ(r) per unit volume. Then

∫

S

E · dS =

∫

V

ρ(r)

ǫ0
dV .

We can rewrite the lhs using the divergence theorem

∫

V

∇ · E dV =

∫

V

ρ(r)

ǫ0
dV .

Since this must hold for arbitrary V we see

∇ · E =
ρ(r)

ǫ0

which holds for all r and is one of Maxwell’s equations of Electromagnetism.
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Lecture 18: Curl and Stokes’ Theorem

18.1 Two definitions of curl

18.1.1 Line integral definition of curl

Let ∆S be a small planar surface containing the
point P , bounded by a closed curve C, with unit
normal n̂ and (scalar) area ∆S. Let A be a vector
field defined on ∆S.

C

S∆ P

n_^
.

The component of ∇× A parallel to n̂ is defined to be

n̂·
(

∇× A
)

= lim
∆S→0

1

∆S

∮

C

A·dr

NB: the integral around C is taken in the right-hand sense with respect to the normal n̂ to
the surface – as in the figure above.

This definition of curl is independent of the choice of basis. The usual Cartesian form
for curlA can be recovered from this general definition by considering small rectangles in
the (e 1−e 2), (e 2−e 3) and (e 3−e 1) planes respectively, but you are not required to prove
this.

18.1.2 Cartesian form of curl

Let P be a point with Cartesian coordinates (x0, y0, z0) situated at the centre of a small
rectangle C = abcd of size δ1 × δ2, area ∆S = δ1 δ2, in the (e 1−e 2) plane.

73



e

e

e

n =

_

_

_

_ e_3

3

2

1

x0

y
0

δ

δ2

1

a b

cd

^

The line integral around C is given by the sum of four terms
∮

C

A · dr =

∫ b

a

A · dr +

∫ c

b

A · dr +

∫ d

c

A · dr +

∫ a

d

A · dr

Since r = xe 1 + ye 2 + ze 3, we have dr = e 1 dx along d→ a and c→ b, and dr = e 2 dy along
a→ b and d→ c. Therefore

∮

C

A · dr =

∫ b

a

A2 dy −
∫ b

c

A1 dx −
∫ c

d

A2 dy +

∫ a

d

A1 dx

For small δ1 & δ2, we can Taylor expand the integrands, viz
∫ a

d

A1 dx =

∫ a

d

A1(x, y0 − δ2/2, z0) dx

=

∫ x0+δ1/2

x0−δ1/2

[

A1(x, y0, z0) − δ2
2

∂A1(x, y0, z0)

∂y
+ O(δ2

2)

]

dx

∫ b

c

A1 dx =

∫ b

c

A1(x, y0 + δ2/2, z0) dx

=

∫ x0+δ1/2

x0−δ1/2

[

A1(x, y0, z0) +
δ2
2

∂A1(x, y0, z0)

∂y
+ O(δ2

2)

]

dx

so

1

∆S

[∫ a

d

A · dr +

∫ c

b

A · dr
]

=
1

δ1 δ2

[∫ a

d

A1 dx −
∫ b

c

A1 dx

]

=
1

δ1δ2

∫ x0+δ1/2

x0−δ1/2

[

−δ2
∂A1(x, y0, z0)

∂y
+ O(δ2

2)

]

dx

→ −∂A1(x0, y0, z0)

∂y
as δ1, δ2 → 0

A similar analysis of the line integrals along a→ b and c→ d gives

1

∆S

[∫ b

a

A · dr +

∫ d

c

A · dr
]

→ ∂A2(x0, y0, z0)

∂x
as δ1, δ2 → 0
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Adding the results gives for our line integral definition of curl yields

e 3 ·
(

∇× A
)

=
(

∇× A
)

3
=

[

∂A2

∂x
− ∂A1

∂y

]∣

∣

∣

∣

(x0, y0, z0)

in agreement with our original definition in Cartesian coordinates.

The other components of curl A can be obtained from similar rectangles in the (e 2−e 3) and
(e 1−e 3) planes, respectively.

18.2 Stokes’ theorem

If S is an open surface, bounded by a simple closed
curve C, and A is a vector field defined on S, then

∮

C

A · dr =

∫

S

(

∇× A
)

· dS

where C is traversed in a right-hand sense about dS.
(As usual dS = n̂dS and n̂ is the unit normal to S).

d S

S

_

_

C

n̂

.

Proof:

Divide the surface area S into N adjacent small surfaces as indicated in the diagram. Let
∆Si = ∆Si n̂i be the vector element of area at ri. Using the integral definition of curl,

n̂ ·
(

curl A
)

= n̂ ·
(

∇× A
)

= lim
∆S→0

1

∆S

∮

C

A · dr

we multiply by ∆Si and sum over all i to get

N
∑

i=1

(

∇× A(ri)
)

· n̂i ∆Si =
N
∑

i=1

∮

Ci

A · dr +
N
∑

i=1

ǫi ∆Si

where Ci is the curve enclosing the area ∆Si, and the quantity ǫi → 0 as ∆Si → 0.

n

C

C

C

n_

_

1

2

2

1^

^

.
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Since each small closed curve Ci is traversed in the same sense, then, from the diagram, all
contributions to

∑N
i=1

∮

CiA · dr cancel, except on those curves where part of Ci lies on the
curve C. For example, the line integrals along the common sections of the two small closed
curves C1 and C2 cancel exactly. Therefore

N
∑

i=1

∮

Ci

A · dr =

∮

C

A · dr

Hence
∮

C

A · dr =

∫

S

(

∇× A
)

· dS =

∫

S

n̂ ·
(

∇× A
)

dS

Lecture 19: Applications of Stokes’ theorem

19.1 Path independence of line integrals

We have seen that if a vector field is irrotational (curl vanishes) then a line integral is
independent of path. We can now prove this statement using Stokes’ theorem.

Proof:

Let ∇×A(r) = 0 in R, and consider the difference
of two line integrals from the point r

0
to the point r

along the two curves C1 and C2 as shown:

∫

C1

A(r′) · dr′ −
∫

C2

A(r′) · dr′

We use r′ as integration variable to distinguish it from
the limits of integration r

0
and r.

S

r_

r_

C

C

0

2

1

We can rewrite this as the integral around the closed curve C = C1 − C2:
∫

C1

A(r′) · dr′ −
∫

C2

A(r′) · dr′ =

∮

C

A(r′) · dr′

=

∫

S

∇× A · dS = 0

In the above, we have used Stokes’ theorem to write the line integral of A around the closed
curve C = C1 − C2, as the surface integral of ∇×A over an open surface S bounded by C.
This integral is zero because ∇× A = 0 everywhere in R. Hence

∇× A(r) = 0 ⇒
∮

C

A(r′) · dr′ = 0

for any closed curve C in R as claimed.

Clearly, the converse is also true ı.e. if the line integral between two points is path inde-
pendent then the line integral around any closed curve (connecting the two points) is zero.
Therefore

0 =

∮

C

A(r′) · dr′ =

∫

S

∇× A · dS
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where we have used Stokes’ theorem and since this holds for any S the field must be irrota-
tional.

19.2 Example on joint use of divergence and Stokes’ theorems

Example: show that ∇ · ∇ × A ≡ 0 independent of co-ordinate system:

Let S be a closed surface, enclosing a volume V . Applying the divergence theorem to ∇×A,
we obtain

∫

V

∇ ·
(

∇× A
)

dV =

∫

S

(

∇× A
)

· dS

Now divide S into two surfaces S1 and S2 with a common boundary C as shown below

S

C

V

S

S

S

S
1

2

2

1

Now use Stokes’ theorem to write
∫

S

(

∇× A
)

· dS =

∫

S1

(

∇× A
)

· dS +

∫

S2

(

∇× A
)

· dS =

∮

C

A · dr −
∮

C

A · dr = 0

where the second line integral appears with a minus sign because it is traversed in the
opposite direction. (Recall that Stokes’ theorem applies to curves traversed in the right
hand sense with respect to the outward normal of the surface.)

Since this result holds for arbitrary volumes, we must have

∇ · ∇ × A ≡ 0

19.3 Planar Areas

Consider a planar surface in the e 1−e 2 plane and the vector field

A =
1

2
[−ye 1 + xe 2] .

We find ∇×A = e 3. Since a vector element of area normal to a planar surface in the e 1−e 2

plane is dS = dS e 3 we can obtain the area in the following way

∫

S

∇× A · dS =

∫

S

e 3 · dS =

∫

S

dS = S
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Now we can use Stokes’ theorem to find

S =

∮

C

A · dr =
1

2

∮

C

(−ye 1 + xe 2) · (e 1dx+ e 2dy)

=
1

2

∮

C

(x dy − y dx)

where C is the closed curve bounding the surface.

e.g. To find the area inside the curve

x2/3 + y2/3 = 1

use the substitution x = cos3 φ, y = sin3 φ, 0 ≤ φ ≤ 2π then

dx

dφ
= −3 cos2 φ sinφ ;

dy

dφ
= 3 sin2 φ cosφ

and we obtain

S =
1

2

∮

C

(

x
dy

dφ
− y

dx

dφ

)

dφ

=
1

2

∫ 2π

0

(

3 cos4 φ sin2 φ+ 3 sin4 φ cos2 φ
)

dφ

=
3

2

∫ 2π

0

sin2 φ cos2 φ dφ =
3

8

∫ 2π

0

sin2 2φ dφ =
3π

8

19.4 Ampère’s Law

You should have met the integral form of Ampère’s law, which describes the magnetic field
B produced by a steady current J :

∮

C

B · dr = µ0

∫

S

J · dS

where the closed curve C bounds the surface S i.e. the rhs is the current flux across S. We
can rewrite the lhs using Stokes’ theorem to obtain

∫

S

(∇×B) · dS = µ0

∫

S

J · dS .

Since this holds for any surface S we must have

∇×B − µ0 J = 0

which is the differential form of Ampère’s law and is one of Maxwell’s equations (see next
year).
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